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Introduction and notations

An interconnection topology can be represented by a graph G = (V, E), where V denotes the processors and E the communication links. The hypercube Q n is a popular interconnection network because of its structural properties. The Fibonacci cube of dimension n, denoted as Γ n , is the subgraph of the hypercube induced by vertices with no consecutive 1's. This graph was introduced in [START_REF] Hsu | Fibonacci cubes-a new interconnection topology[END_REF] as a new interconnection network.

Γ n is an isometric subgraph of the hypercube which is inspired in the Fibonacci numbers. It has attractive recurrent structures such as its decomposition into two subgraphs which are also Fibonacci cubes by themselves. Structural properties of these graphs were more extensively studied afterwards. See [START_REF] Klavžar | Structure of fibonacci cubes: a survey[END_REF] for a survey.

Lucas cubes, introduced in [START_REF] Munarini | On the lucas cubes[END_REF], have attracted the attention as well due to the fact that these cubes are the cyclic version of Fibonacci cubes. They have also been widely studied [START_REF] Castro | On the domination number and the 2-packing number of fibonacci cubes and lucas cubes[END_REF][START_REF] Castro | The eccentricity sequences of fibonacci and lucas cubes[END_REF][START_REF] Dedó | The observability of the fibonacci and the lucas cubes[END_REF][START_REF] Klavžar | Cube polynomial of fibonacci and lucas cubes[END_REF][START_REF] Klavžar | The degree sequence of fibonacci and lucas cubes[END_REF][START_REF] Ramras | Congestion-free routing of linear permutations on fibonacci and lucas cubes[END_REF]. The determination of degree sequence [START_REF] Klavžar | The degree sequence of fibonacci and lucas cubes[END_REF] is one of the first enumerative results about Fibonacci cubes. Let G = (V (G), E(G)) be a connected graph. The degree of a vertex x is denoted by d G (x) or d(x) when there is no ambiguity. The imbalance of an edge e = {x, y} ∈ E(G) is defined by imb G (e) = |d G (x)d G (y)|. The irregularity of a non regular graph G is

irr(G) = e∈E(G) imb G (e).
This concept of irregularity was introduced in [START_REF] Albertson | The irregularity of a graph[END_REF] as a measure of graph's global nonregularity.

In two recent papers [START_REF] Alizadeh | On the irregularity of πpermutation graphs, fibonacci cubes, and trees[END_REF][START_REF] Egecioglu | The irregularity polynomials of fibonacci and lucas cubes[END_REF] using the inductive structure of Fibonacci cubes it is proved that irr(Γ n ) = 2|E(Γ n-1 )| and irr(Λ n ) = 2n|V (Γ n-4 )|. One of our motivation is to give direct bijective proofs of these remarkable properties.

The generalized Fibonacci cube Γ n (s) is the graph obtained from Q n by removing all vertices that contain a given binary string s as a substring. For example Γ n (11) = Γ n . Daisy cubes are an other kind of generalization of Fibonacci cubes introduced in [START_REF] Klavžar | Daisy cubes and distance cube polynomial[END_REF]. For G an induced subgraph of Q n , the cube-complement of G is the graph induced by the vertices of Q n which are not in G. In [START_REF] Vesel | Cube-complements of generalized fibonacci cubes[END_REF] the questions whether the cube complement of generalized Fibonacci cube is connected, an isometric subgraph of a hypercube or a median graph are studied. It is also proved in the same paper that the cube-complement of a daisy cube is a daisy cube. We consider in the last section Γ n the cube complement of Γ n .

We give the number of edges of Γ n and determine, using the main lemma of the first section, the degree sequence of Γ n . We will also study the embedding of Γ n in Γ n .

We will next give some concepts and notations needed in this paper. We note by [1, n] the set of integers i such that 1 ≤ i ≤ n. The vertex set of the hypercube of dimension n Q n is the set B n of binary strings of length n, two vertices being adjacent if they differ in precisely one position. We will note x i the binary complement of x i .

Let x = x 1 . . . x n be a binary string and i ∈ [1, n] we will denote by x + δ i the string x ′ 1 . . . x ′ n where x ′ j = x j for j = i and x ′ j = x j otherwise. We will say that the edge {x, x + δ i } uses the direction i. The endpoint x such that x i = 1 of an edge using the direction i will be called upper endpoint and y the lower endpoint.

