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Tate introduced in [Ta71] the notion of Tate algebras to serve, in the context of analytic geometry over the -adics, as a counterpart of polynomial algebras in classical algebraic geometry. In [CVV19, CVV20] the formalism of Gröbner bases over Tate algebras has been introduced and advanced signature-based algorithms have been proposed. In the present article, we extend the FGLM algorithm of [FGLM93] to Tate algebras. Beyond allowing for fast change of ordering, this strategy has two other important bene ts. First, it provides an e cient algorithm for changing the radii of convergence which, in particular, makes e ective the bridge between the polynomial setting and the Tate setting and may help in speeding up the computation of Gröbner basis over Tate algebras. Second, it gives the foundations for designing a fast algorithm for interreduction, which could serve as basic primitive in our previous algorithms and accelerate them signi cantly.

INTRODUCTION

Lying at the intersection of geometry and number theory, one nds -adic geometry. A paramount part of this theory is the study of -adic analytic varieties, rst de ned by Tate in [START_REF] Tate | Rigid analytic spaces[END_REF] (see also [START_REF] Fresnel | Rigid analytic geometry and its applications[END_REF]). They have played a key role in many developments of number theory (e.g. -adic cohomologies [START_REF] Stum | Rigid Cohomology[END_REF], -adic modular forms [START_REF] Gouvea | Arithmetic of -adic Modular Forms[END_REF]). The main algebraic objects upon which Tate's geometry is built are Tate algebras and their ideals, formed of convergent multivariate power series over a complete discrete valuation eld (e.g. = Q ).

In earlier papers [START_REF] Caruso | Gröbner bases over Tate algebras[END_REF][START_REF] Caruso | Signature-based algorithms for Gröbner bases over Tate algebras[END_REF], the authors showed that it is possible to de ne and compute Gröbner bases of Tate ideals with coe cients in Z or Q , and that the de nitions are compatible with the usual theory on polynomials over the residue eld F or over the coe cient ring. A major limitation of the algorithms is the increasing cost of reductions as the precision grows. Our previous paper [START_REF] Caruso | Signature-based algorithms for Gröbner bases over Tate algebras[END_REF] addresses the case of expensive reductions to zero, through the use of signature algorithms, but computing the result of non-trivial reductions remains expensive. Another question left open was whether it is possible to exploit overconvergence properties, namely the knowledge that the series we are working with satisfy a stronger convergence condition.

In the present paper, we adapt the classical FGLM algorithm to the case of Tate series, and we show that it gives answers to both questions, in the case of zero-dimensional ideals. Precisely, we prove the following theorem.

T 1.1. Let {X; r}1 and {X; u} be two Tate algebras with {X; r} ⊂ {X; u}.

There exists an algorithm that takes as input a reduced Gröbner basis of a 0-dimensional ideal of {X; r} with respect to a given monomial ordering and output a Gröbner basis of the ideal • {X; u} of {X; u} for another given monomial ordering.

Moreover, if denotes the number of variables, if is the dimension of the quotient {X; r}/ and if prec is the precision at which the result is output, the complexity of this algorithm is:

• ˜( 3 prec) operations in the base eld for a general , • ˜( 3 prec • log ) bit operations when = Q .

We underline that, although the classical FGLM algorithm only concerns change of ordering, our version also permits to change the radii of convergence of the underlying Tate algebra (namely the parameters r and u), and then provides e cient tools for dealing with the aforementioned overconvergence situation. In the extreme case where r is in nite, it makes e ective the bridge between polynomials and Tate series, that is between classical algebraic geometry and rigid geometry. On a di erent note, being able to perform such a change of ordering opens up algorithmic strategies for overconvergent series, by giving freedom in the choice of the convergence radii.

An additional important outcome of our algorithm is that it can be slightly modi ed in order to accept certain nonreduced Gröbner bases as input. Hence, in many cases, calling it with the same radii of convergence and the same ordering as input and output, already performs a nontrivial operation: the interreduction of the input Gröbner basis. Moreover, it has a controlled complexity and performs actually very well in practice (contrarily to the naive reduction algorithm). Since the intermediate interreduction of Gröbner bases is often the bottleneck in Buchberger and signature algorithms in the Tate setting, using our FGLM algorithm (or an adaptation of it) at this step could lead to a signi cant speed-up.

Strategy and ingredients. In the classical setting, the key step of the FGLM algorithm is to convert back and forth between Gröbner bases and the so-called multiplication matrices, which are de ned as the multiplication maps by the variables in the quotient space. Performing the change of ordering on those multiplication matrices then reduces to basic linear algebra. Still in the classical case, thanks to the structure of normal forms, it can be shown that all steps can be done in sub-cubic time in the number of solutions.

