
HAL Id: hal-03133790
https://hal.science/hal-03133790

Submitted on 7 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Coloured Petri Nets Based Attack Tolerance
Framework

Wenbo Zhou, Philippe Dague, Lei Liu, Lina Ye, Fatiha Zaïdi

To cite this version:
Wenbo Zhou, Philippe Dague, Lei Liu, Lina Ye, Fatiha Zaïdi. A Coloured Petri Nets Based Attack
Tolerance Framework. 27th Asia-Pacific Software Engineering Conference (APSEC 2020), IEEE, Dec
2020, Singapore, Singapore. �hal-03133790�

https://hal.science/hal-03133790
https://hal.archives-ouvertes.fr

A Coloured Petri Nets Based Attack Tolerance
Framework

Wenbo Zhou1, 2, 3, Philippe Dague3, 4, Lei Liu1, *, Lina Ye3, 4, 5, Fatiha Zaı̈di3
1College of Computer Science and Technology, Jilin University, Changchun, China

2Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Changchun, China
3Laboratoire de Recherche en Informatique, Université Paris-Saclay, Orsay, France

4Laboratoire Spécification et Vérification, ENS Paris-Saclay and Inria, Gif-sur-Yvette, France
5CentraleSupélec, Université Paris-Saclay, Orsay, France

zhouwb17@mails.jlu.edu.cn, philippe.dague@lri.fr, liulei@jlu.edu.cn, lina.ye@lri.fr, fatiha.zaidi@lri.fr

Abstract—Web services provide a general basis of convenient
access and operation for cloud applications. However, such
services become very vulnerable when being attacked, especially
in the situation where service continuity is one of the most
important requirements. This issue highlights the necessity to
apply reliable and formal methods to attack tolerance in Web
services. In this paper, we propose a Coloured Petri Nets based
method for attack tolerance by modelling and analysing basic
behaviours of attack-network interaction, attack detectors and
their tolerance solutions. Furthermore, complex attacks can be
analysed and tolerance solutions deployed by identifying these
basic attack-network interactions and composing their solutions.
The validity of our method is demonstrated through a case study
on attack tolerance in cloud-based medical information storage.

Keywords-attack tolerance; coloured Petri nets; Web services;
formal methods; cloud security

I. INTRODUCTION

Service-oriented architecture supports a lot of modern soft-
ware systems, which advocates “Everything as a Service”. This
thought is absorbed by cloud computing and developed as its
typical service models, i.e., Infrastructure as a Service (IaaS),
Platform as a Service (PaaS) and Software as a Service (SaaS).
Cloud service providers offer multiple resources, e.g., VM
(Virtual Machine), to clients on demand through the Internet.
However, since clients’ information is centrally stored and
managed in cloud services, it will cause terrible loss once
such services are attacked successfully.

Attacks bring great threats to cloud applications and hinder
further development of cloud services. How to deal with
attacks towards cloud services becomes an important issue.
Recently, attack tolerance has been highlighted as a significant
property, which allows systems to continue when attacks occur
[1]–[5]. However, there are very few studies towards attack
tolerance for cloud services, especially researches combining
formal methods into attack tolerance [2]. Moreover, most of
the existing work focuses on applications. There is a lack of
research on formal foundation for better understanding the
essence of attacks and their solutions.

To further tolerate attacks in a reliable way, applying formal
methods is a good choice, which provides strong guarantee

* Correspondence to: Lei Liu 〈liulei@jlu.edu.cn〉

for systems security. As one of the most typical formal
models, Coloured Petri Nets (CPNs) provide an elegant and
practical mathematical formalism by combining Petri nets
with a programming language to obtain a scalable modelling
language for concurrent systems [6]. CPNs have been used to
model and analyse security aspects of many critical systems
[7]–[10]. Specially, useful related tools provide strong support
for verification and validation of systems models. Consider-
ing good visualization for better comprehension, concurrency
description, executable simulation and wide applications, we
choose CPNs as the formal model to analyse the attack
tolerance issue.

In this paper, inspired from formal constructions, we define
some meta operations for attack tolerance, modelled and
analyzed with CPNs. First, we model the basic behaviours
of attack-network interaction as CPN-based patterns. Then,
we provide CPN-based detection mechanisms and investigate
some CPN-based tolerance solutions according to this detec-
tion. Finally, we evaluate the effectiveness of our approach by
a case study. Note that our framework is generic to services
in general, but as cloud services are among the most well-
developed and complex services, we explain the approach in
this scenario. Our contributions are as follows.

• We explore a semi-formal framework for attack tolerance,
specifically using CPNs to design and deploy a tolerance
solution according to meta attack operations.

• We classify the basic attack-network interactions be-
haviours into four patterns, i.e., blocking, leakage, steal-
ing and injection. Meanwhile, we analyze their detection
conditions and construct their corresponding tolerance
solutions, including bypassing, encryption and compen-
sation.

• We evaluate our method through a case study about attack
tolerance in cloud-based medical information storage, and
demonstrate its effectiveness by means of CPN Tools.

This paper is organised as follows. Sect. 2 briefly introduces
Coloured Petri Nets, which are used to model Origin-Attack-
Tolerance Nets, in brief OAT Nets. Sect. 3 presents our CPNs
based methods, including basic interaction attack patterns,
attack detectors and their tolerance solutions. Sect. 4 discusses

a case study about attack tolerance in cloud-based medical
information storage with the help of CPN Tools. Sect. 5
introduces related work. Finally, Sect. 6 concludes this paper
and outlines future work.