A Fibonacci string of length n is a binary string

b = b 1 b 2 . . . b n with b i • b i+1 = 0 for 1 ≤ i < n.
In other words a Fibonacci string is a binary string without 11 as substring. The Fibonacci cube Γ n (n ≥ 1) is the subgraph of Q n induced by the Fibonacci strings of length n. Because of the empty string ǫ,

Γ 0 = K 1 . A Fibonacci string b of length n is a Lucas string if b 1 • b n = 1.
That is, a Lucas string has no two consecutive 1's including the first and the last elements of the string. The Lucas cube Λ n is the subgraph of Q n induced by the Lucas strings of length n. We have Λ 0 = Λ 1 = K 1 . Let F n be the nth Fibonacci number:

F 0 = 0, F 1 = 1, F n = F n-1 + F n-2 for n ≥ 2.
Let F n and L n be the sets of strings of Fibonacci strings and Lucas strings of length n. Let F 1. n and F 0. n be the set of strings of F n that begin with 1 and that do not begin with 1, respectively. Note that with this definition F 0. 0 = {ǫ} and F 1. 0 = ∅. Let F .0 n be the set of strings of F n that do not end with 1. Thus |F .0 n | = |F 0. n |. Let F 00 n be the set of strings of F 0.

n that do not end with 1. With this definition F 00 0 = {ǫ}, F 00 1 = {0} and F 00 2 = {00}.

From F n+2 = {0s; s ∈ F n+1 } ∪ {10s; s ∈ F n }, F 0. n+1 = {0s; s ∈ F n }and F 1. n+1 = {1s; s ∈ F 0.
n } we obtain the following classical result.

Proposition 1.1 Let n ≥ 0. The numbers of Fibonacci strings in F n , F 0. n and F 1. n are |F n | = F n+2 , |F 0. n | = F n+1 and |F 1. n | = F n respectively. Let n ≥ 1. The number of Fibonacci strings in F 00 n is |F 00 n | = F n .
The following expressions for the number of edges in Γ n are obtained in [START_REF] Klavžar | On median nature and enumerative properties of fibonacci-like cubes[END_REF] and [START_REF] Munarini | On the lucas cubes[END_REF] .

Proposition 1.2 Let n ≥ 0. The number of edges in Γ n is |E(Γ n )| = n i=1 F i F n-i+1 = nF n+1 +2(n+1)Fn 5
and satisfies the induction formula

|E(Γ n+2 )| = |E(Γ n+1 )| + |E(Γ n )| + |V (Γ n )| . Remark 1.3 Let {x, x + δ i } be an edge and θ(x) = ((x 1 x 2 . . . x i-1 ), (x i+1 x i+2 . . . x n )). A combinatorial interpretation of |E(Γ n )| = n i=1 F i F n-i+1 is that for any i ∈ [1, n
] θ is a one to one mapping between the set of edges using the direction i and the Cartesian product

F .0 i-1 × F 0.

n-i

Let G be an induced subgraph of Q n . Let e = {x, y} be an edge of G where y is the lower endpoint of e and x = y + δ i . An edge e ′ = {y, y + δ j } of G will be called an imbalanced edge for e if x + δ j / ∈ V (G) and thus {x, x + δ j } / ∈ E(G). Note that such couple of edges does not exist for G = Q n . We will prove in the next to sections that for G = Γ n and G = Λ n the irregularity of G is the number of such couples of edges (Figure 2). 

Edges in Fibonacci cube

Lemma 2.1 Let x, y be two strings in F n with y = x + δ i and

x i = 1. Then for all j ∈ [1, n] we have x + δ j ∈ F n implies y + δ j ∈ F n . Proof. Assume y + δ j / ∈ F n then y k = 1 for some k in {j -1, j + 1} ∩ [1, n]. But for all p ∈ [1, n] x p = 0 implies y p = 0. Thus x k = 1 and x + δ j / ∈ F n . Lemma 2.2 Let x, y two strings in F n with y = x + δ i . Then for all j ∈ [1, n] with |i -j| > 1 we have x + δ j ∈ F n if and only if y + δ j ∈ F n .
Proof.

• If x j = 1 then y j = x j = 1 and both x + δ j and y + δ j belong to F n .

• Assume x j = 0 thus y j = 0. We have

x + δ j ∈ F n if and only if x k = 0 for all k ∈ {j -1, j + 1} ∩ [1, n]
and

y + δ j ∈ F n if and only if y k = 0 for all k ∈ {j -1, j + 1} ∩ [1, n]. But i / ∈ {j -1, j + 1} ∩ [1, n] thus x k = y k
for all k in this set and the two conditions are equivalent.

