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SMOOTH SIEGEL DISKS EVERYWHERE

ARTUR AVILA, XAVIER BUFF, AND ARNAUD CHÉRITAT

Abstract. We prove the existence of Siegel disks with smooth boundaries in

most families of holomorphic maps fixing the origin. The method can also yield
other types of regularity conditions for the boundary. The family is required

to have an indifferent fixed point at 0, to be parameterized by the rotation

number α, to depend on α in a Lipschitz-continuous way, and to be non-
degenerate. A degenerate family is one for which the set of non-linearizable

maps is not dense. We give a characterization of degenerate families, which

proves that they are quite exceptional.
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Introduction

In [PM97b], Pérez-Marco was the first to prove the existence of univalent maps
f : D → C having Siegel disks compactly contained in D and with smooth (C∞)
boundaries. The methods in [PM97b] can in fact give any class of regularity below
analytic, in particular quasi-analytic classes, but also maps that are Cα for a pre-
scribed α but for no bigger α, etc. However the maps produced in [PM97b] do not
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2 A. AVILA, X. BUFF, AND A. CHÉRITAT

a priori have an extension to an entire map, let alone polynomial. In [ABC04], we
were able to adapt some of these techniques and show the existence of quadratic
polynomials having Siegel disks with smooth boundaries (for a simplification of
the proof, and an extension to unisingular meromorphic maps, see [Gey08]). In
[BC07], two authors of the present article proved the existence of quadratic polyno-
mials having Siegel disks whose boundaries have any prescribed regularity between
C0 and analytic (excluded).

In this article, we generalize these results to most families of maps having a non
persistent indifferent cycle.

Definition 1 (Non-degenerate families). Assume I ⊂ R is an open interval. Con-
sider a family of holomorphic maps fα : D→ C parameterized by α ∈ I, with

fα(z) = e2πiαz +O(z2)

and assume that fα depends continously1 on α. We say that the family is degenerate
if the set {α ∈ I ; fα is not linearizable} is not dense in I. Otherwise it is called
non-degenerate.

This definition is purely local so if we are given a holomorphic dynamical system
on a Riemann surface, we can extend the definition above by working in a chart
and restricting the map to a neighborhood of the fixed point.

For example, if fα is a family of rational maps of the same degree d ≥ 2, then it
is automatically non-degenerate. Indeed, a fixed point of a rational map of degree
≥ 2 whose multiplier is a root of unity is never linearizable.2

In Appendix A we characterize degenerate families in the case where the depen-
dence with respect to the parameter α is analytic.

Notation 2. Assume f : D→ C is a holomorphic map having an indifferent fixed
point at 0. We write

• K(f) the set of points in D whose forward orbit remains in D and
• ∆(f) the connected component of the interior of K(f) that contains 0;

∆(f) = ∅ if there is no such component.

Remark (Siegel disks). If ∆(f) 6= ∅ it is known that ∆(f) is simply connected3

and that the restriction f : ∆(f) → ∆(f) is analytically conjugate to a rotation
via a conformal bijection between ∆(f) and D sending 0 to 0, see Section 1.3. The
set ∆(f) is usually called a Siegel disk in the case α /∈ Q and we will use the
same terminology in this article for the case α ∈ Q, though subtleties arise. See
Section 1.1

We prove here that the main theorem in [BC07] holds for a non-degenerate family
under the assumption that the dependence α 7→ fα is Lipschitz.4 We thus get in
particular (see Appendix B for the general statement):

Theorem 3. Under the non-degeneracy assumptions of Definition 1, if moreover
the dependence α 7→ fα is Lipschitz then

• ∃α ∈ I \ Q such that ∆(fα) is compactly contained in D and ∂∆(fα) is a
C∞ Jordan curve;

1This means: (α, z) 7→ fα(z) is continuous.
2This is a simple and classical fact, that seems difficult to find in written form. If an iterate

of f is conjugate on an open set U to a finite order rotation then a further iterate of f is the

identity on U . Since fn is holomorphic on the Riemann sphere, it is the identity everywhere. This

contradicts the fact that fn has degree dn > 1.
3This is another classical fact. See Footnote 8 in Section 1.1.
4By this we mean: (∃C > 0) (∀α ∈ I, α′ ∈ I, z ∈ D), |fα′ (z)− fα(z)| ≤ C|α′ − α|.
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• ∃α ∈ I \ Q such that ∆(fα) is compactly contained in D and ∂∆(fα) is a
Jordan curve but is not a quasicircle;
• ∀n ≥ 0, ∃α ∈ I \ Q, ∆(fα) is compactly contained in D and ∂∆(fα) is a

Jordan curve which is Cn but not Cn+1.

A family satisfying the assumptions on the interval I also satisfies them on every
sub-interval. It follows that the parameters α in the theorem above are in fact
dense in I.

Remark. If fα is a restriction of another map gα and ∆(fα) b D, then ∆(fα) =
∆(gα), see Section 1.1. So the result gives information on the Siegel disks not
only of maps from D to C but in fact of any kind of analytic maps, for instance
polynomials C→ C, rational maps S→ S, entire maps C→ C, . . .

Remark. The main tool for Theorem 3 is Yoccoz’s sector renormalization as in
several of our previous works (except [Avi] who uses Risler’s work instead [Ris99]).
In [Avi], [ABC04] and [BC07] it was crucial to have a family for which it is known
that fα is linearizable if and only if α is a Brjuno number. The progress here is to
get rid of this assumption.5

1. Conformal radius, wild combs and the general construction.

The method that Buff and Chéritat first developped to get smooth Siegel disks
is one of the offsprings of a fine control, initiated in [Ché01], on the periodic cycles
that arise when one perturbs parabolic fixed points. Still today we can only make it
work in specific contexts, which includes quadratic polynomials for instance. With
the smooth Siegel disk objective in mind, Avila was able in [Avi] to identify essential
sufficient properties so as to allow for a partial generalization, and also pointed to
the bottleneck for a complete generalization. In this section, we essentially follow
the presentation in [Avi]. We also mention a connection with continuum theory.

In this whole section, except Section 1.1, we consider a non-empty open interval
I ⊂ R and a continuous family of analytic maps fα : D → C parameterized by
α ∈ I with fα(z) = e2πiαz +O(z2).

1.1. Siegel disks and restrictions. Given a one dimensional complex manifold
S and a holomorphic map

f : U → S

defined on an open subset U of S, assume there is a neutral fixed point a ∈ U of
multiplier e2πiα with α ∈ R. Call rotation domain any open set containing a on
which the map is analytically conjugate to a rotation on a Euclidean disk or on the
plane or on the Riemann sphere.6 If α /∈ Q then the rotation domains are totally
ordered by inclusion. This is never the case if α ∈ Q. If α /∈ Q there is a maximal
element for inclusion, called the Siegel disk7 of f at point a. If α ∈ Q existence of
a maximal element may also fail, depending on the situation. If α /∈ Q the Siegel
disk of a restriction is automatically a subset of the original Siegel disk. If α ∈ Q
this may fail.

5Note that in [Gey08], optimality of Brjuno’s condition was not required. However, it is

assumed that f has a meromorphic extension to C that has only one non-zero critical or asymptotic
value.

6The last case is extremely specific, for we must have U = S isomorphic to the Riemann sphere
and f is a rotation.

7In the case of a rotation on the Riemann sphere this name is not appropriate since the disk
is a sphere. . .
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Remark. The right approach in the general case is probably to use the Fatou set.
Here is not the place for such a treatment, so we only give results specific to our
situation

In the sequel we assume S = C and U is bounded and simply connected.

Following [Yoc95], Section 2.4, we let K be the set of points whose orbit is defined
for all times. The set K ⊂ U is not necessarily closed in U . We let ∆(f) = ∆ ⊂ U
where ∆ is the connected component containing a of the interior K◦, or ∆ = ∅ if
a /∈ K◦. Then ∆ is necessarily simply connected: this is one classical application
of the maximum principle.8 Any rotation domain for a is necessarily contained in
K. It follows that any rotation domain for a is in fact contained in ∆. Moreover,
let us prove that ∆ itself is a rotation domain:

Proof. First note that we have f(∆) ⊂ ∆. The set ∆ is conformally equivalent to
the unit disk D. Conjugate f by a conformal map from ∆ to D sending a to 0. We
get a holomorphic self-map of D with a neutral fixed point at its center. By the
case of equality in Schwarz’s lemma this self-map is a rotation. �

Corollary 4. (We do not make an assumption on α.) Let U ′ be an open subset
of C. Let g : U ′ → C be holomorphic with a neutral fixed point a. Assume U is
an open subset of U ′ containing a and let f be the restriction of g to U . Then
∆(f) ⊂ ∆(g). If moreover U and U ′ are simply connected and if ∆(f) is compactly
contained in the domain of definition of f then ∆(g) = ∆(f).

Proof. The first claim is immediate. For the second claim when ∆(f) is compactly
contained in U , consider the image of ∆(f) by the uniformization (∆(g), 0) →
(D, 0): we get a simply connected subset A of D, invariant by the rotation. In the
case α /∈ Q this has to be a disk B(0, r) with r ≤ 1. If α ∈ Q, more sets are
possible. In any case if A is not equal to D we can construct a connected invariant
open subset of K(f) that strictly contains ∆(f), leading to a contradiction. �

In the case U = D our definition of ∆ coincides with Notation 2.

1.2. Properties of the conformal radius as a function of the angle. Recall
that we consider a non-empty open interval I ⊂ R and a continuous family of
analytic maps fα : D→ C parameterized by α ∈ I with fα(z) = e2πiαz+O(z2). The
set ∆(fα) has been defined in Notation 2, and Section 1.1 gave a mild generalization
and basic properties.

Definition 5. We let r(α) denote the conformal radius at 0 of ∆(fα) if it is not
empty. Otherwise we set r(α) = 0.

Recall that the conformal radius of a simply connected open subset U of C at a
point a ∈ U is defined as the unique r ∈ (0,+∞] such that there exists a conformal
bijection ϕ : B(0, r)→ U with ϕ(0) = a and ϕ′(0) = 1 .

Proposition 6. Let B denote the set of Brjuno numbers.9 The function α 7→ r(α)
has the following properties:

(1) It is upper semi-continuous: ∀α ∈ R, lim supx→α r(x) ≤ r(α).
(2) It takes positive values at Brjuno numbers: α ∈ B =⇒ r(α) > 0.

8If ∆ would not be simply connected then there would exist a bounded closed set C 6= ∅ (not
necessarily connected) such that ∆∩C = ∅ and such that ∆′ := ∆(f)∪C is open and connected
(this is a theorem in planar topology). By the maximum principle, fk(∆′) ⊂ D for all k. Hence
∆′ would be an open subset of K(f), contradicting the definition of ∆.

9See [Yoc95] for a definition.
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(3) It is weakly lower semi-continuous on the left and on the right at every Br-
juno number: α ∈ B =⇒ lim supx→α− r(x) ≥ r(α) and lim supx→α+ r(x) ≥
r(α).

Weak lower semi-continuity on each side can be rephrased as follows: there exists
αn < α < α′n with αn → α and α′n → α such that lim r(αn) ≥ r(α) and lim r(α′n) ≥
r(α). Since f is upper semi-continuous, these limits are in fact equal to r(α).

The first property is classical, see Lemma 10 or Proposition 1, page 19 of [Yoc95].
The second is Brjuno’s theorem, [Brj65, Brj73, Brj74, Rüs67, Yoc95]. The third
follows from Risler’s work [Ris99] or from a fine study of Yoccoz’s renormalization
[ABC04]. According to the method by Buff and Chéritat explained in [ABC04], to
get lim inf r(αn) ≥ r(α) it is enough to take a sequence αn such that Φ(αn)→ Φ(α)
where Φ denotes Yoccoz’s variant of the Brjuno sum. Both references also imply:

Complement 7. In Item 3 above, one can take sequences αn and α′n that are
bounded type numbers (Diophantine of order 2).

For instance if α = a0 + 1/(a1 + 1/ . . .) = [a0; a1, . . .] is the continued frac-
tion expansion of α ∈ B then the sequences (θ2n) and (θ2n+1) work, where θn =
[a0; a1, . . . , an, 1 + an+1, 1, 1, 1, . . .]. Indeed θn → α, alternating on each side of α
and one can check that Φ(θn)→ Φ(α), as follows for instance from the remark after
Proposition 2 in [ABC04].

Note that in the particular case of a family fα that depends on α in a Lipschitz-
continuous way, Complement 7 is also a corollary of the main lemma of the present
article, Lemma 15.

1.3. Properties of the linearizing map. Consider fα and recall that K(fα) is
defined as the set of points whose orbit stays in D. Assume that the interior of
K(fα) contains 0 and recall that ∆ = ∆(fα) is defined as the connected component
containing 0 of the interior of K(fα). Recall that ∆ is simply connected. Any
uniformization ϕ : rD→ ∆ with ϕ(0) = 0 must linearize fα because: first f(∆) ⊂
∆, second the conjugate is a self-map of rD that fixes 0 with multiplier of modulus
one, so the case of equality of Schwarz’s lemma implies that it is a rotation.

Notation 8 (Linearizing map). We let ϕα : r(α)D → ∆(fα) be the unique uni-
formization such that ϕα(0) = 0 and ϕ′α(0) = 1.

We also write
Rα(z) = e2πiαz.

Now assume α is irrational. It is well known then that there is a unique formal
power series Φ(X) with Φ(X) = X +O(X2) and Φ ◦ Rα = fα ◦ Φ. It follows that
when fα is linearizable, Φ is the power series expansion of ϕα. In particular the
radius of convegence of Φ is greater or equal to r(α).10

Consider any holomorphic map ψ satisfying ψ(0) = 0, ψ′(0) = 1 and such that
ψ ◦ Rα = fα ◦ ψ holds near 0. Then f is linearizable and if α /∈ Q then ψ must
coincide with ϕα near 0: this can be seen either by comparing to Φ as above, or
more directly: ϕ−1

α ◦ψ has derivative 1 at 0, commutes with Rα and α is irrational
so its power series expansion is reduced to a linear term only.

Lemma 9 (Convergence of the linearizing maps). Consider αn → α and let ρ =
lim inf r(αn). Then r(α) ≥ ρ.11 Assume that ρ > 0. If α ∈ Q assume moreover
that ρ ≥ r(α), i.e. ρ = r(α). Then ϕαn

−→ ϕα uniformly on compact subsets of
ρD.

10They do not have to be equal, as the maps fα may extend beyond D and the extension may
well have a bigger Siegel disk.