II. PRELIMINARIES

Our method is mainly described using CPNs. If CPNs have
the same expressive power as Petri nets, in practice they offer
much more modelling power with better structuring facilities,
e.g., types and modules. A typical definition of CPNs is as
follows [11].

Definition 1 (Coloured Petri Net): A Coloured Petri Net is
a tuple CPN = (P, T,A,Σ, V, C,G,E, I), where
• P is a finite set of places;
• T is a finite set of transitions and P ∩ T = ∅;
• A ⊆ (P × T) ∪ (T × P) is a set of arcs;
• Σ is a finite set of types, each one being a non-empty

“colour set”;
• V is a finite set of typed variables, i.e., type(v) ∈ Σ for

all v ∈ V ;
• C : P −→ Σ is a colouring function that associates a type

to each place;
• G : T −→ ExprV is a labelling function that associates

expressions (called guards) with free variables from V to
transitions such that type(G(t)) = Bool;

• E : A −→ ExprV is a labelling function that associates
expressions with free variables from V to arcs such that
type(E(a)) = C(p)MS , where p is the place connected
to the arc a and C(p)MS is a multiset type;

• I : P −→ Expr∅ is an initialisation function that associates
an expression without free variables to every place such
that type(I(p)) = C(p)MS .

Definition 2 (Marking): Given a CPN, a marking is a
function M mapping P to multisets of tokens, such that
type(M(p)) = C(p)MS . The initial marking is given by I .

Definition 3 (Enabled): Given a marking M , t ∈ T , its
preset pre(t) = {p|(p, t) ∈ A} (resp., its postset post(t) =
{p|(t, p) ∈ A}) and a binding b of its variables (〈b〉: evaluation
in b), (t, b) is enabled for M if M(p) satisfies (i.e., is greater
than or equal to) E(p, t)〈b〉 for all places p ∈ pre(t) and
G(t)〈b〉 = true.

Definition 4 (Firing): Given t ∈ T and a binding b, if
(t, b) is enabled for M , t may fire and yield a new marking
M ′, defined, for all p ∈ pre(t) ∪ post(t), by M ′(p) =
M(p) --E(p, t)〈b〉++E(t, p)〈b〉 where E(p, t) 〈b〉 = 0
(resp., E(t, p)〈b〉 = 0) for every p /∈ pre(t) (resp., post(t)).
Here, -- (resp., ++) indicates the subtraction (resp. the sum)
of multisets [11].

Fig. 1 is an example of firing. In the marking before firing t,
the place p1 is set with “2‘1 ++ 3‘4 ++ 1‘5” (p2 with “1‘3”),
which is a multiset with two occurrences of the value 1, three
occurrences of the value 4 and one occurrence of the value 5.
If the value “5” is selected randomly to bind to the variable a,
then the guard “a > 2” is satisfied, and t is enabled and can
be fired. After the firing, t produces 1‘6 to p2 according to the
expression E(t, p2). We refer to [11] for precise definitions

if (a > 4)

then a + 1

else a - 1a

[a > 2]2`1++3`4++1`5

p1 p2t

if (a > 4)

then a + 1

else a - 1a

[a > 2] 1`3 ++1`6

p1 p2t

2`1++3`4

1`3

Fig. 1. An example before (top) and after (bottom) firing

of the semantics and show how CPN models are executable
and good at modelling behaviours of concurrent systems. This
enlightens their use for analysis of security design aspects in
concurrent systems, e.g., attack tolerance.

III. METHOD OVERVIEW

In our model-based method, we try to discover the essence
of attacks by means of semi-formal construction. This is done
by modelling some basic behaviours of attack-network inter-
action together with their detectors and tolerance solutions,
which takes advantages of CPN theory, improving thus the
ability for the network to tolerate an attack. To the best of our
knowledge, this work is the first that attempts to apply CPN to
attack tolerance problem, thus leading to better understanding
and capturing it through the formal constructions. On the
one hand, we propose some basic attack-network interaction
patterns modelled with CPN, which will be helpful for con-
structing more complex models of attack tolerance. On the
other hand, since the deployment of attack tolerance solutions
is always time- and resource-consuming, simulations with the
help of CPN Tools provide early access to effects of solutions.
These executable models are also useful for further analysis
or verification of these solutions (e.g., checking deadlock or
reachability), since many tools support such functions. The
major steps of our whole method are as follows.

1) An original net (O net) equipped with detectors (monitor-
ing functions), modelled as a CPN, should be simulated
with CPN Tools.

2) A predefined attack, modelled as a CPN (A net), is
injected to O net to constitute the attacked net (OA net),
whose simulation continues.

3) The attack is detected by the detectors and then identified
according to our pre-built library of basic attack-network
interaction patterns.

4) From this identification, a tolerance solution for this
attack is generated as a CPN (T net) by composition
from our pre-built library of basic tolerance solutions.

5) The simulation is suspended, the tolerance solution is
deployed by composing T net with OA net to construct
attack tolerant net (OAT net), whose simulation resumes
showing that it tolerates the injected attack.

In real-world practice, a tolerance solution should be de-
ployed immediately when an attack is detected. In this paper,
we use CPN Tools to simulate the framework, where it is not
allowed to change places and transitions dynamically during

continuous multiple-steps simulation. To mimic the real situa-
tion, we use the “monitors” function of CPN Tools to monitor
the simulation. When an attack is detected, the monitors would
suspend the simulation. Then, a tolerance solution is deployed.
This way does not interfere the correctness of our method
as the “suspension” does not change any other parts except
the deployment of a tolerance solution. It is the same as
deploying a tolerance solution immediately when a detector
detects an attack. After deploying the solution, the simulation
continues from the pausing state (i.e., marking) to ensure the
continuity. Note that we assume that a new deployed tolerance
solution cannot be attacked. If the solution is allowed to be
attacked again, it leads to an infinite meta-hierarchy problem,
which is out of the scope of this paper. Next we illustrate
three important concepts, i.e., basic attack-network interaction
patterns, attack detectors and basic tolerance solutions.

