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Edges in Fibonacci cubes, Lucas cubes and complements

Michel Mollard∗

February 6, 2021

Abstract

The Fibonacci cube of dimension n, denoted as Γn, is the subgraph of the hypercube
induced by vertices with no consecutive 1’s. The irregularity of a graph G is the
sum of |d(x) − d(y)| over all edges {x, y} of G. In two recent paper based on the
recursive structure of Γn it is proved that the irregularity of Γn and Λn are two
times the number of edges of Γn−1 and 2n times the number of vertices of Γn−4,
respectively. Using an interpretation of the irregularity in terms of couples of
incident edges of a special kind (Figure 2) we give a bijective proof of both results.
For these two graphs we deduce also a constant time algorithm for computing the
imbalance of an edge. In the last section using the same approach we determine
the number of edges and the sequence of degrees of the cube complement of Γn.

Keywords: Irregularity of graph, Fibonacci cube, Lucas cube, cube-complement, daisy
cube.
AMS Subj. Class. : 05C07,05C35

1 Introduction and notations

An interconnection topology can be represented by a graph G = (V,E), where V
denotes the processors and E the communication links. The hypercube Qn is a popular
interconnection network because of its structural properties.
The Fibonacci cube of dimension n, denoted as Γn, is the subgraph of the hypercube
induced by vertices with no consecutive 1’s. This graph was introduced in [7] as a new
interconnection network.

Γn is an isometric subgraph of the hypercube which is inspired in the Fibonacci
numbers. It has attractive recurrent structures such as its decomposition into two
subgraphs which are also Fibonacci cubes by themselves. Structural properties of these
graphs were more extensively studied afterwards. See [9] for a survey.

Lucas cubes, introduced in [13], have attracted the attention as well due to the fact
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that these cubes are the cyclic version of Fibonacci cubes. They have also been widely
studied [3, 4, 5, 10, 12, 14].
The determination of degree sequence [12] is one of the first enumerative results about
Fibonacci cubes.

Let G = (V (G), E(G)) be a connected graph. The degree of a vertex x is denoted by
dG(x) or d(x) when there is no ambiguity. The imbalance of an edge e = {x, y} ∈ E(G)
is defined by imbG(e) = |dG(x)− dG(y)|. The irregularity of a non regular graph G is

irr(G) =
∑

e∈E(G)

imbG(e).

This concept of irregularity was introduced in [1] as a measure of graph’s global non-
regularity.

In two recent papers [2, 6] using the inductive structure of Fibonacci cubes it is
proved that irr(Γn) = 2|E(Γn−1)| and irr(Λn) = 2n|V (Γn−4)|. One of our motivation
is to give direct bijective proofs of these remarkable properties.

The generalized Fibonacci cube Γn(s) is the graph obtained from Qn by removing all
vertices that contain a given binary string s as a substring. For example Γn(11) = Γn.
Daisy cubes are an other kind of generalization of Fibonacci cubes introduced in [11].
For G an induced subgraph of Qn, the cube-complement of G is the graph induced
by the vertices of Qn which are not in G. In [16] the questions whether the cube
complement of generalized Fibonacci cube is connected, an isometric subgraph of a
hypercube or a median graph are studied. It is also proved in the same paper that the
cube-complement of a daisy cube is a daisy cube. We consider in the last section Γn

the cube complement of Γn.
We give the number of edges of Γn and determine, using the main lemma of the

first section, the degree sequence of Γn. We will also study the embedding of Γn in Γn.
We will next give some concepts and notations needed in this paper. We note by

[1, n] the set of integers i such that 1 ≤ i ≤ n. The vertex set of the hypercube of
dimension n Qn is the set Bn of binary strings of length n, two vertices being adjacent
if they differ in precisely one position. We will note xi the binary complement of xi.

Let x = x1 . . . xn be a binary string and i ∈ [1, n] we will denote by x+ δi the string
x′1 . . . x

′

n where x′j = xj for j = i and x′j = xj otherwise. We will say that the edge
{x, x + δi} uses the direction i. The endpoint x such that xi = 1 of an edge using the
direction i will be called upper endpoint and y the lower endpoint.

A Fibonacci string of length n is a binary string b = b1b2 . . . bn with bi · bi+1 = 0 for
1 ≤ i < n. In other words a Fibonacci string is a binary string without 11 as substring.
The Fibonacci cube Γn (n ≥ 1) is the subgraph of Qn induced by the Fibonacci strings
of length n. Because of the empty string ǫ, Γ0 = K1.