Corollary 2.3 Let n ≥ 2 then irr(Γ n ) is the number of couples (e, e ′ ) ∈ E(Γ n ) 2
where e ′ is an imbalanced edge for e.

Proof. By Lemma 2.1 if e = {x, y} is an edge using the direction i with upper endpoint x then d(y) ≥ d(x) and imb(e) is the number of imbalanced edges for e. The conclusion follows.

Furthermore assume that e = {x, y} uses the direction i with x i = 1 and let e ′ = {y, y + δ j } be an imbalanced edge for e. Then by Lemma 2.2 we have j = i + 1 or j = i -1.

We will call e ′ a right or left imbalanced edge for e accordingly. Let R Γn and L Γn be the sets of couples (e, e ′ ) where e ′ is a right imbalanced edge for e and a left imbalanced edge for e, respectively, where e goes through E(Γ n ).

Theorem 2.4 Let n ≥ 2. There exists a one to one mapping between R Γn or L Γn and E(Γ n-1 ).

Proof. Let (e, e ′ ) ∈ R Γn . Assume that x is the upper endpoint of e = {x, y}. We have thus y = x + δ i and

x i = 1 for some i ∈ [1, n -1]. Let θ((e, e ′ )) = {x 1 x 2 . . . x i-1 1x i+2 x i+3 . . . x n , x 1 x 2 . . . x i-1 0x i+2 x i+3 . . . x n }.
Since x and y belong to F n and the edges e, e ′ use the direction i, i + 1 we have

x k = y k = 0 for k in {i -1, i + 2} ∩ [1, n]. Therefore x 1 x 2 . . . x i-1 1x i+2 x i+3 . . . x n is a Fibonacci string and θ((e, e ′ )) belongs to E(Γ n-1 ). Conversely let f = {z 1 z 2 . . . z i-1 0z i+1 z i+2 . . . z n-1 , z 1 z 2 . . . z i-1 1z i+1 z i+2 . . . z n-1 } be an arbitrary edge of Γ n-1 then z k = 0 for k in {i -1, i + 1} ∩ [1, n -1]. Thus x = z 1 z 2 . . . z i-1 10z i+1 z i+2 . . . z n-1 and t = z 1 z 2 . . . z i-1 01z i+1 z i+2 . . . z n-1 are in F n .
The edge {t, t + δ i+1 } is a right imbalanced edge for the edge {x, x + δ i }. Furthermore θ({x, x + δ i }, {t, t + δ i+1 }) = f and θ is a bijection.

Similarly let φ((e, e ′ )) = {x 1 x 2 . . . x i-2 1x i+1 x i+2 . . . x n , x 1 x 2 . . . x i-2 0x i+1 x i+2 . . . x n } where x is the upper end point of an edge e using the direction i and such that (e, e ′ ) ∈ L Γn . Then φ is a one to one mapping between L Γn and E(Γ n-1 ).

As an immediate corollary we deduce the result of Alizadeh and his co-authors [START_REF] Alizadeh | On the irregularity of πpermutation graphs, fibonacci cubes, and trees[END_REF] Corollary 2.5

irr

(Γ n ) = 2|E(Γ n-1 )|.
An other consequence of Lemma 2.2 is the following classification of the edges according to their imbalance. Note that from this classification we obtain a constant time algorithm for computing the imbalance of an edge of Γ n .

Theorem 2.6 Let n ≥ 4 and e = {x, y} be an edge of Γ n using direction i. Then imb({x, y}) follows Table 1.

Proof. Assume that x is the upper endpoint of the edge e = {x, y}. There exists an edge e ′ such that e ′ is a right imbalanced edge for e if and only if

i ∈ [1, n -1] and imb({x, x + δ i }) i = 1 i = 2 3 ≤ i ≤ n -2 i = n -1 i = n x 3 x 4 x i-2 x i+2 x n-3 x n-2 0 1 1 1 1 1 0 1 0 1 1 0 1 0 2 0 0 0 0 Table 1: imb(e) in Γ n e ′ = {y, y + δ i+1 } thus if y + δ i+1 ∈ F n . Since y i = 0, y + δ i+1 is a Fibonacci string if and only if i = n -1 or if y i+2 = x i+2 = 0 in the general case i ∈ [1, n -2].
Similarly there exists an edge e ′ such that e ′ is a left imbalanced edge for e if and only if i ∈ [2, n] and e ′ = {y, y

+ δ i-1 } thus if y + δ i-1 ∈ F n . Since y i = 0, y + δ i-1 is a Fibonacci string if and only if i = 2 or if y i-2 = x i-2 = 0 when i ∈ [3, n].
Therefore imb(e) is completely determined by the values of x i+2 , x i-2 according to Table 1.