11It follows that r(α) ≥ lim sup r(αn), see Lemma 10.
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Proof. If ρ > 0 then the restrictions of ϕαn
to rnD with rn = min(ρ, r(αn)) −→ ρ

take values in D thus form a normal family. Consider any extracted limit ϕ : ρD→
C of these restrictions. Since ϕαn(0) = 0 and ϕ′αn

(0) = 1 we have ϕ(0) = 0 and
ϕ′(0) = 1. Hence the limit is not constant and thus takes values in D. Passing to
the limit in ϕαn

◦ Rαn
= fαn

◦ ϕαn
we get that ϕ ◦ Rα = fα ◦ ϕ on ρD. It follows

that ϕ takes values in K(fα) and since it is open, in the interior of K(fα) hence in
∆(fα). By Schwarz’s inequality applied to ϕ−1

α ◦ ϕ we have |ϕ′(0)| ≤ r(α)/ρ, i.e.
r(α) ≥ ρ. If ρ ≥ r(α) then we are in the case of equality of Schwarz’s lemma, and
hence ϕ−1

α ◦ϕ is the identity on ρD. Alternatively, if α /∈ Q then by the uniqueness
argument before the statement of the present lemma, ϕ must be equal to ϕα near
0. By analytic continuation of equalities, they coincide on all of ρD. �

Remark. Note that the second claim sometimes fails if α ∈ Q if we do not assume
ρ ≥ r(α): for instance to build a counterexample for α = 0 one may consider a
vector field dz/dt = χ(z) which has a singularity at 0 (i.e. χ(0) = 0) with eigenvalue
χ′(0) = 2πi but is not linear and let ft be the restriction to D of the time-t map
associated to this vector field. Then as t 6= 0 tends to 0, the complement of the
interior of K(ft) tends, in the sense of Hausdorff, to the complement of the interior
of the set K(χ) where K(χ) denotes the set of points in D whose forward orbit
by the vector field is defined for all times and never leaves D. Moreover if t is
irrationnal, then ∆(ft) is in fact independent of t and equal to the component
containing 0 of the interior of K(χ). On the other hand f0 = id hence K(f0) = D.

Let us prove the first point in Proposition 6:

Lemma 10 (Upper semi-continuity of r). If αn −→ α then r(α) ≥ lim sup r(αn).

Proof. Let ρ = lim sup r(αn). For a subsequence an[k] we have r(αn[k]) −→ ρ. The
claim then follows from the first conclusion of Lemma 9 applied to the subsequence.

�

1.4. A remark on continuum theory. (This section can be skipped as it is not
necessary in the rest of the article.)

A continuum is a non-empty, compact and connected metrizable topological
space. In continuum theory, there is an object called the Lelek fan. It is a universal
object in the sense that any continuum with some specific set of properties (see
[Cha89, AO93]) is homeomorphic to the Lelek fan. A variant is the following, called
straight one sided hairy arc in [AO93], that they abbreviate sosha, but we prefer
to call it here a wild comb. The Lelek fan can be recovered from this continuum by
contracting the base to a point.

Definition 11 (The wild comb). A straight one sided hairy arc is the sub-graph

C =
{

(x, y) ; 0 ≤ y ≤ f(x)
}

of a function f : [0, 1]→ [0,+∞) such that:

• f is upper semi-continuous,
• f is weakly12 lower semi-continuous on the left and on the right,
• both

{
x ∈ [0, 1] ; f(x) > 0

}
and f−1(0) are dense in [0, 1],

• f(0) = 0 = f(1).

Its base is the segment
{

(x, 0) ; x ∈ [0, 1]
}

.

The first condition is equivalent to C being closed. In this article, we call it a wild
comb or the wild comb to emphasize that it also possesses a form of topological
uniqueness (see [AO93]).

12See Proposition 6 for a definition.
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Under the condition of the above definition, it was proved in [AO93], Proposi-
tion 2.4, that the image by f of an interval [a, b] ⊂ [0, 1] with a < b is of the form
[0,M ] for some M > 0. In particular: though f is highly discontinuous, it satisfies
the intermediate value property.

Also, C is the closure of the graph of f (Corollary 2.5 in [AO93]). The fact
that the closure is contained in C follows from f being upper semi-continuous and
non-negative. The fact that this closure contains C means that for any (x, y) with
0 ≤ y ≤ f(x) there exists a sequence xn → x such that f(xn)→ y. In fact if x 6= 0
or 1 then there is such a sequence satisfying xn < x and there is another satisfying
xn > x.

From the wild comb people have derived topological models for the Julia set
of some exponential maps [AO93, BJR12], and for the hedgehogs13 associated to
non-linearizable fixed points of some polynomials [Che]. We will also see here a
wild comb, though not as a subset of some dynamical plane, but as the subgraph
of the function α 7→ r(α) in the special case of Section 1.5.

As a notable resurgence of smoothess, it was proved in [Bis05] that some non-
linearizable holomorphic maps have hedgehogs that contain a Cantor set of smooth
hairs.14

1.5. Special case: assuming Brjuno’s condition is optimal. Assume here
that we have a family for which we know that the Brjuno condition is optimal, in
the sense that r(α) > 0 =⇒ α ∈ B where B denotes the set of Brjuno numbers.
The first family for which optimality has been known is the family of degree two
polynomials, thanks to the work of Yoccoz, see [Yoc95].

Lemma 12. For all α ∈ I and all y with 0 ≤ y < r(α), the set r−1(y) (is non-
empty and) accumulates α on the left and on the right. In other words there exists
αn < α < α′n with αn → α and α′n → α and such that r(αn) = y = r(α′n).

Proof. (from [Avi]) Since R \ B is dense, there is a dense set on which r = 0. In
particular the case y = 0 is trivial. Assume y > 0. Arbitrarily close to α, there are
b ∈ I such that r(b) = 0. Assume b < α. Consider then K =

{
x ∈ [b, α] ; r(x) ≥ y

}
,

which is non-empty because α ∈ K, and let c = inf K. By upper semi-continuity
r(c) ≥ y. In particular r(c) 6= 0 hence c 6= b and c ∈ B by optimality assumption. If
we had r(c) > y then by weak lower semi-continuity on the left at Brjuno numbers
(Proposition 6), there would be some c′ ∈ (b, c) with r(c′) > y, contradicting the
definition of c. The same holds if b > α using weak lower semi-continuity on the
right. Finally r(c) = y 6= r(α) ensures that c 6= α. �

Remark. Consider an interval [u, v] ⊂ I with u < v and r(u) = 0 = r(v) (there are
plenty by hypothesis), and let C be the subgraph of r restricted to [u, v]. Then C
is a wild comb as per Definition 11: we imposed r(u) = 0 = r(v) and all remaining
conditions are satisfied according to Proposition 6. This implies the lemma above,
by the discussion in Section 1.4, and in fact the proof of the intermediate value
property for a general wild comb boils down to the same arguments as the proof of
Lemma 12.

Since we assumed optimality of Brjuno’s condition, the values αn in Lemma 12
belong to B. By Complement 7 we get:

13Pérez-Marco in [PM97a] proved the existence of non-trivial totally invariant compact con-
nected sets containing irrational non-linearizable fixed points that he named hedgehogs and de-
veloped their theory. He used them to provide a dictionary with the dynamics of analytic circle
diffeomorphisms.

14What is called a comb in [Bis08] is different from what we call a wild comb here.
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Corollary 13. For all α ∈ I and all y with 0 ≤ y ≤ r(α), there exists αn < α < α′n
with αn → α and α′n → α and such that: αn and α′n are bounded type irrationals
and r(αn) and r(α′n) both tend to y.

In other words we gain information on the arithmetic type of αn at the cost of
weakening “r(αn) = y” into “r(αn) → y”. Note also that we gain the ability to
reach y = r(α).

1.6. Smooth Siegel disks. Recall the standing assumption that the family de-
pends continuously on α. In [Avi, ABC04] is shown how to get smooth Siegel disks
from Lemma 12, which assumes Brjuno’s condition is optimal. We adapt here the
proof so that it does not use optimality directly but only depends on the following
condition:15

Condition 14. For every α ∈ B and every ρ ∈ R with 0 < ρ < r(α), there exists
a sequence of bounded type numbers αn −→ α such that r(αn) −→ ρ.

For a family on which the Brjuno condition is optimal, Corollary 13 implies
that Condition 14 holds. Better: it provides a sequence on each side, though the
construction below does not need it.

Recall that the point of this article is to get rid of the hypothesis that the
Brjuno condition is optimal: we will prove in Corollary 18 that Condition 14 holds
whenever the family is Lipschitz-continuous with respect to the parameter, and
non-degenerate as per Definition 1.

We now begin the construction of a smooth Siegel disk assuming Condition 14.
Recall that ϕα denotes the unique conformal bijection from r(α)D → ∆(fα) such
that ϕα(z) = z +O(z2) and that ϕα linearizes fα.

Construction of a sequence θn.
Start from any θ0 ∈ B, so that r(θ0) > 0 and also θ0 /∈ Q. Choose some

target radius ρ ∈ (0, r(θ0)). Choose also a strictly decreasing sequence ρn such that
ρ0 = r(θ0) and ρn −→ ρ.

Consider then a sequence αk → θ0, provided by Corollary 13, such that r(αk) −→
ρ1 and αk ∈ B. From the properties of linearizing maps (Lemma 9) and θ0 /∈ Q
it follows that ϕαk

→ ϕθ0 uniformly on every compact subset of ρ1D. Since these
are holomorphic maps, the same is true for their derivatives of all orders. We let
θ1 = αk for a choice of k such that the restriction of ϕθ1 − ϕθ0 to the closure of
ρD is less than 1/2 (for the sup norm) and such that its first derivative is less than
1/4. Since αk ∈ B it follows that θ1 /∈ Q.

Then we choose some open interval I1 of length ≤ 1/2, containing θ1, and such
that α ∈ I1 =⇒ r(α) ≤ ρ0 (upper semi-continuity of r at θ1). We also ask that
the the closure of I1 lies at positive distance from Z, which is possible since θ1 /∈ Z.

We then continue the inductive construction: given n ≥ 2, once θn−1 ∈ B
and In−1 with θn−1 ∈ In−1 have been constructed we choose θn of the form αk
where αk ∈ B is a sequence provided by Corollary 13 tending to θn−1 such that
r(αk) −→ ρn. The index k is chosen big enough so that: the restriction to the
closure of ρD of ϕθn − ϕθn−1

is less than 1/2n, its first derivative less than 1/2n+1

and so on up to its n-th derivative less than 1/2n+n. It is also chosen big enough so
that θn belongs to the interior of In−1, a condition that we did not have for n = 1.

Then we choose an open sub-interval In ⊂ In−1 of lenght ≤ 1/2n, containing θn,
such that α ∈ In =⇒ r(α) ≤ ρn and such that the closure of In lies at positive
distance from 1

nZ. And so on. . .

15Other conditions are sufficient to apply the methods of [BC07]. For instance we can replace

the assumption α ∈ B by α having bounded type. Also, bounded type numbers in the hypothesis

and conclusion can be replaced by Herman numbers.
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Properties of the limit θ.
The intersection of the closures of the In is a singleton and θn tends to this

value. Since r(θn) = ρn −→ ρ, upper semi-continuity of r implies r(θ) ≥ ρ. By the
defining properties of In, which contains θ, we get r(θ) ≤ ρn for all n so r(θ) ≤ ρ.
Hence r(θ) = ρ. Also θ belongs to the closure of In for all n, so the distance from θ
to 1

nZ is positive for all n > 0 hence θ /∈ Q. The conditions on ϕθn −ϕθn−1
implies

the uniform convergence on the closure of ρD of the derivatives of all orders of ϕθn .
Since θ /∈ Q, Lemma 9 implies that ϕθn → ϕθ uniformly on compact subsets of
ρD.16 It follows that ϕθ has a C∞ extension ϕ̃ to the closure of ρD. The image of
the circle ρ∂D by this extension is the boundary of ∆(fθ). By a straightforward
modification of the construction above, we can ensure that the curve is compactly
contained in D. Then ϕ̃ ◦Rθ = fθ ◦ ϕ̃ also holds on the boundary circle. Hence the
derivative of ϕ̃ on cannot vanish on this circle, for if it did, it would vanish on a
dense subset using the equation above, hence everywhere on the circle, whence ϕ̃
would be constant by standard properties of holomorphic functions. The map ϕ̃ is
also injective on the boundary circle (see [Mil06], Lemma 18.7 page 193; it is stated
for rational maps but is valid as soon as the rotation number is irrational and the
Siegel disk compactly contained in the domain of the map).

Hence ∂∆(fθ) is a C∞ Jordan curve compactly contained in D.

Remark. An interesting feature of this construction is that we were able to pre-
scribe the conformal radius of the Siegel disk.17

1.7. Other regularity classes for the boundary. The construction in [BC07] of
boundaries that are Cn but not Cn+1, and of other examples (see Appendix B), is
a refinement of the previous method. In the process we loose the ability to exactly
prescribe the conformal radius.

To apply the method of [BC07] and thus get Theorem 3, it is enough to have a
continuous family of maps fα such that Condition 14 holds. In [BC07] there are
two supplementary condition, but we can remove them:

• The maps fα must be injective. But if the given family fα contains non-
univalent maps, we first restrict to a sub-interval I and restrict f to a small
enough disk εD. The Siegel disk ∆′ that it produces for the restriction to
εD of f is compactly contained in εD and thus ∆(f) = ∆′ by the end of
Corollary 4.

• The family must depend analytically on α. But it turns out that the proof
given in [BC07] only uses continuity of the family and the fact that Condi-
tion 14 holds.

Remark. The proof that Condition 14 is enough is a bit elaborate so we refer the
reader to [BC07]. Let us just mention that in the construction, to get obstruc-
tions to regularity we use as intermediate steps the existence of Siegel disks whose
boundaries oscillate a lot. For this we use a theorem of Herman [Her85] (see also
[PM97a], statement B.3 (i) page 251): if α is a Herman number (this includes all
bounded type numbers),18 and if f is univalent then ∆(fα) cannot19 be compactly

16However even if we had θ ∈ Q, since r(θn)→ r(θ), we would still have ϕθn → ϕθ.
17By a linear change of variable z 7→ λ(α)z with λ continuous, we can thus prescribe the

conformal radius to coincide with a continous function of α.
18Herman numbers are defined as the set of irrational numbers α for which every orientation

preserving analytic circle diffeomorphism of rotation number α has its Poincaré conjugacy to the

rotation that is analytic too. Notably, Yoccoz gave a diophantine characterization of the set of

Herman numbers, i.e. a complete determination in terms of simple manipulations of α, see [Yoc92].
19The Herman condition is optimal in this respect: Pérez-Marco proved that if α is not Herman,

then there is a univalent map of rotation number α and whose Siegel disk is compactly contained
in D, see statement B.3 (ii) page 251 in [PM97a]
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contained in D. Now if we have a sequence αn → α of Herman numbers such
that r(αn) → ρ ∈ (0, r(α)) then the sets ∂∆(fαn

) have a point in ∂D but also
points close to the fα-invariant curve ϕα(ρ∂D) ⊂ ∆(α). See [BC07] for the rest of
the argument. As an alternative to Herman’s theorem, we can use the following
consequence of [GŚ03] (whose methods are quite different from [Her85]): If α has
bounded type then ∂∆ either meets ∂D or contains a critical point of f . Note that
it is known only for bounded type rotation numbers.

1.8. General case. Here we prove that Condition 14 holds for families that are
non-degenerate (in the sense of Definition 1) and for which the dependence on α is
Lipschitz continuous. This yields Theorem 3.

This is based on the following perturbation lemma, to the proof of which we
devote the whole of Section 2.