A. Basic Attack-network Interaction Patterns

Basic attack-network interaction patterns represent mali-
cious actions, such as unauthorisedly collecting information,
illegally changing entities, and so on. Here, we classify basic
units, each consisting of one place, one transition and one
arc. This classification is neither empirical or experimental
but considers exhaustively all the possible constructions of
basic interaction units between the O and A nets. As shown
in Table I, there are totally 16 types of basic units (according
to whether its place (resp., transition or arc) belongs to O
or A net and arc direction is from place to transition or from
transition to place). Since this paper focuses on the interaction
between O net and A net, four basic interaction attack patterns,
i.e., blocking, leakage, stealing and injection (No. 2, 3, 6,
7), are kept for study, which can be combined to constitute
more complex attacks. In Table I, the other cases are internal
behaviours of O net (No. 9, 13) or of A net (No. 4, 8) and
meaningless (No. 1, 5, 10-12, 14-16). For No. 1, 5, 12, 16,
it is abnormal that both place and transition belong to O net
(resp. A net) while arc belongs to A net (resp. O net). For
No. 10, 11, 14, 15, it is also senseless that O net leaves an
arc linked to a place or transition of A net. So, these cases
can be excluded.

In the table and all the following figures, O net is mainly
depicted in black with detectors in grey, A net in red, and T
net in blue or other colours if needed. Places or transitions
shared by two or three of those nets are depicted with the two
or three corresponding colours.

Fig. 2. Blocking

Blocking is a behaviour that blocks the process execution

and controls when it can be continued. Fig. 2 presents an
example of the blocking pattern, where the transition tx is not
enabled since there is no token in pb. Consequently, more and
more tokens arrive at px as shown in Fig. 2 and the marking of
py remains unchanged for a long time. Moreover, an attacker
can even control when to stop blocking, and make the process
run again like nothing had happened.

Leakage refers to a behaviour that discloses some important
information to attackers unintentionally, which is however not
detected by the original process. As shown in Fig. 3, the token
ox has been delivered to both py and pl, the latter belonging
to an attacker.

Fig. 3. Leakage

Stealing means that attackers take data, VM or other entities
away without a permission of the system and keep it. In Fig. 4,
the transition ts intends to steal the token ox from the place
px. Note that there are two differences between stealing and
leakage: (1) for “stealing”, an attacker needs to fire a transition
to obtain the concerned token, while for “leakage”, tokens
flow to an attacker’s place without any initiative action of the
attacker; (2) stealing implies that tokens are removed from the
place where they should be, however, leakage never changes
related tokens in O net.

Fig. 4. Stealing

Injection is a way used by attackers to throw some modified
data or codes, usually malicious, into a system, that can
facilitate the coordination of attackers to extract information
from or interfere with the system. A successful injection,
which often needs the help of other basic attack-network inter-
action patterns, should avoid the attention of a normal process.
Normally, an attacker first collects enough information, based
on which a malicious entity is then constructed and finally
injected back to the original system, as shown in Fig. 5.

Furthermore, compound attack patterns can be derived from
the compositions of basic attack-network interaction patterns.
For example, by combining stealing with injection, we can
obtain two new attack patterns, named copy and modification,
as shown in Fig. 6. The “copy” pattern takes a token away
from the original process, copies it and puts it back to the

TABLE I
TYPES OF BASIC UNITS

No CPN Comment No CPN Comment No CPN Comment No CPN Comment

1 / a 5 / 9 IBON b 13 IBON

2 Blocking 6 Leakage 10 / 14 /

3 Stealing 7 Injection 11 / 15 /

4 IBAN c 8 IBAN 12 / 16 /

a Meaningless; b Internal Behaviour of Original Net; c Internal Behaviour of Attack Net

Fig. 5. Injection

original process. Different from “copy”, the “modification”
pattern puts a modified (usually malicious) token back to the
original process. Note that these two attack patterns are quite
simple compound attacks, and more complex ones can be
constructed in a similar way.

Fig. 6. Copy (left); Modification (right)

B. Attack Detectors

In this subsection, we present examples of monitoring
functions for O net, in order to detect some of the attacks
and identify their corresponding patterns. These detectors are
designed and efficiently installed in O net.

When a transition is blocked by an attacker, the blocking
can be detected by checking that at least one of two conditions
is satisfied. The first is that the number of tokens in a place
exceeds a fixed threshold, this accumulation being possibly
a symptom that the transition after this place is blocked. As
shown in Fig. 7, when the number of tokens in px exceeds
5, transition tz will be fired and put a token to py . The
second is that the marking of some place does not change
for a predefined maximal time, indicating an interruption of
the data flow. The limitation of our detection is that a blocking
with a number of tokens or a time period below the pre-
defined thresholds cannot be detected. Short-time temporary
blocking (below the pre-defined threshold) is difficult to detect

without more knowledge about an attacker and this is out of
the modelling scope in this paper.

Fig. 7. Detector for blocking

Leakage is very difficult or even impossible to detect
without explicit signals. So, for leakage, we can only take
actions, e.g., encryption, to prevent attackers from using it.