Let e be an edge of Γ n then by Lemma 2.2 imb(e) ≤ 2. Let A, B, C be the sets of edges with imb(e) = 0, imb(e) = 1 and imb(e) = 2, respectively. Theorem 2.7 Let n ≥ 2. The numbers of edges of Γ n with imbalance 0,1 and 2 are respectively

|A| = n-2 i=3 F i-2 F n-i-1 + 2F n-2 |B| = 2 n-3 i=1 F i F n-i-2 + 2F n-1 |C| = n-1 i=2 F i-1 F n-i .
Remark 2.8 Note that |B| + 2|C| = 2|E(Γ n-1 )| and we obtain again the result of Alizadeh and his co-authors.

Proof. The case n ≤ 3 is obtained by direct inspection. Assume n ≥ 4. For i ∈ [1, n] let E i be the set of edges {x, y} of Γ i with y = x + δ i . Let A i = A ∩ E i , B i = B ∩ E i and C i = C ∩ E i . Let e = {x, y} be an edge of Γ n . • If e ∈ A i then by Table 1 we have i ∈ [3, n -2] or i ∈ {1, n}. If i ∈ [3, n -2] then θ(e) = (x 1 x 2 . . . x i-2 , x i+2 x i+3 . . . x n ) is a one to one mapping between A i and F .1 i-2 × F 1. n-i-1 .
If i = 1 then φ(e) = x 3 x 4 . . . x n is a one to one mapping between A 1 and F 1. n-2 . Similarly Ψ(e) = x 1 x 2 . . . x n-2 is a one to one mapping between A n and F .1 n-2 . By Proposition 1.1 we obtain

|A| = n-2 i=3 F i-2 F n-i-1 + 2F n-2 .
• If e ∈ C i then by Table 1 we

have i ∈ [2, n-1]. Let θ(e) = (x 1 x 2 . . . x i-2 , x i+2 x i+3 . . . x n ).
Then θ is a one to one mapping between C i and F .0 i-2 × F 0. n-i-1 . The expression of |C| follows.

• Assume e ∈ B i and that there exists a right imbalanced edge for e therefore no left imbalanced edge. We have thus

i ∈ [1, n -1] and i = 2. If i ∈ [3, n -1] then θ(e) = (x 1 x 2 . . . x i-2 , x i+2 x i+3 . . . x n )
is a one to one mapping this kind of edges and and

F .1 i-2 × F 0. n-i-1 . If i = 1 then φ(e) = x 3 x 4 . . .
x n is a one to one mapping between this kind of edges and F 0.

n-2 . Thus this case contributes

n-1 i=3 F i-2 F n-i + F n-1 = n-3 i=1 F i F n-i-2 + F n-1 to B.
• Assume e ∈ B i and that there exists a left imbalanced edge for e thus no right imbalanced edge. By a similar construction this case contributes also

n-3 i=1 F i F n-i-2 + F n-1 to B.
The expression of |B| follows.

Edges in Lucas cube

For any integer i let i = ((i -1) mod n) + 1. Thus i = i for i ∈ [1, n] and n + 1 = 1, 0 = n. With this notation i and i + 1 are cyclically consecutive in [1, n]. Therefore for x ∈ L n with x i = 0 the string x + δ i belongs to L n if and only if x k = 0 for all k ∈ {i -1, i + 1}. Note also that k ∈ {i -1, i + 1} if and only if i ∈ {k -1, k + 1} Lemma 3.1 Let x, y be two strings in L n with y = x + δ i and x i = 1. Then for all j ∈ [1, n] we have x + δ j ∈ L n implies y + δ j ∈ L n .

Proof. Assume y + δ j / ∈ L n then y k = 1 for some k in {j -1, j + 1}. But for all p ∈ [1, n] x p = 0 implies y p = 0. Thus x k = 1 and x + δ j / ∈ L n .

Lemma 3.2 Let x, y two strings in L n with y = x + δ i . Then for all j ∈ [1, n] with j / ∈ {i -1, i + 1} we have

x + δ j ∈ L n if and only if y + δ j ∈ L n .
Proof. This is true for j = i thus assume j = i.

