
HAL Id: hal-03133786
https://hal.science/hal-03133786

Submitted on 3 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A code-based group signature scheme
Quentin Alamélou, Olivier Blazy, Stéphane Cauchie, Philippe Gaborit

To cite this version:
Quentin Alamélou, Olivier Blazy, Stéphane Cauchie, Philippe Gaborit. A code-based group signature
scheme. Designs, Codes and Cryptography, 2017, 82, pp.1–25. �10.1007/s10623-016-0276-6�. �hal-
03133786�

https://hal.science/hal-03133786
https://hal.archives-ouvertes.fr

A Code-Based Group Signature Scheme

Quentin Alamélou1, Olivier Blazy1, Stéphane Cauchie2, and Philippe

Gaborit1

1XLIM-DMI, Université de Limoges, France

{quentin.alamelou,olivier.blazy,philippe.gaborit}@xlim.fr
2RD Worldline, Seclin, France, stephane.cauchie@worldline.com

March 16, 2015

Abstract

In this work we propose the first code-based group signature. As it will
be described below, its security is based on a relaxation of the model of Bel-
lare, Shi and Zhang [3] (BSZ model) verifying the properties of anonymity,
traceability and non-frameability. Furthermore, it has numerous advantages
over all existing post-quantum constructions and even competes (in terms of
properties) with pairing based constructions: it allows to dynamically add
new members and signature and public key sizes are constant with respect
to the number of group members. Last but not least, our scheme can be
extended into a traceable signature according to the definition of Kiayias,
Tsiounis and Yung [19] (KTY model) and handles membership revocation.
The main idea of our scheme consists in building a collision of two syndromes
associated to two different matrices: a random one which enables to build a
random syndrome from a chosen small weight vector; and a trapdoor matrix
for the syndrome decoding problem, which permits to find a small weight
preimage of the previous random syndrome. These two small weight vectors
will constitute the group member’s secret signing key whose knowledge will
be proved thanks to a variation of Stern’s authentication protocol. For ap-
plications, we consider the case of the code-based CFS signature scheme [11]
of Courtois, Finiasz and Sendrier.

1 Introduction

A group signature scheme allows members of a group to issue signatures on behalf
of the group in an anonymous but revocable way: an opener is able to revoke
anonymity of the actual signer in case of abuse. Since its introduction by Chaum
and van Heyst [10], group signature has been extensively studied. Bellare et
al. [2] (BMW model) first gave formal security properties of group signature.
Later, Bellare, Shi and Zhang [3] extended this model to dynamic groups (BSZ
model). Numerous efficient group signatures such as [7, 8, 9] were proposed but
only proven secure in a relaxation security of [2]. Delerablée and Pointcheval [12]
proposed the first practical scheme fully fitting BSZ in the random oracle model
(ROM) whereas Groth [18] also provided such a scheme but secure in the standard
model. Then, as an improvement of group signatures, Kiayias, Tsiounis and Yung,

1

suggested traceable signatures schemes in [19]. In addition to classic properties
of a group signature scheme, a traceable signature enables the opening authority
to delegate its tracing capability to sub-openers but only against specific users.
This gives two crucial advantages: sub-openers can run in parallel and authorities
can monitor misbehaving users and then preserve honest users anonymity. The
first efficient traceable signatures, provably secure in the standard model, were
introduced by Libert and Yung in [22].

All these aforesaid schemes are pairing-based constructions. It was then worth
looking for alternative since their security might collapse in front of quantum
computers and that they involve heavy computations. Thus, many lattice-based
constructions have been proposed such as [17] who first designed a lattice-based
group signature scheme with both public key and signature size linear in the
number of group members N . Recently, numerous works such as [20, 21, 25,
24] proposed more efficient lattice-based constructions where both sizes of the
group public key and the signature are proportional to log(N). Another crucial
requirement for group signature schemes is the membership revocation: only few
lattice-based constructions, namely [21, 24], handle this property. Plus, it is
interesting to notice that all lattice-based group signature schemes base their
security on the static model of [2] meaning that, in our knowledge, there exists
no post-quantum dynamic group signature scheme.

In this work, we present the first code-based group signature scheme which
furthermore addresses many of these issues. Indeed, our work can be seen as
the first (weakly) dynamic post-quantum traceable signature with membership
revocation. Lattice-based constructions such as [20, 21, 25, 24] are secure in the
sense of the BMW model then providing full-anonymity and traceability. In our
scheme, we provide traceability, non-frameablity and only anonymity but in a
stronger model since it allows to dynamically add new group members. Indeed,
basing our security notions on the BSZ model, we prove the security of our scheme
through the use of only one oracle for achieving a passive Join whereas the BSZ
model requires two oracles respectively proceeding to a passive join and an active
join; this led us to define our scheme as weakly dynamic.

The main idea of our scheme consists in building a collision of two syndromes
associated to two different matrices: a random one which enables to build a
random syndrome from a chosen small weight vector; and a trapdoor matrix,
which permits to find a small weight preimage of the previous random syndrome.
These two small weight vectors will constitute the group member’s secret signing
key whose knowledge will be proved thanks to a variation of Stern’s protocol.

Our contribution In this work, we propose a generic construction for designing
the first code-based group signature. As explained above, its security is based on
a relaxation of the BSZ model with the properties of anonymity, traceability and
non-frameability. Furthermore, it has numerous advantages over all existing post-
quantum constructions and even some pairing based constructions: it allows to
dynamically add new members (weakly dynamic) and signature and public key
sizes are constant with respect to the number of group members. Last but not
least, our scheme may be extended into a traceable signature according to the
KTY model and handles membership revocation. For applications, we consider
the CFS signature [11] for an instantiation of our scheme.

