
HAL Id: hal-03133495
https://hal.science/hal-03133495

Submitted on 6 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Innovative Negotiations and Enactment Smart
Contract-based Framework for on-line Sharing Economy

Platforms
Layth Sliman, Benoit Charroux, Nazim Agoulmine

To cite this version:
Layth Sliman, Benoit Charroux, Nazim Agoulmine. An Innovative Negotiations and Enactment Smart
Contract-based Framework for on-line Sharing Economy Platforms. 9th International Workshop on
ADVANCEs in ICT Infrastructures and Services (ADVANCE 2021), Rafael Tolosana Calasanz, Gen-
eral Chair; Gabriel Gonzalez-Castañé, TPC Co-Chair; Nazim Agoulmine, Steering Committee Chair,
Feb 2021, Zaragoza, Spain. pp.21–28, �10.48545/advance2021-fullpapers-3�. �hal-03133495�

https://hal.science/hal-03133495
https://hal.archives-ouvertes.fr


An Innovative Negotiations and Enactment Smart
Contract-based Framework for on-line Sharing Economy

Platforms
Layth Sliman1, Benoit Charroux1, and Nazim Agoulmine2

1 EFREI Paris, Villejuif, France
layth.sliman@efrei.fr, Benoit.charroux@efrei.fr

2 IBISC Laboratory, Evry University, Evry, France
nazim.agoulmine@ibisc.univ-evry.fr

Abstract

Despite the spread of sharing economy platforms, as the best of our knowledge, no on-
line solution has been proposed to handle the negotiation of new agreements and contracts
between the participants in such platforms, which entails losing major business opportuni-
ties due to a lack of negotiation frameworks enabling mutual business and legal agreements.
This paper describes an innovative smart contract-based negotiation framework integrated
into sharing economy platforms to enable dynamic negotiation and electronic signature
of digital agreements between partners. The proposed framework itself is technology ag-
nostic. It can be used with any distributed collaborative platform regardless of the used
technologies (web service, blockchain, etc.). We have used smart contract system as a mean
to initiate and submit negotiated calls for tenders to respond to a business opportunity
by multiple actors. The implementation uses the Orcha language, a new high-level smart
contract language, to validate the framework concepts.

1 Introduction

New economic models are emerging in the global markets, such as demand-driven economy,
virtual marketplaces, Crowd Funding, Crowd Sourcing, etc. These models are boost-up by
the spread of ICT technologies [8]. These economic and technological forces are producing
more and more complex systems, where the interconnection between actors, the availability of
trusted information, as well as cost and revenue sharing among the actors are the key factors
to obtain sustainable and cost-effective businesses. These systems require a decentralized yet
trusted negotiation framework so that mutual agreements that govern the collaboration and
the usage of the shared resources can be constituted, enforced, and verified. This is the case,
for example, of the food delivery services, which are increasingly offered by the producers and
vendors by externalizing the delivery dynamically using service registries such as Uber Eats,
JustEat, TooGoodToGo. . . etc. The principles and techniques that appears to suit these
applications better are the “decentralized consensus” (e.g. Blockchain) that allow participants
on a distributed network to reach a perfect agreement on a shared resource. Even in the case
of very simple multiple-actors infrastructures, as in some food chains, the value created in the
short and medium time-horizon is sufficient to justify the introduction of the new technology
while reducing the need for trust among the different partners [7] .

In this context, smart contracts is emerging as the disruptive technology able to fuel such
systems characterized by multiple actors strongly interconnected while maintaining a low level
of mutual trust. Smart contracts are decentralized and autonomous computer programs that
are executed on the distributed ledger upon predefined events. However, despite its rapid



An Innovative Negotiations. Sliman, Charroux and Agoulmine

development, this technology is still in its early stages of potential, it still presents some inherent
defects which hiders its deployment in a factual project [4]. In particular, the possibility of
integrating the business models, the choices, and the preferences of the different actors in the
smart contract appears as a critical factor in democratizing more largely this technology.

The literature mainly considers the Business Process Modelling and Design for Blockchain-
based solutions, which are then transformed into executable Smart Contracts [1] and [2]. Yet,
the literature regarding the mutual definition by multiple actors of new smart contracts adapted
to a particular need or business opportunities are quite limited [5]. In particular, to the best
of our knowledge, no solutions have been proposed to handle the negotiation of new smart
contracts to respond to business opportunities. To overcome this technical limitation, we de-
scribe an innovative smart contract-based negotiation mechanism that can be integrated into a
blockchain. In particular, the presented solution introduces a smart contract system that is able
to automatically launch and negotiate a call for tenders until completion (lifecycle management)
to respond to a business opportunity by multiple actors.