In the Tate setting, Gröbner bases are de ned using a term ordering, taking into account both a monomial ordering in the usual sense and a weight taking into account the degree of the monomials, the valuation of the coe cient and the convergence radius of the series in the algebra. It is the reason why we will eventually be able to change all these parameters at the same time. However, this feature also implies new di culties.

Firstly, in the construction of the multiplication matrices, the structure of the normal forms does not allow us to read the values in one pass. Instead, we prove that an iterative process converges to the correct value of the matrices, and we show how this process can be done in di erent ways, including, for some particular base elds, the option of using relaxed arithmetic [START_REF] Van Der Hoeven | Lazy multiplication of formal power series[END_REF][START_REF] Berthomieu | Relaxed algorithms for p-adic numbers[END_REF], which eventually leads to a signi cant improvement of the eciency.

Secondly, if the change of ordering incurs a change of convergence radii, the size of the quotient algebra might change. We show that it is possible to recover multiplication matrices over the correct quotient by separating eigenspaces depending on the valuation of the eigenvalues. The reconstruction of the nal Gröbner basis is nally achieved using the classical strategy in the residue eld, and then lifting the basis.

Organization of the article. In Section 2, we introduce the notations and discuss some primitives of linear algebras over nonarchimedian elds which will be used repeatedly later on. The computation of multiplication matrices is addressed in Section 3. In Section 4, we consider the question of changing radii of convergence and design our nal algorithm.

SETTING AND PRELIMINARIES

Throughout this article, we consider a eld equipped with a discrete valuation val for which it is complete. We denote its ring of integers by • and x a uniformizer of . The quotient • / is called the residue eld of and will be denoted by ¯ in what follows. Classical examples of such elds are = Q (equipped with the -adic valuation) and (( )) (equipped with the -adic valuation) for any base eld .

The complexity statements are given with the usual asymptotic notations ( ) and ˜( ) = ( log( ) ) for some .

We will consider two di erent models of complexity: arithmetic complexity, counting operations in or • , and base complexity, taking into account the precision. In the case of equal characteristic (i.e. char = char ¯ ), such as (( )), the base complexity counts operations in the residue eld, and the correspondence between both models satist es:

(Arithmetic complexity) = ˜ (Base complexity) • prec .
where prec stands for the working precision. On the contrary, in the case of mixed characteristic, such as Q , the base complexity counts bit operations. When the residue eld is nite, the correspondence between both models satis es:

(Arithmetic complexity) = ˜ (Base complexity) • prec • log | ¯ | .

Tate algebras and ideals

In order to x notations, we brie y recall the de nition of Tate algebras and the theory of Gröbner bases over them. Let r = ( 1 , . . . , ) ∈ Q . The Tate algebra {X; r} is de ned by:

{X; r} := i∈N i X i s.t. i ∈ and val( i ) -r•i -------→ |i |→+∞

+∞

The tuple r is called the convergence log-radii of the Tate algebra. We de ne the Gauss valuation of a term i X i as val( i X i ) = val( i )r•i, and the Gauss valuation of i X i ∈ {X; r} as the minimum of the Gauss valuations of its terms. The integral Tate algebra ring {X; r} • is the subring of {X; r} consisting of elements with nonnegative valuation. In what follows, when r = (0, . . . , 0), we will simply write {X} instead of {X; (0, . . . , 0)}.

We x a classical monomial order ≤ on the set of monomials X i . Given two terms X i and X j (with , ∈ × ), we write

X i < X j if val( X i ) > val( X j ), or val( X i ) = val( X j ) and X i < X j .
The leading term of a Tate series i X i ∈ {X; r} is, by de nition, its maximal term.

A Gröbner basis of an ideal of {X; r} is, by de nition, a family ( 1 , . . . , ) of elements of with the property that for all ∈ , there exists an index ∈ {1, . . . , } such that LT( ) divides LT( ). A Gröbner basis ( 1 , . . . , ) is reduced if given a term of which is not the leading term, is not divisible by any LT( ). The following theorem is proved in [START_REF] Caruso | Gröbner bases over Tate algebras[END_REF].

T 2.1.

(1) Any ideal of {X; r} admits a Gröbner basis.

(2) If r = (0, . . . , 0) and is an ideal of {X}, a family = ( 1 , . . . , ) consisting of elements of {X} with Gauss valuation 0 is a Gröbner basis of if and only if its reduction modulo is a classical Gröbner basis of the quotient ideal

( ∩ {X; r} • )/ ( ∩ {X; r} • ) of ¯ [X] for ≤ .
In the present article, we will be particularly interested in 0dimensional ideals. By de nition, is such an ideal if the quotient {X; r}/ is a nite dimensional -vector space. If is a 0-dimensional ideal, the set:

= X i with ∈ N and X i ∉ LT( )
is nite and forms a -basis of {X; r}/ . It is called the staircase of . Moreover, if we are given a Gröbner basis ( 1 , . . . , ) of , the staircase consists of all monomials X i which are not divisible by any LT( ) for varying in {1, . . . , }. This observation implies in particular that any reduced Gröbner basis of a 0-dimensional ideal consists only of polynomials.

