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Subduction megathrusts host the Earth’s greatest earthquakes as the 1960 Valdivia (Mw

9.5, Chile), the largest earthquake instrumentally recorded, and the recent 2004 Sumatra-
Andaman (Mw 9.2, Indonesia), 2010 Maule (Mw 8.8, Chile), and 2011 Tohoku-Oki (Mw 9.1,
Japan) earthquakes triggering devastating tsunamis and representing a major hazard to
society. Unravelling the spatio-temporal pattern of these events is thus a key for seismic
hazard assessment of subduction zones. This paper reviews the current state of
knowledge of two research areas–empirical analysis of global-scale natural data and
experimental data from an analogue seismotectonic modelling—devoted to study cause-
effect relationships between subduction zone parameters and the megathrust
seismogenic behavior. The combination of the two approaches overcomes the
observational bias and inherent sampling limitations of geological processes
(i.e., shortness of instrumental and historical data, decreasing completeness and
resolution with time into the past) and allows drawing appropriately from multiple
disciplines with the aim of highlighting the geodynamic conditions that may favor the
occurrence of giant megathrust earthquakes.

Keywords: analogue seismotectonic modelling, analysis of global-scale natural data, mega-earthquakes, interplate
seismicity, subduction megathrust

INTRODUCTION

Most of the global seismicity and the largest earthquakes occur at subduction zones where oceanic
lithosphere is recycled as it sinks into the underlying mantle. The downgoing movement of the
subducting plate and friction acting at the shallow part of the interface between the subducting and
overriding plate (aka megathrust) cause shear stresses to accumulate slowly over centuries. When the
frictional shear strength of the interface is overcome, these stresses are released episodically by a
variety of seismic and aseismic slip modes, including “mega-earthquakes”: seismic megathrust
rupture causing earthquakes with magnitudes (MW) ≥ 8.5. Stress accumulation and release occurs in
cycles known as seismic cycles. In the last 15 years, a cluster of mega-earthquakes occurred at an

Edited by:
Debora Presti,

University of Messina, Italy

Reviewed by:
Magdala Tesauro,

Utrecht University, Netherlands
Luis E. Lara,

Servicio Nacional de Geología y
Minería de Chile (SERNAGEOMIN),

Chile

*Correspondence:
Francesca Funiciello

francesca.funiciello@uniroma3.it

Specialty section:
This article was submitted to

Structural Geology and Tectonics,
a section of the journal

Frontiers in Earth Science

Received: 28 August 2020
Accepted: 17 November 2020
Published: 17 December 2020

Citation:
Funiciello F, Corbi F, Heuret A,

Piromallo C and Rosenau M (2020)
Empirical Analysis of Global-Scale

Natural Data and Analogue
Seismotectonic Modelling Data to

Unravel the Seismic Behaviour of the
Subduction Megathrust.

Front. Earth Sci. 8:600152.
doi: 10.3389/feart.2020.600152

Frontiers in Earth Science | www.frontiersin.org December 2020 | Volume 8 | Article 6001521

MINI REVIEW
published: 17 December 2020

doi: 10.3389/feart.2020.600152

http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2020.600152&domain=pdf&date_stamp=2020-12-17
https://www.frontiersin.org/articles/10.3389/feart.2020.600152/full
https://www.frontiersin.org/articles/10.3389/feart.2020.600152/full
https://www.frontiersin.org/articles/10.3389/feart.2020.600152/full
https://www.frontiersin.org/articles/10.3389/feart.2020.600152/full
https://www.frontiersin.org/articles/10.3389/feart.2020.600152/full
http://creativecommons.org/licenses/by/4.0/
mailto:francesca.funiciello@uniroma3.it
https://doi.org/10.3389/feart.2020.600152
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2020.600152