A Fibonacci string b of length n is a Lucas string if b1 · bn 6= 1. That is, a Lucas
string has no two consecutive 1’s including the first and the last elements of the string.
The Lucas cube Λn is the subgraph of Qn induced by the Lucas strings of length n. We
have Λ0 = Λ1 = K1.
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Figure 1: Γ2 = Λ2, Γ3, Λ3, Γ4, Γ3 and Γ4.

Let Fn be the nth Fibonacci number: F0 = 0, F1 = 1, Fn = Fn−1 +Fn−2 for n ≥ 2.
Let Fn and Ln be the sets of strings of Fibonacci strings and Lucas strings of length

n. Let F1.
n and F0.

n be the set of strings of Fn that begin with 1 and that do not begin
with 1, respectively. Note that with this definition F0.

0 = {ǫ} and F1.
0 = ∅. Let F .0

n be
the set of strings of Fn that do not end with 1. Thus |F .0

n | = |F0.
n |. Let F00

n be the set
of strings of F0.

n that do not end with 1. With this definition F00
0 = {ǫ}, F00

1 = {0}
and F00

2 = {00}.
From Fn+2 = {0s; s ∈ Fn+1} ∪ {10s; s ∈ Fn},F

0.
n+1 = {0s; s ∈ Fn}and F1.

n+1 =
{1s; s ∈ F0.

n } we obtain the following classical result.

Proposition 1.1 Let n ≥ 0. The numbers of Fibonacci strings in Fn, F0.
n and F1.

n

are |Fn| = Fn+2, |F
0.
n | = Fn+1 and |F1.

n | = Fn respectively. Let n ≥ 1. The number of
Fibonacci strings in F00

n is |F00
n | = Fn.

The following expressions for the number of edges in Γn are obtained in [8] and [13]
.

Proposition 1.2 Let n ≥ 0. The number of edges in Γn is |E(Γn)| =
∑n

i=1 FiFn−i+1 =
nFn+1+2(n+1)Fn

5 and satisfies the induction formula |E(Γn+2)| = |E(Γn+1)|+ |E(Γn)|+
|V (Γn)| .

Remark 1.3 Let {x, x+ δi} be an edge and θ(x) = ((x1x2 . . . xi−1), (xi+1xi+2 . . . xn)).
A combinatorial interpretation of |E(Γn)| =

∑n
i=1 FiFn−i+1 is that for any i ∈ [1, n] θ

is a one to one mapping between the set of edges using the direction i and the Cartesian
product F .0

i−1 ×F0.
n−i

Let G be an induced subgraph of Qn. Let e = {x, y} be an edge of G where y is
the lower endpoint of e and x = y + δi. An edge e′ = {y, y + δj} of G will be called an
imbalanced edge for e if x + δj /∈ V (G) and thus {x, x + δj} /∈ E(G). Note that such
couple of edges does not exist for G = Qn. We will prove in the next to sections that
for G = Γn and G = Λn the irregularity of G is the number of such couples of edges
(Figure 2).
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Figure 2: irr(Γn) and irr(Λn) count the couples of edges (e, e′) of the right kind.

2 Edges in Fibonacci cube

Lemma 2.1 Let x, y be two strings in Fn with y = x + δi and xi = 1. Then for all
j ∈ [1, n] we have

x+ δj ∈ Fn implies y + δj ∈ Fn.

Proof. Assume y + δj /∈ Fn then yk = 1 for some k in {j − 1, j + 1} ∩ [1, n]. But for
all p ∈ [1, n] xp = 0 implies yp = 0. Thus xk = 1 and x+ δj /∈ Fn. �

Lemma 2.2 Let x, y two strings in Fn with y = x + δi. Then for all j ∈ [1, n] with
|i− j| > 1 we have

x+ δj ∈ Fn if and only if y + δj ∈ Fn.

Proof.

• If xj = 1 then yj = xj = 1 and both x+ δj and y + δj belong to Fn.

• Assume xj = 0 thus yj = 0. We have

x+ δj ∈ Fn if and only if xk = 0 for all k ∈ {j − 1, j + 1} ∩ [1, n]

and

y + δj ∈ Fn if and only if yk = 0 for all k ∈ {j − 1, j + 1} ∩ [1, n].

But i /∈ {j − 1, j + 1} ∩ [1, n] thus xk = yk for all k in this set and the two
conditions are equivalent.