Algorithm 1: Big( , )

Input : ∈ × , ∈ R.
Output :A basis of Big ( ). 

Linear algebra

It is an understatement to say that the FGLM strategy relies heavily on linear algebra. In the Tate setting, this assertion is even more true and new basic operations in linear algebra, which are speci c to non-archimedean base elds, will be needed. The aim of this subsection is to review brie y these operations.

Slope decomposition. Let be a nite -dimensional vector space and let : → be a -linear mapping. Let be the characteristic polynomial of . Given an auxiliary real number , one can factor as a product = Big, , × Small, , where Big, , (resp. Small, , ) is the factor corresponding to all roots (in an algebraic closure) of valuation < (resp. valuation ≥ ). Moreover, both Big, , and Small, , have coe cients in . Letting Big ( ) denote the kernel of Big, , ( ) and Small ( ) denote that of Small, , ( ), the above factorization corresponds to a decomposition of as a direct sum = Big ( ) ⊕ Small ( ). Computing e ciently this decomposition is a basic task in linear algebra over non-archimedean elds.

In this article, we assume that we are given a routine Big which takes as input ( , ) and outputs (a basis of) the subspace Big ( ). A naive implementation of the procedure Big is reported in Algorithm 1. It has cubic complexity in the dimension of (which will be enough for our applications) but has the advantage of being numerically stable.

• -modules and saturation. As before, we let be a nite dimensional -vector space. We recall basic facts about sub-• -modules of and their algorithmic. If is equipped with a distinguished basis, one can represent a nitely generated sub-• -module of by the matrix whose columns are the generators of . Performing column reduction, one can always assume that is under Hermite normal form. With this additional assumption, it is uniquely determined by .

Let 1 and 2 be sub-• -modules of , represented by the square matrices 1 and 2 respectively. The sum = 1 + 2 is then generated by the columns of the block matrix:

= 1 | 2
Computing the Hermite normal form of , one obtains a canonical matrix representating . The cost of this computation is cubic in the dimension of with a naive algorithm.

We now assume that we are given a sub-• -module ⊂ together with a -linear endomorphism : → . The saturation of with respect to is the sub-• -module of de ned by:

Sat ( ) = + ( ) + 2 ( ) + • • • + ( ) + • • • Algorithm 2: Saturate( , )
Input : a -linear map : → s.t. = Small 0 ( ), a nitely generated • -module ⊂ Output : Sat ( )

2.1 ← ; ← ; 2.2 ← ⌈log 2 dim ⌉; 2.3 for ∈ 1, do 2.4 ← + ( );
2.5 ← 2 ;

2.6 return L 2.2. We assume that = Small 0 ( ). Then:

Sat ( ) = + ( ) + 2 ( ) + • • • + dim -1 ( ).
In particular, if is nitely generated, then Sat ( ) is also.

P .

The assumption on implies that the coe cients of are all in • . From Cayley-Hamilton theorem, we deduce that is a linear combination with coe cients in • of the 's with < . The lemma follows.

The routine Saturate presented in Algorithm 2 computes Sat ( ) under the assumption that is nitely generated and = Small 0 ( ). Indeed, one checks by induction that after the -th iteration of the loop, one has = 2 and:

= + ( ) + 2 ( ) + • • • + 2 -1 ( ).
Therefore, when 2 ≥ , we nd = Sat ( ). The complexity of Algorithm 2 is equal to the cost of (log ) Hermite reductions. If we use the naive algorithm for this task, we obtain an algorithm of arithmetic complexity ˜( 3 ).

Remark 2.3. For a general -linear mapping , one always has:

Sat ( ) = Big 0 ( ) + + ( ) + 2 ( ) + • • • + dim -1 ( )
provided that spans as a -vector space. Under this assumption, one can then combine Algorithms 1 and 2 to compute the saturation of with respect to even when Small 0 ( ) .

