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Abstract

Coconut water (Cocos Nucifera) is shown to be a source of essential elements present in the form of
low-molecular weight stable complexes known for their bio-availability. The total element
concentrations were in the range of 0.2-2.7, 0.3-1, 3-14 and 0.5-2 ppm for Fe, Cu, Mn, and Zn,
respectively, and varied as a function of the origin of the nut and its maturity. Speciation was
investigated by size-exclusion chromatography - inductively coupled plasma mass spectrometry
(ICP MS), and hydrophilic interaction liquid chromatography (HILIC) - electrospray-Orbitrap MS.
The metal species identified included: iron complexes with citrate and malate: Fe"™(Cit)s(Mal),
Fel'(Cit),(Mal),, Fe"(Mal),, glutamine: Fe'(Glu), and nicotianamine: Fe"(NA); copper complexes
with phenylanine: Cu"(Phe), and Cu"(Phe); and nicotianamine: Cu'(NA); zinc complexes with citrate:
Zn"(Cit), and nicotianamine Zn"(NA) and manganese complex with asparagine Mn"(Asp),. The
contributions of the individual species to the total elements concentrations could be estimated by
HILIC — ICP MS.

Keywords

Coconut water; trace elements; speciation, SEC-ICP MS; ESI MS; HILIC; low-molecular weight
complexes

1. INTRODUCTION

Trace elements are required for normal growth, development and physiology of animals and man
(Sigel, Sigel, & Sigel, 2013). Several metals, such as iron, copper, manganese and zinc, are vital for
cellular functions, enzymatic activation, gene expression and metabolism of amino acids, lipids and
carbohydrates (Sigel, Sigel, & Sigel, 2013). One of the most widespread dietary problems in the world
is mineral deficiency (Gregory, Wahbi, Adu-Gyamfi, Heiling, Gruber, Joy, et al., 2017). It is
associated not only with the low concentration of an element in food but also depends on the chemical
form in which the element is present. Indeed, some forms of an element can be more available than
others (Gharibzahedi & Jafari, 2017).

The problem of trace element deficiency has been addressed by the production and marketing of feed
and food supplements in the form of low-molecular weight metal chelates. These supplements are
expected either to provide the metal as a highly available species or to increase its bioavailability by
containing 'promoter' substances, such as ascorbate, B-carotene and cysteine-rich polypeptides which
stimulate the absorption of essential mineral elements by the gut (White & Broadley, 2009). In these
products, the mineral is bound to an organic (i.e., carbon-containing) molecule, typically a carboxylic
or amino acid. The popular food supplements include glucinates of iron, zinc, copper and manganese,
citrates of iron and zinc, glycinates of copper, iron, zinc and manganese, iron lactate and fumarate,
zinc picolinate, acetate and orotate (Hurrell, Lynch, Bothwell, Cori, Glahn, Hertrampf, et al., 2004).
Similarly, organic Cu sources have been shown to be more bioavailable than inorganic Cu sources in
some animal studies (Spears, 2003). Zinc absorption from supplemental zinc citrate or gluconate was
higher than from zinc oxide (Wegmdiller, Tay, Zeder, Brni¢, & Hurrell, 2014). The bioavailability of
Mn-methionine for animals was found to be greater than that of manganese sulfate or manganese
oxide (Henry, Ammerman, & Littell, 1992). A major inconvenience of the artificial supplementation is
the effect of the increase of one element on the deterioration of the availability of the other; e.g., it was
shown that Cu and Zn inhibited Fe uptake, and while Fe inhibited Cu uptake, Zn did not (Rakhra,
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Masih, Vats, Vijay, Ashraf, & Singh, 2020). Also, some of the most efficient iron chelates cannot be
used in many food vehicles because of sensory issues (Hurrell, et al., 2004). Therefore, natural,
equilibrated sources of trace elements present in low-molecular weight complexes have to be searched
for.