Lemma 15 (Main lemma: perturbation of a rotation). Let α ∈ R and let [a0; a1, . . .]
be its continued fraction expansion. If α ∈ Q then it has two such expansions20 and
both are finite : choose one, [a0; a1, . . . , ak].

(1) If α /∈ Q let αn = [a0; a1, . . . , an, 1 + an+1, 1 +
√

2].

(2) If α ∈ Q let αn = [a0; a1, . . . , ak, n+ 1 +
√

2].

Assume that fn are holomorphic functions defined on D with fn(z) = e2πiαnz +
O(z2) and that fn tends to Rα in a Lipschitz way with respect to αn − α, i.e.:

|fn(z)−Rα(z)| ≤ K|αn − α|
for some K ≥ 1.21 Then

(1) If α /∈ Q then
lim inf r(fn) ≥ 1.

(2) If α = p/q in irreducible form, then

lim inf r(fn) ≥ exp(−C(K, q)).

Here C(K, q) > 0 is independent of α, of the sequence fn and of αn and satisfies
the following: for all integers q ≥ 1, K 7→ C(K, q) is a continuous non-decreasing
function of K ≥ 1; for all fixed K ≥ 1 we have C(K, q) −→ 0 as q → +∞.

Remark 16. If α ∈ B then Lemma 15 is already known: it follows from [BC07] or
[Ris99]. So the novelty is for non-Brjuno numbers and rational numbers.

In Section 2 we prove that the following value of C(K, q) works:

(1) C(K, q) =
log q

q
+

logK

q
+
c1
q

for some c1 > 0. This estimate may be non optimal.
Note that αn → α. If α /∈ Q then α2n < α < α2n+1. If α ∈ Q then αn is on

one side of α or the other depending on which of the two continued fraction was
chosen.

Of course the choice of 1 +
√

2 is somewhat arbitraty and many other variants
hold. Recall that 1+

√
2 = [2; 2, 2, 2, . . .], so it is a close relative to the golden mean

1+
√

5
2 = [1; 1, 1, 1, . . .], that we can use instead. Note that the class of αn mod Z

only depends on the class of α mod Z (and on n).
The fact that we do not get lim inf r(fn) = 1 when α ∈ Q is not just a limitation

of our method. Indeed, as in the remark following Lemma 9, consider a vector
field ż = χ(z) defined in a neighborhood of the closed unit disk and with χ(z) =

20See the end of Section 2.4.
21We necessarily have K ≥ 1 by Schwarz’s lemma comparing derivatives at the origin. To

allow for smaller values of K we would compare fn to Rαn instead of Rα. However we are not
interested in small values of K in this article.
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2πiz+O(z2) and let ht be the associated time-t map. If the vector field is invariant
by the rotation R1/q we may set ft = Rp/q ◦ ht−p/q. Then the family satisfies
supD |ft − Rp/q| ∼t→p/q K|t − p/q| with K = supD |χ|. For t irrational, its Siegel
disk is independent of t and coincides with the maximal linearization domain for
χ, which is not the whole unit disk, except if χ(z) = 2πiz for all z.

As a consequence of the main lemma we now prove:

Lemma 17 (Perturbation lemma for Lipschitz families). Let I be a non-empty
interval and (fα)α∈I a family of functions D→ C with expansion fα(z) = e2πiαz+
O(z2) at 0. Assume that the family is K-Lipschitz for some K ≥ 1, i.e. ∀α, β ∈ I
and ∀z ∈ D,

|fα(z)− fβ(z)| ≤ K|α− β|.
Then for all α ∈ I, if we write αn an associated sequence like in Lemma 15, we
have

(1) If α /∈ Q then
lim inf r(fαn

) ≥ r(fα).

(2) If α = p/q in irreducible form, then

lim inf r(fαn
) ≥ r(fα)/ exp(C ′(K, q)).

Similarly to the previous lemma, C ′(K, q) is independent of the family (fα), for each
q the function K 7→ C ′(K, q) is continuous, non-decreasing and for each K ≥ 1,
C ′(K, q) −→ 0 as q → +∞.

Here we can get:

(2) C ′(K, q) = 4
log q

q
+

logK

q
+
c2
q

where c2 is a positive universal constant. As in eq. (1), this estimate may be
non-optimal.

Proof. If r(α) = 0 the claim is trivial so we assume r(α) > 0.
First, we can immediately improve the inequality |fα(z)− fβ(z)| ≤ K|α− β| by

Schwarz’s inequality because fα − fβ maps 0 to 0:

|fα(z)− fβ(z)| ≤ K|α− β| · |z|.
Consider the linearizing map ϕα. Let gβ = ϕ−1

α ◦fβ ◦ϕα. Then gα is the restriction
of Rα to r(α)D. The maps gβ are defined on subsets dom gβ of the disk r(α)D that
tend to this disk in the following sense: ∀r < r(α), ∃η > 0 such that |β − α| < η
=⇒ rD ⊂ dom gβ .

Fix for a moment a value r < r(α). Write ε = 1−r/r(α) so that r = (1−ε)r(α).
Consider the family

f̃β = r−1gβ(rz)

restricted to D and to values β such that |β − α| < η where η is as above, so that

f̃β is indeed defined on the whole of D. We show that for β close enough to α the

family f̃β is K ′-Lipschitz for a constant K ′ that we determine.
We will use the following two property of univalent maps, see [Pom92], Theo-

rem 1.3 page 9: if ϕ : D→ C is holomorphic, injective and satisfies ϕ(z) = z+O(z2)
at 0 then |ϕ(z)| ≤ |z|/(1− |z|)2 and |ϕ′(z)| ≥ (1− |z|)/(1 + |z|)3. These bound are
optimal because the Koebe function f(z) = z/(1− z)2 reaches them.

Transferring them to the function ϕα by letting ϕ(z) = r(α)−1ϕα(r(α)z) this
implies

∀z ∈ rD, |ϕα(z)| ≤ |z|
(1− r

r(α) )2
|ϕ′α(z)| ≥

1− r
r(α)

(1 + r
r(α) )3

,
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which implies

∀z ∈ rD, |ϕα(z)| ≤ |z|
ε2

|ϕ′α(z)| ≥ ε

8
.

From the lower bound on ϕ′α it follows that the family gβ satisfies the following
estimate:

∀z ∈ rD, |gβ(z)− gα(z)| ≤ K(β)|β − α| · |ϕα(z)|
with K(β) −→ 8K/ε as β → α: this can be proved for instance by contradiction
and extracted subsequences for |z| ∈ [r/2, r] and then by the maximum principle it
extends to |z| < r.

Transferring to f̃β and using the upper bound on ϕα(z) we get

∀z ∈ rD, |f̃β(z)− f̃α(z)| ≤ K ′(β)|β − α| · |z|
with K ′(β) −→ 8K/ε3 so we can take a uniform K ′ = 9K/ε3 by requiring β to be
close enough to α.

We now apply Lemma 15 to the family f̃β .

If α /∈ Q we get that lim inf r(f̃αn
) ≥ 1 hence lim inf r(fαn

) ≥ r. Since this is
true for all r < r(α) this implies lim inf r(fαn

) ≥ r(fα).

If α ∈ Q we get lim inf r(f̃αn) ≥ exp(−C(K ′, q)) with K ′ = 9K/ε3. Recall that
r = (1− ε)r(α) hence lim inf r(αn) ≥ r exp(−C(K ′, q)) = r(α) exp(−Q) with

Q = − log(1− ε) + C(9K/ε3, q).

Since this is true for all ε ∈ (0, 1) we get lim inf r(αn) ≥ r(α) exp(−C ′(K, q)) with

C ′(K, q) := inf
{
− log(1− ε) + C(9K/ε3, q) ; ε ∈ (0, 1)

}
.

The map K 7→ C ′(K, q) is continuous. One argument to prove this claim goes
as follows: by Lemma 15 the map K 7→ C(K, q) is continuous and has a limit
as K → +∞ because it is monotonous. Hence the expression Q extends to a
continuous function of (ε,K) from [0, 1] × (0,+∞) to [0,+∞] where the topology
is extended to include infinity in the range. This is a sufficient condition for the
function K 7→ infε∈(0,1)Q(ε,K, q) to be continuous.

Increasing K while fixing q and ε does not decrease Q hence K 7→ C ′(K, q) is
non-decreasing.

For each q, fixing K and ε, we have Q −→ − log(1− ε) when q → +∞ and this
quantity can be made close to 0 by choosing ε small. Hence C ′(K, q) −→ 0 when
K is fixed and q → +∞. �

Proof of Equation (2) from eq. (1). Using the notation of the proof above, we must
derive an upper bound for the infimum over ε ∈ (0, 1) of − log(1 − ε) + c1/q +
1
q log(9Kq/ε3). This is a function of ε whose derivative has the following simple

expression 1
1−ε −

3
qε . So the function is strictly convex with infinite limits at ε = 0

and ε = 1, and a unique minimum at ε = 1/(1 + q/3). We get C ′(K, a) = log(1 +
3/q) + c1/q + log(9Kq)/q + 3 log(1 + q/3)/q ≤ log(K)/q + 4 log(q)/q + c2/q. �

Corollary 18. If the family (fα) is non-degenerate in the sense of Definition 1
and Lipschitz-continuous with respect to α then Condition 14 holds.

Recall that Condition 14 is stated as follows: For every Brjuno number α and
ρ ∈ R with 0 < ρ < r(α), there exists a sequence of bounded type numbers αn −→ α
such that r(αn) −→ ρ. Here we moreover get that there is such a sequence on each
side of α.

Proof. We adapt the proof of Lemma 12.
Let α ∈ B and ρ ∈ R with 0 < ρ < r(α). By the non-degeneracy assump-

tion, arbitrarily close to α there are b ∈ I such that r(b) = 0. Choose one
and assume for simplicity that b < α (the other case is similar). Consider then
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K =
{
x ∈ [b, α] ; r(x) ≥ ρ

}
, which is non-empty because α ∈ K, and let c = inf K.

By upper semi-continuity
r(c) ≥ ρ.

In particular r(c) 6= 0, hence c 6= b.
Here, compared to Lemma 12, we cannot anymore deduce that c ∈ B because

we do not assume optimality. Instead, we use Lemma 17 with c in place of α. It
provides some special sequence αn −→ c of bounded type numbers. If c /∈ Q we
let cn = α2n < c. If c ∈ Q the sequence αn is either below or above c, depending
which continued fraction of c was chosen among the two possible, so we choose it
so that αn < c and let cn = αn. For all n big enough we have cn ∈ (b, c). Then by
definition of c, we have r(cn) < ρ. Now there are two cases.

• Either c /∈ Q. Then Lemma 17 states that lim inf r(cn) ≥ r(c) so

lim r(cn) = ρ.

We can thus choose n so that r(cn) is arbitrarily close to ρ.
• Or c ∈ Q. Then Lemma 17 states that lim inf r(cn) ≥ r(c)/ exp(C ′(K, q))

where q is the denominator of c = p/q written in irreducible form. So

lim inf r(cn) ∈ [ρ, ρ/ exp(C ′(K, q))].

The number c ∈ (b, α) above depends on the choice of b. If we now let b tend to α
then c tends to α and in particular: whenever c is rational its denominator q tends
to +∞, so C ′(K, q) tends to 0. �

As mentionned in Section 1.7, Condition 14 is all that is needed to get the results
of [BC07]. Hence by the corollary above the results of [BC07] extend to all families
that are Lipschitz and non-degenerate. In particular we have Theorem 3.

2. Proof of the main lemma

We will use a construction due to Douady and Ghys which has been made rig-
orous and quantified by Yoccoz (see [Dou87, Yoc95, PM93, Ris99]), and is called
sector renormalization. It has been treated in many articles and books since, so we
will not motivate its construction here.

2.1. Lifts.

2.1.1. Definitions. Let

• H denote the upper half plane,
• T : Z 7→ Z + 1.
• Tα : Z 7→ Z + α.
• For α ∈ R, let S(α) be the space of univalent (i.e. injective holomorphic)

maps F : H → C such that F ◦ T = T ◦ F holds on H and such that
F (Z)− Z −→ α as Im(Z)→ +∞.

We call α the rotation number of F even though it is rather a translation that
F is compared to, and we write it α(F ). A map F ∈ S(α) satisfies the property:

F (Z) = Z + α+ h(e2πiz)

for a holomorphic map h : D→ C with h(0) = 0.

The map
E(z) = e2πiz

is a universal cover from C to C∗ = C \ {0} and its restriction to H is a universal
cover from H to D∗ = D \ {0}.

For any univalent map f : D → C which fixes 0 with derivative e2iπα, a lift
is a holomorphic map F such that f ◦ E = E ◦ F . Then F ∈ S(α′) for some
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α′ ≡ α mod Z. Lifts exist and are unique if we require α′ = α. Conversely every
F ∈ S(α) arises as the lift of a (unique) univalent map f as above.

Given α ∈ R, the space S(α) is compact for the topology of uniform convergence
on compact subsets of H. If F ∈ Sα, we let K(F ) be the set of points Z ∈ H whose
orbit under iteration of F remains in H. For the corresponding f , we have

K(f) = {0} ∪ E(K(F ))

and ∆(f) = ∅ if ∆(F ) = ∅, otherwise ∆(f) = {0} ∪ E(∆(f)). We say that F is
linearizable whenever the corresponding map f is linearizable. This happens if and
only if K(F ) contains an upper-half plane and we write

h(F ) = inf
{
h > 0 ; K(F ) contains “ ImZ > h”

}
.

We set h(F ) = +∞ otherwise. We then have

r(f) ≥ e−2πh(F ).

2.1.2. Transfer of the Lipschitz condition to the lifts. Consider the lifts Tα, Fn ∈
S(αn) of Rα, fn. We can factor fn as follows: fn(z) = Rα(z)gn(z) with gn(0) =
e2πi(αn−α) 6= 0. Then from |fn(z)−Rα(z)| ≤ K|αn − α| on D we get |gn(z)− 1| ≤
K|αn − α| by a form of the maximum principle. In particular for n big enough we
have that ‖gn − 1‖∞ ≤ 1/2. Then Fn(Z)− Tα(Z) = log gn(E(z)) for the principal
branch of log. (For this we also have to take n big enough so that |αn−α| < 1, but
note that with the special sequence αn under consideration, it already holds for all
n ≥ 0.) Since the derivative of log has modulus less than 2 on B(1, 1/2) we get

∀Z ∈ H, |Fn(Z)− Z − α| ≤ 2K|αn − α|,
∀Z ∈ H, |Fn(Z)− Z − αn| ≤ (2K + 1)|αn − α|.

In the rest of Section 2 we will prove the following version of the main lemma
(Lemma 15):

Lemma 19. There exists a continuous function C(K) such that for all α, if we
define αn as in Lemma 15 (we repeat the definition below for convenience) then for
all K ≥ 1 and all sequence Fn ∈ S(αn) such that

|Fn(Z)− Z − αn| ≤ K|αn − α| :
(1) If α is irrationnal then

lim suph(Fn) ≤ 0.

(2) If α = p/q in irreducible form, then

lim suph(Fn) ≤ C ′′(K, q) =
log(Kq)

2πq
+
c3
q

for some universal constant c3 > 0.