• If x j = 1 then y j = x j = 1 and both x + δ j and y + δ j belong to L n .

• Assume x j = 0 thus y j = 0. We have

x + δ j ∈ L n if and only if x k = 0 for all k ∈ {j -1, j + 1} and y + δ j ∈ L n if and only if y k = 0 for all k ∈ {j -1, j + 1}.

But i / ∈ {j -1, j + 1} thus x k = y k for all k in this set and the two conditions are equivalent.

From this two lemmas we deduce the equivalent for Lucas cube of Corollary 2.3. 2 where e ′ is an imbalanced edge for e.

Corollary 3.3 Let n ≥ 2 then irr(Λ n ) is the number of couples (e, e ′ ) ∈ E(Λ n )
Let e ′ = {y, y+δ j } be an imbalanced edge for e then by Lemma 3.2 we have j = i+1 or j = i -1. We will call e ′ a cyclically right or cyclically left imbalanced edge for e accordingly. Let R i Λn be the set of (e, e ′ ) where e ′ is a cyclically right imbalanced edge for e and e uses the direction i. Similarly let L i Λn be the equivalent set for cyclically left imbalanced edges.

Theorem 3.4 Let n ≥ 4 and i ∈ [1, n]. There exists a one to one mapping between R i

Λn or L i λn and F n-4 .

Proof. Since x 1 x 2 . . . x n → x i x i+1 . . . x n x 1 x 2 . . . x i-1 is an automorphism of Λ n we can assume without loss of generality that i = 1. Let (e, e ′ ) in R 1 Λn . Assume that x is the upper endpoint of e = {x, y}. We have thus y = x + δ 1 and x 1 = 1. Let θ((e, e ′ )) = x 4 x 5 . . . x n-1 . As a substring of x the string x 4 x 5 . . . x n-1 belongs to F n-4 . Furthermore since e and e ′ use the directions 1 and 2 we have x n = x 2 = x 3 = 0. Therefore θ((e, e ′ )) = x 4 x 5 . . . x n-1 defines x thus defines (e, e ′ ) and θ is injective. Conversely let z 1 z 2 . . . z n-4 be an arbitrary string of F n-4 . Let x = 100z 1 z 2 . . . z n-4 0, t = 010z 1 z 2 . . . z n-4 0, e = {x, x + δ 1 } and e ′ = {t, t + δ 2 }. Note that t + δ 2 = x + δ 1 and x + δ 2 / ∈ L n thus by Lemma 3.2 (e, e ′ ) ∈ R 1 Λn . Therefore θ is surjective. The proof that φ((e, e ′ )) = x 3 x 4 . . . x n-2 where e = {x, x + δ 1 } defines a one to one mapping between L 1 λn and F n-4 is similar.

As an immediate corollary we deduce the result obtained in [START_REF] Egecioglu | The irregularity polynomials of fibonacci and lucas cubes[END_REF] Corollary 3.5 For all n ≥ 3 irr

(Λ n ) = 2n|F n-2 |.
Like in Γ n it is not necessary to know the degree of his endpoints for computing the imbalance of an edge in Λ n .

imb({x, x + δ i }) x i-2 x i+2 0 1 1 1 0 1 1 0 2 0 0 Table 2: imb(e) in Λ n
Theorem 3.6 Let n ≥ 4 and e = {x, y} be an edge of Λ n with y = x + δ i . Then imb(e) follows Table 2 where their indices i -2 and i + 2 are taken cyclically in [1, n].

Proof. Assume that x is the upper endpoint of the edge. Since x i+1 = y i+1 = 0 there exists a couple (e, e ′ ) in R i Λn if and only if e ′ = {y, y + δ i+1 } and x i+2 = 0. Since x i-1 = y i-1 = 0 there exists a couple (e, e ′ ) in L i Λn if and only if e ′ = {y, y + δ i-1 } and x i-2 = 0. Therefore imb(e) is completely determined by the values of x i+2 , x i-2 according to Table 2.

Let e = {x, x + δ i } be an edge of Λ n and θ(e) = x i+1 x i+2 . . . x n x 1 x 2 . . . x i-1 . Note that θ is a one to one mapping between the set of edges using the direction i and F 00 n-1 . This remark gives a combinatorial interpretation of the well known result |E(Λ n )| = nF n-1 [START_REF] Munarini | On the lucas cubes[END_REF]. We will use the same idea for the number edges with a given imbalance. Proof. For i ∈ [1, n] let E i be the set of edges {x, y} using direction i. Since the number of edges in E i with a given imbalance is independent of i we can assume without loss of generality that i = 1 and consider

A 1 = A ∩ E 1 , B 1 = B ∩ E 1 and C 1 = C ∩ C 1 .
Let x be the end point such that x 1 = 1. We have thus x 2 = x n = 0, x + δ 2 / ∈ L n and x + δ n / ∈ L n .