For stealing, the detector determines whether some entities
have been lost. As shown in the example of Fig. 8, the token
oex is backed up to the place pduplicate. Then, the transition
tcompensate judges whether oex has been lost according to
pduplicate, px and py . We use inhibitor arcs to indicate that oex
belongs to neither px nor py . Notice that we detect stealing
in the interval between px and py in this example, where the
marking of px or py is equal to or less than one. More complex
situations (e.g., multiple tokens) are similar to this example but
with more control structures.

Fig. 8. Detector for stealing

When it comes to injection, detectors can check whether
there is an intrusive or modified entity. As shown in Fig. 9, the
place plibrary stores some necessary information for checking.
When a token arrives at ty , it will be checked with the

information from the library, which is denoted as olib. A bad
token will be removed from O net, and put into pisolation for
further analysis. The place pcheck ctrl is used to guarantee that
every token will be checked and the place pctrl makes sure that
there will be only one token in the place px. In [4], some parts
of software are assigned “hash codes”, whose modifications
are signals of malicious actions. Actually, checking whether
hash codes have been modified can be considered as one of
specific implementations of our checking detector.

Fig. 9. Detector for injection

It is worth noting that, for stealing and injection, an idea
for more general detection process would be to use place
invariants [12], which depend only on the topological structure
of the Petri net and are independent of any dynamic process. In
absence of attack in the O net, place invariants should always
be satisfied; however, once some place invariants become false,
there must be something wrong. Then, one way to locate
the “error” place might be using the intersection of places
related to multiple unsatisfied places invariants to reduce the
searching scope. We would explore more about the role of
place invariants and how to locate and tolerate attacks by using
them in the future.

C. Basic Tolerance Solutions

In this subsection, we propose tolerance solutions for the
above basic attack-network interaction patterns. They are
deployed (in blue) according to the locations in the O net
associated to the detectors (already in blue), in order to restore
the normal function of an original system.

Fig. 10. Bypassing

Bypassing provides a good way to deal with blocking.
Once the blocking detection condition is met, a bypassing path
should be built and triggered. Fig. 10 presents an example for
the number of tokens in a place exceeding a fixed threshold.
In this case, the place py obtains a token. Then, the bypassing
path is activated by triggering t′x, and the blocking problem
is solved. Moreover, this solution can also be used to mitigate
overloading besides blocking.

Encryption is a process that encodes critical information
to protect it from being illegally used by unauthorised users.
In Fig. 11, a leakage occurs in tl. If the token ox has been
encrypted as oex and the wiretapper is unable to decode it, the
solution is successful. On the contrary, if the wiretapper can
decode what he wants, the encryption solution fails. Actually,
this is a very difficult problem, because we can never know
the ability of an attacker. Since we cannot predict the ability
of attackers to decode information, the only thing we can do
is the prevention with best efforts.

Fig. 11. Encryption

Compensation solution makes up for lost entities. To
tolerate stealing, two things need to be done: (1) encrypting
information to make attackers unable to use it, described
as above; (2) compensating the lost entities in the original
process, according to the backup of any token found to be
lost by the detector. In the example of Fig. 12, only one token
has to be compensated. In practice, we may need to deal with
a set of lost tokens, and the implementations of control parts
are different according to different cases.

Fig. 12. Compensation

The compensation solution can also handle injection. De-
tectors monitor whether entities are intrusive or modified. If
an entity is intrusive, i.e., the entity does not belong to the O
net, we only need to remove the injected token. If an entity
is illegally modified, besides removing the modified entity, a
normal entity should be compensated in the original process.

These solutions correspond to the basic attack-network in-
teraction patterns. If a complex attack is composed of multiple

Data to
Read

STRING

1`"P3_rec"

Read
Information

RDINFO

Read
Request

RDREQLIST

1`[]

Read_Ack

In
RDRESP

In

File
Store

MEDRECORD

Data

MEDRECORD

Provider
Locations

In
CLUST

In

Query
Directory

Out
BOOL

1`true

Out

Read_Req

Out
RDREQLIST

Out

ClientID

In/Out
STRING

1`"Doc2"

In/Out

once_ctrl

BOOL

1`true

b_detector

Blocking
In/OutIn/Out

End

BOOL

Init_Read Construct Read Req

[length(#prov n) > 0]

Start_Read

[length(#prov n) = 0]

Decrypt
Data

[(#clID u) = t]

Combine
Data

Next_Read

b_detect
[(maxRt 0 hr)
 > 800] Start_Read1 [length(#prov n) = 0]

RRWait[hr <> []]

input (hr);
output (hq);
action
rdWait (DELAY.ran()) hr;

1`[]

u

{recID = s,
clID = t, prov = h}

hr

n

n
s

#mrec u

1`m1++1`m2++1`m3

hr

{clID = (#clID n),
recID = (#recID n),
prov = (List.drop((#prov n), 1))}

ins hr {clID = (#clID n),
prID = List.nth((#prov n), 0),
recID = (#recID n),
rtime = 0}

combineData m1 m2 m3

h

1`true

hr

t

t

1`true

p p

hr1`[]
hrhr

n

hrhq

1`true 1`true

3`()

Fig. 13. Doctor reading

such patterns, we can construct its tolerance solution by
combining the related solutions together, which is illustrated
by the case study in the next section. Note that our framework
models these attacks and solutions with the view of a relatively
low-cost modelling. Though we deploy one single tolerance
solution in response to one given attack, the library of generic
attack patterns / tolerance solutions remains small. The large
one is the potential combination of all possible deployment
instances, but we do not compute it in advance. After the
detectors detect and identify the attacks, the tolerance solution
is instantiated with the precise locations in the network, and
thus deployed on the fly.