2

Organization In Section 2, we give necessary background for the well under-
standing of our work; Section 3 deals with the variation we brought to Stern’s
protocol in order to design our group signature scheme; we then present our group
signature scheme in Section 4 where its extension to a traceable signature in the
KTY model and the case of revocation are also highlighted. Section 5 is concerned
with the security of our scheme and finally we give an example and parameters
for building an instance of our scheme in Section 6.

2 Notation and Background

In this section, we first present the notation used throughout this work, we then
make a brief focus on code-based cryptography and finally provide group signature
definitions.

2.1 Notation

All through this work, we use the following notations.
µ denotes some randomness and we use the symbol ‖ for concatenation.
v[r] denotes the r − th coordinate of the vector v and sr denotes the r−th symbol
of the string s. The set {1, 2, . . . , n} is denoted by [n]. Fq denotes the finite field of
cardinality q. Mm×n(Fq) denotes matrices over Fq of m lines and n columns. Sn

ω

is the set of vectors of weight ω lying in F
n
2 . Σn denotes the set of permutations

over [n]. H denotes a generic random oracle. h : F∗
2 −→ F

n
2 , h

′ : F∗
2 −→Mk×n(F2)

and h′′ : F∗
2 −→ {0, 1, 2}

l model random oracles.
For any entity E , we denote by E(I) the fact that E has knowledge of I. For

protocols, we denote by P and V respectively the prover and the verifier.
We use usual coding theory notation, where G and H respectively denote

generator and parity check matrices of a code. Let H ∈ Mk×n(Fq) and x ∈ F
n
q .

The product HxT is called a syndrome and ωt(x) refers to the Hamming weight
of x.

2.2 Code-based Cryptography Background

In this subsection, we only give necessary recalls for the well understanding of our
work; for more details on coding theory, see [23].

Syndrome Decoding Problem The Syndrome Decoding problem (SD-problem)
is a problem based on coding theory shown NP-complete [4]. It consists in finding
a small weight word for a given syndrome s.

Definition 1 Let H be a random matrix fromMm×n(Fq), ω an integer and s ∈
Fq

n−k. The Syndrome Decoding problem consists in finding e of weight below or
equal to ω such as HeT = s.

Minimum Distance Problem The Minimum Distance problem (MD-problem)
is also a problem based on coding theory shown NP-complete in [27]. It consists
in finding a small weight word whose syndrome is null.

3

Definition 2 Let H be a random matrix from Mk×n(Fq), ω an integer. The
Minimum Distance problem consists in finding e of weight below or equal to ω
such as HeT = 0.

We say that any tuple with coherent dimensions (H, s, ω) where s is a syn-
drome by H is an SD-instance. When s = 0, this is an MD-instance and we
denote it (H, ω).

Stern’s protocol Whereas zero-knowledge (ZK) protocols were proposed by
[16], Stern [26] first proposed such a scheme based on codes. Stern’s protocol
(Figure 1) is a 3-pass prover-verifier protocol with cheating probability equal to
2/3 during which P makes a zero-knowledge proof to V on a small weight secret
z solving an SD-instance (H, s). The security on the scheme relies on the SD-
problem.

Public data: (H, s, ω) ∈ Mk×n(F2)× F2
n−k × N

P proves knowledge of z ∈ F
n

2 such as HzT = s and ωt(z) = ω

1. P computes:

π
$
← Σn

u
$
←∈ F

n
2

c1 = h(π||HuT), c2 = h(π(u)), c3 = h(π(z + u))
2. P sends c1, c2, c3

3. V sends c
$
← {0, 1, 2}

4. 3 cases:
c = 0: P sends π, u

c = 1: P sends π, z + u
c = 2: P sends π(z), π(u)

5. 3 cases:
c = 0: V checks c1, c2
c = 1: V checks c1, c3
c = 2: V checks c2, c3

and ωt(π(z)) = ω
6. V outputs Accept if all checks passed
⊥ otherwise.

Figure 1: Stern’s protocol

Remark 3 Remark on Stern’s protocol

If V knows the secret z, he can check more assumptions while executing Stern’s
protocol. Indeed, for the case c = 0, V(z) receives π and u so he can also check
that c3 = h(π(z + u)). For the case c = 1, V(z) receives π and z + u so he can
check that c2 = h(π(z + u+ z)). Then, we can say that a prover whose secret is
known by the verifier can be traced while executing Stern’s protocol.

Fiat-Shamir Paradigm Fiat and Shamir proposed in [14] a general paradigm
for designing a signature scheme from a secure identification scheme. The idea
is to start from a secure 3-round public coin identification scheme (with α a
commitment from the prover, β a random challenge from the verifier, and ans the
response to β sent by the prover), and then turn into a digital signature scheme
with the help of the random oracle H. Indeed, to sign a message m, the signer
(who knows the secret) produces a valid transcript (α, β, ans) of the interactive
protocol where β = H(α,m).

Trapdoor Matrix In this work, we propose a generic construction of a code-
based group signature scheme through the use of what we call a trapdoor matrix.
Such a matrix is actually hard to find and the only current candidate for instan-
tiating our construction is the CFS matrix (see section 5).