• Assume x 3 = x n-1 = 0. Then y + δ 2 ∈ L n , y + δ n ∈ L n and the edge {x, y} belongs to C 1 . Furthermore θ(x) = x 3 x 4 . . . x n-1 is one to one mapping between the set of this kind of edges and F 00 n-3 . The contribution of this case to C 1 is F n-3 .

• Assume x 3 = x n-1 = 1. Then y + δ 2 / ∈ L n , y + δ n /
∈ L n and the edge {x, y} belongs to A 1 . Since x 4 = x n-2 = 0, θ(x) = x 4 x 5 . . . x n-2 is one to one mapping between the set of this kind of edges and F 00 n-5 . The contribution of this case to A 1 is F n-5 .

• Assume x 3 = 1 and x n-1 = 0. Then y + δ 2 / ∈ L n , y + δ n ∈ L n . The edge {x, y} belongs to B 1 . Furthermore θ(x) = x 4 x 5 . . . x n-1 is one to one mapping between the set of this kind of edges and F 00 n-4 . The contribution of this case to B 1 is F n-4 .

• The case x 3 = 0 and x n-1 = 1 is similar and thus contributes also F n-4 to B 1 4 Cube-complement of Fibonacci cube Let F n be the set of binary strings of length n with 11 as substring. We will call the strings in F n non-Fibonacci strings of length n. The cube complement of Γ n is Γ n the subgraph of Q n induced by F n . Note that F n is connected since there is always a path between any vertex x ∈ V (Γ n ) and

1 n . Furthermore |V (Γ n )| = 2 n -F n+2 .
Let A n ,B n ,C n be the sets of edges of Q n incident to 0,1 and 2, respectively, strings of F n . We have thus

A n = E(Γ n ) and C n = E(Γ n ). Proposition 4.1 |E(Q n )| = |E(Γ n )| + |B n | + |E(Γ n )| is the total number of 0's in binary strings of length n. |B n | + |E(Γ n )| is the total number of 0's in Fibonacci strings of length n. |B n | + |E(Γ n )| is the total number of 1's in non-Fibonacci strings of length n. |E(Γ n )|
is the total number of 0's in non-Fibonacci strings of length n. |E(Γ n )| is the total number of 1's in Fibonacci strings of length n.

Proof. Let e be an edge of Q n and let x, y such that e = {x, y} with x i = 0 and y i = 1. Define the mappings φ({x, y}) = (x, i) and ψ({x, y}) = (y, i). Note that φ is a one to one mapping between E(Q n ) and {(s, i); s ∈ B n , s i = 0} the set of 0's appearing in strings of B n . Likewise ψ is a one to one mapping between E(Q n ) and {(s, i); s ∈ B n , s i = 1} the set of 1's appearing in strings of B n . Furthermore an edge incident to exactly one Fibonacci string z is mapped by φ to (z, i) and by ψ to (z + δ i , i). Therefore the restriction of the reverse mapping φ -1 to {(s, i); s ∈ F n , s i = 0} the set of 0's appearing in strings of F n , is a one to one mapping to the edges of E(Γ n ) ∪ B n . For the same reason the restriction of the reverse mapping ψ -1 to {(s, i); s ∈ F n , s i = 1}, the set of 1's appearing in strings of F n , is a one to one mapping to the edges of E(Γ n ) ∪ B n . Since a binary string is a Fibonacci string or a non-Fibonacci string we can deduce the last two affirmations from the previous. We can also give a direct proof. Indeed the restriction of φ to edges of Γ n define a one to one mapping between E(Γ n ) and {(s, i); s ∈ F n , s i = 0}. Likewise the restriction of ψ to edges of Γ n define a one to one mapping between E(Γ n ) and {(s, i); s ∈ F n , s i = 1}.

-|E(Q n-2 | edges between vertices of {11s; s ∈ B n-2 }.

-Edges between vertices of {0s; s ∈ F n-1 } and {10s; s ∈ F n-2 }. Those edges are the |V (Γ n-2 )| edges {00s, 10s} where s ∈ F n-2 .