A good example of such a source is goji beers (Lycium Barbarum, L.) which were demonstrated to
contain a dozen of LMW complexes of Cu and Zn, with amino acids and anti-oxidant ligands (Ruzik
& Kwiatkowski, 2018). Strategies to overcome the low iron and zinc bioavailability from cereals,
attributed to their scavenging and complexation by phytates (EFSA, 2017), include a genetic
modification aimed at the overproduction of an Fe-binding LMW ligand, nicotianamine (Clemens,
2014; Connorton & Balk, 2019; Lee, Jeon, Lee, Kim Y.K., Persson, Husted, et al., 2009). The
tolerance to Fe and Zn deficiencies was observed in animals fed with genetically modified grains
containing high contents of LMW metal complexes (Lee, et al., 2009). The chemical speciation of
manganese in foods has not been investigated so far.

Coconut water is the juice found inside a young coconut (fruit of the palm tree Cocos nucifera) which
accounts for ca. 25% of fruit weight. It has become a trendy beverage, known for its nutritional
properties and a good source of fiber, vitamin C and several important minerals, in particular
potassium and manganese (Santoso, Kubo, Ota, Tadokoro, & Maekawa, 1996; Yong, Ge, Ng, & Tan,
2009). Data on the trace element concentration in coconut water are scarce. The concentrations
obtained in a recent study of coconut water from Bangladesh reported the metal concentrations in the
ranges of 0.3 to 1.5, 7.77 to 21.2, 0 to 0.71, 0 t0 0.9, 0 to 0.2, 0.9 to 17.3, 0.1 t0 0.9, 0 to 0.9 and 0 to
0.7 mg/1 for Fe, Ni, Cu, Cd, Cr, Zn, Pb and Se respectively (Md Didarul, Rahaman, & Afrose, 2018).
Another work, focused on Pb and Cd found that their concentrations in coconut water were below the
maximum tolerated levels in Brazil (Paixao, Brandao, Araujo, & Korn, 2019). To our best knowledge,
the speciation of trace elements in coconut water has never been studied.

The objective of this work was to verify the hypothesis that the essential trace metals present in
coconut water occur as low molecular weight (LMW) complexes which could make concentrated
coconut water a valuable natural food and feed supplement. As coconut water is, technically speaking,
endosperm liquid, the methodology based on the coupling of different mechanisms of high
performance liquid chromatography (HPLC) with element (ICP MS) and molecule specific (ESI MS)
detection developed previously (Flis, Ouerdane, Grillet, Curie, Mari, & Lobinski, 2016) for the
endosperm liquid, and successfully used elsewhere, for the speciation of Zn in Goji berries (Ruzik &
Kwiatkowski, 2018; J. Wojcieszek, Kwiatkowski, & Ruzik, 2017) was adapted. As sample
preparation is known to highly influence species stability and thus, analytical results, sample
preparation was limited to dilution with the chromatographic mobile phase and ultracentrifugation.

Size-exclusion chromatography using polymer stationary phase is as recognized technique for the
fractionation of metal complexes in the biological cytosols (Szpunar, 2005). Although, the separation
efficiency is poor and the elution volume is hardly a simple function of the molecular mass because of
the presence of non-specific interactions (in addition to the molecular sieve effect) of the analytes with
the stationary phase, the technique has the advantage of respecting the natural pH of the sample and
measuring quantitatively the distribution between thermodynamically stable high and low molecular
weight complexes and ionic or weakly bound species (Szpunar, 2005). Hydrophilic interaction liquid
chromatography (HILIC) is the method of preference for separation of LMW polar species (Buszewski
& Noga, 2012), and therefore has been chosen for studies of metal complexes present in the coconut
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water. When properly optimized, HILIC provides high resolution chromatograms with peaks
corresponding to individual species (Montes-Bayén, Sharar, & Corte-Rodriguez, 2018).