increased rate with respect to the last century (e.g., Ammon et al.,
2010) often revealing unexpected characteristics (e.g., Stein and
Okal 2011; Yue and Lay 2013) and resulting in catastrophic direct
but also indirect (e.g., tsunamis) effects as in Sumatra (2004) (e.g.,
Subaraya et al., 2006), and Tohoku-Oki 2011 (e.g., Romano et al.,
2012). The attention for these events has thus recently increased,
raising interest on factors controlling their spatio-temporal
pattern, including their potential maximum magnitude and
return periods which are fundamental parameters in
earthquake and tsunami hazard assessment. This is a
challenging goal not only because each subduction zone has
unique characteristics (e.g., Kopp, 2013) but also because the
seismogenic portion of the megathrust is located offshore, below
the sea-level (Heuret et al., 2011), and direct observation is
restrained to shallow drilling (e.g., Japan Trench Fast Drilling
Project; Chester et al., 2012) and the study of exhumed prototypes
(e.g., Remitti et al., 2011). Moreover, the instrumental seismic
record is limited to the last century, a very short time interval
compared to the recurrence time of great earthquakes, which
ranges from centuries to millennia (e.g., McCaffrey, 2008). In
some cases, seismic records of megathrust ruptures can be
extended back in time with paleoseismological investigations
(e.g., Philibosian and Meltzner 2020), however such data
typically lack the spatio-temporal completeness and resolution
needed for rigorous statistical analysis.

One of the empirical research strategies that allow overcoming
limited records consists in trading time with space at the global
scale: given that different subduction zones are at individual
stages of their seismic cycle, we may be able to infer the
general seismogenic behavior of subduction zones by
integrating information from worldwide seismicity (e.g.,
Schafer and Wenzel, 2019). The second approach, somehow
complementary to the first one, is comparing the seismic
character of individual megathrusts with the widest range of
geological, geophysical and geodynamical parameters, with the
aim of statistically identifying the combination of factors
controlling subduction seismicity (e.g., Ruff and Kanamori,
1980; Peterson and Seno, 1984; Heuret et al., 2011; Schellart
and Rawlinson, 2013; Brizzi et al., 2018).

Results from such a global-scale natural data analysis
approach can be then tested against experimental and
modelling data in order to validate inferred causal
relationships by means of ad hoc parametric studies.
Analytical (e.g., Ruff, 1992), numerical (e.g., van Dinther et al.,
2013), physical (e.g., Den Hartog and Spiers 2013) and analog
models (e.g., Rosenau et al., 2017) can reproduce a long series of
seismic cycles and, by tuning ad hoc boundary conditions, they
allow testing the role played on seismicity by the different
parameters deduced from the analysis of natural data (e.g.,
Corbi et al., 2017b). Despite models are only simplified
representations of the complexity of the natural prototype due
to the unavoidable computational and experimental limitations,
their results are inspiring for the interpretation of the limited and
sparse natural data, thus enhancing our current understanding of
subduction seismicity.

We focus our brief overview on the state of the art of the
analysis from global-scale natural data and experimental data

from analogue seismotectonic modelling, highlighting the
advantages of their use and the great potential for future
developments in the study of the earthquake process that can
be drawn from the close interaction and reciprocal feedback
between the two methods. Very recently, also numerical methods
have been developed to setup simulations which capture both the
long-term and the short-term evolution of the subduction
process. While numerical simulations proved particularly
useful for testing hypothesis and mapping a wide parameter
space, it is the emergent behavior of analogue models which
makes them appealing for an empirical analysis as addressed in
this review.

OBSERVATIONS AND INFERENCES FROM
NATURAL DATA

There is a noteworthy variability in the maximum moment
magnitude of earthquakes originated at the subduction
megathrust during the instrumental era (e.g., Dixon and
Moore, 2007 Figure 1A): some subduction zones–e.g., Alaska,
Chile, Sumatra, NE Japan–experienced mega-earthquakes, while
others–e.g., TongaMariana–did not (Figure 1A). What is unclear
and still debated is if this dichotomy results only from the short
observational time span and therefore all the worldwide
subduction zones could host mega-earthquakes given a long
enough observation period (e.g., McCaffrey, 2008) or if
specific local conditions are responsible for the diversity of the
interplate seismicity (e.g., Ruff and Kanamori, 1980). It is thus
tempting to identify which geological/geophysical features,
individually or in combination, possibly have a cause-effect
relationship with megathrust seismicity (e.g., Pacheco et al.,
1993; Heuret et al., 2011; Schellart and Rawlinson, 2013) and
to quantify the likelihood for great earthquakes along worldwide
subduction megathrusts (e.g., Marzocchi et al., 2016).

The “comparative subductology” was the intuition to
disentangle the overall behavior of subduction by comparing a
wide range of observables (i.e., subducting plate age and dip,
convergent velocity, backarc tectonic style, characteristics of arc
volcanism and seismicity, accretionary/erosional character of the
margin) with seismicity characteristics of convergent margins
(Uyeda, 1982) with the aim of deducing possible causal
relationships (Figure 1B). This space-time trade-off approach
allowed to overcome limitations due to uniqueness of local
conditions (e.g., Suárez and Albini, 2009; Becker and Meier,
2010; Hayes and Furlong, 2010) and to the undersampling of
the modern seismicity record.