IV. CASE STUDY

To show the effectiveness of our framework, we apply
our approach to a case study about cloud-based medical
information storage originally presented in [13], [14] and
modelled with CPN Tools, a tool for editing, simulating and
analysing CPNs [15]. In this system, patients and doctors read
or write medical records stored through cloud-based informa-
tion storage. Note that [13], [14] focus on security and fault
tolerance, while we introduce basic attack-network interactions
and illustrate our tolerant solutions. The major differences
are: (1) Their example only involves one patient and one
doctor, while we adapt it to a scenario with three patients
and two doctors, extendable to more patients and doctors in
a straightforward way. (2) We replace fault tolerance parts by
integrating the attack tolerance framework. The whole .cpn
file can be found at the site “https://github.com/TURTING-
BO/CPNs-Attack-Tolerance”.

In this case study, there are mainly four modules including
directory, patient, doctor and cloud. The directory module
receives query requests before responding. The patient or

Blocking

OutOut

Pending
Records

PROV

Cluster
Providers

In/Out
PROVLIST

In/Out

Modified
Records

PROV

Stolen
Records

PROV

once_ctrl

BOOL

1`true

Steal

[memPrec gl "P3_rec"]

input (gl);
output (gla);
action
findPred gl "P3_rec";

Modify

Inject

gla

gl

g

gl^^[g]

modify g

g

pm

g

1`true

rmallPred
"P3_rec" gl gl

Fig. 14. Attack

doctor modules read or write records, where a patient can
only read his/her own information but a doctor can both
read and write records of his/her patients. The cloud module
stores records of patients and manages reading and writing
operations. When a patient needs to read records, he/she first
sends a query request to the directory module. After receiving
the request, the directory module responds to the patient with
a provider list, indicating where his/her records are stored.
Then, the patient constructs a read request according to the
provider list and sends it to the cloud module. The cloud
module supervises the reading process and returns the records
if successful. Finally, the patient receives his/her records. Note
that a patient’s record is distributed in three providers to
improve security. The read and write operations of doctors
are similar to the read operation of patients.

In this medical storage system, the basic attack-network
interactions may violate the following security requirement
aspects.
• Blocking: medical records must be guaranteed to be

available to all doctors at any time to save the patients;

Read_Req

In

RDREQLIST

In

Cluster
Providers

In/Out
PROVLIST
In/Out

Read_Ack

Out
RDRESP

Out

RW_Control

1`e

Write_Req

In
WRREQLIST
In

Write_Start

WRREQ

Write_Resp

WRRESP

Write_Ack

Out
WRRESP

Out

Read_Start

RDREQ

Read_Resp

RDRESP

Providers'
Backup

PROVLIST

[{prID="Pr1",mrec={recID="P1_rec",data="Name: John;"}}, {prID="Pr2",mrec={recID="P1_rec",data="Disease: Flu, Mild;"}},
{prID="Pr3",mrec={recID="P1_rec",data="Treatment: Basic;"}}, {prID="Pr1",mrec={recID="P2_rec",data="Name: Lily;"}},
{prID="Pr2",mrec={recID="P2_rec",data="Disease: Pneumonia, Mild;"}}, {prID="Pr3",mrec={recID="P2_rec",data="Treatment: Basic;"}},
{prID="Pr1",mrec={recID="P3_rec",data="Name: Tom;"}}, {prID="Pr2",mrec={recID="P3_rec",data="Disease: COVID-19, Serious;"}},
{prID="Pr3",mrec={recID="P3_rec",data="Treatment: Critical;"}}]

Detector_Control

BOOL

Isolations

PROV

Write_Start

Write_File

[memPLw gl w]
input (w, gl);
output (g);
action
findPLw gl w;

Write_Resp

Read_Start

Read_File
[memPLr gl r]

input (r, gl);
output (g);
action
findPLr gl r;

Read_Resp

Check
Compensate

e

hwhw

w

gl

updatePL gl
{prID = #prID g,
mrec=(#mrec w)}

{prID = (#prID g),
req = w} 1`v1++1`v2++1`v3 1`v1++1`v2++1`v3

e

hr

r

{prID = (#prID g),
clID = (#clID r),
mrec = (#mrec g)}

1`u1++1`u2++1`u31`u1++1`u2++1`u3

gl

e

e

hr

gl

updatePL gl
{prID = #prID g,
mrec=(#mrec w)}

gl1

gl

if gl <> gl1
then sublist gl1 (intersect gl gl1)
else empty

1`true1`false

1`true

if gl <> gl1
then gl
else gl1

1`false

1`false

1`true

1`true

1`false

1`false

1`true

Fig. 15. Cloud

Fig. 16. Attack result

• Leakage: patients’ records cannot be leaked to a third part
in order to protect the privacy;

• Stealing: patients’ records cannot be lost as the history
of health status is critical to the diagnosis and treatment;

• Injection: insider attacks (e.g., from employees of cloud
provider) are not allowed to modify records;

Now consider three patients A, B , C and two doctors X ,
Y . The medical record of the patient C is {recID = “P3 rec”,
data = “Name: Tom; Disease: COVID-19, Serious; Treatment:
Critical;”}. The doctor Y needs to read the record of C and
determine the therapy. Consider an attack (Fig. 14) aiming at
making the doctor Y read a wrong record {recID = “P3 rec”,
data = “Name: Tom; Disease: Flu, Mild; Treatment: Basic;”},
leading to incorrect diagnosis and treatment of the patient C ,
more seriously, losing C ’s life with no timely treatment! This
compound attack might consist in blocking (Fig. 13), stealing
and injection (Fig. 15). The attacker carries out the following
steps: First, he blocks the doctor Y to read the record of the

patient C ; then, during the blocking time, he steals the record
of C ; next, according to the stolen one, he modifies the record
and injects it back to the O net; finally, he cancels blocking,
which allows the doctor Y to read an incorrect record.