In addition to the qualitative metal speciation, our second objective was to investigate the quantitative
distribution of the metals amongst the identified metal species. Quantitative speciation of LMW metal
complexes is hardly possible at the current state of the art of methodological developments. The
principal reasons are (i) the difference in the behaviour of the synthetic species and those naturally
present in the sample, and (ii) the risk of the modification of the equilibrium by the spike. Indeed, the
stability and stoichiometry of mixed ligand complexes are dependent on the chemical environment and
are difficult to control, especially in a natural sample (Dell'mour, Schenkeveld, Oburger, Fischer,
Kraemer, Puschenreiter, et al., 2012). The alternative is the use of another metal species for calibration
(Boiteau, Shaw, Pasa-Tolic, Koppenaal, & Jansson, 2018), either in an independent HPLC run or by
post-column addition of a known amount of metal, but this approach requires both the total recovery
of the metal from the column and the baseline separation of the metal species of interest. Boiteau et al.
proposed, for the quantification of iron species, a calibration curve constructed for the Fe-EDTA
complex; in the case of co-elution, the peak area was deconvoluted on the basis of the relative
intensities obtained byLC-ESI MS (Boiteau, Shaw, Pasa-Tolic, Koppenaal, & Jansson, 2018). Rellan-
Alvarez et al. used post-column isotope dilution with **Fe to quantify the eluting Fe complexes but the
recoveries of iron were very low (25%) (Rellén-Alvarez, Giner-Martinez-Sierra, Orduna, Orera,
Rodriguez-Castrilln, Garcia-Alonso, et al., 2010). Nischwitz et al proposed post-column Fe addition in
size-exlusion LC — ICP MS but the chromatographic resolution was too low to distinguish amongst the
individual species, and the metal recoveries could not be controlled (Nischwitz, Berthele, & Michalke,
2008). Finally, Latorre et al., proposed the metal-species fraction collection and the determination of
the collected metal in SEC ICP MS but, again, the method quantified the metal fraction and not the
individual species (Latorre, Herbello-Hermelo, Pefia-Farfal, Neira, Bermejo-Barrera, & Moreda-
Pifieiro, 2019). Our strategy has been based on the optimization of the HPLC conditions to allow the
individual metal-species separation, good (close to quantitative) metal recovery, and correction of the
effect of the change in the mobile phase composition on the sensitivity.

2. EXPERIMENTAL

2.1. Samples, materials, and reagents

Samples and materials. The coconut samples were acquired from different suppliers in France, Spain
and Switzerland; two of the analysed coconuts were harvested directly from a coconut tree in
Thailand. A standard reference material (CRM-MFD Mixed Food Diet, HPS, North Charleston, SC)
was analysed to validate the results of the determination of the total Fe, Mn, Cu and Zn concentrations.

Reagents. The reagents used for digestions, dilutions and the preparation of HPLC mobile phases were
obtained from Sigma-Aldrich, St. Louis, MO unless state otherwise. They were: ammonium acetate
(>98% for molecular biology), nitric acid (70%, Fisher Chemical, Loughborough, UK), acetonitrile
(>99.9%), hydrogen peroxide (30%), formic acid and hydrochloric acid (37%, Fluka, Steinheim,
Germany). Standard solutions (1000 ppm) of Fe, Mn, Cu, Zn, Rh, Sc (SCP Science, Villebon-sur-
Yvette, France) were used for the preparation of calibration curves and as internal standards (Sc and
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Rh). EDTA (ethylene-diaminetetraacetic acid) was used for column cleaning. Milli-Q® Type 1
Ultrapure Water Systems (Millipore, Bedford, MA) deionized water was used throughout.

2.2. Instrumentation

A DigiPrep MS system (SCP Science, Quebec, Canada) was used for sample digestion. Samples were
centrifuged using a MiniSpin centrifuge (Eppendorf, Hamburg, Germany). Two chromatographic
systems were used for the separation of the analytes: Agilent 1200 Series (Agilent, Tokyo, Japan)
fitted with a Superdex-75 10/300 GL SEC column (separation range 3000 and 70 000 Da, 10 x 300
mm) (GE Healthcare, www3.gehealthcare.com); and Dionex Ultimate 3000 RS (Thermo Scientific,
Bremen, Germany) fitted with a Kinetex HILIC column (150 x 2.1 mm x 2.6 um) (Phenomenex,
www.phenomenex.com) and a Security Guard (2.1 mm x 3 um) pre-column (ULTRA,
www.phenomenex.com). The ICP MS spectrometers were ICP-MS 7500 (Agilent, Tokyo, Japan)
equipped with an integrated autosampler (I-AS) used for the total analysis and Agilent 7700x (Agilent,
Tokyo, Japan) used for coupling with HPLC pumps. Electrospray ionization mass spectrometer was Q
Exactive Plus (Thermo Scientific, Bremen, Germany).

