
HAL Id: hal-03133590
https://hal.science/hal-03133590

Submitted on 8 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On FGLM Algorithms with Tate Algebras
Xavier Caruso, Tristan Vaccon, Thibaut Verron

To cite this version:
Xavier Caruso, Tristan Vaccon, Thibaut Verron. On FGLM Algorithms with Tate Algebras. Inter-
national Symposium on Symbolic and Algebraic Computation - ISSAC 2021, Jul 2021, Virtual event,
Russia. pp.67-74, �10.1145/3452143.3465521�. �hal-03133590�

https://hal.science/hal-03133590
https://hal.archives-ouvertes.fr

On FGLM Algorithms with Tate Algebras

Xavier Caruso
Université de Bordeaux, CNRS,

INRIA

Bordeaux, France

xavier.caruso@normalesup.org

Tristan Vaccon
Université de Limoges; CNRS, XLIM

UMR 7252

Limoges, France

tristan.vaccon@unilim.fr

Thibaut Verron
Johannes Kepler University, Institute

for Algebra

Linz, Austria

thibaut.verron@jku.at

ABSTRACT

Tate introduced in [Ta71] the notion of Tate algebras to serve, in

the context of analytic geometry over the ?-adics, as a counterpart

of polynomial algebras in classical algebraic geometry. In [CVV19,

CVV20] the formalism of Gröbner bases over Tate algebras has

been introduced and advanced signature-based algorithms have

been proposed. In the present article, we extend the FGLM algo-

rithm of [FGLM93] toTate algebras. Beyond allowing for fast change

of ordering, this strategy has two other important bene�ts. First, it

provides an e�cient algorithm for changing the radii of conver-

gence which, in particular, makes e�ective the bridge between the

polynomial setting and the Tate setting and may help in speeding

up the computation of Gröbner basis over Tate algebras. Second,

it gives the foundations for designing a fast algorithm for interre-

duction, which could serve as basic primitive in our previous algo-

rithms and accelerate them signi�cantly.

CCS CONCEPTS

• Computing methodologies→ Algebraic algorithms.

KEYWORDS

Algorithms, Gröbner bases, Tate algebra, FGLM algorithm, ?-adic

precision

ACM Reference Format:

Xavier Caruso, Tristan Vaccon, and Thibaut Verron. 2021. On FGLM Algo-

rithms with Tate Algebras. In . ACM, New York, NY, USA, 9 pages.

1 INTRODUCTION

Lying at the intersection of geometry and number theory, one �nds

?-adic geometry. A paramount part of this theory is the study of

?-adic analytic varieties, �rst de�ned by Tate in [Ta71] (see also

[FP04]). They have played a key role in many developments of

number theory (e.g. ?-adic cohomologies [LS07], ?-adic modular

forms [Go88]). The main algebraic objects upon which Tate’s ge-

ometry is built are Tate algebras and their ideals, formed of conver-

gent multivariate power series over a complete discrete valuation

�eld (e.g. = Q?).

This work was supported by the ANR project CLap–CLap (ANR-18-CE40-0026-01).
T. Verron was supported by the Austrian FWF grant P31571-N32.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this workmust be honored.
For all other uses, contact the owner/author(s).

Conference’21, July 2021, Washington, DC, USA

© 2021 Copyright held by the owner/author(s).

In earlier papers [CVV19, CVV20], the authors showed that it is

possible to de�ne and compute Gröbner bases of Tate ideals with

coe�cients in Z? or Q? , and that the de�nitions are compatible

with the usual theory on polynomials over the residue �eld F? or

over the coe�cient ring. Amajor limitation of the algorithms is the

increasing cost of reductions as the precision grows. Our previous

paper [CVV20] addresses the case of expensive reductions to zero,

through the use of signature algorithms, but computing the result

of non-trivial reductions remains expensive. Another question left

open was whether it is possible to exploit overconvergence prop-

erties, namely the knowledge that the series we are working with

satisfy a stronger convergence condition.

In the present paper, we adapt the classical FGLM algorithm

to the case of Tate series, and we show that it gives answers to

both questions, in the case of zero-dimensional ideals. Precisely,

we prove the following theorem.

Theorem 1.1. Let {X; r}1 and {X;u} be two Tate algebras

with {X; r} ⊂ {X;u}.

There exists an algorithm that takes as input a reduced Gröbner

basis� of a 0-dimensional ideal � of {X; r} with respect to a given

monomial ordering and output a Gröbner basis of the ideal � · {X;u}

of {X;u} for another given monomial ordering.

Moreover, if = denotes the number of variables, if X is the dimen-

sion of the quotient {X; r}/� and if prec is the precision at which

the result is output, the complexity of this algorithm is:

• $ (̃=X3prec) operations in the base �eld for a general ,

• $ (̃=X3prec · log ?) bit operations when = Q? .

We underline that, although the classical FGLM algorithm only

concerns change of ordering, our version also permits to change

the radii of convergence of the underlying Tate algebra (namely

the parameters r and u), and then provides e�cient tools for deal-

ing with the aforementioned overconvergence situation. In the ex-

treme case where r is in�nite, it makes e�ective the bridge between

polynomials and Tate series, that is between classical algebraic ge-

ometry and rigid geometry. On a di�erent note, being able to per-

form such a change of ordering opens up algorithmic strategies

for overconvergent series, by giving freedom in the choice of the

convergence radii.

An additional important outcome of our algorithm is that it can

be slightly modi�ed in order to accept certain nonreduced Gröb-

ner bases as input. Hence, in many cases, calling it with the same

radii of convergence and the same ordering as input and output,

already performs a nontrivial operation: the interreduction of the

input Gröbner basis. Moreover, it has a controlled complexity and

1Here denotes the base �eld and r encodes the radii of convergence of our series;

we refer to §2.1 for the precise de�nitions.

Conference’21, July 2021, Washington, DC, USA Xavier Caruso, Tristan Vaccon, and Thibaut Verron

performs actually very well in practice (contrarily to the naive re-

duction algorithm). Since the intermediate interreduction of Gröb-

ner bases is often the bottleneck in Buchberger and signature algo-

rithms in the Tate setting, using our FGLM algorithm (or an adap-

tation of it) at this step could lead to a signi�cant speed-up.

Strategy and ingredients. In the classical setting, the key step of

the FGLM algorithm is to convert back and forth between Gröbner

bases and the so-called multiplication matrices, which are de�ned

as the multiplication maps by the variables in the quotient space.