Fig. 17. Checking and compensation result

Fig. 18. Doctor Y reading result

Fig. 16, Fig. 17 and Fig. 18 present the result of our
solution to the attack, where the doctor Y can read the
correct record of the patient C . The green boxes show the
current markings of corresponding places and the red lines
highlight points for the following explanations. In Fig. 16,
the attacker successfully modify C ’s record from “Disease:
COVID-19, Serious; Treatment: Critical;” to “Disease: Flu,
Mild; Treatment: Basic;”. In Fig. 17, our detector found

Fig. 19. Simple original net with a blocking attack

Fig. 20. Simple original net with a tolerance solution

Fig. 21. Breakpoint monitor

Fig. 22. Adding a bypassing tolerance solution to the .cpn file

this change and replaced the wrong record with the correct
one, with the cooperation of compensation solution shown
in Fig. 15. Finally, according to Fig. 18, the doctor Y can
read the correct record of C and decide a proper therapy.
The composition of bypassing and compensation solutions can
effectively tolerate the above attack. The current limitation is
that the detectors and the tolerance solutions are not deployed
automatically and can only be applied to models during the
design stage instead of runtime.

A. One More Discussion: A Blocking Example

Now, for one step forward in the automation of our frame-
work, we explore how to detect a blocking attack and deploy
its tolerance solution by modifying the .cpn file, which is the
format used by the tool CPN. Here, due to lack of space, we
just show a very simple version of the bypassing solution by
omitting some optimised control places and transitions.

As shown at Fig. 19, the blocking attack called “attack b”
leads to the accumulation of tokens in the place “before”.
In order to detect the blocking and stop the simulation, the
mechanism in this tool called “Breakpoint monitor” is adopted
that can stop the simulation under some conditions [15]. In
Fig. 21, we set a Breakpoint monitor for the place “before”,
which will stop the simulation when the number of tokens
in “before” exceeds 10. Once the blocking attack is detected,
the simulation stops and the bypassing solution is deployed by
modifying the corresponding .cpn file based on the information
from the blocked transition. In the pink rectangle of Fig. 22,
we add some .xml descriptions (i.e., one transition and two
arcs of a bypassing path) to the original .cpn file. Fig. 20
presents the O net with a new added tolerance solution. As we
can see, all the tokens arrive to “target” through the bypassing
path. Thus the tolerance is successful.

This very useful step provides the possibility of imple-
menting automatic tools for attack tolerance design. In the
future, we will build two CPN libraries of basic attack-network
interaction patterns and basic tolerance solutions, respectively.
The goal is to automatically detect an attack, identify it (as
a basic one from the library or a compound one made up
of several basic ones), find the generic solution (from the
library of basic solutions directly or by composition) and
deploy this solution, i.e., inserting its code in the initial code
at the proper locations. In this part, we only illustrated the
idea with the simplest basic attack-network interaction pattern
(i.e., blocking), and the insertion of the code is currently done
manually but can be implemented as a automatical one.

V. RELATED WORK

A. Modelling and Analysis of Web Services with CPNs

Coloured Petri Nets is a graphical language for constructing
models of concurrent systems and analysing their properties
[6], [11], [16], and has been widely used to model and analyse
Web services [17]–[24].

In [17], a modelling style for representing interaction flows
in Web interfaces, called wiCPN (Web Interaction Mod-
eling Using Coloured Petri Nets), was explored, which is
able to refine the model components and represent interac-
tion flows. In [18], a timed CPN model was presented to
evaluate the service composition in multicloud environments
while minimising the number of clouds involved in serving
a composite service request. In [19], taking Fuzzy CPNs
as the automatic combination technology for OWL-S Web
Services in Supercomputing Cloud Platform, algorithms were
designed to build and simplify the Fuzzy CPN dependency
relation graph. Model-to-model transformation technologies
are exploited to convert other models to CPNs since, after
transformation, existing tools can provide powerful support
for analysis and verification of CPNs. In [20], a UML profile
for the publish/subscribe paradigm was proposed, together
with a model-to-model transformation from UML to CPNs,
and, with the help of CPNs Tools, design errors cloud be
detected and fixed. In [21], a reliability markup language
for DRBD (dynamic reliability block diagram) models was
presented, as well as an algorithm that automatically converts
DRBD model to CPN, and a case study for verification of
DRBD model was illustrated with CPN Tools. Specially, some
CPN based diagnosis analysis approaches were also proposed
[22]–[24], e.g., in [22], the authors used spiking neural P
systems with coloured spikes to model the fault of available
service, component, and connector in the service composition
for fault location and handling. The above methods efficiently
deal with different aspects of Web services, including service
composition modelling, model-to-model transformation and
fault diagnosis. With a different motivation, we try to take
one of the first steps of applying CPNs to attack tolerance.