4

Definition 4 A trapdoor matrix family is a tuple of polynomial algorithms
(TrapGen,Eval , Inv) such that:

− TrapGen(1λ): outputs a pair (Q, trk) ∈Mk×n(F2)×T RK with Q indistin-
guishable from random;

− Inv(Q, trk, s, ω) outputs some x ∈ F
n
2 such as QxT = s and ωt(x) = ω

assuming (Q, trk)← TrapGen(1λ), s ∈ F
n−k
2 and ω ∈ N;

− (Correctness) For all (Q, trk) output by TrapGen(1 λ), and all s ∈ F
n
2 . We

have Q(Inv(Q, trk, s, ω))T = s;

− (One-wayness) For all polynomial adversary A, the following is negligible:
Pr[(Q, trk)← Gen(1λ); s ∈ F

n−k
2 ;x← A(1λ, Q, s, ω) : (QxT = s andωt(x) =

ω)].

We say that Q is a trapdoor matrix and trk a trapdoor key if (Q, trk) was
generated by TrapGen.

2.3 Group Signature

A group signature scheme [10] is a protocol which allows members of a group to
individually issue signatures on behalf of the group in an anonymous but revocable
way: an opener is able to revoke anonymity of the actual signer in case of abuse.
Several steps have been made in the study of those protocols: Bellare et al. [2]
first gave formal security properties of group signature. Later, Bellare, Shi and
Zhang (BSZ model) [3] extended this model to dynamic groups, emphasizing the
importance of unforgeability and anonymity. Numerous efficient group signatures
schemes such as [7, 8, 9] using bilinear maps were proposed but only secure in a
relaxation of these models. While recent post-quantum group signature schemes,
namely lattice-based, such as [17, 20, 21, 25, 24] only satisfy the static model of
[2], we propose a scheme that we will define as weakly dynamic with the classic
properties of anonymity, traceability, non-frameability for which key and signature
sizes are independent of the number of group members.

All throughout this section, we adapted our definition and our security model
from [5] which was the closest one to ours.

2.3.1 Definition

We first precise that our scheme only involves three entities with a single au-
thority: the group manager. Indeed, in our model, the group manager will both
participate in issuing users’ secret keys and revoking anonymity (see section 4)
without impacting security (see section 5). Consequently, the algorithm Judge
present in dynamic models [3, 5] does not appear in our model. This difference
apart, we adapt [5] to propose the following definition.

Definition 5 A group signature scheme GS = (Setup, Join,Sign,Verif ,Open) is
a sequence of protocols such as:

− Setup(1λ): this algorithm generates global public parameters of the system
params, the group public key gpk and the group manager secret key gmsk
encompassing the opening key, skO;

5

− Join(Ui): this is an interactive protocol between a user Ui and the group
manager. At the end of the protocol, the user obtains a secret signing key
sk [i]. The group manager adds the new user Ui and updates skO;

− Sign(gpk , sk [i],m;µ): to sign a message m, the user uses his secret key sk [i]
and some randomness µ to output a signature σ valid under the group public
key gpk;

− Verif (gpk ,m, σ): anybody should be able to verify the validity of the sig-
nature σ on the message m with respect to gpk. It thus outputs 1 if the
signature is valid, and 0 otherwise;

− Open(skO , gpk ,m, σ): for a valid signature σ with respect to gpk, the group
manager can provide the signer identity. It thus outputs the user Ui.

2.3.2 Security Model

Following [5], we define our security notions in a game-based way defined in Fig-
ures 2 and 3. To be claimed secure, a group signature scheme has to prove its
correctness and fulfill three properties: anonymity, traceability and non frame-
ability.

Correctness The correctness notion guarantees that honest users should be
able to generate valid signatures, and the opener should then be able to revoke
anonymity of the signers.

Unforgeability Informally, the unforgeability notion guarantees that no one
can produce a valid signature that cannot be opened in convincing way (trace-
ability) and that no one can produce a signature on behalf of some group member
(non-frameability).

In the following experiments, to join the group, an adversary runs the joinP -
oracle (passive join), which means that it creates an honest user for whom it does
not know the secret key: the index i is added to the HU (Honest Users) list.

Remark 6 The BSZ model defines two Join oracles: a passive one as described
above and an active one where an adversary can proceed the Join with a user
already corrupted. The adversary then knows user’s secret key from the beginning.
Theses two oracles are necessary to be dynamic in the sense of the BSZ model.

For users whose secret keys are known to the adversary, we let the adversary play
on their behalf. For users whose secret keys are known to the adversary, we let
the adversary play on their behalf. For honest users, the adversary can interact
with them, granted some oracles:

− corrupt(i), if i ∈ HU , provides the secret key sk[i] of this user. The adver-
sary can now control it. The index i is then moved from HU to the list of
corrupted users CU ;

− sign(i,m), if i ∈ HU , plays as the honest user Ui would do in the signature
process. Then i is appended to the list S[m].

We also define the open-oracle which, on input (m,σ) returnsOpen(skO, gpk,m, σ).

6

(a) Experiment ExptrGS,A(λ)

1. (gpk , gmsk , skO)← Setup(1λ)
2. (m,σ)← A(gpk : joinP , corrupt , sign, open)
3. if Verif (gpk ,m, σ) = 0, return 0
4. if ∃j 6∈ CU ∪ S[m],

Open(gmsk , gpk ,m, σ) = j
return 1

5. else return 0

AdvtrGS,A(λ) = Pr[ExptrGS,A(λ) = 1]

(b) Experiment Expnf
GS,A(λ)

1. (gpk , gmsk , skO)← Setup(1λ)
2. (m,σ)← A(gpk , gmsk : joinP , corrupt , sign)
3. if Verif (gpk,m, σ) = 0 return 0
4. if ∃i ∈ HU \ S[m],

Open(gmsk , gpk ,m, σ) = i
return 1

5. else return 0

Advnf
GS,A(λ) = Pr[Expnf

GS,A(λ) = 1]

Figure 2: Unforgeability Notions

Traceability and Non-Frameability
Traceability (see Figure 2 (a)) says that nobody should be able to produce a

valid signature that cannot be opened in a convincing way. Furthermore, non-
frameability (see Figure 2 (b)) guarantees that no dishonest player (even the
authorities, i.e. the Group Manager GM , hence the keys when gmsk is provided
to the adversary) will be able to frame an honest user: an honest user that does
not sign a message m should not be convincingly declared as a possible signer,
non-frameability also shows that the group manager cannot cheat. We thus say
that:

− GS is traceable if, for any polynomial adversaryA, the advantageAdvtrGS,A(λ)
is negligible;

− GS is non-frameable if, for any polynomial adversary A, the advantage
Advnf

GS,A(λ) is negligible.