MULTIPLICATION MATRICES

Throughout this section, we x a tuple r = ( 1 , . . . , ) and consider the Tate algebra {X; r}. We consider in addition a 0-dimensional ideal of {X; r} and assume that we are given a Gröbner basis = ( 1 , . . . , ) of . The rst step in the FGLM algorithm is the computation of the matrices of multiplication by the variables on the quotient {X; r}/ (which has nite dimension by assumption). We recall that abasis of {X; r}/ is given by the staircase , which consists of all monomials with ∉ LT( ). We let be the matrix of the multiplication by with respect to this basis. Observe that the ( , )-entry of has valuation at least:

, = val( ) -val( ) = val( ) --val( ).
Our goal is to design an algorithm for computing the 's. In order to express our complexity estimates, we introduce two important parameters. This rst one is the degree of the ideal = | | = dim {X; r}/ . The second one, denoted by , is the size of the boundary of the staircase de ned as ¯ \ with ¯ = : ∈ {1, . . . , }, ∈ .

Obviously the cardinality of ¯ is at most ; thus ≤ as well. The theorem we are going to prove is the following (we refer to the beginning of Section 2 for the de nition of the arithmetic and base complexity).

T 3.1. There exists an algorithm that takes as input a reduced Gröbner basis of and outputs the multiplication matrices with ( , )-entry known at precision ( prec+ , ) for a cost of ( 2 prec) arithmetic operations.

Besides, if the base eld is either a Laurent series eld or Q , the above complexity can be lowered to ˜( 2 prec) base operations.

We will also present an algorithm accepting as input certain nonreduced Gröbner basis. This variant is interesting because, in some cases, it will eventually provide a fast algorithm for interreducing Gröbner basis.

Iterative algorithm

Throughout this subsection, we assume that = ( 1 , . . . , ) is reduced and r = (0, . . . , 0). We will explain later on how these assumptions can be relaxed. For simplicity, we assume in addition that the 's are all monic (i.e. the coe cients of their leading terms are 1). This hypothesis is of course harmless since renormalizing the 's and making them monic does not a ect the fact that is a Gröbner basis.

Computing the 's amounts to computing the normal forms of modulo for all in ¯ . In a classical setting, this can be done iteratively with linear algebra, by considering the monomials following the monomial order. Indeed, for in and ∈ {1, . . . , }, if ∉ , either is a leading monomial in , or there exists ∉ such that = , and then NF( ) = NF( ). In the classical setting, the normal form of a monomial only involves monomials in strictly smaller than , so NF( ) only involves monomials in ¯ strictly smaller than . This allows to write NF( ) as a linear combination of already computed normal forms.

In the case of Tate term orderings, similarly to what was observed for example for tropical orderings [START_REF] Ishihara | On FGLM Algorithms with Tropical Gröbner bases[END_REF], the normal form of a monomial can involve all monomials of , and computing the wanted normal forms a priori requires solving a large nonlinear system of equations.

However, because Tate Gröbner basis are just classical Gröbner basis when they are reduced modulo (Theorem 2.1), the above strategy allows to recover the value of the multiplication matrices modulo . Following the same computations again lifts the multiplication matrices to coe cients in • / 2 , and so on and so forth.

The algorithm formalizing this idea is described in Algorithm 3. For ∈ [X] with support contained in , the notation [ ] represents the vector of coe cients of in the basis . With that notation, given a monomial ∈ and a matrix with rows and columns indexed by , • [ ] is the column of corresponding to .

Algorithm 3: MulMat_iter( , prec)

Input : a reduced Gröbner basis of the ideal ⊂ {X}, an integer prec such that all elements of are known at precision prec Output : 1 , . . . , , the multiplication matrices over {X}/ (w.r.t the basis ) modulo prec • [ ] ← [ ];

3.7 else if = LT( ) for some ∈ then 3.8

• [ ] ← [ -LT( )];

3.9 else 3.10 Write = ′ for some ′ ∉ ;

3.11

• [ ] ← • ( • [ ′ ]);
3.12 return 1 , . . . ,

For ∈ {1, . . . , }, , ∈ , we denote by , , the value at row and column in the multiplication matrix . The following theorem states the correctness and the complexity of the algorithm. T 3.2. Algorithm 3 is correct. More precisely, at the end of the -th run of the loop, the matrices ( ) are correct modulo . Furthermore, each run through the loop requires ( 2 ) operations in • .

The proof uses the following observation, which is the translation to the Tate setting of the structure of the normal forms of the staircase in the classical setting.

L 3.3. If ∈ , then val( , , ) > 0 if ≠ . Other- wise, if ≤ , then val( , , ) > 0. 
P . By de nition, the column indexed by in the multiplication matrix is the vector of the coordinates of the normal form of modulo , in the basis . If ∈ , then = and the result is clear. Otherwise, if , , is a term of , then , , < , which, by de nition of the Tate term ordering, means that either < or val( , , ) > 0.