Performing the change of ordering on those multiplication matri-

ces then reduces to basic linear algebra. Still in the classical case,

thanks to the structure of normal forms, it can be shown that all

steps can be done in sub-cubic time in the number of solutions.

In the Tate setting, Gröbner bases are de�ned using a term or-

dering, taking into account both a monomial ordering in the usual

sense and a weight taking into account the degree of the monomi-

als, the valuation of the coe�cient and the convergence radius of

the series in the algebra. It is the reason why we will eventually

be able to change all these parameters at the same time. However,

this feature also implies new di�culties.

Firstly, in the construction of the multiplication matrices, the

structure of the normal forms does not allow us to read the values

in one pass. Instead, we prove that an iterative process converges

to the correct value of the matrices, and we show how this process

can be done in di�erent ways, including, for some particular base

�elds, the option of using relaxed arithmetic [vdH97, BvdHL11],

which eventually leads to a signi�cant improvement of the e�-

ciency.

Secondly, if the change of ordering incurs a change of conver-

gence radii, the size of the quotient algebramight change. We show

that it is possible to recover multiplication matrices over the cor-

rect quotient by separating eigenspaces depending on the valua-

tion of the eigenvalues. The reconstruction of the �nal Gröbner

basis is �nally achieved using the classical strategy in the residue

�eld, and then lifting the basis.

Organization of the article. In Section 2, we introduce the notations

and discuss some primitives of linear algebras over nonarchime-

dian �eldswhich will be used repeatedly later on. The computation

ofmultiplicationmatrices is addressed in Section 3. In Section 4, we

consider the question of changing radii of convergence and design

our �nal algorithm.

2 SETTING AND PRELIMINARIES

Throughout this article, we consider a �eld equipped with a dis-

crete valuation val for which it is complete. We denote its ring of

integers by ◦ and �x a uniformizer c of . The quotient ◦/c

is called the residue �eld of and will be denoted by ̄ in what

follows. Classical examples of such �elds are = Q? (equipped

with the ?-adic valuation) and : (())) (equipped with the) -adic

valuation) for any base �eld : .

The complexity statements are given with the usual asymptotic

notations $ (5) and $ (̃ 5) = $ (5 log(5)=) for some =.

We will consider two di�erent models of complexity: arithmetic

complexity, counting operations in or ◦, and base complexity,

taking into account the precision. In the case of equal characteristic

(i.e. char = char ̄), such as : (())), the base complexity counts

operations in the residue �eld, and the correspondence between

both models satist�es:

(Arithmetic complexity) = $˜
(

(Base complexity) · prec
)

.

where prec stands for the working precision. On the contrary, in

the case of mixed characteristic, such as Q? , the base complexity

counts bit operations. When the residue �eld is �nite, the corre-

spondence between both models satis�es:

(Arithmetic complexity) = $˜
(

(Base complexity) ·prec · log | ̄ |
)

.

2.1 Tate algebras and ideals

In order to �x notations, we brie�y recall the de�nition of Tate alge-

bras and the theory ofGröbner bases over them. Let r = (A1, . . . , A=) ∈

Q= . The Tate algebra {X; r} is de�ned by:

 {X; r} :=

{

∑

i∈N=

0iX
i s.t. 0i ∈ and val(0i) − r·i −−−−−−−→

|i |→+∞
+∞

}

The tuple r is called the convergence log-radii of the Tate alge-

bra. We de�ne the Gauss valuation of a term 0iX
i as val(0iX

i) =

val(0i) − r·i, and the Gauss valuation of
∑

0iX
i ∈ {X; r} as the

minimum of the Gauss valuations of its terms. The integral Tate

algebra ring {X; r}◦ is the subring of {X; r} consisting of el-

ements with nonnegative valuation. In what follows, when r =

(0, . . . , 0), we will simply write {X} instead of {X; (0, . . . , 0)}.

We �x a classicalmonomial order ≤< on the set ofmonomialsXi.

Given two terms0Xi and1Xj (with0,1 ∈ ×), wewrite0Xi
< 1Xj

if val(0Xi) > val(1Xj), or val(0Xi) = val(1Xj) and Xi
<< Xj.

The leading term of a Tate series
∑

0iX
i ∈ {X; r} is, by de�nition,

its maximal term.

A Gröbner basis of an ideal � of {X; r} is, by de�nition, a fam-

ily (61, . . . , 6B) of elements of � with the property that for all 5 ∈ � ,

there exists an index 8 ∈ {1, . . . , B} such that LT(68) divides LT(5).

A Gröbner basis (61, . . . , 6B) is reduced if given a term C of68 which

is not the leading term, C is not divisible by any LT(6 9). The fol-

lowing theorem is proved in [CVV19].

Theorem 2.1. (1) Any ideal of {X; r} admits a Gröbner ba-

sis.

(2) If r = (0, . . . , 0) and � is an ideal of {X}, a family � =

(61, . . . , 6B) consisting of elements of {X} with Gauss val-

uation 0 is a Gröbner basis of � if and only if its reduction

modulo c is a classical Gröbner basis of the quotient ideal

(� ∩ {X; r}◦)/c (� ∩ {X; r}◦) of ̄ [X] for ≤< .

In the present article, we will be particularly interested in 0-

dimensional ideals. By de�nition, � is such an ideal if the quotient

 {X; r}/� is a �nite dimensional -vector space. If � is a 0-dimen-

sional ideal, the set:

� =
{

Xi with 8 ∈ N= and Xi
∉ LT(�)

}

is �nite and forms a -basis of {X; r}/� . It is called the staircase

of� . Moreover, if we are given a Gröbner basis (61, . . . , 6B) of � , the

staircase � consists of all monomialsXi which are not divisible by

any LT(6 9) for 9 varying in {1, . . . , B}. This observation implies in

particular that any reduced Gröbner basis of a 0-dimensional ideal

� consists only of polynomials.

On FGLM Algorithms with Tate Algebras Conference’21, July 2021, Washington, DC, USA

Algorithm 1: Big(5 , B)

Input : 5 ∈ X×X , B ∈ R.

Output :A basis (of BigB (5).

1.1 j5 ← charpoly(5); // use [KV04] or [CRV17]

1.2 Write j5 = jSmall,B,5 jBig,B,5 ; // use [CRV16]

1.3 6← jBig,B,5 (5); // use [PS73]

1.4 (← ker6; // use pnumerical kernel from [KV20, §2.2.1]

1.5 return (

2.2 Linear algebra

It is an understatement to say that the FGLM strategy relies heavily

on linear algebra. In the Tate setting, this assertion is even more

true and new basic operations in linear algebra, which are speci�c

to non-archimedean base �elds, will be needed. The aim of this

subsection is to review brie�y these operations.