Early on, two end–members subduction types—Mariana and
Chilean — have been proposed, showing also significant
difference in the degree of mechanical coupling (i.e., the ability
to accumulate stresses) along the plate interface and in the
consequent capability to host mega-earthquakes (Uyeda and
Kanamori, 1979). The Chilean–type boundaries seemed more
coupled and prone to trigger mega-earthquakes than the rather
aseismic Marianas, with the different behaviors likely tuned by
both different densities of the subducting plate andmotions of the
upper plate (Uyeda and Kanamori, 1979).
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Based on this idea, Ruff and Kanamori (1980) looked at the
maximumMw recorded in the instrumental era and they found a
striking correlation between the convergence rate and plate age. It
was thus proposed that mega-earthquakes preferentially occur
where a young lithosphere is converging fast with the overriding
plate, allowing for a high mechanical plate coupling along the
megathrust. This relationship has long been supported by studies
involving larger, progressively updated and refined datasets (e.g.,
Peterson and Seno, 1984; Jarrard, 1986; Pacheco et al., 1993;
Scholz and Campos, 1995). However, variations of coupling
found within individual subduction zones (Scholz and
Campos, 2012), the identification of different moment release
rates in subduction zones sharing similar lithospheric ages and

speeds (Peterson and Seno, 1984) and, last but not least, updated
data (e.g., Heuret et al., 2011; Stein and Okal, 2007; Stein and
Okal, 2011) initiated skepticism in the acknowledgement of the
Ruff and Kanamori (1980) model (e.g., McCaffrey, 1994) that was
finally challenged by recent mega-earthquakes occurring in
locations assumed to be weakly coupled (e.g., Wang, 2013).
Among these, the Tohoku-Oki earthquake stands out not only
for exceeding the regional maximum magnitude earthquake for
that region according to Ruff and Kanamori (1980) model, but
also as case of extreme violation of commonly accepted scaling
laws (e.g. Okal, 2015).

A new phase of the comparative subductology involved not
only the use of large dataset (e.g., Heuret et al., 2012; Schellart and

FIGURE 1 | (A)Map of the subduction interface seismicity (redrawn from Heuret et al., 2011).Mw ≥ 8.0 subduction interface events are plotted by stars of different
colours, representing the interval of occurrence of the events. The largest events are not homogeneously distributed in space and time along the worldwide subduction
zones; (B) Correlation matrix used to show the dependence between multiple variables at a glance. The table contains the modulus of the Pearson’s product moment
correlation coefficient R of linear bivariate regressions between seismogenic zone parameters (t_tot: total seismic of subduction zones; t_inter: seismic rate due to
interplate earthquakes; Mmrr_tot: total moment release rate of subduction zones; Mmrr_inter: moment release rate due to interplate events; Mmax_inter: maximum
magnitude of interplate events; Cn: seismic coupling coefficient; zmax_inter: downdip limit of the subduction thrust fault; zmin_inter: updip limit of the subduction thrust
fault) and other independent subduction parameters (Tsed: thickness of sediments at the trench; UpPlate: nature of the upper plate; thermal: thermal parameter; age:
age of the subducting lithosphere at the trench; Vsn: normal component of the subduction velocity; Vsupn: normal component of the overriding plate velocity; Vts: normal
component of the trench velocity; Vsubn: normal component of the subducting plate velocity; Oc: convergence obliquity; Os: subduction obliquity; R: radius of bending
of the slab) as attempt to unravel the overall behavior of subduction by comparing a wide range of observables (see Heuret et al., 2011 for additional details).
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Rawlinson 2013) but also of more sophisticated statistical analysis
to treat them (e.g., Heuret et al., 2012; Marzocchi et al., 2016;
Brizzi et al., 2018; Schafer and Wenzel, 2019). Cause-effect
relationships between geodynamical and seismological
parameters, have inspired physical models of seismically active
convergent margins highlighting the possible role of numerous
factors in triggering mega-earthquakes: trench sediments
(Kostoglodov, 1988; Ruff, 1989; Heuret et al., 2011; Heuret
et al., 2012; Scholl et al., 2015; Seno, 2017; Brizzi et al., 2018),
plate roughness (Morgan et al., 2008; Kopp, 2013; Wang and
Bilek, 2014; Bassett and Watts, 2015; Lallemand et al., 2018; van
Rijsingen et al., 2018) upper plate strain (Conrad et al., 2004;
Heuret et al., 2011; Heuret et al., 2012; Schellart and Rawlinson,
2013), plate age (Nishikawa and Ide, 2014), forearc structure
(Song and Simons, 2003; Wells et al., 2003; Fuller et al, 2006;
Rosenau and Oncken, 2009), along–strike (Schellart and
Rawlinson, 2013) and along-dip (Bletery et al., 2016) curvature
of subduction zones, slab dip (Schafer and Wenzel, 2019),
downdip width of the seismogenic zone (e.g., Kelleher et al.,
1974; Pacheco et al., 1993; Hayes et al., 2012; Schellart and
Rawlinson, 2013; Schafer and Wenzel, 2019) and propensity to
produce large rupture in the trench–parallel direction (Bilek and
Lay, 1999; Brizzi et al., 2018). The proposed models highlight
ingredients able to produce a homogeneous and strong
subduction megathrust allowing ruptures to easily propagate
along–strike and, thus, to grow into mega-earthquakes.