-Edges between vertices of {10s; s ∈ F n-2 } and {11s; s ∈ B n-2 }. Those edges are the |V (Γ n-2 )| edges {10s, 11s} where s ∈ F n-2 .

-Edges between vertices of {0s; s ∈ F n-1 } and {11s; s ∈ B n-2 }. Those edges are the 2 n-2 -F n-1 edges {0s, 1s} where s is a string of F

1. n-1 . Therefore |E(Γ n )| = |E(Γ n-1 )| + |E(Γ n-2 )| + (n -2)2 n-3 + 2(2 n-2 -F n ) + 2 n-2 -F n-1 .
We will call block of a binary string s a maximal substring of consecutive 1's. Therefore a string in F n is as string with a least one block of length greater that 1. The degree of a vertex of Γ n lies between ⌊(n + 2)/3⌋ and n. The number of vertices of a given degree is determined in [START_REF] Klavžar | The degree sequence of fibonacci and lucas cubes[END_REF]. We will now give a similar result for Γ n . Theorem 4.5 The degree of a vertex in Γ n is n, n -1 or n -2 and the number of vertices of a given degree are: , (n-2)F n-1 +(2n-2)F n-2 5 and 2 n -(3n+7)Fn+(n+5)F n-1

|E(Γ n-1 )| vertices of degree n -2 |E(Γ n-2 )| vertices of degree n -1 n-4 k=0 2 k |E(Γ n-k-3 )| vertices of degree n.

5

.

Proof. This is true for n ≤ 3 thus assume n ≥ 4. Let x be a vertex of Γ n and consider the indices i l and i r such that x i l x i l +1 and x ir x ir+1 are the leftmost, rightmost respectively, pairs of consecutive 1's. Thus i l = min{i; x i x i+1 = 11} and i r = max{i; x i x i+1 = 11}. Consider the three possible cases • i r = i l . Then there exists a unique block of length at least 2 and this block

x i l x i l +1 is of length 2. Thus x 1 . . . x i l -1 ∈ F .0 i l -1 and x i l +2 . . . x n ∈ F 0. n-i l -1 . For i = i l or i = i l + 1 the string x + δ i is a Fibonacci string. For i distinct of i l and i l + 1 then x + δ i is a string of F n . Therefore d(x) = n -2.
Since x 1 . . . x i l -1 and x i l +2 . . . x n are arbitrary strings of F .0 i l -1 and F 0. n-i l -1 the number of vertices of this kind is by Proposition 1

.1 n-1 i l =1 F i l F n-i l = |E(Γ n-1 )|.
• i r = i l + 1. Then there exists a unique block of length at least 2 and this block

x i l x i l +1 x i l +2 is of length 3. Thus x = x 1 . . . x i l -1 111x i l +3 . . . x n where x 1 . . . x i l -1 ∈ F .0 i l -1 and x i l +3 . . . x n ∈ F 0. n-i l -2 . For i = i l + 1 the string x + δ i is a Fibonacci string. For i distinct of i l + 1 then x + δ i is a string of F n . Therefore d(x) = n -1.
Since x 1 . . . x i l -1 and x i l +3 . . . x n are arbitrary strings of F .0 i l -1 and F 0. n-i l -2 the number of vertices of this kind is

n-2 i l =1 F i l F n-i l -1 = |E(Γ n-2 )|.
• i r ≥ i l + 2. Then there exists a unique block of length at least 4 or there exist at least two blocks of length at least 2. In both cases for any i ∈ [1, n] x + δ i is a string of F n . Therefore d(x) = n.

Let k = i ri l -2. Note that k ∈ [0, n -4] and k fixed i l ∈ [1, nk -3]. The strings x 1 x 2 . . . x i l -1 and x i l +k+4 x i l +k+5 . . . x n are arbitrary strings in F .0 i l -1 and F 0.

n-k-i l -3 . Since x i l +2 . . . x ir-1 is an arbitrary string in B k the number of vertices of this kind is n-4 k=0 n-k-3 i l =1

2 k F i l F n-k-i l -2 = n-4 k=0 2 k |E(Γ n-k-3 )|.
The sequence 0, 0, 0, 1, 4, 13, 36, . . . formed by the numbers of vertices on degree n in Γ n , (n ≥ 1) already appears in OEIS [START_REF] Neil | The OEIS Foundation Inc. The on-line encyclopedia of integer sequences[END_REF] as sequence A235996 of the number of length n binary words that contain at least one pair of consecutive 0's followed by (at some point in the word) at least one pair of consecutive 1's. This is clearly the same sequence.