Slope decomposition. Let + be a �nite -dimensional vector space

and let 5 : + → + be a -linear mapping. Let j5 be the char-

acteristic polynomial of 5 . Given an auxiliary real number B , one

can factor j5 as a product j5 = jBig,B,5 × jSmall,B,5 where jBig,B,5
(resp. jSmall,B,5) is the factor corresponding to all roots (in an alge-

braic closure) of valuation < B (resp. valuation ≥ B). Moreover, both

jBig,B," and jSmall,B," have coe�cients in . Letting BigB (5) de-

note the kernel of jBig,B,5 (5) and SmallB (5) denote that of jSmall,B,5 (5),

the above factorization corresponds to a decomposition of + as a

direct sum+ = BigB (5) ⊕ SmallB (5). Computing e�ciently this de-

composition is a basic task in linear algebra over non-archimedean

�elds.

In this article, we assume that we are given a routine Bigwhich

takes as input (5 , B) and outputs (a basis of) the subspace BigB (5).

A naive implementation of the procedure Big is reported in Algo-

rithm 1. It has cubic complexity in the dimension of+ (which will

be enough for our applications) but has the advantage of being nu-

merically stable.

 ◦-modules and saturation. As before, we let + be a �nite dimen-

sional -vector space. We recall basic facts about sub- ◦-modules

of+ and their algorithmic. If+ is equippedwith a distinguished ba-

sis, one can represent a �nitely generated sub- ◦-module of + by

the matrix " whose columns are the generators of !. Performing

column reduction, one can always assume that " is under Her-

mite normal form. With this additional assumption, it is uniquely

determined by !.

Let !1 and !2 be sub-
◦-modules of+ , represented by the square

matrices"1 and"2 respectively. The sum ! = !1 +!2 is then gen-

erated by the columns of the block matrix:

" =
(

"1 | "2

)

Computing the Hermite normal form of" , one obtains a canonical

matrix representating !. The cost of this computation is cubic in

the dimension of + with a naive algorithm.

We now assume that we are given a sub- ◦-module ! ⊂ + to-

gether with a -linear endomorphism 5 : + → + . The saturation

of ! with respect to 5 is the sub- ◦-module of+ de�ned by:

Sat5 (!) = ! + 5 (!) + 5
2 (!) + · · · + 5 = (!) + · · ·

Algorithm 2: Saturate(5 , !)

Input :a -linear map 5 : + → + s.t. + = Small0 (5),

a �nitely generated ◦-module ! ⊂ +

Output :Sat5 (!)

2.1 (← !; 6← 5 ;

2.2 F ← ⌈log2 dim+ ⌉;

2.3 for : ∈ J1,FK do
2.4 (← (+ 6(();

2.5 6← 62;

2.6 return (

Lemma 2.2. We assume that+ = Small0 (5). Then:

Sat5 (!) = ! + 5 (!) + 5
2 (!) + · · · + 5 dim+−1 (!).

In particular, if ! is �nitely generated, then Sat5 (!) is also.

Proof. The assumption on 5 implies that the coe�cients of j5

are all in ◦. From Cayley-Hamilton theorem, we deduce that 5 X is

a linear combination with coe�cients in ◦ of the 5 8 ’s with 8 < X .

The lemma follows. �

The routine Saturate presented inAlgorithm2 computes Sat5 (!)

under the assumption that! is �nitely generated and+ = Small0 (5).

Indeed, one checks by induction that after the :-th iteration of the

loop, one has 6 = 5 2
:
and:

(= ! + 5 (!) + 5 2 (!) + · · · + 5 2
:−1 (!).

Therefore, when 2: ≥ X , we �nd (= Sat5 (!). The complexity of

Algorithm 2 is equal to the cost of$ (log X) Hermite reductions. If

we use the naive algorithm for this task, we obtain an algorithm of

arithmetic complexity$ (̃X3).

Remark 2.3. For a general -linear mapping 5 , one always has:

Sat5 (!) = Big0 (5) + ! + 5 (!) + 5
2 (!) + · · · + 5 dim+−1 (!)

provided that ! spans + as a -vector space. Under this assump-

tion, one can then combine Algorithms 1 and 2 to compute the

saturation of ! with respect to 5 even when Small0 (5) (+ .

3 MULTIPLICATION MATRICES

Throughout this section, we �x a tuple r = (A1, . . . , A=) and con-

sider the Tate algebra {X; r}.We consider in addition a 0-dimensional

ideal � of {X; r} and assume that we are given a Gröbner basis

� = (61, . . . , 6B) of � .

The �rst step in the FGLM algorithm is the computation of the

matrices ofmultiplicationby the variables on the quotient {X; r}/�

(which has �nite dimension by assumption). We recall that a -

basis of {X; r}/� is given by the staircase �, which consists of

all monomials < with < ∉ LT(�). We let)8 be the matrix of the

multiplication by -8 with respect to this basis. Observe that the

(`,<)-entry of)8 has valuation at least:

E`,< = val(<-8) − val(`) = val(<) − A8 − val(`).

Our goal is to design an algorithm for computing the)8 ’s. In or-

der to express our complexity estimates, we introduce two impor-

tant parameters. This �rst one is the degree of the ideal X = |� | =

Conference’21, July 2021, Washington, DC, USA Xavier Caruso, Tristan Vaccon, and Thibaut Verron

dim {X; r}/� . The second one, denoted by Y , is the size of the

boundary of the staircase de�ned as �̄ \ � with

�̄ =
{

-8< : 8 ∈ {1, . . . , =},< ∈ �
}

.

Obviously the cardinality of �̄ is at most =X ; thus Y ≤ =X as well.

The theorem we are going to prove is the following (we refer to

the beginning of Section 2 for the de�nition of the arithmetic and

base complexity).

Theorem 3.1. There exists an algorithm that takes as input a re-

duced Gröbner basis of � and outputs the multiplication matrices

)8 with (`,<)-entry known at precision $ (cprec+E`,<) for a cost of

$ (YX2prec) arithmetic operations.

Besides, if the base �eld is either a Laurent series �eld orQ? , the

above complexity can be lowered to $ (̃YX2prec) base operations.

We will also present an algorithm accepting as input certain

nonreduced Gröbner basis. This variant is interesting because, in

some cases, it will eventually provide a fast algorithm for interre-

ducing Gröbner basis.