Such a physical understanding may re-evaluate traditional
probabilistic seismic-hazard assessment, suggesting that,
irrespective of the geodynamic context, many subduction
zones (Berryman et al., 2015) if not all (McCaffrey, 2008;
Rong et al., 2014) may have the potential of producing mega-
earthquakes (McCaffrey, 2008; Rong et al., 2014) but they are
likely characterized by a difference in the average rate of
occurrence of these events (Marzocchi et al., 2016).

INSIGHTS FROM ANALOG MODELLING OF
SUBDUCTION MEGATHRUST SEISMIC
CYCLES
To overcome limitations of natural records and test cause-effect
relationships suggested by global-scale data analysis we promote
an analog modelling approach. Analog models are down-scaled
and simplified versions of natural subduction zones used in
experiments that allow reproducing the essence of a variety of
geological phenomena, in convenient spatial and temporal scales
(e.g., Hubbert, 1937; Funiciello and Corbi, 2017). Despite analog
models might appear oversimplified with respect to high
performance computational modelling strategies anticipated in
the introduction (for example, no efficient control on
temperature and water content has been implemented so far),
they have the advantage of evolving spontaneously on the basis of
the physics of the process, which can be easy to tune and to
interpret. Moreover, analog models are intrinsically three-
dimensional and occur in a space-time continuum, both keys
in allowing across-scale processes to emerge, as e.g. the growth of
mega-earthquakes (e.g., Brizzi et al., 2018). The recent advances

in characterization of rheological (e.g., Di Giuseppe et al., 2014;
Rudolf et al., 2016) and frictional properties (Klinkmüller et al.,
2016) of analog materials and the improvement in monitoring
techniques (Rudolf et al., 2019) supported the development of so-
called “seismotectonic” analog models (Rosenau et al., 2017).
Those models reproduce the elastic loading and sudden release in
a cyclic fashion similarly to the seismic cycle of subduction
megathrusts (Figure 2). All seismotectonic analog models
developed so far share the common characteristics listed below:

- Kinematic boundary condition: deformation of the overriding
plate is imposed by underthrusting of the subducting plate at a
constant rate.

- Wedge geometry: elastic stresses are stored into the analog
overriding plate which might be elastic or elastoplastic while
the subducting plate is assumed being rigid; the initial wedge
surface and the analog megathrust are flat (i.e., with no
downdip- and along trench curvature).

- Rate-state friction: the analog megathrust includes both
(aseismic) velocity-strengthening and (seismogenic) velocity-
weakening frictional regions.

- Spontaneous earthquake nucleation: slip episodes occur
spontaneously when elastic stress overcomes the frictional
strength of the megathrust locally (i.e., there is no external
triggering).

- Laboratory geodetic monitoring: models are monitored via
cross-correlation of images of the top or side surfaces or the
interior of the model (e.g., with the Particle Image Velocimetry,
PIV method; Sveen 2004). Applied to the top surface this
technique is equivalent to having a dense network of
continuous GPS stations (hence the name “laboratory
geodesy models”) which allow inverting for relevant
earthquake source parameters (e.g., Rosenau et al., 2019;
Corbi et al., 2013; Kosari et al., 2020).