�

Corollary 2.3 Let n ≥ 2 then irr(Γn) is the number of couples (e, e′) ∈ E(Γn)
2 where

e′ is an imbalanced edge for e.
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Proof. By Lemma 2.1 if e = {x, y} is an edge using the direction i with upper
endpoint x then d(y) ≥ d(x) and imb(e) is the number of imbalanced edges for e. The
conclusion follows. �

Furthermore assume that e = {x, y} uses the direction i with xi = 1 and let e′ =
{y, y + δj} be an imbalanced edge for e. Then by Lemma 2.2 we have j = i + 1 or
j = i− 1.

We will call e′ a right or left imbalanced edge for e accordingly. Let RΓn
and LΓn

be
the sets of couples (e, e′) where e′ is a right imbalanced edge for e and a left imbalanced
edge for e, respectively, where e goes through E(Γn).

Theorem 2.4 Let n ≥ 2. There exists a one to one mapping between RΓn
or LΓn

and
E(Γn−1).

Proof. Let (e, e′) ∈ RΓn
. Assume that x is the upper endpoint of e = {x, y}. We

have thus y = x+ δi and xi = 1 for some i ∈ [1, n − 1].
Let θ((e, e′)) = {x1x2 . . . xi−11xi+2xi+3 . . . xn, x1x2 . . . xi−10xi+2xi+3 . . . xn}. Since

x and y belong to Fn and the edges e, e′ use the direction i, i+1 we have xk = yk = 0
for k in {i − 1, i + 2} ∩ [1, n]. Therefore x1x2 . . . xi−11xi+2xi+3 . . . xn is a Fibonacci
string and θ((e, e′)) belongs to E(Γn−1).
Conversely let f = {z1z2 . . . zi−10zi+1zi+2 . . . zn−1, z1z2 . . . zi−11zi+1zi+2 . . . zn−1} be an
arbitrary edge of Γn−1 then zk = 0 for k in {i − 1, i + 1} ∩ [1, n − 1]. Thus x =
z1z2 . . . zi−110zi+1zi+2 . . . zn−1 and t = z1z2 . . . zi−101zi+1zi+2 . . . zn−1 are in Fn. The
edge {t, t + δi+1} is a right imbalanced edge for the edge {x, x + δi}. Furthermore
θ({x, x+ δi}, {t, t+ δi+1}) = f and θ is a bijection.

Similarly let φ((e, e′)) = {x1x2 . . . xi−21xi+1xi+2 . . . xn, x1x2 . . . xi−20xi+1xi+2 . . . xn}
where x is the upper end point of an edge e using the direction i and such that
(e, e′) ∈ LΓn

. Then φ is a one to one mapping between LΓn
and E(Γn−1). �

As an immediate corollary we deduce the result of Alizadeh and his co-authors [2]

Corollary 2.5

irr(Γn) = 2|E(Γn−1)|.

An other consequence of Lemma 2.2 is the following classification of the edges accord-
ing to their imbalance. Note that from this classification we obtain a constant time
algorithm for computing the imbalance of an edge of Γn.

Theorem 2.6 Let n ≥ 4 and e = {x, y} be an edge of Γn using direction i. Then
imb({x, y}) follows Table 1.

Proof. Assume that x is the upper endpoint of the edge e = {x, y}. There exists an
edge e′ such that e′ is a right imbalanced edge for e if and only if i ∈ [1, n − 1] and

5



imb({x, x+ δi}) i = 1 i = 2 3 ≤ i ≤ n− 2 i = n− 1 i = n

x3 x4 xi−2 xi+2 xn−3 xn−2

0 1 1 1 1

1 0 1
0
1

1
0

1 0

2 0 0 0 0

Table 1: imb(e) in Γn

e′ = {y, y + δi+1} thus if y + δi+1 ∈ Fn. Since yi = 0, y + δi+1 is a Fibonacci string if
and only if i = n− 1 or if yi+2 = xi+2 = 0 in the general case i ∈ [1, n − 2].

Similarly there exists an edge e′ such that e′ is a left imbalanced edge for e if and
only if i ∈ [2, n] and e′ = {y, y + δi−1} thus if y + δi−1 ∈ Fn. Since yi = 0, y + δi−1 is a
Fibonacci string if and only if i = 2 or if yi−2 = xi−2 = 0 when i ∈ [3, n].

Therefore imb(e) is completely determined by the values of xi+2, xi−2 according to
Table 1. �

Let e be an edge of Γn then by Lemma 2.2 imb(e) ≤ 2. Let A, B, C be the sets of
edges with imb(e) = 0, imb(e) = 1 and imb(e) = 2, respectively.