2.3. Procedures

Sample preparation. Coconut husks were opened by making an orifice with a drilling machine
perforating the fruit mesocarp without getting to the albumen to avoid contamination or by removing
the shell from one of three germination pores. Coconut water was manually extracted by pipette. The
total volume of coconut water was centrifuged (80,000 g, 30 min, 4°C) and aliquoted in several
Eppendorf tubes to be either analyzed immediately or to be frozen at -80 °C for further analysis. Due
to the reported difficulties in sample preservation (De Sousa, Baccan, & Cadore, 2005; Obike, 2013),
several approaches, described in the subsequent sections of this article, were investigated to guarantee
the optimal storage conditions.

Total metal analyses. The method was based on that described earlier by De Sousa et al. (De Sousa,
Baccan, & Cadore, 2005; De Sousa, Silva, N. Baccan, & Cadore, 2005). Briefly, coconut water
samples were treated with a mixture of nitric acid and hydrogen peroxide (3:1,»/v) and digested until a
clear solution was obtained (typically for 2.5 h). The maximum temperature did not exceed 60°C. The
digests were cooled down to room temperature. After an appropriate dilution and the addition of
internal standards (Sc and Rh) the total concentrations of Fe, Mn, Cu, and Zn, was measured by ICP
MS; 3*Fe, 3Fe, $Cu, %Cu, *Mn, *Zn, *Zn and *Zn isotopes were monitored. The experimental
parameters, such as plasma power, torch position, and voltage applied to extraction and focusing
lenses, were optimized daily. Hydrogen was used as reaction gas to reduce spectral interferences.
External calibration (5-points calibration curve) was used for quantification of the metals of interest.
The calibration standards were: 0.5, 1, 2, 5 and 10 ppm for Cu, Fe, and Zn, and 1, 5, 10, 20, and 50 for
Mn. The standard reference material and analytical blank were analyzed in parallel.
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Speciation analyses. The HPLC separation conditions were summarized in Table 1. The SEC column
was calibrated using a set of molecular weight standards: selenomethionine (198 Da)
methylcobalamine (1.3 kDa), aprotinine (6.5 kDa), cytochrome C (12 kDa), ribonuclease A (13.7
kDa), myoglobine (17.1 kDa), carbonic anhydrase (29 kDa), bovine fetuine (48.4 kDa), ovalbumine
(42.7 kDa), BSA (66.4 kDa), conalbumine (77.7 kDa), and ferritine (474 kDa). The calibration was
performed by plotting the log of the molecular mass vs. log of the elution volume. The sole objective
of the column calibration was to serve as reference of the reproducible column performance. As the
separation is carried out according to the hydrodynamic volume and not molecular mass, the
estimation of the molecular weight, on this basis, for metal complexes is highly approximate. For the
ICP MS detection the exit of the HPLC column was simply connected to the entrance of the ICP MS
nebulizer and the continuous signal (**Fe, *Fe, “*Cu, **Cu, 3Mn, *Zn, *Zn and **Zn) was registered
during the duration of the chromatographic run. Hydrogen was used as reaction gas. For electrospray
MS detection, the ion source was operated in the positive mode. The following parameters were
adjusted: capillary temperature, carrier gas temperature, shielding gas pressure and spray voltage; the
typical values of these parameters are given in Table 1. Data processing was done using XCalibur
software (Thermo Scientific, Bremen, Germany) used for the generation of theoretical masses and
their comparison with the experimental ones.

Metal-species quantification. For the estimation of the quantitative distribution of metal of interest
amongst the detected species, HILIC chromatography was repeated but with ICP MS detection using
the above conditions. The detection sensitivity was normalized for each metal (Cu, Fe, Mn, Zn) and
for each retention time using the curve of the metal signal intensity as a function of the mobile phase
composition. The contribution of each species was calculated, on the peak area basis, as the percentage
of the total metal amount eluted.

