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1. Introduction
The Congo River Basin (CRB) is the world's third largest in size (around 3.7 million km2—Laraque 
et al., 2001, 2009), the second in terms of discharge after the Amazon basin (around 40,600 m3 s−1 annual 
average—Becker et  al.,  2018). It contributes roughly up to 3.5  mm/yr of the global sea level variations 
(Beighley et al., 2011). The CRB contains also the second largest contiguous tropical rainforest in the world 
and plays a crucial role as a sink of CO2, storing around 50 billion tons of carbon (Verhegghen et al., 2012). 
Dargie et al. (2017) reported that the “Cuvette Centrale,” which represents around 30% of the entire basin, 
is the most extensive peatland in the tropics storing around 30.6 petagrams of carbon below ground (Dar-
gie et al., 2019). This peatland is particularly vulnerable to land use and water cycle changes. Economic 
activities such as fisheries and agriculture impact about 80% of the population living in the CRB region 
(Bele et al., 2010). Thereby, this region is commonly judged as vulnerable to climate variations and extreme 
weather events such as droughts and floods (IPCC, 2007). However, there is considerable uncertainty in 
the projections of future rainfall change over the CRB from the Coupled Model Intercomparison Project 
(CMIP5) under the high-emissions experiment (RCP8.5) (Creese & Washington, 2016). Authors found that 
coupled global climate models can differ in their climatological mean rainfall by up to a factor of five in 
some months, with the largest differences in December (i.e., during the dry season in the equatorial and 
northern parts of the basin). Thus, it is crucial to improve our knowledge of the past and present water cycle 
in the CRB to reduce these uncertainties. The poor understanding of the CRB hydroclimate processes can be 

Abstract In this study, the hydrological dynamics of the Congo River Basin (CRB) have been 
analyzed. This is achieved using multiangular and dual-polarization passive L-band microwave signal 
from the Soil Moisture and Ocean Salinity (SMOS) satellite to estimate water surface extent dynamics 
from 2010 to 2017. The results provide new insights into the poorly characterized wetlands, peatlands, 
and floodplains dynamics of the CRB. We found that the mean flooded area for the entire CRB is equal 
to 89,408 ± 20,623 km2 corresponding to 2.39% of the entire basin. The results were compared with three 
land cover maps (European Space Agency-Climate Change Initiative [ESA-CCI], International Geosphere-
Biosphere Programme [IGBP], and Global Surface Water Occurrence [GSWO]) and the SWAMPS global 
dynamic water surfaces product. More inland waters were detected than the four previous products, 
except along the rivers. Floods and droughts during the last 10 years were also depicted. The knowledge 
about the CRB hydrological behavior was improved by analyzing the date of maximum floods, the time lag 
in days between precipitation, water surface extent, and river water height at the outlet of the nine major 
Congo subbasin. A lag of 67 ± 3 days between rainfall and inundated areas was found in the Upper Congo 
(r = 0.89). In the Kasai subbasin, no time lag between rainfall and inundation was found (r = 0.86). The 
contribution of each floodplain to the Congo discharge was also evaluated. In the future, the fusion of the 
current surface waters with water heights from the SWOT mission can provide further information to the 
water volumes of the CRB floodplains.

Plain Language Summary The Congo River Basin (CRB) has a vast flooded area, that is 
poorly characterized. We developed new flood extent maps for the CRB based on satellite data in the 
L-band spectral band. This enabled an unprecedented insight into water dynamics of the wetlands, 
peatlands, and floodplains of the CRB through the detection of the dates of maximum floods, the lag with 
the rainfall peaks, and the duration of floods even in vegetated areas.

FATRAS ET AL.

© 2020. American Geophysical Union. 
All Rights Reserved.

Hydrological Dynamics of the Congo Basin From Water 
Surfaces Based on L-Band Microwave
C. Fatras1 , M. Parrens1,2, S. Peña Luque3, and A. Al Bitar4 

1CESBIO, Université de Toulouse, CNES/CNRS/IRD/UPS, Toulouse, France, 2Université de Toulouse, INRAE, INPT, 
INP-PURPAN, UMR DYNAFOR, Castanet-Tolosan, France, 3Centre National d'Etudes Spatiales, CNES, Paris, France, 
4Centre National de Recherche Scientifique, CNRS, Paris, France

Key Points:
•  New knowledge of the Congo River 

Basin hydrology for the last decade 
through a new temporal and spatial 
dynamic water surface extent data

•  The water extent in the Congo 
River Basin ranges from 78,602 to 
99,225 km2 between 2011 and 2017

•  The lags between rainfall and flood 
in the nine Congo subbasins has a 
high variability ranging from 0 to 
67 days

Correspondence to:
C. Fatras,
fatrasc@cesbio.cnes.fr

Citation:
Fatras, C., Parrens, M., Peña Luque, 
S. & Al Bitar, A. (2021). Hydrological 
dynamics of the Congo basin from 
water surfaces based on L-band 
microwave. Water Resources Research, 
56, e2020WR027259. https://doi.
org/10.1029/2020WR027259

Received 4 APR 2020
Accepted 22 NOV 2020

10.1029/2020WR027259

Special Section:
Advances in remote sensing, 
measurement, and simulation 
of seasonal snow