Theorem 2.7 Let n ≥ 2. The numbers of edges of Γn with imbalance 0,1 and 2 are
respectively

|A| =
n−2∑

i=3

Fi−2Fn−i−1 + 2Fn−2

|B| = 2

n−3∑

i=1

FiFn−i−2 + 2Fn−1

|C| =
n−1∑

i=2

Fi−1Fn−i.

Remark 2.8 Note that |B| + 2|C| = 2|E(Γn−1)| and we obtain again the result of
Alizadeh and his co-authors.

Proof. The case n ≤ 3 is obtained by direct inspection.
Assume n ≥ 4.
For i ∈ [1, n] let Ei be the set of edges {x, y} of Γi with y = x+ δi. Let Ai = A ∩ Ei,
Bi = B ∩Ei and Ci = C ∩ Ei. Let e = {x, y} be an edge of Γn.

• If e ∈ Ai then by Table 1 we have i ∈ [3, n − 2] or i ∈ {1, n}. If i ∈ [3, n − 2]
then θ(e) = (x1x2 . . . xi−2, xi+2xi+3 . . . xn) is a one to one mapping between Ai

and F .1
i−2 ×F1.

n−i−1.
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If i = 1 then φ(e) = x3x4 . . . xn is a one to one mapping between A1 and F1.
n−2.

Similarly Ψ(e) = x1x2 . . . xn−2 is a one to one mapping between An and F .1
n−2.

By Proposition 1.1 we obtain |A| =
∑n−2

i=3 Fi−2Fn−i−1 + 2Fn−2.

• If e ∈ Ci then by Table 1 we have i ∈ [2, n−1]. Let θ(e) = (x1x2 . . . xi−2, xi+2xi+3 . . . xn).
Then θ is a one to one mapping between Ci and F .0

i−2 ×F0.
n−i−1. The expression

of |C| follows.

• Assume e ∈ Bi and that there exists a right imbalanced edge for e therefore no
left imbalanced edge. We have thus i ∈ [1, n − 1] and i 6= 2. If i ∈ [3, n − 1] then
θ(e) = (x1x2 . . . xi−2, xi+2xi+3 . . . xn) is a one to one mapping this kind of edges
and and F .1

i−2 ×F0.
n−i−1.

If i = 1 then φ(e) = x3x4 . . . xn is a one to one mapping between this kind of edges
and F0.

n−2. Thus this case contributes
∑n−1

i=3 Fi−2Fn−i+Fn−1 =
∑n−3

i=1 FiFn−i−2+
Fn−1 to B.

• Assume e ∈ Bi and that there exists a left imbalanced edge for e thus no
right imbalanced edge. By a similar construction this case contributes also∑n−3

i=1 FiFn−i−2 + Fn−1 to B. The expression of |B| follows.

3 Edges in Lucas cube

For any integer i let i = ((i− 1) mod n) + 1. Thus i = i for i ∈ [1, n] and n+ 1 = 1,
0 = n. With this notation i and i + 1 are cyclically consecutive in [1, n]. Therefore
for x ∈ Ln with xi = 0 the string x + δi belongs to Ln if and only if xk = 0 for all
k ∈ {i− 1, i+ 1}. Note also that k ∈ {i− 1, i+ 1} if and only if i ∈ {k− 1,k+ 1}

Lemma 3.1 Let x, y be two strings in Ln with y = x + δi and xi = 1. Then for all
j ∈ [1, n] we have

x+ δj ∈ Ln implies y + δj ∈ Ln.

Proof. Assume y + δj /∈ Ln then yk = 1 for some k in {j − 1, j + 1}. But for all
p ∈ [1, n] xp = 0 implies yp = 0. Thus xk = 1 and x+ δj /∈ Ln. �

Lemma 3.2 Let x, y two strings in Ln with y = x + δi. Then for all j ∈ [1, n] with
j /∈ {i− 1, i+1} we have

x+ δj ∈ Ln if and only if y + δj ∈ Ln.

Proof. This is true for j = i thus assume j 6= i.

• If xj = 1 then yj = xj = 1 and both x+ δj and y + δj belong to Ln.

7



• Assume xj = 0 thus yj = 0. We have

x+ δj ∈ Ln if and only if xk = 0 for all k ∈ {j − 1, j +1}

and
y + δj ∈ Ln if and only if yk = 0 for all k ∈ {j − 1, j + 1}.