It implies Lemma 15, with the constant C(K, q) = 2πC ′′(2K+ 1, q) ≤ log(Kq)/q+
c1/q for some universal constant c1 > 0.

Reminder. For convenience, we repeat here the definition of αn given in Lemma 15:
let [a0; a1, . . .] be the continued fraction expansion of α. If α ∈ Q then it has two
such expansions22 and both are finite : we choose one, [a0; a1, . . . , ak].

(1) If α /∈ Q we let αn = [a0; a1, . . . , an, 1 + an+1, 1 +
√

2].

(2) If α ∈ Q we let αn = [a0; a1, . . . , ak, n+ 1 +
√

2].

The proof of Lemma 19 is based on renormalization and on the following:

22See the end of Section 2.4.
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Lemma 20. There exists C√2 > 0 such that ∀F ∈ S(
√

2), h(F ) ≤ C√2.

It is a consequence of Brjuno’s or Siegel’s theorems, and can also be proved using
renormalization (Yoccoz), see [Brj65, Brj73, Brj74, Rüs67, Sie42, Yoc95].

Note that for the proof of Lemma 19 it is enough to assume α ∈ [0, 1) because
h(T−a ◦ F ) = h(F ) for any a ∈ Z, and shifting α by an integer shifts by the same
amount the special sequences αn defined in Lemma 15.

2.2. Gluing. Yoccoz rernormalization uses gluings, described below. We present
here first a simplified version and an associated basic estimate. The next section
will transpose this construction to a class of lifts.

Let ` = i(0,+∞), i.e. half of the imaginary axis, endpoint excluded. Consider a
holomorphic map F defined in a neighborhood23 of ` and such that:

(3) (∀W ∈ `) |F (W )−W − 1| ≤ 1/10 and |F ′(W )− 1| ≤ 1/10.

We do not assume here that F belongs to some S(α). The curve `∪ [0, F (0)]∪F (`)
bounds an open strip U in C. See Figure 1. Gluing the boundaries ` and F (`) of U
via F , we obtain a surface with boundary that we write U . Its “interior” U = U \∂U
is a Riemann surface for the complex structure inherited from a neighborhood of
` ∪ U ∪ F (`); this includes ` (the gluing is analytic). The Riemann surface U is
biholomorphic to the punctured disk D∗ or equivalently to the half-infinite cylinder
H/Z: it was proved by Yoccoz, see [Yoc95]. It also foolows from the existence
of a quasiconformal homeomorphism that we build below (the construction of the
quasiconformal homeomorphism was not invented by us, it can be found in [Shi00]
for instance). For an introduction to quasiconformal maps we recommend the
following reference: [BF14].

Write W = X + iY . Define a homeomorphism

G : [0, 1]× (0,+∞)→ ` ∪ U ∪ F (`)

as follows: on each horizontal G is a linear interpolation between iY and F (iY ):

G(X + iY ) = (1−X)iY +XF (iY ).

Because of the hypothesis eq. (3), we get that G extends to a neighborhood of its
domain to a quasiconformal map that commutes with F , see [Shi00] for details.24

Lemma 21. The map G descends to a quasiconformal homeomorphism G from
H/Z to U :

B U ′

H/Z U

G

G

commutes where B = [0, 1]× (0,+∞), the vertical arrows are passing modulo Z and
modulo F and U ′ = ` ∪ U ∪ F (`) = U \ [0, F (0)] (so that U = U ′/F ).

Proof. There is a unique map G satisfying the diagram: the only place in H/Z where
the projection to H/Z has not a unique preimage is the imaginary axis. There, an
element has two antecedents: iY and iY +1 for some Y > 0. But then G is uniquely
defined there because G(iY + 1) = F (G(iY )).

In the domain, on can use (0, 1)× (0,+∞) as a fist chart for (a subset of) H/Z
and U as a chart in the range. In this chart, G is a C1 diffeomorphism with Beltrami
derivative of norm at most a := 1/9 so it is K-qc with K = (1 + a)/(1− a) = 5/4.

23Since ` does not contain its endpoint, it means that the inner radius of such a neighborhood
V may shrink near this point. Soon we will consider the case V = H.

24They use the constant 1/4 instead of 1/10.
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Figure 1. Gluing.

A neighborhood of H ∩ iR can be used as a second chart in the domain, and we
use a neighborhood of ` in the range. There, G is given by two C1 diffeomorphisms
patched along iR: G on the right of iR and T ◦F−1◦G on the left. These two diffeos
extend slightly across iR and coincide there, and are both 5/4-quasiconformal. By
classical quasiconformal gluing lemmas,25 G is 5/4-quasiconformal in this second
chart too. �

Since U is quasiconformally equivalent to H/Z it is also conformally equivalent
to H/Z. The composition of this isomorphism with the natural projection ` ∪ U ∪
F (`)→ U ′ has a lift by the natural projection H→ H/Z. Call it L : `∪U ∪F (`)→
H. It has a holomorphic extension to a neighborhood V of ` ∪ U ∪ F (`) such that

L(F (W )) = L(W ) + 1

holds in a neighborhood of `. We can assume that V is simply connected by taking a
restriction if necessary, but we do not assume that it contains [0, F (0)]. However, by
Caratheodory’s theorem the map L indeed has a continuous extension to [0, F (0)]
that we call L̄. By adding a real constant to L, we can furthermore assume that

L̄(0) = 0.

Lemma 22. Assume that eq. (3) holds. Then ∀W,W ′ ∈ ` ∪ U
| Im(W −W ′)| − C1

A
≤ | Im (L(W )− L(W ′)) | ≤ A| Im(W −W ′)|+ C1

for two universal constants A > 1, C1 > 0.
If | Im(L(W )− L(W ′))| > C1 then Im(L(W )− L(W ′)) and Im(W −W ′) have the
same sign.

Lemma 23. Let δ ≤ 1/10 and assume F is a function as above such that

(4) (∀W ∈ `) |F (W )−W − 1| ≤ δ and |F ′(W )− 1| ≤ δ.

Then for all M > 0,

sup
| ImZ|<M

|L(W )−W | ≤ B(M)δ

25See for instance Rickman’s lemma, Lemma 1.20 in [BF14] with Φ = the patched map, ϕ = G
and C = iR or the closed right half plane intersected with an open neighborhood of iR. In this
particular case where we glue along a straight line, there are simpler proofs.
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and

sup
| ImZ|<M

|L−1(W )−W | ≤ B(M)δ

for some continuous non-decreasing function B(M) > 0 that is universal (i.e. in-
dependent of F and δ).

Proof of Lemmas 22 and 23. The usual approach in this situation (see for instance
[Shi00] in another context) is to decompose L as L = H ◦G−1 where G was defined
above. Write W = X + iY . Let r(W ) = F (W )−W − 1 so that the hypotheses are
|r(iY )|, |r′(iY )| ≤ δ ≤ 1/10. Then G(W ) = W +Xr(iY ) whence

(5) |G(W )−W | ≤ δ ≤ 1/10.

A computation of the Beltrami differential BG of G at X + iY gives

r(iY )−Xr′(iY )

2 + r(iY ) +Xr′(iY )
dz/dz

whose absolute value is ≤ 2δ/(2− 2δ) ≤ 10δ/9 ≤ 1/9.
Recall that L induces a conformal isomorphism L between U and H/Z. The map

H = L ◦ G is thus quasiconformal from H/Z to itself and has a lift H := L ◦G. Its
Beltrami differential µ = BH coincides with BG. Hence the essential supremum of
BH is the same as that of BG, hence ≤ 10δ/9 ≤ 1/9.

A quasiconformal map such as H possesses a reflection extensions H̃ across R
that is quasiconformal and commutes with z 7→ z̄. The Beltrami differential of H̃
is a extension of µ by reflection.

For Lemma 22, note that the set of quasiconformal maps from C/Z to itself with
a given bound on the dilatation ratio of its differential, forms a compact family
(modulo automorphisms of C/Z). In particular, a cylinder of height one has an

image of height that is bounded over the family. It follows that H̃, satisfies

(∀W,W ′ ∈ C) | Im(H̃(W )− H̃(W ′))| ≤ A| Im(W −W ′)|+ C

for some universal A > 1, C > 0, and the same estimate holds with H̃ replaced
by H̃−1 because it is also quasiconformal with the same supremum of Beltrami
differential. Hence

(6) (| Im(W −W ′)| − C)/A ≤ | Im(H̃(W )− H̃(W ′))| ≤ A| Im(W −W ′)|+ C.

The map H being a restriction of H̃, it satisfies the same inequalities. Using this
and the bound |G(W ) − W | ≤ 1/10, the first claim of the lemma follows with
C1 = C + 2A/10.

Moreover, given W , the image of the horizontal closed line in C/Z through W is
a closed curve winding around C/Z and of total height at most C. It follows that if
W ′ is another point such that ImW ′ > ImW , then ImH(W ′) > ImH(W )−C and
if ImW ′ < ImW then ImH(W ′) < ImH(W ) + C. So if | Im(H(W )−H(W ′))| >
C then Im(H(W ) − H(W ′)) and Im(W ′ − W ) have the same sign. A similar
argument proves that if | Im(G(W )−G(W ′))| > 2/10 then Im(G(W )−G(W ′)) and
Im(W ′ −W ) have the same sign. Now if | Im(L(W )− L(W ′))| > C + 2A/10 then
by the right hand side of eq. (6) we get | Im(G−1(W )−G−1(W ′))| > 2/10 and by
the discussion above Im(L(W )−L(W ′)) has the same sign as Im(G(W )−G(W ′))
which has the same sign as Im(W ′ −W ). We proved the last claim of Lemma 22.

To prove Lemma 23, note that the estimate on G is global, so we have |G(W )−
W | ≤ δ for all W ∈ domG and |G−1(W )−W | ≤ δ for all W in domG−1. We have
L = H ◦G−1 (first case) and L−1 = G ◦H−1 (second case) so we now look for an
estimate on H that is valid on the cylinder 0 < ImW < M for H−1 in the second
case and on the cylinder 0 < ImW < M + 1/10 for H in the first case.
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We can for instance proceed as follows. Normalize H by adding a real constant
so that it fixes 0: i.e. we consider the map H − H(0). It can be embeded in a
holomorphic motion on C/Z by straightening t×BG, with t a complex number of
modulus small enough so that the essential supremum of t×BG is < 1. By the study
above, |t| < 9

10δ is enough. We normalize the motion by requiring that 0 stays fixed.
Consider the hyperbolic distance d1 on the Riemann surface C/Z\{0} and d0 on the
Riemann surface D. The holomorphic motion implies d1(W,H(W )) ≤ d0(0, 10

9 δt).
The result follows. �

We are now going to give two statements under the supplementary assumption
that F extends to H into a holomorphic funtion satisfying eq. (3) for all W ∈ H:

(7) (∀W ∈ H) |F (W )−W − 1| ≤ 1/10 and |F ′(W )− 1| ≤ 1/10.

Since H is convex, the condition on F ′ implies that F is injective on H.
Equation (7) has a visual consequence: a portion of orbit F (W ), . . . , F k(W )

belongs to a cone of apex W , with a central axis which is horizontal, opening to
the right and with half opening angle θ = arcsin 1/10.

Lemma 24. Assume F satisfies eq. (7). Then an F -orbit can pass at most once
in ` ∪ U .

Proof. Consider γ0 = iR and let us extend F (`) by a vertical half line going down
and stemming from F (0), into a curve that we call γ1. Since |F ′− 1| ≤ 1/10, it fol-
lows that γ1 can be parameterized by the imaginary part: γ1 =

{
g(Y ) + iY ; Y ∈ R

}
for some continuous function g : R → R with at most one non-smooth point, cor-
responding to the corner F (0). This function is constant below this point. Above,

it satisfies |g′(Y )| ≤ tan θ = 1/
√

99. The set V : 0 ≤ X < g(Y ) is well-defined and
contains `∪U . It is disjoint from the set V+ of equation X ≥ g(Y ). It is enough to
check that F (V+) ⊂ V+ and F (V ) ⊂ V+. The first inclusion follows from the cone
property mentionned above and the bound on |g′|. For the second inclusion, first
note that if Z /∈ H then F (Z) is not defined, so we now assume that Z ∈ V ∩ H.
Link Z ∈ U with the unique point Z ′ ∈ ` of same imaginary part by the horizontal
segment [Z ′, Z]. Then [Z ′, Z] ⊂ H and the image by F of [Z ′, Z] will not deviate
from the horizontal by more than arcsin 1

10 and links a point of F (`) with F (Z).
We conclude using the bound on |g′|. �

In the next lemma we use one of Koebe’s distortion theorems, which we copy
here from [Pom92] (Theorem 1.3 page 9, equation (15)): for a univalent map f
from D to C:

|f ′(0)| |z|
(1 + |z|)2

≤ |f(z)− f(0)| ≤ |f ′(0)| |z|
(1− |z|)2

.

Consequence: for a univalent map f : B(a,R)→ C:

(8)
|f(z)− f(a)|

z − a

(
1− |z − a|

R

)2

≤ |f ′(a)| ≤ |f(z)− f(a)|
z − a

(
1 +
|z − a|
R

)2

Lemma 25. Assume that F extends to H into a holomorphic funtion satisfying
eq. (7), and that moreover F (W )−W−1 −→ 0 as ImW → +∞. Then L′(W ) −→ 1
as ImW → +∞ within ` ∪ U .

Proof. The method is from [Yoc95], pages 28–29, simplified here for our setting. It
is a standard trick in this field to extend L to

⋃
F k(`∪U), k ∈ Z so that the relation

L◦F (W ) = T ◦L(W ) holds whenever both sides are defined. The extension is well-
defined because of Lemma 24 and is holomorphic. Since the set ` ∪ U contains the
set defined by the equations ImW > 1/10 and 0 ≤ Re(W ) < 9/10, it follows by
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the cone property that the domain of definition of the extension contains the set of
equation

ImW >
2

10
and − (ImW − 2

10
) tan θ < ReW <

9

10
+ (ImW − 2

10
) tan θ

where θ = arcsin 1/10. The margin 2/10 is here to ensure that when F k(W ) ∈
U , we have ImF k(W ) > 1/10 and hence F k(W ) lies above the lower segment
[0, F (0)] of ∂U . The extension is injective: indeed if L(W1) = L(W2) then consider
k1, k2 ∈ Z such that W ′1 := F k1(W1) ∈ ` ∪ U and W ′2 := F k2(W2) ∈ ` ∪ U . Then
L(W1) = L(W ′1)−k1 and L(W2) = L(W ′2)−k2. The points L(W ′1) and L(W ′2) both
belong to L(` ∪ U) which is a fundamental domain for the action of T on H hence
k1 = k2 and thus L(W ′1) = L(W ′2). So W ′1 = W ′2 i.e. F k1(W1) = F k2(W2) and using
k1 = k2 again and the injectivity of F we get W1 = W2. Now for W ∈ ` ∪ U with
ImW big, the extension L is defined on a big disk centered on W , injective and
satisfies L(W ′) = L(W ) + 1 where W ′ := F (W ) is close to W + 1, by hypothesis.
The conclusion then follows using eq. (8) with a = W and z = W ′. �

Weaker assumptions are enough and stronger conclusions hold. We only proved
here statements that are sufficient to get the main lemma.