In both games, the adversary generates a signature σ on a message m of its choice.
In the latter game, the adversary itself can play the role of the opener, trying to
frame an honest user i.

Anonymity
Given two of honest users i0 and i1, the adversary should not have any signifi-

cant advantage in guessing which one of them have issued a valid signature.

Experiment Expanon−b
GS,A (λ)

1. (gpk , gmsk , skO)← (1λ)
2. (m, i0, i1)← A(FIND , gpk : joinP , corrupt , sign)
3. σ ← Sign(gpk, ib,m, sk[i])
4. b′ ← A(GUESS , σ : joinP , corrupt , sign)
5. if i0 6∈ HU or i1 6∈ HU return 0
6. return b′

AdvanonGS,A(λ) = Pr[Expanon−1
GS,A (λ) = 1]− Pr[Expanon−0

GS,A (λ) = 1]

Figure 3: Anonymity Notion

The adversary can interact with honest users as before (with sign and corrupt),
but the challenge signature is generated using the interactive signature protocol

7

Sign, where the adversary plays the role of the corrupted users, but honest users
are activated to play their roles.
GS is anonymous if, for any polynomial adversaryA, the advantage AdvanonGS,A(λ)

is negligible. The full-anonymity notion means that anonymity is guaranteed even
if the adversary is granted access to the open-oracle (excepted on the challenge
signature).

Definition 7 A group signature scheme verifying security notions of Figures 2
and 3 is said to be weakly-dynamic.

3 A Variation on Stern’s Protocol

For designing our group signature, we proposed a variation of Stern’s protocol
where the idea consists in splitting the small weight secret z the prover will be
challenged on and to run two related instances of Stern’s protocol in parallel. Let
us consider the following SD-instance: (H, s, 2ω) for which z is said to be a valid
solution if z = (x‖y) where x and y have the same length and ωt(x) = ωt(y) = ω.
Then H can also be written as H = (R‖Q) such as HzT = s⇔ RxT +QyT = s.

Public data: (H, s, ω) ∈ Mk×2n(F2)× F
n−k

2
× N

P proves knowledge of a valid z = (x‖y) ∈ F
2n

2 to V

1. P generates rnd := gen(µ) and α := com(H, z, rnd)
where gen and com are defined by:

(π, σ)
$
← Σn × Σn

(u, v)
$
←∈ F

n
2 × F

n
2

rnd ← {π, σ, u, v}
c1 = h(π||RuT +QvT), c2 = h(π(u)), c3 = h(π(x+ u))
d1 = h(σ||RuT +QvT), d2 = h(σ(v)), d3 = h(σ(y + v))
α← {c1, c2, c3, d1, d2, d3}

2. P sends α

3. V sends c
$
← {0, 1, 2}

4. P computes ans := resp(z, c, rnd)
where resp is defined by:

If c = 0: ans ← {π, σ, u, v}
If c = 1: ans ← {π, σ, x+ u, y + v}

If c = 2: ans ← {π(x), π(u), σ(y), σ(v)}
P sends ans

5. V computes b := check(α, c, ans)
where check is defined by:

If c = 0: V checks c1, c2, d1, d2
If c = 1: V checks c1, c3, d1, d3
If c = 2: V checks c2, c3, d2, d3

and ωt(π(x)) = ωt(σ(y)) = ω
If all checks passed

b← 1
Else

b← 0
6. V outputs Accept if b = 1
⊥ otherwise

Figure 4: Identification protocol (IP)

Security of our identification protocol This protocol is a prover-verifier
protocol with cheating probability equal to 2/3 and needs to be repeated several
times to decrease this cheating probability close to 0.

Theorem 8 The identification protocol IP is an honest-prover verifier zero-
knowledge (HPVZK) protocol with cheating probability 2/3 thus verifying prop-
erties of completeness, soundness and zero-knowledge.

Idea of proof The identification protocol IP is a straightforward application
of Stern’s protocol which thus implies its security. A detailed proof will appear
in the extended version of this paper.

8

We will see in the following how to turn this HPVZK identification scheme
into a group signature scheme through Fiat-Shamir paradigm.

4 Code-Based Group Signature Scheme

In this section, we reuse notation defined in subsection 2.3 concerning group
signature. To fix ideas, we first present an high level overview of our scheme and
secondly, we describe precisely the operations of the different algorithms required
to cope with our group signature definition (Definition 5).

Let us notice that our scheme requires that all participants have access to a
public random matrix R which will constitute half of the group public key gpk ;
we therefore assume that we are in the CRS model [6] with crs the common
reference string. R is obtained by applying h′ to crs.

Actors Our scheme brings into play:

− a group manager (GM): the single authority of our scheme. It runs the
Setup algorithm, adds new members to the group (algorithm Join protocol)
and opens signatures (algorithm Open);

− group members also referred as users who can sign on behalf of the group
(algorithm Sign);

− outsiders which do not belong to the group but can verify a signature
granted the group public key gpk (algorithm Verif).