But i /∈ {j − 1, j + 1} thus xk = yk for all k in this set and the two conditions
are equivalent.

�

From this two lemmas we deduce the equivalent for Lucas cube of Corollary 2.3.

Corollary 3.3 Let n ≥ 2 then irr(Λn) is the number of couples (e, e′) ∈ E(Λn)
2 where

e′ is an imbalanced edge for e.

Let e′ = {y, y+δj} be an imbalanced edge for e then by Lemma 3.2 we have j = i+1

or j = i− 1. We will call e′ a cyclically right or cyclically left imbalanced edge for e
accordingly. Let Ri

Λn
be the set of (e, e′) where e′ is a cyclically right imbalanced edge

for e and e uses the direction i. Similarly let Li
Λn

be the equivalent set for cyclically
left imbalanced edges.

Theorem 3.4 Let n ≥ 4 and i ∈ [1, n]. There exists a one to one mapping between
Ri

Λn
or Li

λn
and Fn−4.

Proof. Since x1x2 . . . xn 7→ xixi+1 . . . xnx1x2 . . . xi−1 is an automorphism of Λn we
can assume without loss of generality that i = 1. Let (e, e′) in R1

Λn
. Assume that

x is the upper endpoint of e = {x, y}. We have thus y = x + δ1 and x1 = 1. Let
θ((e, e′)) = x4x5 . . . xn−1. As a substring of x the string x4x5 . . . xn−1 belongs to Fn−4.
Furthermore since e and e′ use the directions 1 and 2 we have xn = x2 = x3 = 0.
Therefore θ((e, e′)) = x4x5 . . . xn−1 defines x thus defines (e, e′) and θ is injective.
Conversely let z1z2 . . . zn−4 be an arbitrary string of Fn−4. Let x = 100z1z2 . . . zn−40,
t = 010z1z2 . . . zn−40, e = {x, x+ δ1} and e′ = {t, t+ δ2}. Note that t+ δ2 = x+ δ1 and
x+ δ2 /∈ Ln thus by Lemma 3.2 (e, e′) ∈ R1

Λn
. Therefore θ is surjective. The proof that

φ((e, e′)) = x3x4 . . . xn−2 where e = {x, x + δ1} defines a one to one mapping between
L1
λn

and Fn−4 is similar. �

As an immediate corollary we deduce the result obtained in [6]

Corollary 3.5 For all n ≥ 3 irr(Λn) = 2n|Fn−2|.

Like in Γn it is not necessary to know the degree of his endpoints for computing the
imbalance of an edge in Λn.

8



imb({x, x+ δi}) xi−2 xi+2

0 1 1

1
0
1

1
0

2 0 0

Table 2: imb(e) in Λn

Theorem 3.6 Let n ≥ 4 and e = {x, y} be an edge of Λn with y = x+δi. Then imb(e)
follows Table 2 where their indices i− 2 and i+ 2 are taken cyclically in [1, n].

Proof. Assume that x is the upper endpoint of the edge. Since xi+1 = yi+1 = 0
there exists a couple (e, e′) in Ri

Λn
if and only if e′ = {y, y+ δi+1} and xi+2 = 0. Since

xi−1 = yi−1 = 0 there exists a couple (e, e′) in Li
Λn

if and only if e′ = {y, y + δi−1}
and xi−2 = 0. Therefore imb(e) is completely determined by the values of xi+2, xi−2

according to Table 2. �

Let e = {x, x + δi} be an edge of Λn and θ(e) = xi+1xi+2 . . . xnx1x2 . . . xi−1. Note
that θ is a one to one mapping between the set of edges using the direction i and F00

n−1.
This remark gives a combinatorial interpretation of the well known result |E(Λn)| =
nFn−1 [13]. We will use the same idea for the number edges with a given imbalance.

Corollary 3.7 Let n ≥ 5 then the imbalance of any edge e = {x, y} in Λn is at most 2.
Furthermore if A, B and C are the sets of edges with imbalance 0,1 and 2 respectively
then |A| = nFn−5, |B| = 2nFn−4 and |C| = nFn−3.

Proof. For i ∈ [1, n] let Ei be the set of edges {x, y} using direction i. Since the
number of edges in Ei with a given imbalance is independent of i we can assume without
loss of generality that i = 1 and consider A1 = A∩E1, B1 = B ∩E1 and C1 = C ∩C1.
Let x be the end point such that x1 = 1. We have thus x2 = xn = 0, x+ δ2 /∈ Ln and
x+ δn /∈ Ln.