The first articles about analog modelling of megathrust
seismic cycling focused on reporting rheological and
frictional properties of analog materials (Corbi et al., 2011)
and their implementation into a scale model (Rosenau et al.,
2009). The experimental behavior was composed of the
archetypical pattern of alternating relatively longer periods of
low, landward deformation rates with sudden, higher,
trenchward velocities reversals as in the seismic cycle of
subduction megathrusts (Rosenau et al., 2009; Corbi et al.,
2013; Figure 2 panels c–f). Follow-up studies focused on
applications demonstrating the capabilities of analog models
in studying a variety of earthquake phenomena, including
recurrence pattern (Rosenau and Oncken, 2009; Rosenau
et al., 2019) and the moment-duration proportionality (Corbi
et al., 2013). Analog models have been used for investigating
extrinsic parameter control, for example how the width of the
seismogenic zone (Corbi et al., 2017a), the upper plate rheology
(Brizzi et al., 2016), the subduction velocity (Corbi et al., 2017a)
or the subduction megathrust roughness (van Rijsingen et al.,
2019) influence the seismic behavior. Analog models helped in
constraining the intrinsic variability of earthquake ruptures and
associated tsunamis, validating empirical tsunami forecast
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models (Rosenau et al., 2010). Analog models have been also
used for identifying the geometrical and mechanical conditions
leading to synchronization of earthquakes (Corbi et al., 2017b;
Rosenau et al., 2019). The process of earthquake
synchronization is one of the key aspects in seismogenesis
and is considered responsible for the origin of mega-
earthquakes unzipping large parts of a subduction zone.
Nowadays, analog models are also used for testing
earthquake predictability (e.g., Corbi et al., 2019) and for
identifying optimal geodetic configurations for monitoring
convergent margins (Corbi et al., 2020; Kosari et al., 2020).

CHALLENGES AND FUTURE DIRECTIONS

Over the last decades, a wide range of studies have shed light on
the seismogenic behavior of subduction megathrusts. This short
review has recapped the contributions provided by the
comparative analysis of global-scale natural data and analogue
modelling.

Forecasting which subduction zone will host the next mega-
earthquake and its timing remains a major challenge. The efforts
to highlight which are the conditions enhancing the
“productivity” of mega-earthquakes have recognized the
potential role of several subduction-related parameters, but
no consensus has been reached so far. For instance, empirical
results point out at different parameters such as plates curvature
(Bletery et al., 2016), roughness (e.g., van Rijsingen et al., 2019)
or trench-parallel length of the subduction zone (Brizzi et al.,
2018) and amount of trench sediments (Brizzi et al., 2020).
Convergent margins are complex tectonic settings, whose
diversity results from the interplay of several parameters
operating at different spatial and temporal scales and whose
relative importance is thus hard to assess (e.g., Figure 1B).
Moreover, the understanding of subduction megathrusts is
biased by the short instrumental seismic record and by the
lack of completeness and of a homogeneous resolution of the
observables characterizing subduction zones.

Is it thus really feasible to unravel the seismic behavior of the
subduction megathrust or is it an impossible mission?