2.3. Iterations and rescalings. Let Tα(Z) = Z + α and T = T1. For a holo-
morphic map F commuting with T , defined on a domain containing an upper half
plane and satisfying F (Z) = Z + α + o(1) as ImZ → +∞ we call α its rotation
number and let it be denoted by α(F ). The following properties are elementary
and stated without proof.

Let α ∈ R and assume that

‖F − Tα(F )‖∞ < K|α(F )− α|.

• Then for k > 0: α(F k) = kα(F ) and

‖F k − Tα(Fk)‖∞ < K|α(F k)− kα|.

• Let a ∈ C, b ∈ R with b > 0, write λ(Z) = bZ + a and G = λ ◦ F ◦ λ−1.
Then α(G) = bα(F ) and

‖G− Tα(G)‖∞ < K|α(G)− bα|.

Assume instead that

‖F ′ − 1‖∞ < exp(K|α(F )− α|)− 1.

• Then

‖(F k)′ − 1‖∞ < exp(K|α(F k)− kα|)− 1,

• and

‖G′ − 1‖∞ = ‖F ′ − 1‖∞.

2.4. Reminder on continued fractions. We state a few classical properties for
reference. Let a0 ∈ Z and an ∈ N∗ for n > 0. The notation [a0; a1, . . . , an] =
a0 + 1/(a1 + 1/(. . . + 1/an)) is often used with integers only but we will use it
too with the last entry being a real number: [a0; a1, . . . , an, x] = a0 + 1/(a1 +
1/(. . . + 1/(an + 1/x))). If we write pn/qn = [a0; a1, . . . , an] in lowest terms (with
p−1/q−1 = 1/0) then

α := [a0; a1, . . . , an, x] =
pnx+ pn−1

qnx+ qn−1

and conversely

x = −qn−1α− pn−1

qnα− pn
.
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Also, pn−1qn − pnqn−1 = (−1)n,

qnα− pn =
(−1)n

qnx+ qn−1
.

and

qn−1α− pn−1 =
(−1)n−1

qn + qn−1x−1

from which we can get the following classical inequality (shifting the index n):

|qnα− pn| ≤
1

qn+1
.

If

β = [a0; a1, . . . , an, y]

then

β − α = (−1)n+1 y − x
(qnx+ qn−1)(qny + qn−1)

.

Also there are the famous induction relations, for n ≥ 1:

pn = anpn−1 + pn−2,

qn = anqn−1 + qn−2.

In this article we call continued fraction expansion the notation [a0; a1, . . .] where
the sequence an is finite or infinite and where a0 ∈ Z and an ≥ 1 for n ≥ 1. If
α ∈ R \ Q then it has only one continued fraction expansion and it is infinite. If
α ∈ Q then it has exactly two continued fraction expansions: [a0; a1, . . . , as, 1] and
[a0; a1, . . . , as + 1].

2.5. Renormalization.

2.5.1. Foreword. The renormalization procedure we describe here is a variant of
what is usually done.

Consider a map F ∈ S(α). Usually a fundamental domain U is defined, bounded
by `∪[iy0, F (iy0)]∪F (`) where ` is the vertical half line from iy0 to +i∞ and y0 > 0
is a real chosen big enough to ensure good behaviour of the construction. Then a
“return” map from T−1(` ∪ U) to ` ∪ U is defined. Conjugacy through the gluing
basically defines the renormalization.

Usually this procedure is iterated a great number of times to give information
on high iterates of the original map. Here, proximity to a rotation allows to bypass
this and apply a one-step renormalization procedure directly to the high iterates.

2.5.2. Construction. Consider F ∈ S(α). Let pk−1/qk−1, pk/qk and pk+1/qk+1

be three successive convergents of α with k ≥ 0. Implicitly α 6= pk/qk. The
construction described below depends on the choice of k and will also depend on
the choice of a positive constant y0. In this article we call k + 1 the order of the
renormalization.

Write

J = T−pk−1 ◦ F qk−1 ,

H = T−pk ◦ F qk .
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The symbol J refers to a jump and H to a hop: indeed when ImZ is big enough,
J moves points by a bigger26 amount than H. Let

β′ = α(J) = qk−1α− pk−1,

β = α(H) = qkα− pk.
By the theory of continued fractions, 1/2 ≤ qk+1|β| ≤ 1, hence β 6= 0 and β and
β′ both tend to 0 as k → +∞. Moreover the sign of β alternates: it coincides with
the sign of (−1)k and β′ has the opposite sign.

Remark 26. In the particular case k = 0, we have p0 = a0, q0 = 1 and by
convention p−1 = 1, q−1 = 0 so J = T−1 and H = T−a0 ◦ F . Then the construc-
tion is essentially the classical renormalization of [Yoc95], and we call it order 1
renormalization according to the convention above.

Assume that we have identified a height y0 such that the following statements
hold:

• the domain of definition of H contains ImZ > y0; as a consequence the
domain of J also does;

• ∀Z with ImZ > y0:

|H(Z)− Z − β| ≤ |β|/10, |H ′(Z)− 1| ≤ 1/10,

|J(Z)− Z − β′| ≤ |β|/10,27 |J ′(Z)− 1| ≤ 1/10

In particular if β > 0 we have ReH(Z) > ReZ and Re J(z) < ReZ, and if β < 0
then it is the opposite: ReH(Z) < ReZ and Re J(z) > ReZ.

Remark 27. There always exists such a height y0,28 and part of the work in further
sections will be to get some control over it.

Notation 28. Since the construction involves many changes of variables we adopt
the following notation: if Z 7→ λ(Z) is a change of variable then instead of denoting
the new variable λ(Z) or Z ′ or W we may choose the notation Zλ. We speak of
the Zλ-space, instead of the W -space or such. If a map acts on Zλ-space we may
choose to use the notation Fλ. Similarly a set in Zλ-space may be denoted by Sλ.

We now define the following change of variable λ:

If β > 0 let λ(Z) = (Z − iy0)/β.

If β < 0 let λ(Z) = (Z − iy0)/β.
(9)

By Section 2.3 the map Hλ = λ ◦ H ◦ λ−1 then satisfies eq. (3) stated in Sec-
tion 2.2, with Hλ in place of F . The sets ` and U constructed there will be denoted
here by `λ and Uλ because they live in Zλ-space, so that we can call ` and U their
images by λ−1, which live in Z-space. Then

` = i(y0,+∞) and ∂U = ` ∪ [iy0, H(iy0)] ∪H(`)

If β < 0 then U sits on the left of `, otherwise it is on the right.
A portion of H-orbit Z, H(Z), . . . , Hn(Z) that stays above y0 (except maybe at

the last iteration) can hit ` ∪ U at most once: this follows from Lemma 24 applied
to the restriction to H of Hλ.

We now define a return map R, defined on a subset of ` ∪ U and taking values
on ` ∪ U . For Z ∈ ` ∪ U :

26There is one exception: α = m = [m− 1; 1] for some m ∈ Z and we choose k = 0. We then
get β′ = −1 and β = 1. This case is not necessary for our main result but all we state here holds

for it too, except the claim that |β| < |β′|.
27This is not a typographic mistake: we want β′ on the left hand side of the inequality and β

on the right hand side.
28Maps in S(α) are close to Z 7→ Z + α when ImZ is big, see for instance [Yoc95] page 26.
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• If there is some n ≥ 0 such that Z and J(Z), H(J(Z)), H2(J(Z)), . . . ,
Hn−1(J(Z)) are all above y0 and Hn(J(Z)) ∈ ` ∪ U then we let R(Z) =
Hn(J(Z)). Below we temporarily write n(Z) this unique value of n.

• Otherwise we let R be undefined at Z.

Recall that U refers to the quotient U/H. It is a surface with boundary and its
“interior” is denoted by U and is a Riemann surface. We have U = (`∪U∪H(`))/H
and the canonical projection is a bijection from ` ∪ U to U .

Lemma 29. The map R is injective. Passing to the quotient U (i.e. conjugating
by the canonical projection ` ∪ U → U), R becomes continuous and better: is the
restriction of a holomorphic map to domR.29

Proof. Injectivity: Assume that R(Z1) = R(Z2) for Z1, Z2 ∈ ` ∪ U with R(Z1) =
Hn1(J(Z1)) and R(Z2) = Hn2(J(Z2)). Since F is injective, it follows that J
and H are injective too. Hence J(Z1) and J(Z2) belong to the same H-orbit.
Up to permuting them, we can assume J(Z1) = Hk(J(Z2)) for some k ≥ 0.
Now Hk(J(Z2)) = J(Hk(Z2)), whence Z1 = Hk(Z2) by injectivity of J . Using
Lemma 24 we get k = 0.

Continuity and holomorphy:30 Let us use two charts for the analytic structure
on U . The first chart is the union of U and of a small enough connected open
neighborhood V of `. Recall that ` does not contain its endpoint, so we can take
a neighborhood of size that shrinks to 0 near y0. The second chart is U ∪ H(V ).
They can be glued along V using H to give a complex dimension one manifold W/H
where W = V ∪ U ∪H(V ), and this manifold is canonically isomorphic to U . We
choose V small enough so that V and H(V ) are disjoint, so that V ⊂ U∪`∪H−1(U)
and so that orbits of the restriction of H to ImZ > y0 intersect W in exactly one
point or in exactly two in consecutive iterates, one in V, the other in H(V ), and
finally so that the image of W ∩dom J by J does not intersect H(V ). Then for any
representative Z of a point of (domR)/H, for any n ≥ 0 such that Hn(J(Z)) ∈W ,
then Hn(J(Z)) is a representative of R(Z). The result follows. �

Recall that in Section 2.2 we associated a map L from `λ ∪ Uλ to H via gluing,
uniformization, then unfolding. The composition Lλ goes from ` ∪ U to H. We
omit the symbol “◦” in L ◦ λ for more compact expressions.

Lemma 30. The domain domR contains every point in ` ∪ U of high enough
imaginary part. The set Z + Lλ(domR) contains some upper half plane.

Proof. We assume β > 0, the other case being similar. The first time a portion of
H-orbit passes from the left (strictly) to the right of the imaginary axis (inclusive),
then a sufficient condition for the point to belong to ` ∪ U , is that its imaginary
part be > max(Im(iy0), ImH(iy0)). Now for Z ∈ `∪U with high enough imaginary
part, J(Z) is defined, lies on the left of iR and |Re(J(Z))| is bounded, for instance
by |β′| + β/10. Applying H to a point above height y0 increases the real part by
at least 9β/10 while the imaginary part changes by at most β/10. From there the
details are left to the reader.

For the second claim consider a pointWL ∈ H and let us translate it by an integer
so that WL ∈ L(`λ∪Uλ), which is possible since L(`λ∪Uλ) is a fundamental domain

29By definition, holomorphic maps are defined on open sets. The domain of R may fail to be

open near points of ` in the quotient for subtle reasons in the definition of R.
30Let us give a heuristic justification. The map J has an essentially well-defined action on

the orbits of the restriction of H to ImZ > y0 because these two maps commute; the quotient of

the gluing can be seen as a subset of the space of orbits and its analytic structure is such that
Z 7→ orbit(Z) is holomorphic. Now there are some problems in this approach since the space of

orbits is not that well defined, or does not have such a nice topological structure, and the action

of J is not so well defined.
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for H/Z. Let us apply the right hand side of Lemma 22, and the sign comparison
claim of the same lemma, to W := L−1(WL) and W ′ := ε and let ε → 0. Noting
that ImL(W ′) −→ 0 we get ImWL > C1 =⇒ ImW ≥ (ImWL − C1)/A =⇒
Im(Lλ)−1(WL) ≥ y0 + (ImWL −C1)β/A. The second claim follows from this and
the first claim. �

Let
H0 = inf

{
H > 0 ; ImZ > H =⇒ Z ∈ Z + Lλ(domR)

}
and let

(10) Λ(Z) = Lλ(Z)− iH0.

Given ZΛ ∈ H there is a unique k = k(ZΛ) ∈ Z such that ZΛ + k ∈ Λ(` ∪ U). Let
Z = Λ−1(ZΛ + k). By definition of H0, we have Z ∈ domR, in particular there
exists some (unique) m = m(ZΛ) ≥ 0 such that Hm ◦ J(Z) = R(Z) ∈ ` ∪ U . Let

(11) RF (ZΛ) = Λ(R(Z))−m− k.
If Im(ZΛ) ∈ (−H0, 0] we choose to declare RF undefined at ZΛ, even though the
procedure above may reach fruition. The map Λ conjugates (a restriction of) R to
RF mod Z.

Claim. The map RF , which we defined on H and takes values in “ImZΛ > −H0”,
is continuous and better: holomorphic.

Proof. Indeed consider a holomorphic extension L̃ of L to a neighborhood of U ′
λ

:=
λ(U ′) with U ′ = ` ∪ U ∪H(`), which satisfies L̃(Hλ(Zλ)) = L̃(Zλ) + 1 for Zλ in a

neighborhood of `λ := λ(`) (see the beginning of Section 2.2) and let Λ̃ = L̃λ− iH0.
Then

(12) Λ̃(H(Z)) = Λ̃(Z) + 1

holds in a neighborhood of `. Consider k and m as in eq. (11). It is enough to
check that in a neighbourhood of any point ZΛ

0 ∈ H, the formula

RF (ZΛ) = Λ̃ ◦Hm ◦ J ◦ Λ̃−1(ZΛ + k)−m0 − k0

is locally valid, with m0 = m(ZΛ
0 ) and k0 = (ZΛ

0 ). If nearby ZΛ have a different
value of k in eq. (11), this means the initial ZΛ belongs to `Λ := Λ(`), m0 > 0 and
the nearby values of ZΛ have a value of k that equals k0 or k0 +1. In the latter case
we can use eq. (12) and get Λ−1(ZΛ + k(ZΛ)) = H(Λ̃−1(ZΛ + k0)). In both cases

the following holds locally: RF (ZΛ) = Λ ◦Hm+k−k0 ◦ J ◦ Λ̃−1(ZΛ + k0)−m− k,
which we rewrite

RF (ZΛ) = Λ ◦Hm0+δ ◦ J ◦ Λ̃−1(ZΛ + k0)−m0 − k0 − δ
with δ = (m − m0) + (k − k0). Similarly if local values of δ differ, then Hm0 ◦
J(Λ−1(Zλ0 + k0)) ∈ ` and δ = 0 or 1. Again, we can use eq. (12). �

The map RF commutes with T and satisfies

(13) RF (ZΛ) = ZΛ + α′ + o(1)

as ImZΛ → +∞, where

α′ = α(RF ) =
β′

β
=
qk−1α− pk−1

qkα− pk
= −[ak+1; ak+2, ak+3, . . .].