3. RESULTS AND DISCUSSION

3.1. Total analysis of metals in coconut water samples

Effect of centrifugation. Coconut water is a slightly turbid sample and requires to be centrifuged prior
to chromatography. The distribution of trace elements between the solid phase and supernatant was
investigated. The results shown in Fig. SI-1 indicate that no statistically significant differences in the
total content of Mn, Fe, Cu and Zn in ultracentrifuged and non-ultracentrifuged samples were found
which means that the totality of trace elements was present in the supernatant.

Total element concentrations. The results obtained for the analysis of the reference material : Cu 0.07
+ 0.01 (certified 0.06 + 0.01) ppm, Fe 0.88 + 0.11 (certified: 0.82 + 0.11) ppm, Mn 0.20 + 0.0
(certified 0.20 + 0.00) ppm, and Zn 0.32 + 0.03 ppm (certified 0.31 + 0.03) fell within the certified
ranges. The results obtained for the analysis of the coconut water samples are shown in Fig. 1. The
concentrations ranges of the different elements are different and range: 0.3-1 ppm for Cu, 0.5 —2 ppm
for Zn, 0.5 — 6.5 ppm for Fe and 3 — 24 ppm for Mn. The concentrations depend strongly on the origin,
those of Cu and Zn being correlated. The highest concentrations were found for manganese which
makes coconut water a natural source of this element covering (for some samples and approximative
volume of 250 ml) the quasi totality of the daily reference intake of Mn recommended by the
European Food Safety Agency (3 mg/day) (EFSA Panel on Dietetic Products, 2013). The highest
concentrations of Mn, Cu and Zn were recorded for the sample from Costa Rica. The values
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corresponding to Fe, Cu, and Zn are in the range as those reported by Midardul et al. who studied 15
coconut water samples from Bangladesh (Md Didarul, Rahaman, & Afrose, 2018). The total element
concentrations in coconut water are affected by the environmental conditions. While comparing the
data for different samples, a difference in volumes of the coconut water sampled which is dependent
on the coconut size and maturity should be taken into consideration. All the fruits analyzed were
considered as mature and ready for consumption.

3.2. Size fractionation of metal complexes present in coconut water

Representative size-exclusion chromatograms of the distribution of metal complexes in coconut water
samples are shown in Fig. 2. The chromatograms for Cu, Zn and Mn show a single well shaped peak
in the low-molecular weight zone of the chromatogram (Figs. 2a-c) In the case of iron (Fig. 2d), two
peaks are observed. The morphology of SEC-UV/ICP MS chromatograms was identical for all the
samples, only the intensities varied. Note that SEC does not allow the separation of individual species.
Its role is to assure that metals elute quantitatively as LMW species which is the case except of iron”.

3.3. Effect of storage and pretreatment conditions on the coconut sample stability

Coconut water remains sterile inside the nut cavity but once the nut is opened, the biochemical
composition and physical appearance of the liquid change (Prades, 2011). The effect of sample storage
by freezing was examined but the chromatograms obtained before freezing and after one week
freezing and thawing were identical. Also, no changes were observed for ultracentrifuged samples and
those analyzed directly.

The possibility of the occurrence of oxidation-related changes in speciation was checked by studying
the effect of an ascorbic acid addition on SEC-ICP MS chromatograms. The most pronounced effect
was observed for iron. The appearance of new signals at elution times corresponding to lower
masses than the original ones was observed. This effect was less pronounced for samples stored
at 4°C, while a number of new signals for Fe were recorded at a subzero temperature, with a
decrease in the intensity of peak at 22 min. The effect is related to the reducing properties of
ascorbic acid and its possible redox reaction with Fe(I1I), even in pH 5.5-7.0, which is typical for
coconut water, and formation of ferrous-ascorbate complexes (Pervaiz, Farrukh, Adnan, &
Qureshi, 2012). It was observed elsewhere that ascorbic acid was responsible for the reduction of
Fe(Ill) in mixed citrate-malate complexes by embryos efflux of Pisum sativum (Grillet, Ouerdane,
Flis, Hoang, Isaure, Lobinski, et al., 2014). Ascorbic acid did not influence the speciation of other
metals. The effect of acetonitrile addition (42.5 % corresponding to 50/50 dilution with the eluent used
for HILIC) was investigated in view of the species preservation for the subsequent experiments with
more resolutive HILIC chromatography. The chromatograms of coconut water and water-acetonitrile
(42.5 % v/v) solutions were practically identical for Cu, Zn, and Mn (not shown), with the exception of
iron where the peak at a higher molecular mass observed in the aqueous solution disappeared (Fig.
2d). HILIC will therefore ignore this species accounting for up to 60 % of iron depending on the
sample. The identity of this peak is unknown; however its precipitation with acetonitrile accompanied
by the disappearance of a peak recorded at 280 nm using UV detection (Fig. 2¢) may suggest soluble
Fe-binding proteins.