P . We prove the result by induction on ≥ 0, and, for each value of , by induction on , ∈ {1, . . . , }, ∈ . The initial case = 0 is empty. Let > 0, ∈ {1, . . . , } and ∈ , and assume by induction that we know the coe cient , ′ , ′ with precision if ′ < , and with precision -1 otherwise. If ∈ , then there is nothing to prove, because the coecients are 0 or 1. If = LT( ) for some ∈ , there is also nothing to prove, since all the coe cients of

• [ ] are known to precision prec ≥ .

In the remaining case, for each ∈ , the algorithm performs the substitution , , ← ′ ∈ , , ′ , ′ , ′ .

Since

′ = , ′ < and ′ < and so the induction hypothesis applies. Let ′ ∈ . Note that ′ ≠ : otherwise, ′ = ′ so ′ = ′ , which cannot lie in . If ′ < , then both , , ′ and , ′ , ′ are known up to precision (induction on ), so the product is known to precision . And if ′ > , then , , ′ is known up to precision -1 (induction on ) and , ′ , ′ is known up to precision (induction on

) and divisible by (by Lemma 3.3), so the product is known up to precision .

For the number of operations, observe that there are less than pairs ( , ) such that the alsorithm needs to perform the computation at line 3.11; each computation involves coe cients of the matrix, and for each of them, products in • .

Nonreduced Gröbner bases

An interesting feature of the algorithm above is that contrary to the usual case, it has to handle monomials which are larger than the current monomial . This removes the main reason for the requirement that the input Gröbner basis is reduced, and with slight modi cations, it can handle any Gröbner basis as long as it is reduced modulo . Precisely, this is achieved by replacing line 3.8 with the following. Pick ′ ∈ such that

= 1 1 • • • ′ ; 3.8f • [ ] ← • [ ] + 1 1 • • • • [ ′ ];
Unless the staircase is trivial, i.e. as long as the ideal is proper, it is always possible to nd a suitable ′ at line 3.8e, by picking the monomial 1 ∈ . Nonetheless, to avoid computing large powers of matrices, it is more e cient to nd ′ as large as possible.

It is still true that any monomial > appearing in the process necessarily carries a coe cient with valuation ≥ 1, and thus the loop invariant that the coe cients are known to precision still holds. The complexity of the computation is no longer bounded merely in terms of , and prec, but also depends on the degree of the nonreduced terms in the basis, and on the choices of the monomials ′ .

Recursive algorithm

As described above, the computations can be done in increasing order of the monomials , ensuring that all the necessary coefcients are known with the necessary precision for the next step. Another way to proceed is by dynamic programming, computing the necessary coe cients recursively if they are not known yet.

The recursive de nition, using the matrices as a cache, is described in Algorithm 4, and is very similar to that described in Algorithm 3.

It can then be called, for all values of , , and = prec, instead of lines 3.3-3.11 in Algorithm 3. The main di erence is that the algorithm does not need to specify in which order the coecients are computed: the recursive de nition queries the missing coe cients as needed. The decision on which precision is needed depends on the valuation of the coe cient: the idea is that if is known with precision and has valuation , and is known with precision and has valuation , then • is known with precision min( + , + ). Note that it also works if we only know a lower bound on the valuation, typically if all the digits we know are 0.

The proof that the recursive algorithm terminates is the existence of such an order, as demonstrated in Theorem 3.2. And the proof of complexity is also immediate: there are coe cients for which the calculation is non-trivial, and for each of them, after multiplications, we gain one digit of precision. The total complexity is then ( 2 prec) operations in • as in the iterative case.

The advantage of the recursive presentation is twofold. Firstly, it will allow in Section 3.4 to generalize the construction, the proof of termination, and the complexity bounds, to arbitrary log-radii.

Secondly, it o ers a way to immediately improve the performance of the algorithms, on coe cient rings such as Z or (( )) where fast arithmetic is available. This works by using a lazy representation of the number, that is, a representation where each number is the data of its rst digits, as well as a function allowing to compute the next digit. Algorithm 4 gives us precisely such a function, and as such, the process can be viewed as a recursive de nition of lazy numbers (the function de nition) together with a delayed evaluation (the function call for all values).

For many coe cient rings, it is possible to do better by using the so-called relaxed, or on-line, arithmetic. Such arithmetics are available for formal power series rings [vdH97] and -adic numbers [START_REF] Berthomieu | Relaxed algorithms for p-adic numbers[END_REF][START_REF] Berthomieu | Relaxed p-adic Hensel lifting for algebraic systems[END_REF]. In that case, the cost of the computation of each new digit (of each variable) is polynomial in log(prec) if we are counting base operations (in the sense of Section 2). Here, this allows us to compute the matrices with base complexity in ˜( 2 prec).