This paper is organized as follows: in section 2, we present the concept of smart-contract
as launched that is a cornerstone of the solution. Section 3 describes the proposed framework,
which uses the smart contract language called Orcha1. After that, we present the implemented
proof of concept system in section 4. Finally, we conclude and propose some perspectives to
our work.

2 Smart Contracts
Smart contracts are programs coded with a programming language and executed in a runtime
environment on a decentralized consensus system i.e. blockchain.

In the following, we briefly illustrate the smart contract programming and runtime environ-
ment focusing on Ethereum [3], a blockchain platform that was the first to introduce the smart
contract concept.

Ethereum is a platform that intends to make a programming universe for the develop-
ment, deployment, and execution of smart contracts for decentralized organizations over the
blockchain. Ethereum integrates a Turing-complete programming language, called Solidity [3].
Solidity contains a set of instructions that enable arbitrary management of transactional
states [6]. Solidity smart contracts are compiled into bytecode and encapsulated in Ethereum
Virtual Machine (EVM). This later is intended to serve as a runtime environment for Solidity-
based smart contracts. It focuses on providing a decentralized implement self-enforced smart
contracts execution environment.

Finally, it is worth mentioning that each Ethereum node in the blockchain runs and main-
tains its own EVM implementation. EVM has been implemented in Python, Ruby, C ++, and
some other programming languages [6].

Another language was specified by the Ethereum organization to respond to the Python
language called Serpent. It is an Ethereum smart contract language that is close to Python.
It is designed to encompass the benefits of Python in its simplicity, minimalism, and dynamic
typing. When building the executable smart contract, serpent code is first compiled into LLL
and then into bytecode for the EVM. The LLL name is diminutive to Low-Level Lisp-like
Language. LLL refers to a language similar to Assembly that came to add a low-level layer
into the EVM. The language adopts the syntax of Lisp. It is used when there is a need to deal

1https://github.com/orchaland/orchalang/tree/master/orchalang-spring-boot-autoconfigure/src/main
/java/orcha/lang

2



An Innovative Negotiations. Sliman, Charroux and Agoulmine

with particular problems that are, by nature, low-level, e.g., require direct access to memory or
storage.

The business logic that governs collaboration in a blockchain is supposed to be handled
using smart contracts. However, the languages used to write smart contracts lack the elements
necessary to negotiate dynamic business collaborations. This is due to the absence of interac-
tions between the contractors (human and software) essential to defining collaborative business
processes’ functional and non-functional properties. Furthermore, current smart contract lan-
guages are very technical and do not incorporate business semantics, leading to a non-uniform
interpretation of the smart contract by the different stakeholders. Consequently, it is crucial to
define a new collaboration language tailored to the definition of smart contracts. Such a lan-
guage should handle the complexity of the interactions between the different parties involved
in a collaboration.

3 Framework Description
In the following, we introduce a new framework that helps construct and agree on a smart
contract (called here contractualization process). We use also a novel high-level collaboration
oriented smart contract language called Orcha 2 to validate the framework.

3.1 Orcha Language
Orcha is a business process modelling, deployment and coordination language developed by our
team. It includes simple instructions that describes in a generic way business process activities.
Orcha programs include a reduced number of instructions (Compute, Receive/From, Send/To,
Condition, and When) represented by abstract syntax trees so that analysers can efficiently
process them. Orcha contains a small and simple set of instructions designed to describe the
answer of the essential questions around a collaborative process:

Who is involved? How an actor receives the needs to do the assigned tasks? When (time-
wise and in which order) to do the task? What to do? With whom? On what? What external
events should be taken into account? To whom, when and how produced events are sent?

The Orcha programs are event-based. They are triggered and run by events to manage the
interactions between business processes human and virtual activities. They can be customized
to any business field, i.e., the user according to their own business terminology can define the
semantic of the instructions.

Rather than handling the specifications of individual tasks, Orcha allows to specify the data
exchanged between during the coordination of activities. In that way, Orcha programs remain
independent from any underlying technical implementations of tasks. In other words, in Orcha,
there is a clear separation between the collaborative process (described in Orcha language) and
the individual business tasks (that can be implemented in any other language). That is, Com-
pute instruction in Orcha programs calls business services that implement individual business
tasks.

An Orcha program describes eventually a business process, i.e., human actors, applications,
2https://github.com/orchaland/orchalang/tree/master/orchalang-spring-boot-autoconfigure/src/main

/java/orcha/lang

3



An Innovative Negotiations. Sliman, Charroux and Agoulmine

and devices exchanging messages and coordinates their activities (Figure 1).