• Assume x3 = xn−1 = 0. Then y + δ2 ∈ Ln, y + δn ∈ Ln and the edge {x, y}
belongs to C1. Furthermore θ(x) = x3x4 . . . xn−1 is one to one mapping between
the set of this kind of edges and F00

n−3. The contribution of this case to C1 is
Fn−3.

• Assume x3 = xn−1 = 1. Then y + δ2 /∈ Ln, y + δn /∈ Ln and the edge {x, y}
belongs to A1. Since x4 = xn−2 = 0, θ(x) = x4x5 . . . xn−2 is one to one mapping
between the set of this kind of edges and F00

n−5. The contribution of this case to
A1 is Fn−5.

• Assume x3 = 1 and xn−1 = 0. Then y + δ2 /∈ Ln, y + δn ∈ Ln. The edge {x, y}
belongs to B1. Furthermore θ(x) = x4x5 . . . xn−1 is one to one mapping between

9



the set of this kind of edges and F00
n−4. The contribution of this case to B1 is

Fn−4.

• The case x3 = 0 and xn−1 = 1 is similar and thus contributes also Fn−4 to B1

�

4 Cube-complement of Fibonacci cube

Let Fn be the set of binary strings of length n with 11 as substring. We will call the
strings in Fn non-Fibonacci strings of length n. The cube complement of Γn is Γn the
subgraph of Qn induced by Fn.
Note that Fn is connected since there is always a path between any vertex x ∈ V (Γn)
and 1n. Furthermore |V (Γn)| = 2n − Fn+2.
Let An,Bn,Cn be the sets of edges of Qn incident to 0,1 and 2, respectively, strings of
Fn. We have thus An = E(Γn) and Cn = E(Γn).

Proposition 4.1 |E(Qn)| = |E(Γn)| + |Bn| + |E(Γn)| is the total number of 0’s in
binary strings of length n.
|Bn|+ |E(Γn)| is the total number of 0’s in Fibonacci strings of length n.
|Bn|+ |E(Γn)| is the total number of 1’s in non-Fibonacci strings of length n.
|E(Γn)| is the total number of 0’s in non-Fibonacci strings of length n.
|E(Γn)| is the total number of 1’s in Fibonacci strings of length n.

Proof. Let e be an edge of Qn and let x, y such that e = {x, y} with xi = 0 and
yi = 1. Define the mappings φ({x, y}) = (x, i) and ψ({x, y}) = (y, i). Note that φ
is a one to one mapping between E(Qn) and {(s, i); s ∈ Bn, si = 0} the set of 0’s
appearing in strings of Bn. Likewise ψ is a one to one mapping between E(Qn) and
{(s, i); s ∈ Bn, si = 1} the set of 1’s appearing in strings of Bn.
Furthermore an edge incident to exactly one Fibonacci string z is mapped by φ to
(z, i) and by ψ to (z + δi, i). Therefore the restriction of the reverse mapping φ−1 to
{(s, i); s ∈ Fn, si = 0} the set of 0’s appearing in strings of Fn, is a one to one mapping
to the edges of E(Γn)∪Bn. For the same reason the restriction of the reverse mapping
ψ−1 to {(s, i); s ∈ Fn, si = 1}, the set of 1’s appearing in strings of Fn, is a one to one
mapping to the edges of E(Γn) ∪Bn.
Since a binary string is a Fibonacci string or a non-Fibonacci string we can deduce
the last two affirmations from the previous. We can also give a direct proof. Indeed
the restriction of φ to edges of Γn define a one to one mapping between E(Γn) and
{(s, i); s ∈ Fn, si = 0}. Likewise the restriction of ψ to edges of Γn define a one to one
mapping between E(Γn) and {(s, i); s ∈ Fn, si = 1}. �
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Proposition 4.2 The total number of number of 0’s in Fibonacci strings of length n
is

∑n
i=1 Fi+1Fn−i+2.

Proof. Let s be a Fibonacci string of length n and i ∈ [1, n] then s1s2 . . . si−1 and
si+1si+2 . . . sn are Fibonacci strings. Reciprocally if u and v are Fibonacci strings then
u0v is also a Fibonacci string. Therefore the mapping define by θ(s, i) = (s1s2 . . . si−1, si+1si+2 . . . sn)
is a one to one mapping between {(s, i); s ∈ Fn, si = 0} and the Cartesian product
Fi−1 ×Fn−i. The identity follows. �

Theorem 4.3 The number of edges of Γn is given by the equivalent expressions:

(i) |E(Γn)| = n2n−1 −
∑n

i=1 Fi+1Fn−i+2.