Equation (13) follows from L′(W ) tending to 1 as ImW → +∞ by Lemma 25,
while the domain U of L has a bounded projection to the real axis. Indeed J moves
points by essentially β′, λ is a translation followed by a rescaling31 by 1/β and in
the definition of R, we compensated the effect of k and m. See also [Yoc95] where

31Whatever the sign of β is, we have Reλ(Z) = (ReZ)/β and Imλ(Z) = (ImZ − y0)/|β|.
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a finer estimate on L is given. As an alternative one can use the invariance of the
rotation number of holomorphic maps by homeomorphisms ([Năı80, GLCP96]).

Lemma 31. Assume that Z ∈ ` ∪ U and that Λ(Z) ∈ K(RF ). Then Z ∈ K(F ).

Proof. First note that the hypothesis implies that some Z + n, n ∈ Z, can be
iterated infinitely many times by R. Since F and T commute, and by definition of
R, we have R(Z +n) = T kFm(Z) for some k ∈ Z and m ∈ N with m > 0 or m = 0
in some rare exceptional cases that may happen if we do order 1 renormalization.
But in this case R(Z) = Z − 1 so this cannot happen twice in a row, because
T−2(` ∪ U) is disjoint from ` ∪ U . �

2.6. Proof of Lemma 19 for α ≡ 0 mod Z. As already noted, we can assume
α = 0. The number α has the following two continued fraction expansions:

0 = [0] = [−1; 1].

They respectively give αn = [0;n + 1 +
√

2] = 1/(n + 1 +
√

2) or αn = [−1; 1, n +

1 +
√

2] = . . . = −1/(n+ 2 +
√

2). If αn < 0 we can conjugate the sequence Fn by
the reflection of vertical axis: X + iY 7→ −X + iY , and proceed then exactly as
below, so we assume now that

αn > 0.

We will apply order 1 renormalization, i.e. proceed to the construction of Sec-
tion 2.5 with k = 0 and

F = Fn

Then p0 = a0 = 0, q1 = 1, β = αn, H = Fn, p−1 = 1, q−1 = 0, β′ = −1 and
J = T−1.

By assumption on Lemma 19:

(∀Z ∈ H) |Fn(Z)− Z − αn| ≤ Kαn
By the Schwarz-Pick inequality this implies:

|F ′n(Z)− 1| ≤ Kαn
2 ImZ

.

So there exists εn −→ 0 such that

sup
ImZ>εn

|F ′n(Z)− 1| ≤ 1/10.

As explained in Section 2.1.1 one can also write F (Z) = Z + α + h(e2πiZ) with h
a holomorphic function mapping 0 to itself. Schwarz’s inequality thus implies

|Fn(Z)− Z − αn| ≤ Kαne−2π ImZ .

We take

y0 = max(εn, log(10K)/2π)

so that

ImZ > y0 =⇒ |Fn(Z)− Z − αn| ≤ αn/10 and |F ′n(Z)− 1| < 1/10.

In the notation y0 and many of the notations that follow we omit the index n for
better readability. The construction yields two sets ` = i(y0,+∞) and U , a map
Lλ : U → H where

λ(Z) =
Z − iy0

αn
,

and a return map R from ` ∪ U to itself. It also introduces: a constant H0 defined
as the smallest H ≥ 0 such that Z + Lλ(domR) contains “ ImZ > H”; the map

Λ(Z) = Lλ(Z)− iH0;
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Z

Z

Z + α

Fn(Z) ∈ B(Z + α, α/10)

1 ∼ α

iy0Im = y0 Fn(iy0)

U

Fn

` Fn(`)

Figure 2. The orbit of Z remains in a cone, at least as long it
stays above height y0. In this picture we exagerated the angle of
the cone.

and finally the renormalized map RFn, which is a modification of the restriction
to H of the conjugate of R by Λ. By the properties stated in Section 2.5, including
eq. (13), we have RFn ∈ S(α′) with α′ = ±

√
2. It follows that

h(RFn) ≤ C√2,

see Lemma 20.
For any Z with ImZ > y0, the point Fn(Z) lies in a horizontal cone of apex Z

and with half opening angle
θ = arcsin(1/10).

The orbit will thus stay in that cone as long as the previous iterates all lie above
y0, see Figure 2.

Let us give a more explicit version of Lemma 30:

Lemma. Every point in the strip ReZ ∈ [−1, 0[ and ImZ > y0 + tan θ has an
orbit by Fn that eventually passes the imaginary axis, i.e. ReF kn (Z) ≥ 0. The first
time it does, ImF kn (Z) ≥ ImZ − αn/10− tan θ. Before, it stays above y0.

Proof. By the cone condition, it follows by induction on i that F in(Z) stays above
y0 as long as it belongs to the strip. By assumption when we iterate a point above
y0, the real part increases by at least 9/10αn so we know the orbit will eventually
pass the imaginary axis. Just before it was above ImZ − tan θ and at the next
iterate the imaginary part decreases at most by αn/10. �

If the first iterate F kn (Z) passing the imaginary axis in the lemma above satisfies
ImF kn (Z) > max(y0, ImFn(y0)) then* F kn (Z) ∈ ` ∪ U .

(*) For a justification of this claim, consider the horizontal segment from F k−1
n (Z)

to `. Its image is a curve with tangent deviating less that θ < π/2 from the hori-
zontal, whereas F (`) has a tangent that deviates less than θ from the vertical, so
F (`) is contained in

{
z ∈ C ; | arg(z − F kn (Z))| < π/2 + θ

}
. It follows that F kn (Z),

can be linked to ` by a horizontal segment going to the left and that does not cross
the other boundary lines of U .

Now ImFn(y0) ≤ y0 +αn/10. By the lemma above, domR contains every point
in ` ∪ U of imaginary part strictly larger than y1 with

y1 = y0 + 2αn/10 + tan θ.

We will apply Lemma 22 to L. It introduced constants A > 1 and C1 > 0.
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Lemma. For Z ∈ ` ∪ U and ImZ > y2 with

y2 = y1 + αn(
1

10
+ C1 +Amax(C1, C√2))

then Z ∈ K(Fn).

Proof. Consider such a Z. We apply Lemma 22 to specific values of W and W ′:
consider a point V0 in the boundary of Z+Lλ(domR) and maximizing the imaginary
part, so ImV0 = H0. By adding a (possibly negative) integer, we may assume that
V0 ∈ Lλ(domR). Let Z0 = (Lλ)−1(V0) ∈ ` ∪ U . If Z0 ∈ U then ImZ0 ≤ y1

otherwise it would be in the interior of domR. If Z0 ∈ ` then ImZ0 ≤ y1 + αn/10
otherwise Lλ(Z0) belongs to the interior of Z + Lλ(domR). In all cases, ImZ0 ≤
y1 + αn/10. We take W = λ(Z) and W ′ = λ−1(V0). Note that ImW − ImW ′ >
(y2−y1−αn/10)/αn > 0. By the left hand inequality in the Lemma 22: | ImL(W )−
ImL(W ′)| ≥ (| ImW−ImW ′|−C1)/A ≥ max(C1, C√2) ≥ C1. By the second claim
in Lemma 22 we get that ImL(W ) > ImL(W ′). Now ImL(W ) > ImL(W ′) +C√2

i.e. Im Λ(Z) > C√2 hence Λ(Z) ∈ K(RFn), hence Z ∈ K(Fn) by Lemma 31. �

Now this construction could have been carried out on the conjugate of Fn by any
horizontal translation Z 7→ Z + x, which amounts to replace the origin iy0 of the
line ` by x + iy0. In particular every point with imaginary part ≥ y0 is contained
in the set ` ∪ U associated to an appropriate choice of x. Hence

h(Fn) ≤ y2.

Putting everything together, we have proved that h(Fn) ≤ αn(1/10 + C1 +
Amax(C1, C√2)) + 2αn/10 + tan θ + max(εn, log(10K)/2π) where θ = arcsin 1/10.

Since αn −→ 0 this gives:32

lim sup
n→+∞

h(Fn) ≤ C(K) := C0 +
logK

2π

for some universal constant C0 > 0.

2.7. Improvement through renormalization for maps tending to a non-
zero rotation. Consider α ∈ R with α /∈ Z and αn ∈ R with αn −→ α. Consider
a sequence Fn ∈ S(αn) and assume Fn −→ Tα uniformly on H when n → +∞
where

Tα(Z) = Z + α.

The first statement we give does not need a Lipschitz type assumption on how fast
this convergence occurs.

Consider a renormalization as per Section 2.5: it involves the choice of k such
that α has a continued fraction33 of which [a0; a1, . . . , ak+1] is an inital segment.
We let k be constant, i.e. independent of n.

To proceed with the construction of the renormalization, we need to choose y0

such that the conditions of Section 2.5 are satisfied. We will use the notation H
and J as in that section, i.e. without the index n:

J = T−pk−1 ◦ F qk−1
n ,

H = T−pk ◦ F qkn .

Let

βn = α(H) = qkαn − pk,
β′n = α(J) = qk−1αn − pk−1

32In fact, αn ≤ 1 is enough.
33α has one or two c.f. expansions, see Section 2.4.
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be their respective rotation numbers and let

β = qkα− pk
β′ = qk−1α− pk−1

be their respective limits. We have 0 < |β| < |β′| ≤ 1.

βn −→
n→∞

β 6= 0 and β′n −→
n→∞

β′ 6= 0

Note that, as n→ +∞, H −→ Tβ and J −→ Tβ′ hence

‖H − Tβn‖∞ −→
n→∞

0 and ‖J − Tβ′n‖∞ −→n→∞ 0.

Since βn −→ β 6= 0 it follows that for n big enough we have ∀Z ∈ domH, |H(Z)−
Z − βn| < |βn|/10 and ∀Z ∈ dom J , |J(Z)−Z − β′n| < |βn|/10. Also, for all ε > 0,
H ′ −→ 1 and J ′ −→ 1 as n→ +∞ both uniformly on the subset of H defined by the
equation ReZ > ε. Whence the existence of εn −→ 0 and δn −→ 0 with δn < 1/10
such that for n big enough, ImZ > εn =⇒ Z ∈ domH (hence Z ∈ dom J) and

|H ′(Z)− 1| < δn,

|J ′(Z)− 1| < δn.

Thus we can take y0 = εn, assuming n big enough. Note that y0 −→ 0 as
n→ +∞. The exact value of y0 is not so important, what matters is that it tends
to zero:

y0 −→
n→∞

0

Then Section 2.5 associates an order k + 1 renormalization RFn to the pair
of maps H, J , via a return map R and a straightening Lλ mod Z of a Riemann
surface U = (` ∪ U ∪H(`))/H, where λ is a change of variable that takes the form

λ(Z) = (Z − iy0)/βn or (Z − iy0)/βn (it depends on k).

Lemma 32. We have

lim suph(Fn) ≤ |β| lim suph(RFn).

The same statement holds with lim sup replaced by lim inf.

Proof. It is enough for both statements to prove that if h0 ≥ 0 and if we have a
subsequence n ∈ I ⊂ N and points Zn ∈ H with Zn /∈ K(Fn) but ImZn ≥ h0 then
lim infn∈I h(RFn) ≥ h0/|β|. From now on all limits are taken for n ∈ I.

We can conjugate Fn by a real translation and assume that Re(Zn) = 0.
In Section 2.5 is defined a constant H0 ≥ 0, the infimum of heights of upper

half planes contained in Z + LλdomR. Is also defined the map Λ = Lλ − iH0.
Let H ′0 = inf

{
h > 0 ; (Z ∈ ` ∪ U and ImZ > h) =⇒ Z ∈ domR

}
. We claim that

H ′0 ≤ y1 where
y1 = y0 + ‖J − Tβ′n‖∞ + u+ ‖H − Tβn

‖∞
with u = (|βn| + ‖J − Tβ′n‖∞) tan arcsin(‖H − Tβn

‖∞/|βn|). The arguments are
similar to Section 2.6, when we controlled the domain of R via a constant also
called y1: for ImZ > y1, the point J(Z) is defined and has a forward iterate
Z ′ = Hm(Z) ◦ J(Z) by H which hits ` ∪ U while staying above y0 + ‖H − Tβn

‖∞.
By definition R(Z) = Z ′. In particular H ′0 −→ 0 as n→ +∞.

This implies that H0 −→ 0 as n → +∞: indeed, λ tends to the linear map
Z 7→ Z/β or Z 7→ Z/β and L tends to the identity on the set of points Z with
ImZ ≤ 1 by Lemma 23.

The quantity y1 tends to 0 when n→ +∞. Recall that ImZn ≥ h0 which does
not depend on n. Hence for n big enough we have ImZn > y1. So Z ′n = R(Zn) is
defined. Note that Z ′n /∈ K(Fn) for otherwise Zn would belong to K(Fn) too. By
Lemma 31 we have Λ(Z ′n) /∈ K(RFn).
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Note that lim inf Imλ(Zn) ≥ h0/|β|. We apply Lemma 23 to L. Noting Hλ =
λ ◦H ◦ λ−1, we have |(Hλ)′ − 1| < δn on H and Hλ −→ T1 uniformly on H, so the
hypotheses of Lemma 23 are satisfied, with a value of δ that depends on δn and
tends to 0. The conclusions of this lemma with M = 1 + h0/|β| then imply that
lim inf ImLλ(Z ′n) ≥ h0/|β|. (Indeed let y = 1/2 + h0/|β|. For one thing the image
of the segment [iy,Hλ(iy)] by L followed by the projection C → C/Z is a closed
curve that tends to a horizontal curve as n→ +∞. Points on or above the segment
are mapped by L to point whose imaginary part is at least the infimum of ImZ
over this closed curve, and this infimum tends to y. Whereas points Z below the
segment satisfy | ImL(Z) − Z| < B(M)δ and recall that δ −→ 0 as n → +∞ and
that lim inf Imλ(Zn) ≥ h0/|β|.) Since Lλ(Z ′n) − iH0 /∈ K(RFn) and H0 −→ 0 we
get lim inf h(RFn) ≥ h0/|β|. �

We complement this lemma with the following one, which requires a Lipschitz-
type assumption on αn 7→ Fαn

and also on αn 7→ F ′αn
.

Lemma 33. Assume

|Fn(Z)− Z − αn| ≤ K|αn − α|

and a new assumption:

|F ′n(Z)− 1| ≤ K|αn − α|.
Then for all n big enough we have

sup
ImZ>0

|RFn(Z)− Tα′n(Z)| ≤ DK|α′n − α′|

where α′n is the rotation number of RFn and α′ is its limit. Here D > 1 is a
universal constant.

Proof. According to Section 2.5 have α′n = β′n/βn and α′ = β′/β. An elementary
computation yields

α′n − α′ =
(−1)k

ββn
(αn − α).