B. Attack Tolerance for Web Services in Cloud

Attack tolerance turns out to be extremely important to
improve reliability and security of cloud services. Many
projects are devoted to dealing with this problem [25]–[27].
A representative one is the H2020 CLARUS project which
summarised the main cloud vulnerabilities and the solutions
proposed, including intrusion detection and attack-tolerance,
and then, by leveraging diversity [28], further contributed
to this field by several novel and effective attack-tolerant
approaches. In [2], an attack-tolerant architecture and frame-
work for Web services was proposed, where variants in the
attack-tolerant library substitute the original implementation
periodically or according to online monitoring. In [3], a state
of the art of attack tolerance was presented, and how web
services can be tolerant through diversification was explained.
In [29] software diversity was explored as a defense against

side-channel attacks by dynamically and systematically ran-
domising the control flow of programs, which reduces side-
channel information leakage significantly.

Software Reflection is also an efficient technique for attack
tolerance. In [4], a new approach was proposed, exploring its
usage as a mean of detection and mitigation of insider attacks.
The authors of [5] considered any application deployed in the
cloud as a choreography of services and extended a formal
framework for choreography verification by incorporating de-
tection and remediation strategies using Software Reflection.
These provide good solutions for attack tolerance. However,
our goal is different. We want to design an abstract generic
framework for detection and tolerance of attacks, which it
will be possible to instantiate and (more or less automatically)
deploy for a particular implementation.

VI. CONCLUSION

In this paper, we have proposed a model-based framework
for attack tolerance using CPNs. We have extracted four meta
attack operations modelled as basic attack-network interac-
tion patterns and proposed the corresponding detectors and
their tolerance solutions. To further validate our method and
illustrate the way towards its automation, a case study was
simulated with CPN Tools. Note that it is the first step to
understand attack tolerance by modelling with CPNs and its
extensibility in practice remains to explore. Our patterns of
attack and tolerance are general, and may be instantiated using
other formal methods that can be translated from/to PNs, e.g.,
membrane systems [30], [31].

Future work includes (1) investigating composition rules
for the library of generic basic behaviours of attack-network
interaction to interpret more complex attack patterns, (2) de-
signing automatic tools for identifying such complex attacks,
(3) building corresponding tolerance solutions by composition
from the library of generic basic tolerance solutions, (4)
deploying these instantiated solutions at the proper locations
(which have to be previously identified) of the initial net. In
addition, we would explore how to use the net invariants to
detect and locate attacks, and more generally the analysis
methods provided by Petri nets to prove some functional
properties about the attacked net equipped with the deployed
tolerance solution w.r.t. the original net (such as reachability,
trace inclusion, equivalence, etc.), as well as model-based
diagnosis combining previous work [32], [33]. In addition,
generating formal models (e.g., under our framework) from
the basic threat models (e.g., the STRIDE framework [34]),
simulating actual complex attacks and conducting more ex-
periments is part of our perspectives, including exploring
the use of this approach for users or developers to identify
and mitigate threats from the perspective of experiments, as
well as validating further recurring attacks and corresponding
solutions [35].

ACKNOWLEDGMENT

This work is supported by the China Scholarship Coun-
cil, the Graduate Innovation Fund of Jilin University under

Grant No. 101832018C025 and the Natural Science Research
Foundation of Jilin Province of China under Grant No.
20180101053JC.

REFERENCES

[1] R. Constable, M. B. Mark, and V. R. Robbert, “Investigating correct-by-
construction attack-tolerant systems,” Department of Computer Science,
Cornell University, Tech. Rep., Mar. 2011.

[2] G. Ouffoué, F. Zaı̈di, A. R. Cavalli, and M. Lallali, “An attack-tolerant
framework for web services,” in 2017 IEEE International Conference on
Services Computing (SCC), Honolulu, HI, USA, Jun. 2017, pp. 503–506.

[3] ——, “How web services can be tolerant to intruders through diversifica-
tion,” in 2017 IEEE International Conference on Web Services (ICWS),
Honolulu, HI, USA, Jun. 2017, pp. 436–443.

[4] A. R. Cavalli, A. M. Ortiz, G. Ouffoué, C. A. Sanchez, and F. Zaı̈di,
“Design of a secure shield for internet and web-based services using
software reflection,” in International Conference on Web Services,
Seattle, WA, USA, Jun. 2018, pp. 472–486.

[5] G. Ouffoué, F. Zaı̈di, and A. R. Cavalli, “Attack tolerance for services-
based applications in the cloud,” in IFIP International Conference on
Testing Software and Systems, Paris, France, Oct. 2019, pp. 242–258.

[6] K. Jensen and L. M. Kristensen, “Colored Petri Nets: a graphical
language for formal modeling and validation of concurrent systems,”
Communications of the ACM, vol. 58, no. 6, pp. 61–70, 2015.

[7] S. Jaidka, S. Reeves, and J. Bowen, “A coloured petri net approach
to model and analyze safety-critical interactive systems,” in 26th Asia-
Pacific Software Engineering Conference, Putrajaya, Malaysia, Dec.
2019, pp. 347–354.

[8] R. Liu, J. G. Delgado-Frias, D. Boyce, Y. Qian, and R. Khanna, “Online
firmware functional validation scheme using colored petri net model,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 39, no. 7, pp. 1532–1545, 2019.

[9] D. A. Zaitsev, T. R. Shmeleva, W. Retschitzegger, and B. Pröll, “Security
of grid structures under disguised traffic attacks,” Cluster Computing,
vol. 19, no. 3, pp. 1183–1200, 2016.

[10] H. B. Attia, L. Kahloul, S. Benhazrallah, and S. Bourekkache, “Using
hierarchical timed coloured petri nets in the formal study of TRBAC
security policies,” International Journal of Information Security, vol. 19,
no. 2, pp. 163–187, 2020.