4.1 High Level Overview

We give an overview of our scheme by following a classic scenario: first, a candidate
U for joining the group G solicits GM to get a secret signing key; secondly, U
must be able to sign on behalf of the group while finally the group manager must
be able to revoke its anonymity.

First Step GM generates Q a trapdoor matrix with trk the corresponding
trapdoor key. It is important to notice that Q (and trk) will never change during
lifetime of the group ensuring that the public key size is independent of the number
of group members.
U chooses a random vector x of weight ω and computes s = RxT . U then sends s
to GM who uses its trapdoor key to compute y such as: QyT = s and ωt(y) = ω.
GM returns y to U who then forms its secret signing key z = (x‖y). It is important
to notice that half of the secret key, namely x, is only known by U himself; it will
ensure non-frameability of our scheme.

Second Step As summed up in Figure 5, U owns a secret key z which fits within
the model of the protocol IP for a null syndrome. Indeed since s = RxT = QyT ,
we have that RxT + QyT = 0 and every group member possesses a secret key
verifying HzT = 0 and ωt(x) = ωt(y) = ω.

9

Figure 5: High level Overview

Third Step Due to our construction, GM knows y the second part of the secret
key of every user U ; this point added to remark 6 will enable him to run Open
algorithm.

4.2 Operation of our Scheme

We first describe algorithms Setup, Join and summed them up in Figure 6.
Setup is performed by the group manager while Join(Ui) is an interactive protocol
between a candidate Ui for joining the group and the group manager GM .

We recall that we are in the CRS model which enables anyone to generate
R = h′(crs).

Setup The Setup algorithm is executed by the group manager GM taking as in-
put a security parameter λ. It generates a trapdoor matrix (according to Definition
7) Q and the corresponding trapdoor key trk . It also initializes gmsk = (trk , skO)
where skO will be its opening key.
Finally, GM publishes global parameters params = (λ, n, k, ω) ∈ N

4 and the
group public key gpk = (H,ω) where R and Q ∈Mk×n(F2).

Join To proceed the Join protocol, GM and Ui behave as following: Ui ran-
domly chooses a vector xi ∈ Sn

ω and computes si = Rxi
T . Then, he sends si

to GM who uses its trapdoor key trk to compute yi verifying: si = Qyi
T and

ωt(yi) = ω. GM responds yi to Ui. Finally, Ui forms sk[i] = (xi‖yi) and GM
updates skO [i] = yi. When GM computes yi, he first checks that yi was not
already attributed to another user; if so, GM tells Ui to choose another secret xi
(since GM cannot check values for xi’s, he has to ensure that all yi’s are different
so that two users cannot share the same secret key).

(a) Setup(1 λ)

1. (λ, k, n, ω) ∈ N
4 ← params(1λ)

2. (Q, trk) ∈Mk×n(F2)× T RK ← GenTrap(params)
3. gpk ← ((R‖Q), ω)
4. skO ← ∅
5. gmsk ← (trk , skO)
6. Output (params, gpk)

(b) Join(1λ)

user : Ui GM

xi
$
← Sn

ω

si = Rxi
T

si−→
yi = Inv(Q, trk, si, ω)
If ∃i0 : skO [i0] = yi,

Abort
Else skO [i] = yi

sk[i] = (x‖y)
yi←−

Figure 6: Setup and Join algorithms

10

Sign and Verif Algorithms IP is an interactive zero-knowledge protocol
during which P, which in fact consists in the group G, proves to V the knowledge
of a valid secret ensuring V that he belongs to the group associated to the null
identity. We now describe how we used IP to build primitives Sign, Verif and
Open of our group signature scheme.

General idea As already mentioned, our group signature scheme is obtained
from the identification protocol IP (Figure 4) through the use of Fiat-Shamir
paradigm (subsection 2.2). To sign a message m (algorithm Sign), a group mem-
ber Ui produces a transcript Tr = (α, β, ans) of the protocol IP executed on
public key gpk and small weight secret sk [i] simulating the interaction through
the use of a random oracle. For verification (algorithm Verif), one tries to re-
generate the same transcript Tr using σ = (α, ans) published along with m by
the signer. When, m and the signature σ are valid, the verifier can generate β
from m and α and then checks integrity of the message m and the signer’s group
membership. We detail these algorithms in Figure 7; we reused primitives gen,
com, resp, check defined in Figure 4 and we defined lλ as the number of necessary
iterations to reach the required level of security λ. h′′ must have been chosen such
as the size of the output l is greater than lλ.

(a) Sign(gpk , sk [i],m, lλ;µ)

α← ∅, rnd ← ∅, ans ← ∅ and r ← 0
1. While (r < lλ)

rnd [r]← gen(µ)
α[r]← com(gpk , sk [i], rnd [r])
r ← r + 1

2. β = h′′(m,α)
3. r ← 0
4. While (r < lλ)

ans[r]← resp(sk [i], βr, rnd [r])
r ← r + 1

5. Output (m,σ) where σ = (α, ans)

(b) Verif(gpk ,m, lλ, σ)

1. Split σ = (α, ans)
β = h ′′(m,α)

2. r ← 0
While (r < lλ)

b← check(α[r], βr, ans[r])
If (b == 0)

Output 0
r ← r + 1

3. Output 1

Figure 7: Sign and Verif

Open Algorithm We first deal with the interactive point of view: by splitting
the secret (here sk [i] = (xi‖yi)) into two parts in the protocol IP , it is as if a user
Ui were executing two instances of Stern’s protocol: (R,Rxi

T , ω) and (T, Tyi
T , ω).