In summary, the samples for speciation analysis should be ultra-centrifuged and — if not analyzed
immediately - stored at low (at or below 4°C) temperature prior to analysis. Such conditions do not
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affect the metals' speciation and the stability of coconut water is preserved for at least 4 months. The
total concentrations, HPLC-ICP MS and SEC-ICP MS chromatograms measured for an example
sample at # = 0 and 7 = 4 months were identical.

3.4. Speciation of LMW metal complexes in coconut water by HILIC- electrospray MS

Final conditions of sample preparation and storage were applied to compare the speciation of iron,
zinc, manganese and copper. All coconuts were opened and the water analyzed on the same day, after
ultracentrifugation. As samples were diluted with acetonitrile-containing eluent, the soluble proteins
were removed prior to analysis.

ICP MS detection was used to complete the investigations of the effect of sample storage conditions.
No significant changes in HILIC-ICP MS morphologies were recorded for ultracentrifuged and
directly analysed samples; also the chromatograms obtained before freezing and after one week
freezing and thawing were identical. Ultracentrifugation is however necessary to avoid the column
filter clogging and pressure buildup.

The identification of the complexes of interest formed between metals and LMW ligands was carried
out by coupling a HILIC column to an electrospray ionization mass spectrometer in the conditions
adapted from the previous work (Flis, Ouerdane, Grillet, Curie, Mari, & Lobinski, 2016). Data mining
consisted of three strategies: (i) checking for the presence of metal-containing species at the retention
times of peaks detected by ICP MS, (ii) targeted analysis based on the literature data and (iii)
exploratory analysis based on automatic search for metal isotopic patterns (except for Mn which is
monoisotopic). The molecular formulas, together with calculated and measured m/z for the identified
complexes, are summarized in Table 2. The selected ion chromatograms are shown in Fig. 3. The
comparison of the isotopic patterns of the molecular ions of the detected species with the theoretically
expected patterns is shown in Fig. 2SI.

The most abundant iron containing peak was a complex of m/z 811.84, which consisted of three atoms
of iron bound to two molecules of citrates and two malates (Fig. 3a). In addition, a complex of similar
structure, but with three citrate and one malate residues (m/z 869.84) was observed. These two iron
species, (Fell's(Cit),(Mal), and Fe''s(Cit);(Mal), were reported by Grillet ef al. in a liquid endosperm
of pea (Grillet, et al., 2014). In the coconut water, also smaller complexes formed with a single iron
atom with two molecules of these ligands were found. Additionally, iron complexes with glutamine
(m/z 346.06) were identified; Fe(GlIn), was previously detected in xylem and ESL of pea plants (Flis,
Ouerdane, Grillet, Curie, Mari, & Lobinski, 2016). Additionally, significant differences (P < 0.05)
between Fe-deficient and - sufficient values of glutamine in soybean plants were observed (Chu, Sha,
Maruyama, Yang, Pan, Xue, et al., 2019). Moreover, Fe''(NA) was identified in the endosperm of
coconut; this complex was identified in the ESL of pea plants by Flis ef al. (Flis, Ouerdane, Grillet,
Curie, Mari, & Lobinski, 2016) and in wheat grains by Xue et al/ (Xue, Eagling, He, Zou, McGrath,
Shewry, et al., 2014). Also, Tsednee et al reported the presence of several phyto-siderophores-iron
complexes, including Fe''(NA), in barley (Tsednee, Mak, Chen, & Yeh, 2012).