3.1 Iterative algorithm

Throughout this subsection, we assume that � = (61, . . . , 6B) is

reduced and r = (0, . . . , 0). We will explain later on how these

assumptions can be relaxed. For simplicity, we assume in addition

that the68 ’s are all monic (i.e. the coe�cients of their leading terms

are 1). This hypothesis is of course harmless since renormalizing

the 68 ’s and making them monic does not a�ect the fact that � is

a Gröbner basis.

Computing the)8 ’s amounts to computing the normal forms of

< modulo � for all< in �̄. In a classical setting, this can be done

iteratively with linear algebra, by considering the monomials fol-

lowing the monomial order. Indeed, for< in � and 8 ∈ {1, . . . , =},

if -8< ∉ �, either -8< is a leading monomial in � , or there ex-

ists ` ∉ � such that -8< = - 9`, and then NF(-8<) = - 9 NF(`).

In the classical setting, the normal form of a monomial ` only in-

volves monomials in � strictly smaller than `, so - 9 NF(`) only

involves monomials in �̄ strictly smaller than -8<. This allows to

write NF(-8<) as a linear combination of already computed nor-

mal forms.

In the case of Tate term orderings, similarly to what was ob-

served for example for tropical orderings [IVY20], the normal form

of a monomial ` can involve all monomials of �, and computing

the wanted normal forms a priori requires solving a large nonlinear

system of equations.

However, because Tate Gröbner basis are just classical Gröbner

basis when they are reduced modulo c (Theorem 2.1), the above

strategy allows to recover the value of the multiplication matrices

modulo c . Following the same computations again lifts the multi-

plication matrices to coe�cients in ◦/c2 , and so on and so forth.

The algorithm formalizing this idea is described in Algorithm 3.

For % ∈ [X] with support contained in �, the notation [%] rep-

resents the vector of coe�cients of % in the basis �. With that no-

tation, given a monomial < ∈ � and a matrix " with rows and

columns indexed by �," · [<] is the column of" corresponding

to<.

Algorithm 3: MulMat_iter(�, prec)

Input :a reduced Gröbner basis � of the ideal

� ⊂ {X},

an integer prec such that all elements of�

are known at precision prec

Output :)1, . . . ,)= , the multiplication matrices over

 {X}/� (w.r.t the basis �) modulo cprec

3.1 � ← {< monomials not divisible by any LT(6), 6 ∈ �};

3.2)8 = (28,<,<′) ← zero matrices of size X × X , with rows

and columns indexed by �, for all 8 ∈ J1, =K;

3.3 for : from 0 to prec do

3.4 for 8 ∈ J1, =K,< ∈ � in increasing order of -8< do

3.5 if -8< ∈ � then

3.6)8 · [<] ← [-8<];

3.7 else if -8< = LT(6) for some 6 ∈ � then

3.8)8 · [<] ← [6 − LT(6)];

3.9 else

3.10 Write< = - 9<
′ for some<′ ∉ �;

3.11)8 · [<] ←)9 · ()8 · [<
′]);

3.12 return)1, . . . ,)=

For 8 ∈ {1, . . . , =}, `,< ∈ �, we denote by 28,`,< the value at row

` and column< in the multiplication matrix)8 . The following the-

orem states the correctness and the complexity of the algorithm.

Theorem 3.2. Algorithm 3 is correct. More precisely, at the end

of the :-th run of the loop, the matrices ()8) are correct modulo c: .

Furthermore, each run through the loop requires $ (X2Y) operations

in ◦.

The proof uses the following observation, which is the transla-

tion to the Tate setting of the structure of the normal forms of the

staircase in the classical setting.

Lemma 3.3. If -8< ∈ �, then val(28,`,<) > 0 if ` ≠ -8<. Other-

wise, if -8< ≤ `, then val(28,`,<) > 0.

Proof. By de�nition, the column indexed by< in the multipli-

cation matrix "8 is the vector of the coordinates of the normal

form # of-8< modulo� , in the basis �. If-8< ∈ �, then # = -8<

and the result is clear. Otherwise, if 28,`,<` is a term of # , then

28,`,<` < -8<, which, by de�nition of the Tate term ordering,

means that either ` < -8< or val(28,`,<) > 0. �

Proof of the theorem. We prove the result by induction on

: ≥ 0, and, for each value of : , by induction on-8<, 8 ∈ {1, . . . , =},

< ∈ �.

The initial case : = 0 is empty. Let : > 0, 8 ∈ {1, . . . , =} and< ∈

�, and assume by induction that we know the coe�cient 2 9,`′,<′

with precision : if- 9<
′
< -8<, and with precision :−1 otherwise.

If -8< ∈ �, then there is nothing to prove, because the coe�-

cients are 0 or 1. If -8< = LT(6) for some 6 ∈ � , there is also

nothing to prove, since all the coe�cients of "8 · [<] are known

to precision prec ≥ : .

On FGLM Algorithms with Tate Algebras Conference’21, July 2021, Washington, DC, USA

In the remaining case, for each ` ∈ �, the algorithm performs

the substitution

28,`,< ←
∑

`′∈�

2 9,`,`′28,`′,<′ .

Since - 9<
′
= <, <′ < < and -8<

′
< -8< and so the induction

hypothesis applies. Let `′ ∈ �. Note that - 9 `
′
≠ -8<: otherwise,

- 9 `
′
= -8- 9<

′ so `′ = -8<
′, which cannot lie in �. If- 9 `

′
< -8<,

then both 2 9,`,`′ and 28,`′,<′ are known up to precision : (induction

on-8<), so the product is known to precision: . And if- 9 `
′
> -8<,

then 2 9,`,`′ is known up to precision : − 1 (induction on :) and

28,`′,<′ is known up to precision : (induction on-8<) and divisible

by c (by Lemma 3.3), so the product is known up to precision : .

For the number of operations, observe that there are less than

Y pairs (8,<) such that the alsorithm needs to perform the compu-

tation at line 3.11; each computation involves X coe�cients of the

matrix, and for each of them, X products in ◦. �

3.2 Nonreduced Gröbner bases

An interesting feature of the algorithm above is that contrary to the

usual case, it has to handle monomials which are larger than the

current monomial -8<. This removes the main reason for the re-

quirement that the input Gröbner basis is reduced, and with slight

modi�cations, it can handle any Gröbner basis as long as it is re-

duced modulo c . Precisely, this is achieved by replacing line 3.8

with the following.