As noticed in Figure 1 Γ 3 and Γ 4 are isomorphic to Γ 2 and Γ 4 respectively. Our last result complete this observation. Proof. Let n ≥ 4 and define a mapping between binary strings of length n by θ(x) = θ(x 1 x 2 . . . x n ) = x 4 x 2 x 3 x 1 x 5 x 6 . . . x n . Let σ be the permutation on {1, 2, . . . , n} define by σ(1) = 4, σ(4) = 1 and σ(i) = i for i / ∈ {1, 4}. Note first that x ∈ F n implies θ(x) ∈ F n . Indeed since x 2 x 3 = 11 we have three cases • x 2 x 3 = 00 then x 2 x 3 = 11 is a substring of θ(x)

• x 2 x 3 = 10 then x 1 = 0 and x 3 x 1 = 11 is a substring of θ(x)

• x 2 x 3 = 01 then x 4 = 0 and x 4 x 2 = 11 is a substring of θ(x).

Therefore θ maps vertices of Γ n to vertices in Γ n .

Let {x, x+ δ i } be an edge of Γ n then by construction we have θ(x+ δ i ) = θ(x)+ δ σ(i) and therefore θ(x) and θ(x + δ i ) are adjacent in Γ n .

Since θ is a transposition we have also for all i ∈ [1, n] that θ(x) + δ i = θ(x + δ σ(i) ). Therefore if {θ(x), θ(y)} is an edge in the subgraph induced by θ(Γ n ) then θ(y) = θ(x) + δ i for some i, y = x + δ σ(i) and thus {x, y} ∈ E(Γ n ). Since 0 n is a vertex of degree n in Γ n this graph cannot be a subgraph of Γ m for m < n thus this mapping in Γ n is optimal. Conversely it might be interesting to

Figure 1 :

 1 Figure 1: Γ 2 = Λ 2 , Γ 3 , Λ 3 , Γ 4 , Γ 3 and Γ 4 .

Figure 2 :

 2 Figure 2: irr(Γ n ) and irr(Λ n ) count the couples of edges (e, e ′ ) of the right kind.

Corollary 3 . 7

 37 Let n ≥ 5 then the imbalance of any edge e = {x, y} in Λ n is at most 2. Furthermore if A, B and C are the sets of edges with imbalance 0,1 and 2 respectively then |A| = nF n-5 , |B| = 2nF n-4 and |C| = nF n-3 .

Remark 4 . 6

 46 Using Proposition 1.2 these numbers can be rewritten as, respectively,(n-1)Fn+(2n)F n-1 5

Theorem 4 . 7

 47 For n ≥ 4 Γ n is isomorphic to an induced subgraph of Γ n .

determine the minimum m such that Γ n is isomorphic to an induced subgraph of Γ m . We already know that m ≤ 2n -1 since the hypercube Q n is an induced subgraph of Γ 2n-1 [10].

Proposition 4.2 The total number of number of 0's in Fibonacci strings of length n is n i=1 F i+1 F n-i+2 .

Proof. Let s be a Fibonacci string of length n and i ∈ [1, n] then s 1 s 2 . . . s i-1 and s i+1 s i+2 . . . s n are Fibonacci strings. Reciprocally if u and v are Fibonacci strings then u0v is also a Fibonacci string. Therefore the mapping define by θ(s, i) = (s 1 s 2 . . . s i-1 , s i+1 s i+2 . . . s n ) is a one to one mapping between {(s, i); s ∈ F n , s i = 0} and the Cartesian product F i-1 × F n-i . The identity follows.

Theorem 4.3 The number of edges of Γ n is given by the equivalent expressions:

Proof. Combining the first two identities in Proposition 4.1 together with Proposition 4.2 we obtain the first expression.

For the second expression note first that the n edges of Q n incident to a vertex of F n belongs to E(Γ n ) or B n . Making the sum over all vertices of F n the edges of 

be the set of strings of F n that begin with 1. Since

This identity is also valid for n = 1 or n = 2. Consider the following partition of the set of vertices of Γ n :

From this decomposition the sequence of vertices of Γ n follows the induction

We deduce also a partition of the edges Γ n in six sets:

-|E(Γ n-1 )| edges between vertices of {0s; s ∈ F n-1 }.

-|E(Γ n-2 )| edges between vertices of {10s; s ∈ F n-2 }.