The most abundant copper complex was the Cu-phenylanine complex Cu'(Phe), (m/z 365.06)
accompanied by a complex with nicotianamine and another complex with phenylalanine Cu"(Phe);
(m/z 392.08 and 557.15) (Fig. 3b). These compounds are characteristic for xylem exudate or embryo
sac liquid (known also as liquid endosperm) and were reported for Pisum sativum by Flis et al. (Flis,
Ouerdane, Grillet, Curie, Mari, & Lobinski, 2016). Cu-nicotianamine was reported in chicory and
tomato by Liao et al (Liao, 2000), in xylem and phloem saps from rice (Oryza sativa) (Ando, Nagata,
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Yanagisawa, & Yoneyama, 2013) and in Brassica carinata by Irtelli et al (Irtelli, Petrucci, & Navari-
1zzo, 2009)

Two zinc complexes identified in coconut water included nicotianamine (m/z 366.06) and citrate
(446.97) (Fig. 3c¢). Nicotianamine is the most common Zn binding ligand in plants and was shown to
account for more than 70% of the total zinc content extracted from lettuce leaves (J. Wojcieszek,
Jiménez-Lamana, Bierla, Asztemborska, Ruzik, Jarosz, et al., 2019). Zn-nicotianamine and Zn-citrate
were accompanied by other LMW Zn-species with ligands including a-aminoadipic acid and sarcosine
in lettuce (J. Wojcieszek, et al., 2019) and malate, histidine and glutamine in Pisum sativum (Flis,
Ouerdane, Grillet, Curie, Mari, & Lobinski, 2016).

The only manganese species identified in this work was its complex with asparagine (m/z 320.00)
(Fig. 3d). To our best knowledge, no information about molecular forms of this element in foodstuffs
has ever been reported. Manganese is, however, recognized as an essential element .

3.5. Quantitative distribution of the individual metal species

No valid and accurate quantification strategy exists for the individual metal-complexes for the reasons
outlined in Introduction. The quantification strategy in this work was based on the optimization of the
separation for baseline resolution (controlled by ESI MS), optimization of the recovery from the
column, and the correction of the effect of the change in the mobile phase composition on the
sensitivity (Fig. 3SI). Fig. 4 shows representative HILIC — ICP MS chromatograms obtained in the
optimized conditions for Cu, Fe, Mn, and Zn. The morphology of the chromatograms obtained was
similar for all the samples. The recoveries slightly exceeded 100% which suggests scavenging of the
metals from the column and the chromatographic system. The recoveries do not affect the morphology
of the chromatograms (qualitative speciation) as reported elsewhere (Flis, Ouerdane, Grillet, Curie,
Mari, & Lobinski, 2016). Therefore, it was considered acceptable to normalize them to 100% for the
purpose of quantification. Table 3 shows an estimation of the average contribution of a given species
(or a given set of species in the cases of insufficient resolution) in three coconut water samples. For
iron, no sufficient resolution was achieved between Fe''(Mal),, Fe"(Mal),(Cit), and Fe''(NA) allowing
one to quantify these species individually. Note that in contrast to electrospray MS detection, the ICP
MS response is proportional to the amount of the eluted metal, the accuracy is improved by the
normalization of the change in intensity as a function of the mobile phase composition. The accuracy
of the measurement can be further improved by post-column isotope dilution as proposed elsewhere
(Rellan-Alvarez, et al., 2010) except for Mn which is monoisotopic at the expense of a more complex
setup.

4. CONCLUSIONS

Coconut water is an attractive source of essential trace elements, such as Fe, Cu, Zn, and Mn which
occur as low molecular weight complexes. The analytical approach based on coupling HILIC with ICP
MS electrospray-Orbitrap MS turned out to be efficient for their identification. In particular, the
concentration of manganese, present as its complex with asparagine, makes the daily consumption of a
glass of coconut juice sufficient to match the daily intake level recommended by the European Food
Safety Agency.
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Table 1

Table 1. Experimental conditions used.