Algorithm 3a: Update the matrices using a nonreduced

basis element

3.8a for 0` in the support of 6 − LT(6) do

3.8b if ` < -8< then

3.8c)8 · [<] ←)8 · [<] + 0[`]

3.8d else

3.8e Pick<′ ∈ � such that ` = -U1

1
· · ·-

U=
= <′;

3.8f)8 · [<] ←)8 · [<] + 0)
U1

1
· · ·)

U=
= · [<

′];

Unless the staircase is trivial, i.e. as long as the ideal is proper, it

is always possible to �nd a suitable<′ at line 3.8e, by picking the

monomial 1 ∈ �. Nonetheless, to avoid computing large powers of

matrices, it is more e�cient to �nd<′ as large as possible.

It is still true that any monomial ` > -8< appearing in the

process necessarily carries a coe�cient with valuation ≥ 1, and

thus the loop invariant that the coe�cients are known to precision

: still holds.

The complexity of the computation is no longer boundedmerely

in terms of X , Y and prec, but also depends on the degree of the

nonreduced terms in the basis, and on the choices of the monomi-

als<′.

3.3 Recursive algorithm

As described above, the computations can be done in increasing

order of the monomials -8<, ensuring that all the necessary coef-

�cients are known with the necessary precision for the next step.

Another way to proceed is by dynamic programming, computing

the necessary coe�cients recursively if they are not known yet.

The recursive de�nition, using the matrices)8 as a cache, is de-

scribed in Algorithm 4, and is very similar to that described in Al-

gorithm 3.

It can then be called, for all values of 8, `,< and : = prec, in-

stead of lines 3.3–3.11 in Algorithm 3. The main di�erence is that

the algorithm does not need to specify in which order the coe�-

cients are computed: the recursive de�nition queries the missing

coe�cients as needed. The decision on which precision is needed

depends on the valuation of the coe�cient: the idea is that if 0 is

known with precision : and has valuation E , and 1 is known with

precision ; and has valuationF , then 0 ·1 is known with precision

min(: +F, ; + E). Note that it also works if we only know a lower

bound on the valuation, typically if all the digits we know are 0.

The proof that the recursive algorithm terminates is the exis-

tence of such an order, as demonstrated in Theorem 3.2. And the

proof of complexity is also immediate: there are Y coe�cients for

which the calculation is non-trivial, and for each of them, after X

multiplications, we gain one digit of precision. The total complex-

ity is then $ (YX2prec) operations in ◦ as in the iterative case.

The advantage of the recursive presentation is twofold. Firstly,

it will allow in Section 3.4 to generalize the construction, the proof

of termination, and the complexity bounds, to arbitrary log-radii.

Secondly, it o�ers a way to immediately improve the perfor-

mance of the algorithms, on coe�cient rings such as Z? or : (()))

where fast arithmetic is available. This works by using a lazy rep-

resentation of the number, that is, a representation where each

number is the data of its �rst digits, as well as a function allow-

ing to compute the next digit. Algorithm 4 gives us precisely such

a function, and as such, the process can be viewed as a recursive

de�nition of lazy numbers (the function de�nition) together with

a delayed evaluation (the function call for all values).

For many coe�cient rings, it is possible to do better by using

the so-called relaxed, or on-line, arithmetic. Such arithmetics are

available for formal power series rings [vdH97] and ?-adic num-

bers [BvdHL11, BL12]. In that case, the cost of the computation

of each new digit (of each variable) is polynomial in log(prec) if

we are counting base operations (in the sense of Section 2). Here,

this allows us to compute the matrices with base complexity in

$ (̃YX2prec).

Remark 3.4. For simplicity and for the complexity bounds, we

only presented the procedure in the case where the Gröbner basis

is reduced, but given that the recursive de�nition is equivalent to

the loop presented in Algorithm 3, the case where the Gröbner

basis is not reduced can be dealt with in exactly the same way.

3.4 General log-radii

We now consider the case of arbitrary log-radii r ∈ Q= . We will

prove that the algorithm presented above still works in that case,

by using abstract changes of variables and base ring to justify the

existence of a suitable execution order. Crucially, the algorithm

works without performing those transformations, and the com-

plexity is the same. We only need to be more careful about the

handling of the precision and of the valuation.

Namely, given r ∈ Q= , we will assume that the input basis �

is normalized, in the sense that 0 ≤ val(LT(6)) < 1 for all 6 ∈

� . We will further require that for each 6 ∈ � , and for each C in

Conference’21, July 2021, Washington, DC, USA Xavier Caruso, Tristan Vaccon, and Thibaut Verron

Algorithm 4: MulMat_rec(�, �, 8, `,<,:)

Input :� as in Algo. 3, � the staircase of� ,

8 ∈ J1, =K, ` ∈ �, < ∈ �, : ∈ Z, : ≤ prec

Global : ()8) = (28,`,<)`,<∈�)8 ∈J1,=K

Output :)8 is such that 28,`,< is known to precision :

4.1 if 28,`,< is known to precision : in)8 then

4.2 do nothing

4.3 else if : ≤ 0 then

4.4 28,`,< ← $ (1)

4.5 else if -8< ∈ � then

4.6 28,`,< ← 1 if ` = -8< else 0

4.7 else if -8< = LT(6) for 6 ∈ � then

4.8 28,`,< ← the coordinate of ` in the support of

6 − LT(6)

4.9 else

4.10 Write< = - 9<
′ for some<′ ∉ �;

4.11 2 ← 0;

4.12 for `′ ∈ � do

4.13 E ← val(2 9,`,`′);F ← val(28,`′,<′);

4.14 MulMat_rec(�, �, 9, `, `′, :−F);

4.15 MulMat_rec(�, �, 8, `′,<′, :−E);

4.16 2 ← 2 + 2 9,`,`′28,`′,<′ ;

4.17 28,`,< ← 2 +$ (c:+1);

the support of � , C is known to precision prec + ⌊val(C)⌋, and we

will ensure that we compute the matrices with similar precision by

ensuring that 28,`,< is correct up to precision : + ⌊E`,<⌋.

Recall that NF(-8<) =
∑

`∈� 28,`,<` with, for all `, 28,`,<` <

-8<. So by de�nition of the Tate term ordering, val(28,`,<) ≥ val(-8<)−

val(`) = E`,< , and the requirement on the precision is merely ad-

justing the number of digits we require beyond those we already

know to be 0. The only di�erence is that each term is initialized

with the zero digits and the precision which we already know:

Algorithm 4a: Base case with non-zero log-radii

4.3 else if : ≤ ⌊val(-8<) − val(`)⌋ then

4.4 28,`,< ← $ (c ⌊val(-8<)−val(`) ⌋);

Theorem 3.5. Let r ∈ Q= be a system of log-radii. Algorithm 3,

with input a reducedGröbner basis of an ideal in {X; r}◦, and mod-

i�ed to compute the matrices using Algorithm 4, computes the mul-

tiplication matrices in $ (YX2prec) multiplications in ◦.