We want to apply Lemma 23 with M = 1 to get information on L. For this
we need to estimate Hλ := λ ◦ H ◦ λ−1. Note that βn is the rotation number of
H = T−pk ◦ F qkn . From the first Lipschitz assumption we get that

(14)
|H(Z)− Z − βn| ≤ K|βn − β|,
|J(Z)− Z − β′n| ≤ K|β′n − β′|,

see Section 2.3. From the second that

|H ′(Z)− 1| ≤ dn := (1 +K|αn − α|)qk − 1 ∼ K|βn − β|

when n → +∞ (there is a similar estimate for J ′ but we will not use it). The
rotation number of Hλ is 1 and

|Hλ(Z)− Z − 1| ≤ K|βn − β|/|βn|,

|(Hλ)′ − 1| ≤ dn ∼ K|βn − β|.
The bound on the derivative of Hλ is better than the bound on Hλ. However we
will apply Lemma 23 which only uses a common bound, i.e. here: K|βn − β|/|βn|,
since for n big enough, we have |βn| < 1. By this lemma applied to M = 1 we get

(15) ImW ≤ 1 =⇒ |L(W )−W | ≤ B(1)K|βn − β|/|βn|

and

(16) ImW ≤ 1 =⇒ |L−1(W )−W | ≤ B(1)K|βn − β|/|βn|.
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Note that, as n→ +∞:

|βn − β|/|βn| ∼ qk|αn − α|/|β|

Now for Z ∈ domR the return map is R(Z) = Hm(Z) ◦J(Z) for some m(Z) ∈ N.
Let

β′′n(Z) = β′n +m(Z)βn,

β′′(Z) = β′ +m(Z)β.

Then |R(Z)−(Z+β′′n(Z))| ≤ K|β′n−β′|+Km(Z)|βn−β| =∗ K|β′n−β′+m(Z)(βn−
β)| = K|β′′n(Z)− β′′(Z)|, in short

(17) |R(Z)− (Z + β′′n(Z))| ≤ K|β′′n(Z)− β′′(Z)|

where equality (*) comes from the fact that β′n− β′ and βn− β have the same sign
(and m(Z) ≥ 0), which may sound surprising since β′n and βn have opposite signs
(β′ and β too), so we justify this by the following explicit computation: β′n − β′ =
(qk−1αn − pk−1) − (qk−1α − pk−1) = qk−1(αn − α), and βn − β = (qkαn − pk) −
(qkα− pk) = qk(αn − α). Also:

β′′n(Z)− β′′(Z) = (qk−1 +m(Z)qk)(αn − α).

We will need a (rough) bound on m(Z): we treat the case β > 0, the other
one is symmetric and yields the same bound. Consider all n big enough so that
|βn| − |βn − β| < |β|/2 and |β′n| − |β′n − β′| < |β′|/2. For such an n, by eq. (14),
for Z ∈ ` ∪ U with Z ∈ dom J , the map J shifts the real part of Z in the negative
direction by at most 3β′/2 and the map H of at least β/2 in the positive direction
and at most 3β/2. Since Z ∈ ` ∪ U we get Re(Z) ∈ [0, 3β/2]. Since m(Z) is the
first m ≥ 0 such that Re(HmJ(Z)) ∈ ` ∪ U , it follows that Re(HmJ(Z)) < 3β/2,
and by the above remarks Re(HmJ(Z)) > mβ/2 + 3β′/2 (recall that β′ < 0) so

m = m(Z) < 3− 3β′/β = 3(1 + |β′/β|).

In particular :

|β′′n(Z)− β′′(Z)| −→ 0

uniformly w.r.t. Z as n→ +∞.
Now let ZΛ ∈ H and, as in Section 2.5, let k = k(ZΛ) ∈ Z bet the unique integer

such that ZΛ + k ∈ Λ(` ∪ U) and define Z = Λ−1(ZΛ + k). Recall that we defined
there m = m(Z) ∈ N such that R(Z) = Hm ◦ J(Z) and that

RFn(ZΛ) = ΛR(Z)− k −m.

Recall also that Λ = Lλ− iH0.
We now proceed to the estimate:

RFn(ZΛ) = LλR(Z)− iH0 − k −m
=
(
LλR(Z)− λR(Z)

)
+
(
λR(Z)− λ(Z + β′′(Z))

)
+ λ(Z + β′′n(Z))− iH0 − k −m.

And since λ(X + iY ) = X/βn + iY/|βn| − iy0 we get

λ(Z + β′′n(Z)) = λ(Z) + β′′n(Z)/βn

= λ(Z) + β′n/βn +m

= λ(Z) + α′n +m.

From this and ZΛ + k = Λ(Z) = Lλ(Z)− iH0 we get

RFn(ZΛ)− (ZΛ + α′n) =
(
LλR(Z)− λR(Z)

)
+
(
λR(Z)− λ(Z + β′′(Z))

)
+
(
λ(Z)− Lλ(Z)

)
.
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Using the estimates above we get:

If Imλ(Z) ≤ 1 and ImλR(Z) ≤ 1 then

|RFn(ZΛ)− (ZΛ + β′n/βn)| ≤ B(1)K|βn − β|/|βn|+
1

|βn|
K|β′′n(Z)− β′′(Z)|

+B(1)K|βn − β|/|βn|
i.e.

|RFn(ZΛ)−
(
ZΛ + α′n)| ≤ un

with

un :=
K

|βn|
(
2B(1)|βn − β|+ |β′′n(Z)− β′′(Z)|

)
.

Let us now estimate un, using the equivalents mentioned in the present proof. We
use an . bn on non-negative sequences to mean ∃cn ≥ 0 such that for n big enough,
an ≤ cn and cn ∼ bn.

un ∼
K

|β|
(2B(1)qk + qk−1 +m(Z)qk)|αn − α|

.
K

|β|
(2B(1)qk + qk−1 + 3(1 + |β′/β|)qk)|αn − α|.

And using the comparison between α′n − α′ and αn − α given at the beginning of
the present proof:

|α′n − α′| =
1

|ββn|
|αn − α|

so using |β| ≤ 1/qk+1 and |β′| ≤ 1/qk:

un
|α′n − α′|

. K|β| (qk−1 + 2B(1)qk + 3(1 + |β′/β|)qk)

. K
qk−1 + 2B(1)qk

qk+1
+ 3K(

qk
qk+1

+ 1).

. (2B(1) + 7)K

Finally: we proved that ∃cn such that for n big enough, then for all ZΛ ∈ H
satisfying*

(18) Imλ(Z) ≤ 1 and ImλR(Z) ≤ 1

we have
|RFn(ZΛ)− (ZΛ + α′n)|

|α′n − α′|
≤ cn ∼ (2B(1) + 7)K.

(*): Where Z depends on ZΛ in the way described earlier in the present proof.
We claim that the inequality above extends to all values of ZΛ ∈ H by the

maximum principle. Indeed the difference RFn(ZΛ) − ZΛ − α′n is Z-periodic and
is bounded as ImZΛ → +∞ because it tends to 0, so it is enough to prove that
A contains the intersection of H with a neighborhood of R in C, where A denotes
the set of ZΛ for which eq. (18) is satisfied. Recall that Z = Λ−1(ZΛ + k), i.e.
λ(Z) = L−1(ZΛ + k + iH0). Since H0 −→ 0 as n → +∞ we can assume that
H0 < 1/4. By eq. (16), for n big enough we have |L−1(W ) − W | < 1/4 for all
W ∈ domL such that Im(W ) < 1. So

for ImZΛ < 1/4

we get Im(ZΛ+k+iH0) ≤ 2/4 thus we can apply the estimate on L, so ImL−1(ZΛ+
k + iH0) ≤ 3/4, i.e. Imλ(Z) ≤ 3/4. Now from eq. (17) we get ImR(Z) ≤
ImZ +K|β′′n(Z)− β′′(Z)| whence ImλR(Z) ≤ ImλZ +K|β′′n(Z)− β′′(Z)|/|βn|, so

ImλR(Z) ≤ 3/4 + |β′′n(Z)− β′′(Z)|/|βn|
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and we have already seen that the right hand side of the sum tends to 0 uniformly
w.r.t. Z as n→ +∞. Thus for n big enough we have ImλR(Z) ≤ 1. �

The first lemma above implies that we gain a factor |β| in estimates of the size
of the linearization domain, but by the second lemma we loose a universal factor
D in the Lipschitz constant for α 7→ Fα. Moreover this second lemma requires an
assumption on the Lipschitz constant for α 7→ F ′α. See later for how we deal with
this.

2.8. Proof of Lemma 19 for α = p/q. Here we use the results of Section 2.7 to
transfer the case α = 0 covered in Section 2.6 to the case α = p/q. In the process,
the estimate will improve for big values of q.

Let us consider one of the two continued fraction expansions of p/q and write it
as follows:

p/q = [a0; a1, . . . , ak+1].

We have k ≥ 0 since p/q /∈ Z. Let p′/q′ = [a0; a1, . . . , ak] be its last convergent
before p/q itself. Then p′q − pq′ = (−1)k+1. In Lemma 19, which we are proving,

is defined the sequence αn = [a0; a1, . . . , ak+1, n+ 1 +
√

2] (note that we shifted the

index k by one, to match with the notation of Section 2.5). We have αn =
p+ p′xn
q + q′xn

with xn = 1/(n + 1 +
√

2). It is important to note that, though n → +∞, the
numbers q and q′ remain fixed here.

We now proceed to the order k + 1 direct renormalization as described in Sec-
tion 2.5. This yields maps RFn. Let β = qkα − pk be the quantity introduced in

Section 2.7. Here β = q′α− p′ = q′p−p′q
q hence

β = (−1)k/q.

To apply Lemma 33 we need to control not only the distance from Fn to the rotation
but also the distance from F ′n to the constant function 1. For this we just apply
the Schwarz-Pick inequality:

|F ′n(Z)− 1| ≤ sup |Fn − Tαn
|

2 ImZ
≤ K

2 ImZ
|αn − α|

We restrict Fn to Im z > ε for some ε ∈ (0, 1/2) and then conjugate by the trans-

lation by −iε to make the domain equal to H. This yields maps F̃n. We can apply

Lemma 33 to F̃n with the constant K replaced by K/2ε because the control on F ′n
is not as good as the control on Fn. The lemma gives that the maps RF̃n satisfy
the hypotheses of Lemma 19 with a Lipschitz constant of DK/2ε where D > 1 is a
universal constant. Their rotation number α′n is equal to α′n = xn, which tends to
α′ = 0. So by the case α = 0 of Lemma 19 covered in Section 2.6 we get that

lim suph(RF̃n) ≤ C(DK/2ε) = C0 +
1

2π
log

DK

2ε

for some C0 > 0. By Lemma 32

lim suph(F̃n) ≤ 1

q
lim suph(RF̃n)

and since

lim suph(Fn) ≤ ε+ lim suph(F̃n)

we get

lim suph(Fn) ≤ ε+
C0

q
+

1

2πq
log

DK

2ε
.
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Optimizing the choice of ε ∈ (0, 1/2) we get

lim suph(Fn) ≤ C0

q
+

1

2πq
(1 + log(DKπq)) .

In this proof we iterated renormalization: we did an order k + 1 direct renor-
malization followed by an implicit order 1 renormalization when using the result of
Section 2.6. In fact, order k + 1 direct renormalization and iterating k + 1 times
order 1 renormalization are closely related procedures, so morally we could consider
we did k + 2 renormalizations.

2.9. Proof of Lemma 19 for α ∈ R \Q. It will be carried out in two steps.

Recall that, denoting α = [a0; a1, a2, . . .] we defined

αn = [a0; a1, . . . , an, 1 + an+1, 1 +
√

2].

(1) We first prove a weak version of the lemma. For this we use a first direct
renormalization at order n + 1 for αn, which brings the rotation number
αn of Fn to

√
2 mod Z for RFn.

(2) Then, if necessary, we enhance the weak version using a prior renormaliza-
tion of the type of Section 2.7, at some fixed but high order.

So let us apply order n+1 direct renormalization to Fn as described in Section 2.5.
Be careful with the notations: what is called α in that section is called αn here,
and the integer k in that section is so that k = n. A pair of maps is introduced,
which we recall:

J = T−pn−1 ◦ F qn−1 ,

H = T−pn ◦ F qn .

Their respective rotation numbers are

β′n = qn−1αn − pn−1,

βn = qnαn − pn.

Then a height y0 must be provided satisfying conditions that we recall too:

• the domain of definition of H contains ImZ > y0, and hence the domain
of J also does;
• ∀Z with ImZ > y0:

|H(Z)− Z − βn| ≤ |βn|/10, |H ′(Z)− 1| ≤ 1/10,

|J(Z)− Z − β′n| ≤ |βn|/10, |J ′(Z)− 1| ≤ 1/10,

Let us proceed to some estimates on rotation numbers. According to Section 2.4
and some expression manipulation

βn =
(−1)n

qn+1 + qn
√

2
.

Also,

αn − α = (−1)n+1

√
2− xn

(qn+1 + qn
√

2)(qn+1 + qnxn)
,

where

xn := [0; an+2, an+3, . . .] ∈ (0, 1).

Let

M = qnK|αn − α| < K
qn
q2
n+1

√
2
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and note that M −→ 0 as n→ +∞. The map H is defined at least on ImZ > M
and satisfies there that H differs from Tβn

by at most M . However the inequality
M ≤ |βn|/10 does not necessarily hold. By the above

M/|βn| = K
qn(
√

2− xn)

qn+1 + qnxn
,

so
Kqn
qn+1

·
√

2− 1

2
≤M/|βn| ≤

Kqn
qn+1

√
2.

The quotient qn/qn+1 = qn/(an+1qn + qn−1) is less than one and can be very small
if an+1 is big, but it can also be very close to 1 if an+1 = 1, depending on the
continued fraction expansion of αn.

Now since H commutes with T1 and H(Z)−Z tends to βn as ImZ −→ +∞, we
can improve the estimate on H as follows:

ImZ > M =⇒ |H(Z)− Tβn
(Z)| ≤ e−2π(ImZ−M)M.

Hence in all cases the inequality |H(Z)− Tβn
(Z)| ≤ |βn|/10 will hold if ImZ > y0

with

y0 = M +
1

2π
log+ 10M

|βn|
denoting log+ x = max(0, log x). We have

y0 ≤M +
1

2π
log(10K

√
2).

A similar analysis holds for J with better estimates, so we can just take the same
constants as above.

The rotation number of RFn is −(an+1 +
√

2) ≡ −
√

2 mod Z. By Lemma 20,
K(RFn) contains ImZ > C√2. We claim that the return map R, see Section 2.5,
is defined on (` ∪ U) ∩ “ ImZ > y1” with

y1 := y0 +
3

10
|βn|+ (|β′n|+

1

10
|βn|) tan θ

where θ = arcsin(1/10).

Proof. We justify it in the case βn > 0, the other case being completely similar.
If βn > 0 then β′n < 0. We have Re J(Z) ≥ β′n − βn/10 = −(|β′n| + |βn|/10).
By the cone property (see the paragraph between eq. (7) and Lemma 24), the
H-orbit stays in a cone of apex J(Z) and half opening angle θ and central axis
J(Z) + R+, as long as it remains in ImZ > y0. The condition ImZ > y1 ensures
that Im J(z) > y1 − |βn|/10 and that the orbit will stay above y0 as long as it has
not passed the imaginary axis. Before passing it it stays above height y1−|βn|/10−
(|β′n|+ 1

10 |βn|) tan θ = y0 + 2
10 |βn|. It will pass the imaginary axis (because the real

part increases by a definite amount) and when it does, the imaginary part will be
at least y0 + |βn|/10, which ensures that it will belong to ` ∪ U (the argument is
similar to the paragraph marked (*) on page 25). �

Let λ, L, H0 and Λ be as in Section 2.5. We have λ(X + iY ) = X/βn + i(Y −
y0)/|βn| and Λ = Lλ− iH0. We claim that every point Z in (`∪U)∩ “ ImZ > y2”
with

y2 := y1 + (Amax(C√2, C1) + C1 +
1

10
)|βn|

is mapped by Λ to a point of imaginary part > C√2, where A and C1 are the
constants in Lemma 22.
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Proof. Consider the set A = Z + Lλ(domR) ⊂ H: it follows from the definition of
H0 that H0 = supZ∈∂A ImZ where the boundary is relative to C. Let w′ ∈ ∂A with
Imw′ = H0. By subtracting an integer to w′ we can assume that w′ ∈ Lλ(` ∪ U).
Assume now that ImZ > y2 defined above. We will apply Lemma 22 to W = λ(Z)
and W ′ = L−1(w′) ∈ λ(` ∪ U).