(ii) |E(Γn)| = n2n−1 − 4nFn+1+(3n−2)Fn

5 .

Proof. Combining the first two identities in Proposition 4.1 together with Proposition
4.2 we obtain the first expression.
For the second expression note first that the n edges of Qn incident to a vertex of
Fn belongs to E(Γn) or Bn. Making the sum over all vertices of Fn the edges of
E(Γn) are obtained two times therefore nFn+2 = |Bn| + 2|E(Γn)|. By Proposition 4.1
|E(Γn)| = |E(Qn)| − |Bn| − |E(Γn)| = n2n−1 − nFn+2 + |E(Γn)|. Using the expression
of |E(Γn)| given by Proposition 1.2 we obtain the final result. �

The sequence (|E(Γn)|, n ≥ 1) = 0, 0, 2, 10, 35, 104, . . . can also be obtain by an
inductive relation:

Proposition 4.4 The number of edges of Γn is the sequence defined by
|E(Γn)| = |E(Γn−1)|+ |E(Γn−2)|+ (n+ 4)2n−3 − Fn+2 (n ≥ 3)
|E(Γ1)| = |E(Γ2)| = 0.

Proof. Let n ≥ 3. Let Fn
1.

be the set of strings of Fn that begin with 1. Since

Fn
1.
= {10s; s ∈ Fn−2} ∪ {11s; s ∈ Bn−2} we have |Fn

1.
| = 2n−1 −Fn. This identity is

also valid for n = 1 or n = 2.
Consider the following partition of the set of vertices of Γn: Fn = {0s; s ∈ Fn−1} ∪
{10s; s ∈ Fn−2} ∪ {11s; s ∈ Bn−2}.
From this decomposition the sequence of vertices of Γn follows the induction

|V (Γn)| = |V (Γn−1)|+ |V (Γn−2)|+ 2n−2.

We deduce also a partition of the edges Γn in six sets:
-|E(Γn−1)| edges between vertices of {0s; s ∈ Fn−1}.
-|E(Γn−2)| edges between vertices of {10s; s ∈ Fn−2}.
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-|E(Qn−2| edges between vertices of {11s; s ∈ Bn−2}.
-Edges between vertices of {0s; s ∈ Fn−1} and {10s; s ∈ Fn−2}. Those edges are the
|V (Γn−2)| edges {00s, 10s} where s ∈ Fn−2.
-Edges between vertices of {10s; s ∈ Fn−2} and {11s; s ∈ Bn−2}. Those edges are the
|V (Γn−2)| edges {10s, 11s} where s ∈ Fn−2.
-Edges between vertices of {0s; s ∈ Fn−1} and {11s; s ∈ Bn−2}. Those edges are the

2n−2 − Fn−1 edges {0s, 1s} where s is a string of F
1.
n−1 .

Therefore |E(Γn)| = |E(Γn−1)|+ |E(Γn−2)|+(n−2)2n−3+2(2n−2−Fn)+2n−2−Fn−1.
�

We will call block of a binary string s a maximal substring of consecutive 1’s.
Therefore a string in Fn is as string with a least one block of length greater that 1.
The degree of a vertex of Γn lies between ⌊(n + 2)/3⌋ and n. The number of vertices
of a given degree is determined in [12].
We will now give a similar result for Γn.

Theorem 4.5 The degree of a vertex in Γn is n, n − 1 or n − 2 and the number of
vertices of a given degree are:
|E(Γn−1)| vertices of degree n− 2
|E(Γn−2)| vertices of degree n− 1∑n−4

k=0 2
k|E(Γn−k−3)| vertices of degree n.

Remark 4.6 Using Proposition 1.2 these numbers can be rewritten as, respectively,
(n−1)Fn+(2n)Fn−1

5 , (n−2)Fn−1+(2n−2)Fn−2

5 and 2n − (3n+7)Fn+(n+5)Fn−1

5 .

Proof. This is true for n ≤ 3 thus assume n ≥ 4. Let x be a vertex of Γn

and consider the indices il and ir such that xilxil+1 and xirxir+1 are the leftmost,
rightmost respectively, pairs of consecutive 1’s. Thus il = min{i;xixi+1 = 11} and
ir = max{i;xixi+1 = 11}. Consider the three possible cases

• ir = il. Then there exists a unique block of length at least 2 and this block
xilxil+1 is of length 2. Thus x1 . . . xil−1 ∈ F .0

il−1 and xil+2 . . . xn ∈ F0.
n−il−1.