Now, recalling Remark 3 about Stern’s protocol and that the manager secret
key skO consists in the pool of all the yi’s, if Ui and GM are executing the
identification protocol IP (Figure 4), GM will be able check the validity of more
commitments than a classic verifier would do in two on three cases. Indeed, in
function of the challenge c received at step 3 of IP protocol, GM may check
additional requirements at step 5:

− if c = 0: GM can also check that d3 = h(σ(yi+v)) in addition to c1, c2, d1, d2;

− if c = 1: GM can also check that d2 = h(σ(yi + v + yi)) in addition to
c1, c3, d1, d3.

11

We then define the primitive addCheck(yi, α, c, ans) which acts like check but
also checks additional requirements described above. This primitive can only be
run by GM (or possibly by a user) since it requires knowledge of y′is.

How to open a signature ?
The algorithm (Figure 8) is straightforward : given a messagem and a signature

σ = (α, ans), GM proceeds as follows: for each user, he tries to reproduce a valid
transcript as in algorithm Verif but, as explained above, he also has to check
additional requirements at during step 2 (Figure 8). If it exists a user i such as
all iterations on r are successful, the signer can only be i.

Open(skO , gpk ,m, σ)
1. Split σ = (α, ans)

β = h ′′(m,α)
2. i← 1

While (i ≤ nbUsers)
r ← 0
While (r < lλ)

b← addCheck(skO[i], α[r], βr, ans[r])
If (b == 0)
i← i+ 1
r ← 0
Else if (b == 1 and r == lλ − 1)
Output i
Else
r ← r + 1

3. Output ⊥

Figure 8: Open algorithm

When i is not the signer of m, addCheck(skO[i], α[r], βr, ans[r]) has a probability
to output 1 equal to 1/3 at step 2 (the case βr = 2 is the only one he can pass);
This probability is less than the cheating probability of 2/3 of IP protocol so
we are sure that the lλ rounds required for algorithms Sign and Verify ensure an
opening probability close to 0 for anyone else but GM .

4.3 Extension to a Traceable Signature

In this subsection, we briefly explain how our group signature scheme can be
turned into a traceable signature following the definition of [19] and how the
same argument enables our scheme to handle revocation.

A traceable signature Extending group signatures schemes, Kiayias et al.
suggested traceable signatures schemes in [19]. Such signatures enable the opening
authority to delegate its tracing capability to sub-openers so that they can trace
suspicious users without letting them trace others.

Due to its construction, our scheme can easily be extended into such a scheme.
Indeed if GM wants a sub-opener So to look after Ui0 , he just needs to reveal
him yi0 , which can be defined as the tracing key. From now, when So wants to
check a signature he has to apply the methodology of the Open algorithm. Since
he does not know skO, he cannot look over all users’ tracing keys, then he will

12

only be able to open signatures issued by users he knows tracing keys.

Anonymity revocation A crucial requirement for group signature schemes is
the membership revocation; when it comes to lattice-based constructions, only
few schemes [21, 24] handle this property by proceeding with verifier local revo-
cation (VLR). VLR requires the verifiers to possess some up-to-date revocation
information, but not the signers. With the same argument as the case above, this
revocation information, in our case, consists in the revoked user’s tracing keys.

5 Formal Security of our Scheme

In this section, we study the three requirements previously defined (Figures 2 and
3) in order to claim secure our scheme. Due to lack of space, complete proofs will
appear in the full version of this paper.

Anonymity We now study the anonymity property.

Theorem 9 If there exists an adversary A that can break the anonymity property
of the scheme, then there exists an adversary B that can break either the Syndrome
Decoding Problem for matrix H and weight 2w, or the Zero-Knowledge property
of the Stern’s proof.

Idea of Proof Intuitively, under the Syndrome Decoding assumption / ZK
property of the proof the adversary is not able to test which key is used in the
Signing algorithm, and as such he is not able to distinguish a signature done
honestly by a signature with a simulated proof on random values.

To fit the model, we should do that for a message signed by a user i0, end on
a random proof, say that this random proof can be assimilated to a signature by
the user i1 and then come back to a proper signature by the same user i1. By
doing so, we can deduce the validity of the previous theorem.

Soundness The soundness analysis consists in proving traceability and non-
frameability.

Theorem 10 If there exists an adversary A against the soundness of the scheme,
then we can build an adversary B that can either break a computational problem
(Syndrome Decoding for matrix H and weight 2w), or the Simulation-Soundness
of the proof.

Sketch of proof Once again the proof is straightforward, receiving a Syndrome
Decoding challenge, the simulator B will produce a sequence of games where he
will process to substitute the framed user public key by the challenge value, an-
swer various signing queries by simulating the Extended Stern proof (by program-
ming the Random Oracle), and conclude by arguing that under the Simulation-
Soundness of the proof, the valid new signature produced by the adversary implies
the knowledge of a small weight word whose associated syndrom is the challenge,
and then extract the value with a quick rewinding / reprogrammation of the Ran-
dom Oracle (by memorizing the Random Oracle queries made by the adversary,
B is able to know what the preimages of the hashes involved in the Challenge
Signature are, and thus can learn the exact values of the challenge solution).

13

Proof. Non-frameability and traceability are very closely related, we will
treat both simultaneously. We now define a (xi, yi, si) as being a valid tuple if
RxTi = QyTi = si. There are two ways to cheat the soundness of our scheme:
either by creating a new valid tuple without interacting with the group manager
(G1) which induces a traceability attack, or by using an existing valid tuple but
on a new message (G2) which breaks the non-frameability.