Let Z ′ = λ−1W ′ ∈ ` ∪ U . If Z ′ ∈ U then we have Imλ−1W ′ ≤ y1 for otherwise
Z ′ would have a neighbourhood V contained in domR hence its image by Lλ
would belong to the interior of A, contradicting the definition of w′. For similar
reasons, if Z ′ ∈ ` then we have ImZ ′ ≤ y1 + |βn|/10: recall that the map L
extends to a neighbourhood of `λ = λ(`) and a neighbourhood of Hλ(`λ) and
satisfies L ◦ Hλ = L + 1 near `λ. The margin |βn|/10 is there to ensure that
both V and H(V ) are above y1 for a small enough neighborhood V of any Z with
ImZ > y1 + |βn|/10. Hence ImZ ′ ≤ y1 + |βn|/10 in all cases.

Hence ImW − ImW ′ > (y2 − y1 − |βn|/10)/|βn| = Amax(C√2, C1) + C1.
Lemma 22 gives | ImL(W )−ImL(W ′)| ≥ (| ImW−ImW ′|−C1)/A > max(C1, C√2).
In particular | ImL(W )− ImL(W ′)| > C1 so by the second part of Lemma 22, the
quantities ImL(W ) − ImL(W ′) and ImW − ImW ′ have the same sign. We thus
get that Im Λ(Z) = ImLλ(Z)−H0 = ImL(W )− ImL(W ′) > C√2. �

Under these conditions on Z, it follows that Λ(Z) ∈ K(RFn). Hence Z ∈ K(Fn).
The same analysis can be applied to the conjugate of Fn by a horizontal translation
Tx(Z) = Z + x. Write `x and Ux the sets constructed from T−1

x ◦ Fn ◦ Tx instead
of Fn. (It turns out that `x = (iy0,+i∞) = ` is independent of x.) For any point
Z ∈ H with ImZ > y2, there is a translation Tx so that T−1

x Z ∈ `x ∪ Ux (in fact
take x = ReZ, then T−1

x Z ∈ ` = `x). Hence T−1
x Z ∈ K(T−1

x ◦ Fn ◦ Tx), which is
equivalent to the statement Z ∈ K(Fn). It follows from this analysis that

h(Fn) ≤ y2.

The quantity y2 depends on n and we have y2 − y0 −→ 0 hence lim sup y2 =
lim sup y0 ≤ 1

2π log(10K
√

2).
As a consequence we have proved the following (weak) asymptotic estimate

(19) lim sup
n→+∞

h(Fn) ≤ 1

2π
log(10K

√
2).

The constant
√

2 here has nothing to do with our choice of rotation numbers in-
volving

√
2.

We now enhance this estimate by a prior renormalization of fixed—yet high—

order. More precisely we temporarily fix some k ≥ 0 and ε > 0. Let F̃ε be the map
obtained by conjugating Fε by the translation by −iε and then restricting to H.

Then h(Fn) ≤ ε+ h(F̃n). By the Schwarz-Pick inequality we have

|F ′n(Z)− 1| ≤ K|αn − α|
2 ImZ

,

and this implies

sup
H
|F̃ ′n − 1| ≤ K

2ε

∣∣αn − α∣∣.
Now for n > k let RFn be the order k+ 1 direct renormalization of F̃n provided by
Lemma 32. According to this lemma,

lim suph(F̃n) ≤ |β| lim suph(RF̃n)

where β = β(k) = qkα− pk (recall that for fixed k, the first k convergents of α and
α′ coincide for large enough n). Now by Lemma 33 with K replaced by K/2ε (we
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assume ε < 1/2), the sequence RF̃n satisfies

sup
ImZ>0

|RF̃n(Z)− Tα′n(Z)| ≤ DK

2ε
|α′n − α′|

where α′n and α′ are the respective rotation numbers of RF̃n and of its limit. We

have α′ = −[ak+1, ak+2, . . .] and α′n = −[ak+1, . . . , an, 1 + an+1, 1 +
√

2]. We are

thus in the situation of Lemma 19 for −α′ in place of α and s ◦ (RF̃n) ◦ s in place
of Fn, where s(X + iY ) = −X + iY . By the weak estimate above Equation (19)
we thus have

lim sup
n→+∞

h(RF̃n) ≤ 1

2π
log

5DK
√

2

ε

and thus

lim sup
n→+∞

h(Fn) ≤ ε+ |β(k)| 1

2π
log

5DK
√

2

ε
.

Now this is valid for all k > 0 and since β(k) −→ 0 as k → +∞ and neither D, K,
nor ε depend on k, we get

lim sup
n→+∞

h(Fn) ≤ ε.

Since this is valid for all ε ∈ (0, 1/2) we conclude:

lim sup
n→+∞

h(Fn) ≤ 0.

This ends the proof of Lemma 19.
For this case, as in the case α = p/q, we used a direct renormalization of a direct

renormalization, though in a more subtle way.

Appendix A. Analytic degenerate families

An obvious way of obtaining degenerate families is to conjugate the family of
rigid rotations Rα(z) = e2πiα by a family of varying analytic diffeomorphisms. The
next lemma shows that in the case of families depending analytically on α, this is
the only way.

Proposition 34. Let I be an open subset of R. Assume {fα : D → C}α∈I is
an R-analytic family of maps which fix 0 with multiplier e2iπα. The following are
equivalent:

(1) the family {fα}α∈I is degenerate;
(2) there exist an open interval J ⊂ I, a real δ > 0 and an analytic map

ϕ : J ×B(0, δ)→ C such that for all α ∈ J , ϕα(z) = z +O(z2) and for all
z ∈ B(0, δ), fα = ϕα ◦Rα ◦ ϕ−1

α (with ϕα = ϕ(α, ·)).

Proof. (2) =⇒ (1). Obvious.
(1) =⇒ (2). Let U be a domain intersecting R in an interval J contained in I

such that fα is defined for all α ∈ U and is linearizable for every α ∈ J ∩Q. Let ϕα,
α ∈ U \ Q be the (uniquely defined) formal linearization of fα, so ϕα is a formal
power series

ϕα(z) = z +

∞∑
n=2

an(α)zn

satisfying

(20) ϕa ◦Rα = fα ◦ ϕa
formally. The an can be found recursively from the power series expansion of fα
(see [Pfe17] or below), and from the formula one obtains it follows that they are, in
general, meromorphic functions of α ∈ U , with possible poles when the multiplier
is a root of unity of order ≤ n, i.e. when α = p/q with 1 ≤ q ≤ n.
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Recall that we assumed that fα is linearizable for all α ∈ J ∩ Q. Let us prove
that this implies that the functions an(α) have no poles.

Lemma 35. The function α 7→ an(α) has a holomorphic extension to U .

Proof. We will proceed by induction on n. We have a1(α) = 1, which initializes
the recurrence. Let n > 1 and assume that for all k < n, the map α 7→ ak(α) has a
holomorphic extension to U . Let ρ(α) = ei2πα be the multiplier and let bn(α) such
that fα = ρ(α) +

∑
m≥2 bm(α)zm. Equation (20) then reads∑

i≥1

ai(α)ρ(α)izi = ρ(α)
∑
i≥1

ai(α)zi +
∑
m≥2

bm(
∑
i≥1

ai(α)zi)m

In particular for the coefficient in zn:

ρ(α)nan(α) = ρ(α)an(α) +

n∑
m=2

bm(α)
∑
...

ai1(α) · · · aim(α),

where the
∑
... is over all the m-uplets of positive integers whose sum are equal to

n. We rewrite the last line as follows:

(21) (ρ(α)n − ρ(α))an(α) = Pb(α),n(a2(α), . . . , an−1(α))

where Pb(α),n(x2, . . . , xn−1) =
∑n
m=2 bm(α)

∑
... xi1 · · ·xim . By the induction hy-

pothesis, the right hand side of eq. (21) is holomorphic, hence the function an(α)
has at most simple poles, situated at α = p/(n − 1), p ∈ Z. If we prove that the
right hand side of eq. (21) vanishes for α = p/(n− 1), then we will have completed
the induction. Now we must be careful: by assumption for every p/q there is a
solution ϕ to ϕ ◦Rp/q = fp/q ◦ ϕ; however this solution is not unique.

Sublemma 36. If ζ is a formal power series such that ζ ◦Rp/q−Rp/q ◦ζ = O(zm)

and if q|(m− 1) then ζ ◦Rp/q −Rp/q ◦ ζ = O(zm+1).

Proof. By a straightforward computation, for any formal power series, all the co-
efficients of ζ ◦Rp/q −Rp/q ◦ ζ with order in 1 + qZ vanish. �

Sublemma 37. Let f(z) = e2πip/qz+
∑
n≥2 bnz

n be a holomorphic or formal power

series, and assume that there is a formal power series ϕ̃ = z+
∑
n≥2 ãnz

n solution

of ϕ̃ ◦Rp/q = f ◦ ϕ̃ and another formal power series ϕ = z +
∑
n≥2 anz

n such that

ϕ ◦Rp/q − f ◦ϕ = O(zm) for some m ≥ 2. This depends only on a2, . . . , am−1; fix

these values and consider the equation ϕ ◦ Rp/q − f ◦ ϕ = O(zm+1) with unknown
am. Assume that p/q is in its lowest terms. Then

(1) if m− 1 is not a multiple of q, there is a unique solution am;
(2) if m − 1 is a multiple of q, all am ∈ C are solutions: in other words

Pb,m(a2, . . . , am−1) = 0.

Proof. Case (1) is immediate in view of eq. (21). Assume we are in case (2). The
formal power series ζ = ϕ−1 ◦ ϕ̃ commutes with Rp/q up to order m− 1 included,
and thus by Sublemma 36 up to order m included. It follows that ϕ◦Rp/q−f ◦ϕ =

O(zm+1). �

It follows from Case (2) of the above lemma applied to the reduced form of
p/(n − 1) that Pb(α),n(a2(α), . . . , an−1(α)) = 0. This cancels the possible simple
pole to an(α) at α = p/(n − 1) and proves heredity of the induction hypothesis.
Lemma 35 follows. �

If α = p/q ∈ Q, we let ϕa = z+
∑
n≥2 an(α)zn for the holomorphic extension of

the functions an(α) at a = p/q.
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For α ∈ U not necessarily real, let R(α) ∈ [0,+∞] be the radius of convergence
of ϕa, s(α) ≤ R(a) be the radius of the maximal disk centered at 0 around 0 where
ϕα takes values in D, and r(α) ≤ s(α) the maximal radius disk of such a disk for
which moreover ϕa is injective. It is easy to see that s(α) is locally bounded away
from zero in U \ J .34

Lemma 38. If for α0 ∈ J we have r(α0) > 0, then lim inf
ε→0

s(α0 + iε) > 0.

Proof. Set
gε = ϕ−1 ◦ fα0+iε ◦ ϕ

where ϕ denotes the restriction of ϕα0
to r(α0)D. The domain of gε tends to r(α0)D

as ε→ 0 and gε −→ Rα0
uniformly locally. Also,

gε(z) = e−2πε+2iπα0z +O(εz2).

In particular, |gε(z)| = (1 − 2πε)|z| + O(εz2). So, there exists 0 < r0 < r(α0) so
that

• when |z| < r0 and ε > 0, |gε(z)| < |z| and
• when |z| < r0 and ε < 0, |gε(z)| > |z|.

For ε sufficiently close to 0, gε is univalent on B(0, r0). So, there is a univalent map
ψα : B(0, r0)→ C which conjugates gε to Rα0+iε. The map ϕ̃ := ϕα0

◦ψ−1
α satisfies

the equation ϕ̃ ◦Rα = f ◦ ϕ̃ near 0 so by uniqueness has the same expansion as ϕα.
It follows from the Koebe One Quarter Theorem applied to ψα that as ε→ 0,

lim inf r(α0 + iε) ≥ r0/4.

Since s ≥ r, the lemma follows. �

Consider two Brjuno numbers α0 < α1 in J (so that r(α0) > 0 and r(α1) > 0)
and y > 0 small enough so that the box U ′ of equation α0 < Re z < α1 and
| Im z| < y is compactly contained in U . By Lemma 38 we have s|∂U ′ ≥ δ > 0. By
Cauchy’s formula applied to ϕa in the disk s(α)D, we see that an(α) ≤ δ−n holds
for all s ∈ ∂U ′ and thus by the maximum principle holds for all s ∈ U ′. It follows
that (α, z) → ϕα(z) is defined and holomorphic U ′ × B(0, δ) → D. It satisfies
ϕα(z) = z + O(z2) and ϕα ◦ Rα = fα ◦ ϕα by analytic continuation. This proves
claim (2) for J = (α0, α1). �

Appendix B. General statement

We recall here the main statement in [BC07], adapted it to our situation.

Notation 39. Let X and Y be topological spaces and X ⊂ Y . We write X ⊂0 Y
if the canonical injection X ↪→ Y is continuous. If moreover X is a normed vector
space and Y a Fréchet space,35 we write X ⊂c Y if every bounded set in X has
compact closure in Y .

In the theorem below we assume, as in most of the present article, that I ⊂ R
is an open interval and that fα : D→ C is a family of analytic maps that depends
continously on α ∈ I, with

fα(z) = e2πiαz +O(z2).

Below we use r(α) from Notation 8 in the present article, and ϕα from Definition 5.
The notation C0 refers to the set of holomorphic maps on D that have a continuous
extension to D, endowed with the sup-norm. The notation Cω refers to the set of
holomorphic maps on D that have a holomorphic extension to a neighborhood of D
in C.

34This also holds for r(α).
35We do not assume that the norm on X and the distance on Y are related.
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Theorem 40. Let F be any Fréchet space such that Cω ⊂ F ⊂0 C
0, and let

B ⊂c F

be a Banach space. If the family (fα) is non-degenerate (see Definition 1) and the
dependence on α is Lipschitz then there exists a Brjuno number α such that

• ∂∆α is compactly contained in D,
• the map z 7→ ϕα(r(α)z) belongs to F but not to B.

Equivalently, one can replace the Banach space B ⊂c F by a countable union of
Banach spaces Bn ⊂c F or by a countable union of compact sets Kn ⊂ F .

See section 1 of [BC07] to see how one deduces Theorem 3 from Theorem 40.
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