Proof. Let Γ(�) be the dependency graph of the recurrence

relation de�ned in Algorithm 4 with the modi�cations of Algo-

rithm 4a: namely, Γ(�) is a directed graph whose vertices are tu-

ples (8, `,<,:), and there is a directed edge (8, `,<,:) → (9, `′,<′, ;)

if and only if the computation of 28,`,< to precision : queries the

coe�cient 2 9,`′,<′ to precision ; . Note that the vertices with no

outgoing edge correspond to coe�cients which are immediately

known to precision prec. The recursive computation terminates if

and only if the graph is cycle-free, namely, if every path through

the graph eventually reaches a vertex with no outgoing edge.

In the case of trivial log-radii r = (0, . . . , 0), the proof of that

fact is Theorem 3.2. Assume that r ∈ Q= . Let � be the common

denominator of the log-radii, so that r = (A1/�, . . . , A=/�). With-

out loss of generality, we may assume that� is minimal: elements

of� which can be removed will not take part in the computation.

Consider the �eld extension ! = [[] with [� = c , and perform

the change of variables-8 ← [A8.8 . This change of variables trans-

forms� into a Gröbner basis� ′ of an ideal in !◦{Y}. In this case,

the algorithm terminates, so the graph� ′ is cycle-free. If� is mini-

mal, so is� ′, and by [CVV19, Prop. 3.10], the elements of this basis

lie in ◦{Y} ⊂ !◦{Y}. In particular, all throughout the algorithm,

the coe�cients of the matrices are in ◦.

The graph Γ(�) is isomorphic to a subgraph of Γ(� ′), the inclu-

sion being given by (8, `,<,: + ⌊E<,` ⌋ → (8, `,<,:). Since Γ(� ′)

is cycle-free, so is Γ(�) and the algorithm terminates.

The bound on the number of operations can be obtained with

a similar argument as before, or read on the graph: the complex-

ity is bounded by 2X times the number of vertices of Γ(�) since

computing each new vertex has a cost of 2X operations in (the

additions and multiplications on line 4.16). Since Γ(�) has at most

YX ·prec vertices, the bound $ (YX2prec) follows. �

4 CHANGE OF LOG-RADII AND ORDERING

The next step in the FGLM algorithm consists in going in the op-

posite direction: starting from multiplication matrices and a term

ordering, we aim at reconstructing the underlying Gröbner basis.

Moreover, in our setting where we want to be able to handle in

addition changes of log-radii, a preliminary step is needed. Indeed,

the multiplication matrices are usually a�ected by a modi�cation

of the log-radii. For example, the ideal generated by 2G2 − ~2 and

~3−G2 inQ2 [G, ~] has staircase {1, ~, G, ~
2, G~, G~2} (for lex) while

it spans an ideal over Q2{G,~} with staircase {1, ~} (still using lex).

We study this phenomenon in full generality in Section 4.1.

A toy implementation of the algorithms of this Section is avail-

able on https://gist.github.com/TristanVaccon.

4.1 New multiplication matrices

Theoretical results. Let r and u be two =-tuples such that A8 ≥ D8
for all 8 .2 Under this assumption the Tate algebra {X; r} is in-

cluded in {X;u} and, given an ideal � in {X; r}, it makes sense

to consider the ideal � = � · {X;u} of {X;u}.

In what follows, we always assume that � is 0-dimensional. The

quotient {X; r} is then, by de�nition, a �nite dimensional -vector

space; we will denote it by + . Similarly, we set, = {X;u}/� .

The inclusion {X; r} ↩→ {X;u} induces a -linear mapping

Φ : + →, .

In order to study Φ, we use topological arguments. We let ‖ · ‖u
be the norm on {X;u} associated to the Gauss valuation valu
and equip {X;u} with the topology associated to this norm.

Lemma 4.1. The ideal � is the closure of � in {X;u}.

2The results of this section can be extended without di�culty to A8 = +∞, i.e. to
 [X].

https://gist.github.com/TristanVaccon

On FGLM Algorithms with Tate Algebras Conference’21, July 2021, Washington, DC, USA

Proof. The polynomial ring [X] is dense in {X;u} for the

norm ‖ · ‖D . Therefore, {X; r} is dense as well, implying that � is

dense in � . The fact that � is closed follows from [Bo14, Chap. 2,

Cor. 8]. �

The norm ‖ · ‖u induces by restriction a norm on {X; r} (which

is, of course, di�erent from the standard norm ‖ · ‖r on this space)

and a mapping ‖ · ‖+ : + → R+ de�ned by:

‖G ‖+ = inf
Ĝ
‖Ĝ ‖u

where the in�num runs over all Ĝ ∈ {X; r} lifting G . In general,

‖·‖+ is not a norm but only a semi-norm, meaning that theremight

exist elements G ∈ + for which ‖G ‖+ = 0. By de�nition, the kernel

of ‖ · ‖+ is the set of such elements; we denote it by # . It is easily

seen that # is a sub- -vector space of+ .

Proposition 4.2. The map Φ is surjective and its kernel is # .

Proof. We notice that {X;u} is the completion of {X; r} for

the norm ‖ · ‖D . Combining this observation with Lemma 4.1, we

deduce that, appears as the completion of + with respect to the

semi-norm ‖ · ‖+ , which is also the completion of+ /# . But, since

+ /# is �nite dimensional, it is already complete. As a conclusion,

, ≃ + /# and the proposition is proved. �

We now assume that we are given the multiplication matrices

)1, . . . ,)= over + . We want to relate them to, , or equivalently

to # . This is the content of the following proposition.

Proposition 4.3. With the above notations, we have:

=

=
∑

8=1

BigD8 ()8)

(where we recall that the notation BigD8 was de�ned in §2.2).

Proof. First of all, we observe that, up to replacing by [c1/�]

for a well-chosen integer � , we can assume without loss of gener-

ality that u is in Z= . Replacing)8 by c
−D8)8 and r by r−u, we may

further suppose that u = (0, . . . , 0).