Orcha uses business terms to express the business process. For instance, a process to han-
dle a passenger language delivery procedure in an airport could be:

receive passport from passenger
controlIdentity with passport.photo
receive luggage from agent
scanLuggage with luggage.value
when "scanLuggage fails and controlIdentity terminates"
alertAuthorities with controlIdentity.result

Business processes written in Orcha are executable programs. Consequently, one needs only
to configure its Orcha program and simply run it to drive its business. The configuration de-
fines the input and output data sources for Receive and Send instructions; for instance, (receive
order from customerBase) and (send order to customer by eMail) as well as the service to be
activated by the Compute instruction is running (compute service with. . . ). Orcha programs
perfectly match Smart Contract requirements in that they are event driven, decentralized and,
portable (executed in their own containers). Orcha enables services applications and IoT de-
vices integration. For instance, when you write: receive passport from passenger , data for the
passenger can come from Sensors, SQL and NoSQL databases or files. Similarly, the control
service in controlIdentity with passport.photo can be a remote Service or a local application. A
Smart Contract written in Orcha is compiled using the following steps: preprocessing, lexical
analysis, syntax analysis, grammatical analysis, post-processing, linkage, and output generation
(generate a Spring Integration Java program).

3.2 Contractualization of smart-contracts

In this section, we describe a contractualization framework that enables collaborators to dynam-
ically create a smart contract to quickly respond to a business opportunity. In this framework,
collaborators submit and respond to tenders via an IHM that allows to specify the needs. As
a result, a smart contract representing the collaboration process is dynamically created. The
framework is described in Figure 1. As highlighted, in the framework:

• A customer defines its needs and specifies the desired outcomes.

• The customer sends a Call for Tender (CfT) to the contract ledger workplace.

• Providers can retrieve the CfT and formulate a response as a Tender Proposal (TP),

• TP is sent to the customer.

• Customer retrieves the TP and either;

• It validates and diffuses it in the blockchain or;

• It can re-formulate a new CfT based on the received TP. In this case;

• The process restarts again until an agreement is reached.

4



An Innovative Negotiations. Sliman, Charroux and Agoulmine

Figure 1: Sequence Diagram Describing the Contractualization Process

The obtained smart contract is signed by all stakeholders involved in the collaboration to
confirm and maintain an inviolable record of the collaborators’ contractualization. It is then
submitted to the blockchain to be validated via the consensus mechanism. As a result of
the consensus, if the smart contract is approved, it is added to the blockchain as a definitive
transaction.

In the end, according to the conditions agreed by the collaborators, the smart contract is
executed. Its execution creates new transactions that must be added to the blockchain by a
consensus mechanism.

It is worth mentioning that the contractualization process itself is represented as a smart
contract that uses Orcha as a language to specify the exchanging calls and responses of tenders.
To this end, an interactive Shell interface for users to launch a call for tenders or respond to
tenders is defined.

3.3 Proof of Concept Implementation
In this section we will present a proof of concept (PoC) that demonstrates this framework’s
feasibility. The PoC is implemented on the Git version control system. Git was selected because
of its similarity to blockchain in terms of versioning mechanism based on hash functions, its
distributed storage, and its pseudo decentralization.

The PoC considers a simple collaboration case where a client and a set of sub-contractors
can interact to contract a service (as highlighted in Figure 2).

In the following, we explain the business logic implemented by presenting Orcha commands
customized to cover the exchanges necessary for contractualization and the technical architec-
ture that allowed us to make the command shell.

To start a collaboration simulation, a client who needs a service must create a git directory
with public access as a distributed Smart-Contract registry. He/she then enters the address
of this directory in the contracting system. From this moment, the client can issue a call for
tenders. A call for tenders is a file that includes the customer’s needs as well as the expected

5



An Innovative Negotiations. Sliman, Charroux and Agoulmine

Figure 2: Technical architecture of the proof of concept

behavior of the service providers’ responses. The file, written in Orcha, is completed with
additional configuration files and a set of input/output data representing the desired service
outcome.

Service providers must respond to a request for a proposal that interests them, create a
branch on the collaboration’s directory, and deposit the Orcha program of their offer. Similarly,
as for the call for tenders, the program is accompanied by the configuration and data files.

After analyzing and testing the various response received, the client selects one or more
offers. The customer will have, at this time, all the necessary information to write a complete
smart-contract that would correctly govern future collaborations.

If an offer does not fully match the client’s preferences, the client may continue a back-and-
forth exchanging with the supplier to negotiate the terms.

A) Shell orders made for the contractualization phase

The distributed registry of each user’s smart-contract contains the folder named "Busi-
ness" that includes the following main folders:

• "myCallsForTenders": intended to include the calls for tenders sent by the customer;

• "myOffers": intended to include the offers provided by the service provider;

• "receivedCallsForTenders": If the user is a service provider, he or she will receive
customer calls for tenders on this folder.