Remark 3.4. For simplicity and for the complexity bounds, we only presented the procedure in the case where the Gröbner basis is reduced, but given that the recursive de nition is equivalent to the loop presented in Algorithm 3, the case where the Gröbner basis is not reduced can be dealt with in exactly the same way.

General log-radii

We now consider the case of arbitrary log-radii r ∈ Q . We will prove that the algorithm presented above still works in that case, by using abstract changes of variables and base ring to justify the existence of a suitable execution order. Crucially, the algorithm works without performing those transformations, and the complexity is the same. We only need to be more careful about the handling of the precision and of the valuation. Namely, given r ∈ Q , we will assume that the input basis is normalized, in the sense that 0 ≤ val(LT( )) < 1 for all ∈ . We will further require that for each ∈ , and for each in

3. 1 ←

 1 { monomials not divisible by any LT( ), ∈ }; 3.2 = ( , , ′ ) ← zero matrices of size × , with rows and columns indexed by , for all ∈ 1, ; 3.3 for from 0 to prec do 3.4for ∈ 1, , ∈ in increasing order of do

Algorithm 3a :

 3a Update the matrices using a nonreduced basis element 3.8a for in the support of -LT(

Here denotes the base eld and r encodes the radii of convergence of our series; we refer to §2.1 for the precise de nitions.

The results of this section can be extended without di culty to = +∞, i.e. to [X].

This work was supported by the ANR project CLap-CLap (ANR-18-CE40-0026-01). T. Verron was supported by the Austrian FWF grant P31571-N32.

Algorithm 4: MulMat_rec( , , , , , )

Input : as in Algo. 3, the staircase of , ∈ 1, , ∈ , ∈ , ∈ Z, ≤ prec Global : ( ) = ( , , ) , ∈ ) ∈ 1, Output : is such that , , is known to precision the support of , is known to precision prec + ⌊val( )⌋, and we will ensure that we compute the matrices with similar precision by ensuring that , , is correct up to precision + ⌊ , ⌋.

Recall that NF(

with, for all , , , < . So by de nition of the Tate term ordering, val( , , ) ≥ val( )val( ) = , , and the requirement on the precision is merely adjusting the number of digits we require beyond those we already know to be 0. The only di erence is that each term is initialized with the zero digits and the precision which we already know: Algorithm 4a: Base case with non-zero log-radii

, , ← ( ⌊val( )-val( ) ⌋ ); T 3.5. Let r ∈ Q be a system of log-radii. Algorithm 3, with input a reduced Gröbner basis of an ideal in {X; r} • , and modi ed to compute the matrices using Algorithm 4, computes the multiplication matrices in ( 2 prec) multiplications in • .

P

. Let Γ( ) be the dependency graph of the recurrence relation de ned in Algorithm 4 with the modi cations of Algorithm 4a: namely, Γ( ) is a directed graph whose vertices are tuples ( , , , ), and there is a directed edge ( , , , ) → ( , ′ , ′ , ) if and only if the computation of , , to precision queries the coe cient , ′ , ′ to precision . Note that the vertices with no outgoing edge correspond to coe cients which are immediately known to precision prec. The recursive computation terminates if and only if the graph is cycle-free, namely, if every path through the graph eventually reaches a vertex with no outgoing edge.

In the case of trivial log-radii r = (0, . . . , 0), the proof of that fact is Theorem 3.2. Assume that r ∈ Q . Let be the common denominator of the log-radii, so that r = ( 1 / , . . . , / ). Without loss of generality, we may assume that is minimal: elements of which can be removed will not take part in the computation. Consider the eld extension = [ ] with = , and perform the change of variables ← . This change of variables transforms into a Gröbner basis ′ of an ideal in • {Y}. In this case, the algorithm terminates, so the graph ′ is cycle-free. If is minimal, so is ′ , and by [CVV19, Prop. 3.10], the elements of this basis lie in • {Y} ⊂ • {Y}. In particular, all throughout the algorithm, the coe cients of the matrices are in • .

The graph Γ( ) is isomorphic to a subgraph of Γ( ′ ), the inclusion being given by ( , , , + ⌊ , ⌋ → ( , , , ). Since Γ( ′ ) is cycle-free, so is Γ( ) and the algorithm terminates.

The bound on the number of operations can be obtained with a similar argument as before, or read on the graph: the complexity is bounded by 2 times the number of vertices of Γ( ) since computing each new vertex has a cost of 2 operations in (the additions and multiplications on line 4.16). Since Γ( ) has at most

•prec vertices, the bound ( 2 prec) follows.