Chromatographic conditions

separation mechanism

HILIC

SEC

column

guard column

mobile phase

flow rate, mL/min

injection volume, pL

elution program

Kinetex (150 x 2.1 mm x 2.6 pm)

Security Guard (XX x 2.1 mm x 3 pm)

A: 25 mM ammonium acetate, pH 5.5; B: ACN

0.5
10

0-1 min 95% B ; 1-10 min 80% ; 10-13.5 min
80% B ; 13.5-17 min 60% B ; 17-21 min 60%
B ;21.01-30 min 95% B.

Superdex 75 10/300 GL

none

100 mM ammonium acetate,

pH7.5

0.7
100

isocratic

ESI MS operating conditions

ionization mode
resolution
AGC
max injection time, ms
capillary temperature, °C

carrier gas temperature °C

ionization mode

spraying voltage, kV

shielding gas flow rate, arb

carrier gas flow, arb

positive
140000

le°
500
350
400
40
32
60

20




Table 2

Table 2. Metal complexes detected by hydrophilic interaction chromatography
electrospray ionization mass spectrometry (HILIC-ESI-MS) in coconut water

molecular calculated measured error m/z estimated content

Spectes formula m/z m/z [ppm] (% of total)
copper species

cu"NA)  C,H, ONCu 36506426 365.06430 0.11 442

Cu'(Phe), CH,ONCu 39207918 392.07862  -1.43 9245

Cu'(Phe),  C,H ON.Cu 557.15816 557.15863  0.84 543

iron species
Fe'";(Mal),(Cit), CyHxO»Fe; 811.83873  811.83942 0.85

Fe'"'(Mal), CgH O 0Fe  321.96179  321.96205 0.81 87+5
Fe''(NA) Ci,Hy0ONsFe  358.06960  358.07022 1.73

Fe'"'(GIn), CioHisO6NyFe  346.05703  346.05743 1.16 6+2

Fe"'sMal(Cit); C,Hp»OxFe;  869.84421  869.84467 0.53 743

manganese species
Mn"(Asp), CH_ON, Mn 32000469 320.00461  -0.25 47+6

zinc species
Zn"(NA) C,H ,ON.Zn 366.06381 366.06256 3.4 6213

Zn"(Cit), C,H,0 .Zn 44697478 44697574 2.1
Mal - malate. Cit - citrate. GIn - glutamine. NA - nicotianamine. Asp - aspartate. Phe — phenylalanine. Sample : CH4
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Table 1-SI. Total metal concentrations in the studied coconut water samples.

Manganese, ppm Iron, ppm Copper, ppm Zinc, ppm
Sample name
mean SD mean SD mean SD mean SD

Cl1 21.7 0.38 0.39 0.06 0.40 0.01 0.63 0.01
Cl2 8.37 0.26 1.45 0.08 0.33 0.02 0.54 0.02
Cl 3 10.54 0.10 1.72 0.12 0.71 0.01 0.81 0.01
Cl4 4.50 0.07 1.55 0.03 0.43 0.00 0.74 0.01
Cl 5 5.93 0.02 1.86 0.06 0.55 0.03 0.74 0.02
LK1 2.54 0.01 1.39 0.12 0.47 0.01 0.54 0.05
LK 2 3.77 0.03 1.64 0.06 0.73 0.01 0.87 0.05
LK 3 3.84 0.01 1.88 0.06 0.92 0.02 1.07 0.02
LK 4 13.9 0.16 6.87 0.24 1.10 0.01 2.06 0.05
TH1 2.40 0.03 0.22 0.01 0.17 0.00 0.36 0.02
TH 2 3.56 0.15 0.33 0.05 0.09 0.00 0.42 0.01
TH 3 6.24 0.03 0.31 0.01 0.22 0.01 0.60 0.01
TH 4 14.8 0.63 0.50 0.01 0.29 0.01 0.93 0.05

CR 21.6 0.15 2.49 0.03 1.68 0.03 2.82 0.07
unk 1 11.2 0.07 1.01 0.02 1.29 0.02 1.79 0.06
unk 2 10.1 0.13 0.43 0.03 1.37 0.03 0.91 0.08