[11] K. Jensen and L. M. Kristensen, Coloured Petri Nets: modelling and val-
idation of concurrent systems. Heidelberg, Berlin, Germany: Springer,
2009.

[12] K. Yamalidou, J. Moody, M. Lemmon, and P. Antsaklis, “Feedback
control of petri nets based on place invariants,” Automatica, vol. 32,
no. 1, pp. 15–28, 1996.

[13] D. F. Fitch and H. Xu, “A petri net model for secure and fault-tolerant
cloud-based information storage,” in 24th International Conference on
Software Engineering and Knowledge Engineering, Redwood City, San
Francisco Bay, USA, Jul. 2012, pp. 333–339.

[14] ——, “A raid-based secure and fault-tolerant model for cloud infor-
mation storage,” International Journal of Software Engineering and
Knowledge Engineering, vol. 23, no. 5, pp. 627–654, 2013.

[15] CPN Tools: A tool for editing, simulating, and analyzing Colored Petri
Nets. [Online]. Available: http://cpntools.org/

[17] T. Brant-Ribeiro, R. D. Araujo, I. Mendonça, M. S. Soares, and R. G.
Cattelan, “Interactive web interfaces modeling, simulation and analysis
using Colored Petri Nets,” Software and Systems Modeling, vol. 18,
no. 1, pp. 721–737, 2019.

[16] K. Jensen, L. M. Kristensen, and L. Wells, “Coloured Petri Nets
and CPN tools for modelling and validation of concurrent systems,”
International Journal on Software Tools for Technology Transfe, vol. 9,
no. 3-4, pp. 213–254, 2007.

[18] R. Entezari-Maleki, S. E. Etesami, N. Ghorbani, A. A. Niaki, L. Sousa,
and A. Movaghar, “Modeling and evaluation of service composition in
commercial multiclouds using timed colored Petri nets,” IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 3, pp.
947–961, 2020.

[19] Z. Deng, J. Zhang, and T. He, “Automatic combination technology of
fuzzy CPN for OWL-S web services in supercomputing cloud platform,”
International Journal of Pattern Recognition and Artificial Intelligence,
vol. 31, no. 7, pp. 1 759 010:1–1 759 010:27, 2017.

[20] A. Gómez, R. J. Rodrı́guez, M. Cambronero, and V. Valero, “Profiling
the publish/subscribe paradigm for automated analysis using colored
Petri nets,” Software and Systems Modeling, vol. 18, no. 5, pp. 2973–
3003, 2019.

[21] R. Robidoux, H. Xu, L. Xing, and M. Zhou, “Automated modeling
of dynamic reliability block diagrams using colored petri nets,” IEEE
Transactions on Systems, Man, and Cybernetics-Part A: Systems and
Humans, vol. 40, no. 2, pp. 337–351, 2010.

[22] S. Pang, M. Wang, S. Qiao, X. Wang, and H. Chen, “Fault diagnosis for
service composition by spiking neural p systems with colored spikes,”
Chinese Journal of Electronics, vol. 28, no. 5, pp. 1033–1040, 2019.

[23] G. P. Bhandari and Ratneshwer, “Dependency-based fault
diagnosis approach for SOA-based systems using Colored
Petri Nets,” Journal of King Saud University-Computer and
Information Sciences, pp. 2973–3003, 2018. [Online]. Available:
https://doi.org/10.1016/j.jksuci.2018.12.002

[24] G. P. Bhandari, G. Ratneshwer, and S. K. Upadhyay, “Colored Petri
nets based fault diagnosis in service oriented architecture,” International
Journal of Web Services Research, vol. 15, no. 4, pp. 1–28, 2018.

[25] MUSA H2020 project. [Online]. Available: http://musa-project.eu/

[26] Seaclouds project. [Online]. Available: http://www.seaclouds-project.eu/

[27] CloudWATCH2. [Online]. Available: https://www.cloudwatchhub.eu/

[28] B. Baudry and M. Monperrus, “The multiple facets of software diversity:
Recent developments in year 2000 and beyond,” ACM Computing
Surveys, vol. 48, no. 1, pp. 16:1–16:26, 2015.

[29] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz, “Thwart-
ing cache side-channel attacks through dynamic software diversity,” in
22nd Annual Network and Distributed System Security Symposium, San
Diego, California, USA, Feb. 2015, pp. 1–14.

[30] J. Kleijn, M. Koutny, and G. Rozenberg, “Towards a Petri net seman-
tics for membrane systems,” in International Workshop on Membrane
Computing, Vienna, Austria, Jul. 2005, pp. 292–309.

[31] F. Liu and M. Heiner, “Modeling membrane systems using colored
stochastic Petri nets,” Natural Computing, vol. 12, no. 4, pp. 617–629,
2013.

[32] Y. Li, T. Melliti, and P. Dague, “Modeling BPEL web services for
diagnosis: Towards self-healing web services,” in 3rd International
Conference on Web Information Systems and Technologies - Internet
Technology, Barcelona, Spain, Mar. 2007, pp. 134–140.

[33] Y. Li and O. Boucelma, “A CPN provenance model of workflow: towards
diagnosis in the cloud,” in 15th East-European Conference on Advances
in Databases and Information Systems, Vienna, Austria, Sep. 2011, pp.
55–64.

[34] STRIDE chart. [Online]. Available: https://www.microsoft.com/security/
blog/2007/09/11/stride-chart/

[35] J. Dong, T. Peng, and Y. Zhao, “Automated verification of security
pattern compositions,” Information and Software Technology, vol. 52,
no. 3, pp. 274–295, 2010.