CHANGE OF LOG-RADII AND ORDERING

The next step in the FGLM algorithm consists in going in the opposite direction: starting from multiplication matrices and a term ordering, we aim at reconstructing the underlying Gröbner basis. Moreover, in our setting where we want to be able to handle in addition changes of log-radii, a preliminary step is needed. Indeed, the multiplication matrices are usually a ected by a modi cation of the log-radii. For example, the ideal generated by 2 2 -2 and 3 -2 in Q 2 [ , ] has staircase {1, , , 2 , , 2 } (for lex) while it spans an ideal over Q 2 { , } with staircase {1, } (still using lex). We study this phenomenon in full generality in Section 4.1.

A toy implementation of the algorithms of this Section is available on https://gist.github.com/TristanVaccon.

New multiplication matrices

Theoretical results. Let r and u be two -tuples such that ≥ for all . 2 Under this assumption the Tate algebra {X; r} is included in {X; u} and, given an ideal in {X; r}, it makes sense to consider the ideal = • {X; u} of {X; u}.

In what follows, we always assume that is 0-dimensional. The quotient {X; r} is then, by de nition, a nite dimensional -vector space; we will denote it by . Similarly, we set = {X; u}/ . The inclusion {X; r} ↩→ {X; u} induces a -linear mapping Φ : → .

In order to study Φ, we use topological arguments. We let • u be the norm on {X; u} associated to the Gauss valuation val u and equip {X; u} with the topology associated to this norm. The norm • u induces by restriction a norm on {X; r} (which is, of course, di erent from the standard norm • r on this space) and a mapping • : → R + de ned by:

where the in num runs over all ˆ ∈ {X; r} lifting . In general,

• is not a norm but only a semi-norm, meaning that there might exist elements ∈ for which = 0. By de nition, the kernel of • is the set of such elements; we denote it by . It is easily seen that is a sub--vector space of . P 4.2. The map Φ is surjective and its kernel is .

P

. We notice that {X; u} is the completion of {X; r} for the norm • . Combining this observation with Lemma 4.1, we deduce that appears as the completion of with respect to the semi-norm • , which is also the completion of / . But, since / is nite dimensional, it is already complete. As a conclusion, ≃ / and the proposition is proved.

We now assume that we are given the multiplication matrices 1 , . . . , over . We want to relate them to , or equivalently to . This is the content of the following proposition. (where we recall that the notation Big was de ned in §2.2).

P

. First of all, we observe that, up to replacing by [ 1/ ] for a well-chosen integer , we can assume without loss of generality that u is in Z . Replacing by - and r by r-u, we may further suppose that u = (0, . . . , 0).

Let ∈ {1, . . . , } and let ∈ Big 0 ( ). By de nition, is killed by Big,0, ( ). In other words, if ∈ {X; r} is a lifting of , the product Big,0, ( ) • lies in . Now, we claim that Big,0, ( ) is invertible in {X} because it is a product of factors of the form -1 (1 -) with val( ) > 0. Consequently, must be an element of . By Proposition 4.2, we derive ∈ , which proves the inclusion Big 0 ( ) ⊂ . Since this holds for any , the ⊃ part of the Proposition is proved.

Set ′ = =1 Big 0 ( ) and ′ = / ′ . From what we have done so far, we deduce that the semi-norm • on induces a semi-norm on ′ . The proposition will follow if we can prove that

• is indeed a norm (i.e. with trivial kernel) on ′ . In order to do so, we consider the unit ball of ′ , namely:

We want to prove that ′ does not contain any -line. For this, we remember that the unit ball of {X} is exactly the • -module generated by the monomials X i for i varying in N . Therefore, ′ is the smallest 

where 0 is the sub-• -module of ′ generated by the image of 1.

Besides, on ′ , all the eigenvalues of all the 's have nonnegative valuation since we have quotiented out all the Big 0 ( )'s. Consequently Lemma 2.2 applies and shows that ′ is nitely generated. In particular, it contains no -line, as wanted.

Explicit computations. It is straightforward to turn the previous theoretical analysis into an actual algorithm that computes the space ≃ / and the multiplication matrices acting on it. In fact, for later use, it will not be enough to express these matrices in any -basis of , but we shall really need a • -basis of the unit ball of (for the norm • introduced before). When u = (0, . . . , 0), Algorithm 5 does the job. In the description of this algorithm, we have implicitely assumed that all -vector spaces and • -modules are equipped with distinguished bases, and consequently used the same notation for a matrix and the endomophism it represents. All operations on • -modules can be handled using Hermite normal forms as recalled in §2.2; similarly, operations on -vectors spaces can be done using Smith normal forms, which permits to keep better numerical stability.

If denotes the dimension of = {X; r}/ (which is also the size of the matrices 's), Algorithm 5 requires at most ˜( 3 ) operations in the base eld .

Reconstruction of the Gröbner basis

The nal step in the FGLM algorithm is the computation of a Gröbner basis from the datum of the multiplication matrices.