• "receivedOffers": If the user is a customer who has issued the CfT, he will receive
the service provider response files on this folder.

In the following, we explain the different commands that we defined using Orcha language
to enable a customer to interact with providers during the contractualization process:

i. Command 01 : Distribution of a call for tenders - customer order
Orcha > send callForTender to providers.
This command allows a client to broadcast the "call for Tender" call for tender
written in ORCHA language, which it has deposited in the "my Calls For Tenders"
folder.

ii. Command 02: Reception of a Request for Proposal - Service Provider Order
Orcha > recieve calls from customer.customer@

6



An Innovative Negotiations. Sliman, Charroux and Agoulmine

(a) Sending Call for Tenders (b) Receiving Call for Tenders

(c) Call for Tenders response (d) Call for Tenders Proposal acceptance

Figure 3: Contractualization framework implementation

This command allows a service provider to receive calls from the customer with the
address "customer @" on his local copy of the distributed registry.

iii. Command 03: Sending an offer - order service provider
Orcha > send offerSP1 to customer.customer@
This order allows a service provider to offer their "offerSP1" offer to the customer
with the address "customer @"

iv. Command 04: tenders receiption - sales order
Orcha > recieve offers from providers
This order allows a customer to receive the various "offer" offers offered by service
providers "providers"

v. Command 05 : Validation of an offer - customer order
Orcha > send validation to providers.branchName
This command allows a customer to validate an offer he has received from a service
provider on the branchName branch

7



An Innovative Negotiations. Sliman, Charroux and Agoulmine

B) Technical architecture of proof of concept of contractualization

The proof of concept is structured in the form of a client application based on shell com-
mands orchestrating the different exchanges that perform the contractualization (Fig-
ure 2). The implementation of shell commands is done using SpringShell. Behind these
commands, the sending and receiving operations are done by the encapsulation of Git
functions, called from the Java environment using the JGit library, which acts on Gitlab
hosted repositories 3 (see Figures 3).

4 Conclusions
In this paper, we introduced a new framework for smart contract negotiation. The framework
follows Call for Tenders’ business logic. It enables customers and providers to settle smart
contracts in a negotiated way so that they can quickly respond to business opportunities. The
framework has been validated using Orcha Language, a new high-level smart contract language.
A Proof of Concept (PoC) has been implemented to assess the feasibility of the framework. The
PoC used Git as the underlying platform. This latter has been chosen due to its similarity to
blockchain logic. The PoC has shown that the concepts introduced by the framework are sound
and permits it objectives. In future works, we aim to implement the framework using a real
blockchain and a full smart contract lifecycle.

References
[1] Miguel Pincheira Caro, M. S. Ali, M. Vecchio, and R. Giaffreda. Blockchain-based traceability in

agri-food supply chain management: A practical implementation. 2018 IoT Vertical and Topical
Summit on Agriculture - Tuscany (IOT Tuscany), pages 1–4, 2018.

[2] Roberto Casado-Vara, Alfonso González Briones, Javier Prieto, and Juan Corchado Rodríguez.
Smart Contract for Monitoring and Control of Logistics Activities: Pharmaceutical Utilities Case
Study, pages 509–517. 06 2019.

[3] Kevin Delmolino, Mitchell Arnett, Ahmed Kosba, Andrew Miller, and Elaine Shi. A program-
mer’s guide to ethereum and serpent. URL: https://mc2-umd. github. io/ethereumlab/docs/ser-
pent_tutorial. pdf.(2015).(Accessed May 06, 2016), pages 22–23, 2015.

[4] Deloitte. global blockchain survey. breaking blockchain open. 2018.
[5] Valentina Gatteschi, F. Lamberti, Claudio Demartini, Chiara Pranteda, and Victor Santamaria. To

blockchain or not to blockchain: That is the question. IT Professional, 20:62–74, 03 2018.
[6] Yoichi Hirai. Defining the ethereum virtual machine for interactive theorem provers. In International

Conference on Financial Cryptography and Data Security, pages 520–535. Springer, 2017.
[7] Guido Perboli, Stefano Musso, and Mariangela Rosano. Blockchain in logistics and supply chain:

A lean approach for designing real-world use cases. IEEE Access, 6:62018–62028, 2018.
[8] Roberto Tadei, Edoardo Fadda, Luca Gobbato, Guido Perboli, and Mariangela Rosano. An ict-

based reference model for e-grocery in smart cities. In International Conference on Smart Cities,
pages 22–31. Springer, 2016.

3visit https://www.youtube.com/watch?v=RSKe9oxuJfM

8


	Introduction
	Smart Contracts
	Framework Description
	Orcha Language
	Contractualization of smart-contracts
	Proof of Concept Implementation 

	Conclusions