We study the security of the unhashed version of the proofs scheme (because
of the perfect soundness of the proofs and the memory of the ROM). We will
construct two different games, in the first one (G1), we assume the adversary is
able to forge a signature by generating a new valid tuple, in the second one (G2)
the adversary is able to forge a new xi for a given si and so break the tracing
procedure.

G1 Let us be given a (one more) Minimum Distance Challenge (R||Q, (zi)i∈[NQ]).
We build an adversary B able to solve this challenge, from A that breaks
the soundness of our scheme by generating a new balanced-small weight
z. (Assuming the zi are not balanced but properly distributed, we need
approximately a sample 4 times bigger than the expected number of query)

To answer the i-th join queries, as it is passive, B directly splits zi in (xi‖yi).

After at most NQ join queries, A is able to output a new signature with
a fresh certificate tuple with non-negligible probability. As B controls the
Random Oracle he can look up the preimage of each computed values, and
obtain a fresh (x, y) such that (R‖Q)(x‖y)T = 0) and so he is able to answer
the challenge instance.

G2 Let us be given a Syndrome Decoding challenge (R, s). We build an adver-
sary B answering this challenge, from an adversaryA breaking the soundness
of our scheme by forging a new valid tuple.

B generates a new gmsk, he then gives gmsk to A, together with the public
parameters. B can answer any join queries as he knows gmsk, the user
on which we expect the attack (the challenge user) will have a valid tuple
corresponding to one with y as a secret key. (Specifically RxT = s). A can
corrupt any user, if he tries to corrupt the challenge user, the simulation
fails. As all uncorrupted user looks the same, with non-negligible probably
the simulation continues. Thanks to the random oracle, B can simulate all
answers to the signing queries.

After at mostNQ signing queries, A succeeds in breaking the non-frameability
with non-negligible probability by generating a new proof, on an uncor-
rupted user. As uncorrupted users are indistinguishable, with non negligible
probability this user is the challenge one, and so B is able to produce a small
weight word y, which breaks the Syndrome Decoding assumption.

6 Example and Parameters

Our scheme is generic and can be used with any trapdoor function Inv(), for
coding theory based on Hamming metric a possible trapdoor function is the CFS
signature algorithm [11], which for Q a (2m×ωm) masked dual matrix of a Goppa

14

code, is able to associate, with probability 1/ω!, a word of weight ω to a random
syndrome. From the security discussion, the parameters have to be chosen so that
the Syndrome Decoding problem for the matrix H = (R‖Q) (which has double
length of the CFS matrix Q, and is formed from a random matrix R and the CFS
public matrix Q) is difficult for a weight 2ω. Notice that even if a recent result
has proven that public matrix of the CFS scheme was distinguishable [13] from a
random matrix, it did not give rise to an attack on the scheme, hence for choice
of parameters we consider H as a random matrix. From the best known attacks
[15, 1] we can choose m = 20 and ω = 10. It leads to a matrix H of length
221 and dimension 200, with a security of 80 bits. The level of security can be
improved over 80 bits by taking parameters with m = 20 and ω = 11. The fact
that the searched small weight vectors have a particular form since they have to
be of same weight ω on the two parts of the matrix only increases the complexity
of the attacks at the margin. Indeed it decreases the number of possible solutions
to the Syndrome Decoding problem only by a small factor, since random solutions
of weight 2ω to the problem have a good probability to be of equal weight on each
part of the matrix.

These parameters lead to a signature length for our scheme (a transcript
of proof of knowledge of a small word associated to H) of length roughly 20
megaBytes and a public key of size 2.5 megaBytes.

Notice that what takes time in the protocol is the computation of the CFS
signature by the signer, but this is done only once for each member of the group
when he enters the groups, and hence it is less important that this signature takes
a little more time than usual signatures. At last the CFS signature scheme cannot
find a preimage for any syndrome s, it does it only with probability 1/ω!, this fact
can be managed through the sending of ω! different syndromes s in the Set-up
process of entering the group, so that, on the average, a preimage y by the CFS
public matrix Q is found with a small failure probability, in which case the set-up
process is started over, since the syndrome s is computed randomly, it does not
affect the security of the scheme.

7 Conclusion

In this work, we proposed the first code-based group signature scheme. The main
idea of our work was to build a collision of two syndromes associated to two
different matrices: a random one which enables to build a random syndrome from
a chosen small weight vector; and a trapdoor matrix, which permits to find a
small weight preimage of the previous random syndrome. Applying a variation
of Stern’s protocol on these two small weight vectors led us to design our group
signature scheme through the use of Fiat-Shamir paradigm. We assume that its
elegance, its simplicity and the large range of properties it fulfills make this scheme
a good alternative to all other post-quantum, namely lattice-based, constructions.
Indeed, not only did we design a scheme ensuring anonymity, traceability and non-
frameability but it also allows to dynamically add new members (weakly-dynamic),
handles member revocation and can be turned into a traceable signature (KTY
model) while group public key and signatures sizes remain independent of the
number of group members. Finally, our construction can be seen as the first first
weakly dynamic post-quantum traceable signature with membership revocation.

15

References

[1] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decod-
ing random binary linear codes in 2 n/20: How 1+1=0 improves information
set decoding. In David Pointcheval and Thomas Johansson, editors, Ad-
vances in Cryptology EUROCRYPT 2012, volume 7237 of Lecture Notes in
Computer Science, pages 520–536. Springer Berlin Heidelberg, 2012.