Trivial log-radii. We rst address the case where u = (0, . . . , 0), which is covered by Algorithm 6 (page 8). This algorithm uses a routine FGLMField which takes as input a set of multiplication matrices over a eld (together with the vector representing the monomial 1) and a term ordering and returns the corresponding Gröbner basis. A description of such an algorithm performing this task can be found in many places in the litterature, for example in the original article by Faugère et al. [START_REF] Faugère | E cient computation of zero-dimensional Gröbner bases by change of ordering[END_REF]. 

. , , , ≤)

Input : 1 , . . . , the multiplication matrices over the unit ball of , the image of 1 ∈ {X; r} in , ≤ a monomial ordering Output :A Gröbner basis of the ideal ⊂ {X; u} 6.1 ¯ ← FGLMField( 1 mod , . . . , mod , mod , ≤ ); ★,1 ← ; 6.5 for ∈ \{1} by increasing order for ≤ do 6.6 write =

′ with ∈ {1, . . . , }, ′ ∈ ;

// product matrix-vector 6.8

= ( ★, ) ★∈B, ∈LM ( ¯ ) ← zero matrix;

6.9 for ∈ LM( ¯ ) do 6.10 write = with ∈ {1, . . . , }, ∈ ;

6.11 ★, ← • ★, ;

// product matrix-vector 6.12 ← -1 ;

;

6.14 return P . We recall that we assume u = (0, . . . , 0). Let = • {X} be as in Section 4.1. We recall that = {X}/ by de nition. Let denote the unit ball of . From the facts that the unit ball of {X} is {X} • and the norm on ≃ {X}/ is the quotient norm, we deduce that ≃ {X} • / • with • = ∩ {X} • . The reductions modulo of the 's are then the multiplication matrices on the quotient ¯ = • / • . The call to FGLMField then returns a Gröbner basis of the ideal ¯ . From Theorem 2.1.(2), we derive that the leading terms of a Gröbner basis of are formed by the monomials in LM( ¯ ). It follows from this that is the staircase of the ideal . In particular, its cardinality is the dimension of , showing that the matrix is a square matrix. After the loops, the columns of (resp. of ) contain the coordinates of the 's (resp. the 's) in the distinguished basis B for varying in (resp. for varying in LT( )). The matrix = -1 then contains the expression of the 's in terms of linear combination of the 's. This shows the correctness of the algorithm.

The fact that the complexity is in ( 3 ) arithmetic operations is easily checked.

General log-radii. We now consider the general case where u = ( 1 , . . . , ) ∈ Q . We take ∈ Z >0 to be a common denominator of the coordinates of u (consequently • u ∈ Z ). We de ne the eld extension = [ ] such that = and perform the change of variables ˜ = . The Tate algebra ⊗ {X; u} becomes isomorphic to { X} and we can then apply all what precedes with ⊗ {X; u}. Inside { X} ≃ ⊗ {X; u} sits the subset Z {X; u} consisting of series of the form with ∈ Z and ∈ {X; u}. Let , , and denote the spaces deduces by , , and respectively by extending scalars from to . Inside them, we can similarly de ne Z , Z , Z and Z . We claim that then Algorithms 5 and 6 can be adapted so that they only have to manipulate vectors lying in these subsets. Indeed:

• the Big 0 ( ˜ )'s can be computed without passing to because they are equal to the Big ( )'s which are de ned over ; • similarly the quotient / is de ned over and then does not create any trouble; • one checks that the Hermite normal form of a matrix whose column vectors are in Z , remains of this form; • the column vectors of the matrices and of Algorithm (6) all come from monomials and so have the required shape.

Proceeding this way, we avoid the time penalty due to scalar extension from to and keep a complexity of ( 3 ) arithmetic operations. At the end of the day, the output of Algorithm 6 is then a Gröbner basis of consisting of series in Z {X; u}. Still staying in the same subset, we can normalize these series so that they all have Gauss valuation 0. In this case, is not only a Gröbner basis of but also a Gröbner basis on the ideal • = ⊗ • = ∩ {X; u} • . From [CVV19, Proposition 3.10], we deduce that ∩ {X; u} remains a Gröbner basis of • and hence of .

Conclusion.

Combining Algorithms 3 (or 4), 5 and 6 and the above discussion for covering the case of arbitrary log-radii, we nally end up with a complete FGLM algorithm as announced in Theorem 1.1 in the introduction. Plugging Algorithm 3a into the machine, we notice that our algorithm can also accept Gröbner bases which are nonreduced as soon as they are reduced modulo the maximal ideal. However, in this case, the complexity may grow up rapidly, depending on the shape of the input Gröbner basis.