FIGURE 2 | Digital photos of seismotectonic analog model setup from the HelTec (A) and LET (B) labs (modified from Rosenau et al., 2017; Corbi et al., 2017a,
respectively). Both setups are made of a glass-sided, wedge shaped box whose base is inclined 10°–15° in agreement with natural observables of subduction mega
thrusts (Heuret et al., 2011). Both are equipped with a basal conveyer plate moved by a motor-driven piston with variable velocities of the order of 104–10−5 m/s as
analogue, analog of the downgoing subducting plate. HetTec models use a mix of granular material composed by rice, sugar and rubber pellets to simulate an
elastoplastic continental lithosphere and silicone oil to simulate the mantle. LET models are made of a visco-elastic gelatin which is deformed on the velocity-weakening
seismogenic zone of the subduction thrust which simulated by sandpaper at the gelatin-basal plate interface. Both models experience stick-slip dynamics [orange time
series in (C)] as response to subducting plate underthrusting. Particle Image Velocimetry allows monitoring the evolution of the displacement field as in a dense,
homogeneously distributed geodetic network [gray dots in (D)], spanning also above the generally offshore seismogenic zone [cyan rectangle in (D)]. The average
surface displacement rate time series [blue time series in (C)] is characterized by phases of relatively slow, landward displacement rates, analog of interseismic phases
[displacement field shown in (E)], alternating with trenchward velocity peaks, analog of coseismic phases [displacement field shown in (E)].
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The continuous scientific and technological advancements
allow detecting transient deformation signals occurring on short
times-scales (fractions of the seismic cycle) along convergent
margins and sampling the megathrust seismic cycle with
progressively denser and higher quality data. For example, even
if the underlying source process still has to be identified, both the
2010 Maule (Chile) and 2011 Tohoku-Oki (Japan) earthquakes
have been preceded by potentially diagnostic geodetic transients
lasting several months and spanning thousands of kilometers
(Bedford et al., 2020). Satellite measurements (e.g., InSAR
studies; Jolivet et al., 2020), dense geodetic (e.g., Michel et al.,
2018) and seismic (e.g., Brodsky and Lay, 2014) monitoring - both
onshore and offshore-is able to record a wide range of deformation
signal frequencies (i.e., from earthquakes s.s. to low frequency
earthquakes and tremors) and the improvement of the quantity,
quality and accessibility of databases of convergent margin
observables (e.g., geodesy.unr.edu/NGLStationPages/gpsnetmap/
GPSNetMap.html; geofon.gfz-potsdam.de; www-solid.eps.s.
u-tokyo.ac.jp/∼sloweq) yield a promising perspective to
successfully elucidate the spatio-temporal pattern of earthquake
occurrence along the worldwide subduction zones and to mitigate
hazard related to mega-earthquakes and tsunamis.

Another support to better understand subduction earthquakes and
to advance in the forecast of earthquakes is coming from recent
improvements in data analysis methods. Machine learning is an
application of artificial intelligence able to automatically discover
hidden patterns learning directly from analysis of large datasets,
without being explicitly programmed (e.g., Bergen et al., 2019; Ren
et al., 2020). This approach already succeeded for the prediction of
timing (Rouet-Leduc et al., 2018), timing and locations (Corbi et al.,
2019) and timing and duration (Hulbert et al., 2019) of slip episodes in
laboratory experimentsmimicking the basic physics of the seismic cycle.

The future is challenging also on the analogue modelling side,
where the use of higher resolution and faster cameras and of
optimized procedures for calculating surface velocities (Rudolf
et al., 2019) permits the model monitoring with increasing detail.
Thus, the detection threshold of analog earthquakes as well as the
temporal resolution of the nucleation and rupture process are
progressively improved. Laboratory geodetic methods will be
accompanied by laboratory seismology using micro-
electromechanical sensors (MEMS) measuring model
accelerations with kHz sampling rates, corresponding to the
frequency range of interest for earthquakes. This will soon put us
in a position to detect and localize analog earthquakes which are too
small to produce a surface deformation signal measurable with
optical methods. Apart from such kinematic monitoring
methods, dynamic monitoring of (boundary) stresses (Ritter
et al., 2018) will help in detecting events but also in

understanding the relationship between stress and strain during
seismic cycles. Moreover, the joint use of analogue and numerical
modelling is providing successful and promising results to shed light
on the behavior of the subduction megathrust (Corbi et al., 2013,
Corbi et al., 2017a; van Dinther et al., 2013). The combination of
these two complementary approaches allows to valorize the
respective strengths: analog models are physically self-consistent,
and stresses/strain evolve spontaneously in response to the applied
boundary conditions, while numerical models are more adaptable
and effective for parametric studies.

With respect to great subduction megathrust earthquakes, our
current understanding is that they show a complex but in parts
deterministic pattern. Whether (mega-) earthquakes are predictable
or not can be thus answered with some hopefulness in the future.
Since the seismic behavior of the subductionmegathrust depends on
a wide combination of parameters, interdisciplinary research needs
to be strengthened integrating geological, geophysical, and
geodynamical constraints and contextualizing them in a physics-
based modelling framework allowing to analyze and forecast mega-
earthquake triggering processes in subduction zones.

Multidisciplinary studies are always challenging, but they represent
the key for a substantial advancement in the understanding of this
scientifically intriguing and socially hazardous issue. In this frame,
collecting new data, sharing them on open platforms, networking
resources and events are fundamental steps for exchanging ideas and
fostering discussion towards the comprehension of the processes
controlling the megathrust seismic behavior.
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