For i = il or i = il + 1 the string x+ δi is a Fibonacci string. For i distinct of il
and il + 1 then x+ δi is a string of Fn. Therefore d(x) = n− 2.

Since x1 . . . xil−1 and xil+2 . . . xn are arbitrary strings of F .0
il−1 and F0.

n−il−1 the

number of vertices of this kind is by Proposition 1.1
∑n−1

il=1 FilFn−il = |E(Γn−1)|.

• ir = il + 1. Then there exists a unique block of length at least 2 and this
block xilxil+1xil+2 is of length 3. Thus x = x1 . . . xil−1111xil+3 . . . xn where
x1 . . . xil−1 ∈ F .0

il−1 and xil+3 . . . xn ∈ F0.
n−il−2.

For i = il + 1 the string x+ δi is a Fibonacci string. For i distinct of il + 1 then
x+ δi is a string of Fn. Therefore d(x) = n− 1.
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Since x1 . . . xil−1 and xil+3 . . . xn are arbitrary strings of F .0
il−1 and F0.

n−il−2 the

number of vertices of this kind is
∑n−2

il=1 FilFn−il−1 = |E(Γn−2)|.

• ir ≥ il +2. Then there exists a unique block of length at least 4 or there exist at
least two blocks of length at least 2. In both cases for any i ∈ [1, n] x + δi is a
string of Fn. Therefore d(x) = n.

Let k = ir − il − 2. Note that k ∈ [0, n − 4] and k fixed il ∈ [1, n − k − 3]. The
strings x1x2 . . . xil−1 and xil+k+4xil+k+5 . . . xn are arbitrary strings in F .0

il−1 and

F0.
n−k−il−3. Since xil+2 . . . xir−1 is an arbitrary string in Bk the number of vertices

of this kind is
∑n−4

k=0

∑n−k−3
il=1 2kFilFn−k−il−2 =

∑n−4
k=0 2

k|E(Γn−k−3)|.

�

The sequence 0, 0, 0, 1, 4, 13, 36, . . . formed by the numbers of vertices on degree n
in Γn, (n ≥ 1) already appears in OEIS [15] as sequence A235996 of the number of
length n binary words that contain at least one pair of consecutive 0’s followed by (at
some point in the word) at least one pair of consecutive 1’s. This is clearly the same
sequence.

As noticed in Figure 1 Γ3 and Γ4 are isomorphic to Γ2 and Γ4 respectively. Our
last result complete this observation.

Theorem 4.7 For n ≥ 4 Γn is isomorphic to an induced subgraph of Γn.

Proof. Let n ≥ 4 and define a mapping between binary strings of length n by
θ(x) = θ(x1x2 . . . xn) = x4x2x3x1x5x6 . . . xn. Let σ be the permutation on {1, 2, . . . , n}
define by σ(1) = 4, σ(4) = 1 and σ(i) = i for i /∈ {1, 4}.

Note first that x ∈ Fn implies θ(x) ∈ Fn. Indeed since x2x3 6= 11 we have three
cases

• x2x3 = 00 then x2x3 = 11 is a substring of θ(x)

• x2x3 = 10 then x1 = 0 and x3x1 = 11 is a substring of θ(x)

• x2x3 = 01 then x4 = 0 and x4x2 = 11 is a substring of θ(x).

Therefore θ maps vertices of Γn to vertices in Γn.
Let {x, x+δi} be an edge of Γn then by construction we have θ(x+δi) = θ(x)+δσ(i)

and therefore θ(x) and θ(x+ δi) are adjacent in Γn.
Since θ is a transposition we have also for all i ∈ [1, n] that θ(x)+ δi = θ(x+ δσ(i)).

Therefore if {θ(x), θ(y)} is an edge in the subgraph induced by θ(Γn) then θ(y) =
θ(x) + δi for some i, y = x+ δσ(i) and thus {x, y} ∈ E(Γn). �

Since 0n is a vertex of degree n in Γn this graph cannot be a subgraph of Γm for
m < n thus this mapping in Γn is optimal. Conversely it might be interesting to
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determine the minimum m such that Γn is isomorphic to an induced subgraph of Γm.
We already know that m ≤ 2n − 1 since the hypercube Qn is an induced subgraph of
Γ2n−1 [10].
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