[2] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of
group signatures: Formal definitions, simplified requirements, and a con-
struction based on general assumptions. In Eli Biham, editor, Advances in
Cryptology EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer
Science, pages 614–629. Springer Berlin Heidelberg, 2003.

[3] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signa-
tures: The case of dynamic groups. In Alfred Menezes, editor, Topics in
Cryptology CT-RSA 2005, volume 3376 of Lecture Notes in Computer Sci-
ence, pages 136–153. Springer Berlin Heidelberg, 2005.

[4] E. Berlekamp, R.J. McEliece, and H.C.A. Van Tilborg. On the inherent
intractability of certain coding problems (corresp.). Information Theory,
IEEE Transactions on, 24(3):384–386, May 1978.

[5] Olivier Blazy. Preuves de connaissance interactives et non-interactives. Part
1, Chapter 3. PhD thesis, University Paris VII – Denis Diderot, September
2012.

[6] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications. In Proceedings of the Twentieth Annual ACM
Symposium on Theory of Computing, STOC ’88, pages 103–112, New York,
NY, USA, 1988. ACM.

[7] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures.
In Matt Franklin, editor, Advances in Cryptology CRYPTO 2004, volume
3152 of Lecture Notes in Computer Science, pages 41–55. Springer Berlin
Heidelberg, 2004.

[8] Dan Boneh and Hovav Shacham. Group signatures with verifier-local revo-
cation. In Proceedings of CCS 2004, pages 168–177. ACM Press, 2004.

[9] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous
credentials from bilinear maps. pages 56–72. Springer-Verlag, 2004.

[10] David Chaum and Eugne van Heyst. Group signatures. In DonaldW. Davies,
editor, Advances in Cryptology EUROCRYPT 91, volume 547 of Lecture
Notes in Computer Science, pages 257–265. Springer Berlin Heidelberg, 1991.

[11] N. Courtois, M. Finiasz, and N. Sendrier. How to achieve a McEliece-based
digital signature scheme. In C. Boyd, editor, Advances in Cryptology - ASI-
ACRYPT 2001, volume 2248 of LNCS, pages 157–174. Springer, 2001.

16

[12] Cecile Delerablee and David Pointcheval. Dynamic fully anonymous short
group signatures. In PhongQ. Nguyen, editor, Progress in Cryptology - VI-
ETCRYPT 2006, volume 4341 of Lecture Notes in Computer Science, pages
193–210. Springer Berlin Heidelberg, 2006.

[13] J.-C. Faugère, V. Gauthier, A. Otmani, L. Perret, and J.-P. Tillich. A distin-
guisher for high rate McEliece cryptosystems. In ITW 2011, pages 282–286,
Paraty, Brazil, October 2011.

[14] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Proceedings on Advances in
cryptology—CRYPTO ’86, pages 186–194, London, UK, 1987. Springer-
Verlag.

[15] Matthieu Finiasz and Nicolas Sendrier. Security bounds for the design of
code-based cryptosystems. In Mitsuru Matsui, editor, Advances in Cryptology
ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer Science, pages
88–105. Springer Berlin Heidelberg, 2009.

[16] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, February 1989.

[17] S.Dov Gordon, Jonathan Katz, and Vinod Vaikuntanathan. A group signa-
ture scheme from lattice assumptions. In Masayuki Abe, editor, Advances in
Cryptology - ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer
Science, pages 395–412. Springer Berlin Heidelberg, 2010.

[18] Jens Groth. Fully anonymous group signatures without random oracles. In
In ASIACRYPT 2007, volume 4833 of LNCS, pages 164–180. Springer, 2007.

[19] Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Traceable signatures.
In Christian Cachin and JanL. Camenisch, editors, Advances in Cryptology
- EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science,
pages 571–589. Springer Berlin Heidelberg, 2004.

[20] Fabien Laguillaumie, Adeline Langlois, Benot Libert, and Damien Stehl.
Lattice-based group signatures with logarithmic signature size. In Kazue Sako
and Palash Sarkar, editors, Advances in Cryptology - ASIACRYPT 2013, vol-
ume 8270 of Lecture Notes in Computer Science, pages 41–61. Springer Berlin
Heidelberg, 2013.

[21] Adeline Langlois, San Ling, Khoa Nguyen, and Huaxiong Wang. Lattice-
based group signature scheme with verifier-local revocation. In Hugo
Krawczyk, editor, Public-Key Cryptography PKC 2014, volume 8383 of Lec-
ture Notes in Computer Science, pages 345–361. Springer Berlin Heidelberg,
2014.

[22] Benoit Libert and Moti Yung. Efficient traceable signatures in the standard
model. In Hovav Shacham and Brent Waters, editors, Pairing-Based Cryp-
tography Pairing 2009, volume 5671 of Lecture Notes in Computer Science,
pages 187–205. Springer Berlin Heidelberg, 2009.

17

[23] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes.
North-holland Publishing Company, 2nd edition, 1978.

[24] Phong Q. Nguyen, Jiang Zhang, and Zhenfeng Zhang. Simpler efficient group
signatures from lattices.

[25] K. Nguyen S. Ling and H. Wang. Group signatures from lattices: simpler,
tighter, shorter, ring-based. In In PKC 2015 (to appear).

[26] Jacques Stern. A new identification scheme based on syndrome decoding.
In DouglasR. Stinson, editor, Advances in Cryptology CRYPTO 93, vol-
ume 773 of Lecture Notes in Computer Science, pages 13–21. Springer Berlin
Heidelberg, 1994.

[27] A. Vardy. The intractability of computing the minimum distance of a code.
Information Theory, IEEE Transactions on, 43(6):1757–1766, Nov 1997.

18