Let 8 ∈ {1, . . . , =} and let G ∈ Big0 ()8). By de�nition, G is killed

by jBig,0,)8 ()8). In other words, if 5 ∈ {X; r} is a lifting of G , the

product jBig,0,)8 (-8) · 5 lies in � . Now, we claim that jBig,0,)8 (-8)

is invertible in {X} because it is a product of factors of the form

0−1 (1−0-8) with val(0) > 0. Consequently, 5 must be an element

of � . By Proposition 4.2, we derive G ∈ # , which proves the inclu-

sion Big0 ()8) ⊂ # . Since this holds for any 8 , the ⊃ part of the

Proposition is proved.

Set # ′ =
∑=
8=1 Big0 ()8) and,

′
= + /# ′. From what we have

done so far, we deduce that the semi-norm ‖ · ‖+ on + induces a

semi-norm on, ′. The proposition will follow if we can prove that

‖ · ‖+ is indeed a norm (i.e. with trivial kernel) on, ′. In order to

do so, we consider the unit ball of, ′, namely:

� ′ =
{

G ∈, ′ s.t. ‖G ‖+ ≤ 1
}

.

We want to prove that � ′ does not contain any -line. For this,

we remember that the unit ball of {X} is exactly the ◦-module

generated by the monomials Xi for i varying in N= . Therefore, � ′

is the smallest ◦-module stable under the)8 ’s and containing the

image of 1 ∈ {X} in, ′. Keeping in mind in addition that the)8 ’s

Algorithm 5: NewMulMat()1, . . . ,)=, E)

Input :)1, . . . ,)= the multiplication matrices over + ,

E the image of 1 ∈ {X; r} in + , u ∈ Z=

Output :*1, . . . ,*= the multiplication matrices over the

unit ball of, ,

F the image of 1 ∈ {X; r} in,

5.1 # ← {0};

5.2 for 8 ∈ J1, =K do
5.3 # ← # + Big0 ()8);

5.4 , ← + /# ;

5.5 ! ← E ◦;

5.6 for 8 ∈ J1, =K do
5.7 ! ← Saturate()8 , !);

5.8 return)1 |! , . . . ,)= |!, E mod # ;

commute pairwise, we get � ′ = Sat)1Sat)2 · · · Sat)= (!0) where !0
is the sub- ◦-module of, ′ generated by the image of 1.

Besides, on, ′, all the eigenvalues of all the)8 ’s have nonnega-

tive valuation since we have quotiented out all the Big0 ()8)’s. Con-

sequently Lemma 2.2 applies and shows that � ′ is �nitely gener-

ated. In particular, it contains no -line, as wanted. �

Explicit computations. It is straightforward to turn the previous

theoretical analysis into an actual algorithm that computes the

space, ≃ + /# and the multiplication matrices acting on it. In

fact, for later use, it will not be enough to express these matrices

in any -basis of, , but we shall really need a ◦-basis of the unit

ball of, (for the norm ‖ · ‖+ introduced before).

When u = (0, . . . , 0), Algorithm 5 does the job. In the descrip-

tion of this algorithm,we have implicitely assumed that all -vector

spaces and ◦-modules are equippedwith distinguished bases, and

consequently used the same notation for a matrix and the endo-

mophism it represents. All operations on ◦-modules can be han-

dled using Hermite normal forms as recalled in §2.2; similarly, oper-

ations on -vectors spaces can be done using Smith normal forms,

which permits to keep better numerical stability.

If X denotes the dimension of + = {X; r}/� (which is also the

size of the matrices)8 ’s), Algorithm 5 requires at most $ (̃=X3)

operations in the base �eld .

4.2 Reconstruction of the Gröbner basis

The �nal step in the FGLM algorithm is the computation of a Gröb-

ner basis from the datum of the multiplication matrices.

Trivial log-radii. We �rst address the case where u = (0, . . . , 0),

which is covered by Algorithm 6 (page 8). This algorithm uses a

routine FGLMField which takes as input a set of = multiplication

matrices over a �eld (together with the vector representing the

monomial 1) and a term ordering and returns the corresponding

Gröbner basis. A description of such an algorithm performing this

task can be found in many places in the litterature, for example in

the original article by Faugère et al. [FGLM93].

Proposition 4.4. Algorithm6 is correct and runs in$ (=X3) arith-

metic operations where X denotes the dimension of, .

Conference’21, July 2021, Washington, DC, USA Xavier Caruso, Tristan Vaccon, and Thibaut Verron

Algorithm 6: GB(*1, . . . ,*=,F, ≤)

Input :*1, . . . ,*= the multiplication matrices over the

unit ball of, ,

F the image of 1 ∈ {X; r} in, ,

≤ a monomial ordering

Output :A Gröbner basis� of the ideal � ⊂ {X;u}

6.1 �̄ ← FGLMField(*1 mod c, . . . ,*= mod c,F mod c, ≤

);

6.2 � ← {< monomials not divisible by any LM(6), 6 ∈ �̄}

6.3 " = ("★,`)★∈B,`∈� ← zero matrix;

// B denotes the distinguished basis of, we are working with

6.4 "★,1 ← F ;

6.5 for ` ∈ �\{1} by increasing order for ≤ do

6.6 write ` = -8`
′ with 8 ∈ {1, . . . , =}, `′ ∈ �;

6.7 "★,` ← *8 ·"★,`′ ; // product matrix-vector

6.8 # = (#★,<)★∈B,<∈LM (�̄) ← zero matrix;

6.9 for< ∈ LM(�̄) do

6.10 write< = -8` with 8 ∈ {1, . . . , =}, ` ∈ �;

6.11 #★,< ← *8 ·"★,` ; // product matrix-vector

6.12 & ← "−1# ;

6.13 � ←
(

< −
∑

`∈� &`,<`
)

<∈LM (�̄)
;

6.14 return�

Proof. We recall that we assume u = (0, . . . , 0). Let � = � · {X}

be as in Section 4.1. We recall that, = {X}/� by de�nition. Let

� denote the unit ball of, . From the facts that the unit ball of

 {X} is {X}◦ and the norm on, ≃ {X}/� is the quotient

norm, we deduce that � ≃ {X}◦/� ◦ with � ◦ = � ∩ {X}◦. The

reductions modulo c of the *8 ’s are then the multiplication matri-

ces on the quotient �̄ = � ◦/c � ◦. The call to FGLMField then returns

a Gröbner basis of the ideal �̄ . From Theorem 2.1.(2), we derive that

the leading terms of a Gröbner basis of � are formed by the mono-

mials in LM(�̄). It follows from this that � is the staircase of the

ideal � . In particular, its cardinality is the dimension of, , showing

that the matrix" is a square matrix. After the loops, the columns

of " (resp. of #) contain the coordinates of the `’s (resp. the<’s)

in the distinguished basis B for ` varying in � (resp. for< varying

in LT(�)). The matrix& = "−1# then contains the expression of

the<’s in terms of linear combination of the `’s. This shows the

correctness of the algorithm.

The fact that the complexity is in$ (=X3) arithmetic operations

is easily checked. �

General log-radii. We now consider the general case where u =

(D1, . . . , D=) ∈ Q
= . We take � ∈ Z>0 to be a common denominator

of the coordinates of u (consequently � · u ∈ Z=). We de�ne the

�eld extension ! = [[] such that [� = c and perform the change

of variables -̃8 = [
�D8-8 . The Tate algebra ! ⊗ {X;u} becomes

isomorphic to !{X̃} and we can then apply all what precedes with

! ⊗ {X;u}.

Inside !{X̃} ≃ ! ⊗ {X;u} sits the subset [Z {X;u} consist-

ing of series of the form [E 5 with E ∈ Z and 5 ∈ {X;u}. Let

�! , �! , +! and,! denote the spaces deduces by � , � , + and, re-

spectively by extending scalars from to !. Inside them, we can

similarly de�ne [Z� , [Z� , [Z+ and [Z, . We claim that then Algo-

rithms 5 and 6 can be adapted so that they only have to manipulate

vectors lying in these subsets. Indeed:

• the Big0 ()̃8)’s can be computed without passing to ! because

they are equal to the BigD8 ()8)’s which are de�ned over ;

• similarly the quotient+ /# is de�ned over and then does not

create any trouble;

• one checks that the Hermite normal form of a matrix whose

column vectors are in [Z+ , remains of this form;

• the column vectors of the matrices " and # of Algorithm (6)

all come from monomials and so have the required shape.

Proceeding this way, we avoid the time penalty due to scalar ex-

tension from to ! and keep a complexity of $ (=X3) arithmetic

operations. At the end of the day, the output of Algorithm 6 is then

a Gröbner basis� of �! consisting of series in [
Z {X;u}. Still stay-

ing in the same subset, we can normalize these series so that they

all have Gauss valuation 0. In this case, � is not only a Gröbner

basis of �! but also a Gröbner basis on the ideal � ◦
!
= ! ⊗ � ◦ =

�! ∩ {X;u}◦. From [CVV19, Proposition 3.10], we deduce that

� ∩ {X;u} remains a Gröbner basis of � ◦ and hence of � .

Conclusion. Combining Algorithms 3 (or 4), 5 and 6 and the above

discussion for covering the case of arbitrary log-radii, we �nally

end up with a complete FGLM algorithm as announced in Theo-

rem 1.1 in the introduction. Plugging Algorithm 3a into the ma-

chine, we notice that our algorithm can also accept Gröbner bases

which are nonreduced as soon as they are reduced modulo the

maximal ideal. However, in this case, the complexity may grow

up rapidly, depending on the shape of the input Gröbner basis.

REFERENCES
[BvdHL11] Berthomieu, J., van der Hoeven, J., Lecerf, G., Relaxed algorithms for

p-adic numbers, Journal de Théorie des Nombres de Bordeaux, 23(3):541–577,
2011.

[BL12] Berthomieu, J., Lebreton, R., Relaxed p-adic Hensel lifting for algebraic sys-
tems, In Proceedings of ISSAC’12, pages 59-66. ACM Press, 2012.

[Bo14] Bosch, S., Lectures on Formal and Rigid Geometry, Lecture Notes in Mathe-
matics 2105, Springer, 2014.

[CRV16] Caruso, X., Roe, D., Vaccon T., Division and Slope Factorization of p-Adic
Polynomials , in Proceedings: ISSAC 2016, Waterloo, Canada.

[CRV17] Caruso, X., Roe, D., VacconT., Characteristic polynomials of p-adicmatrices,
in Proceedings: ISSAC 2017, Kaiserslautern, Germany.

[CVV19] Caruso, X., Vaccon T., Verron T., Gröbner bases over Tate algebras, in
Proceedings: ISSAC 2019, Beijing, China.

[CVV20] Caruso, X., Vaccon T., Verron T., Signature-based algorithms for Gröbner
bases over Tate algebras , in Proceedings: ISSAC 2020, Kalamata, Greece.

[FGLM93] Faugère, J.-C., Gianni, P., Lazard, D., Mora, T., E�cient computation of
zero-dimensional Gröbner bases by change of ordering, J. of Symbolic Compu-
tation 16 (4), 329–344, 1993

[FP04] Fresnel, J., van der Put, M., Rigid analytic geometry and its applications,
Birkhäuser, 2004

[Go88] Gouvea, F., Arithmetic of ?-adic Modular Forms, Lecture Notes in Mathe-
matics 1304, Springer-Verlag, 1988

[vdH97] van der Hoeven, J., Lazy multiplication of formal power series, in W. W.
Küchlin, editor, Proc. ISSAC ’97, pages 17–20, Maui, Hawaii, July 1997.

[IVY20] Ishihara, Y., Vaccon T., Yokoyama K., On FGLM Algorithms with Tropical
Gröbner bases, in Proceedings: ISSAC 2020, Kalamata, Greece.

[KV04] Kaltofen, E., Villard, G., On the complexity of computing determinants, Com-
put. Complexity vol. 13, 2014

[KV20] Kulkarni, A., Vaccon, T., Super-linear convergence in the p-adic QR-
algorithm, arxiv:2009.00129

[LS07] Le Stum Bernard, Rigid Cohomology, Cambridge tracts in mathematics 172,
Cambridge University Press, 2007

On FGLM Algorithms with Tate Algebras Conference’21, July 2021, Washington, DC, USA

[PS73] Paterson, M.S. and Stockmeyer, L.J., On the number of nonscalar multiplica-
tions necessary to evaluate polynomials, SIAM J. Comput. 2, 60–66, 1973

[Sage] SageMath, the Sage Mathematics Software System (Version 9.2), The Sage
Development Team, 2020, http://www.sagemath.org

[Ta71] Tate J., Rigid analytic spaces, Inventiones Mathematicae 12, 1971, 257–289

http://www.sagemath.org

	Abstract
	1 Introduction
	2 Setting and preliminaries
	2.1 Tate algebras and ideals
	2.2 Linear algebra

	3 Multiplication matrices
	3.1 Iterative algorithm
	3.2 Nonreduced Gröbner bases
	3.3 Recursive algorithm
	3.4 General log-radii

	4 Change of log-radii and ordering
	4.1 New multiplication matrices
	4.2 Reconstruction of the Gröbner basis

	References