RESEARCH ARTICLE

1 of 19

https://orcid.org/0000-0001-9059-9878
https://orcid.org/0000-0002-1756-1096
https://doi.org/10.1029/2020WR027259
https://doi.org/10.1029/2020WR027259
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN).0043-1397.SNOWEX1
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN).SNOWEX1
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN).SNOWEX1
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN).SNOWEX1
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2020WR027259&domain=pdf&date_stamp=2021-02-04


Water Resources Research

shown by the number of associated scientific studies. Alsdorf et al. (2016) counted only 33 publications in 
peer-reviewed papers in Hydrology or Earth Science journals concerning the CRB and 299 concerning the 
Amazon basin. A key reason for this difference is the lack of available climate observations from the region, 
especially since the 1980s with increasing difficulties to access the CRB. For example, there were around 60 
rain gauges in 1950 and only <10 in the 2000s (Washington et al., 2013). One way to access the climate and 
hydrological variables in the CRB is to use remote sensing data.

In this study, we focus on the temporal and spatial dynamics of the water surface extent over the CRB re-
trieved by satellite data during the last decade and their link to other major components of the hydrological 
cycle namely rainfall and river flow. Water surface extent corresponds to open water surface in lakes, rivers, 
wetlands, peatland, floodplains, and human-made reservoirs. This variable is a key component of the land 
water budget. In interaction with both ocean and atmosphere, it plays a key role in the Earth's climate var-
iability. Wetlands and floodplains are also the place of carbon and methane emissions to the atmosphere 
(Abril et al., 2014; Richey et al., 2002) and brittle ecosystem sheltering biodiversity (Silva et al., 2013).

Advances on remote sensing led to the development of several water surface extent products at global scale. 
For example, Pekel et al. (2016) used three million Landsat images (optical sensor) to provide a high-reso-
lution map of surface water extent. The most important limitation of the optical sensors is their inability to 
probe through clouds and dense vegetation cover, which is essential in tropical wet regions like the CRB. 
Using data fusion from several sensors: passive microwave (e.g., Special Sensor Microwave/Imager [SS-
M/I]), active microwave (European Remote Sensing satellite [ERS]), and optical sensors (Advanced Very 
High-Resolution Radiometer [AVHRR]), Prigent et al. (2001) developed the Global Inundation Extent from 
Multiple Satellites (GIEMS) product. It provides monthly global maps of inundation data at 25 × 25 km 
spatial resolution from 1993 to 2007 (Papa et al., 2008). Recently, the coarse resolution, Surface Water Mi-
crowave Product Series (SWAMPS), has been developed from the fusion of passive and active microwave 
sensors (SSM/I, SSMIS, ERS, QuikSCAT, ASCAT) and visible sensors (MODIS) (Schroeder et al., 2015). The 
GIEMS and SWAMPS data sets have been compared in Pham-Duc et al. (2017) showing that GIEMS dynam-
ics are more consistent with other hydrological variables such as the river discharge. Detection of inundated 
surfaces generated by hurricane Irma and Harvey and using observations from the Cyclone Global Naviga-
tion Satellite System (CYGNSS) NASA mission was demonstrated in Chew et al. (2018). Lavalle et al. (2018) 
showed the ability of the CYGNSS observations to detect water surfaces in dense vegetation using a bistatic 
scattering modeling in L-band.

In recent years, some studies dealt with inland water in the CRB using remote sensing (Becker et al., 2018; 
Bwangoy et al., 2010; Jung et al., 2010; Lee et al., 2014, 2015; O'loughlin et al., 2013; Rosenqvist & Bir-
kett, 2002) and/or modeling approaches (Munzimi et al., 2019; Revel et al., 2019; Tshimanga & Hughes, 2014). 
For example, Bwangoy et al. (2010) classified the wetlands in the Cuvette Centrale at high spatial resolution 
by using optical and radar data. Rosenqvist and Birkett (2002) detected the maximum of flood extent in the 
Central Congo by using Synthetic Aperture Radar from JERS-1 satellite. While providing valuable informa-
tion on water extents, Bwangoy et al. (2010) and Rosenqvist and Birkett (2002) provide little insights on the 
temporal behavior of water surfaces. Becker et al. (2018) used the GIEMS product to estimate water surface 
dynamics in the CRB. Authors found that during the 1993–2007 period, the CRB water surface extent varied 
from 40,000 to 78,932 km2 excluding the Tanganyika lake (around 32,600 km2). However, some limitations 
for detecting inundation in dense vegetated areas were noted in the GIEMS product (Prigent et al., 2007) 
introducing a negative bias in the estimation of the water surface extent in the tropical basins. The recently 
developed Surface WAter Fraction (SWAF) product aimed at mapping water surface extent dynamics over 
the Amazon basin from 2010 to present (Parrens et al., 2017). Inland waters are monitored every 3 days at 
25 × 25 km spatial resolution. Besides the high temporal resolution, the significant advantage of the ap-
proach is its ability to detect water under dense vegetation by using the L-band passive microwave frequen-
cy from the Soil Moisture and Ocean Salinity (SMOS) mission (Kerr et al., 2001). The analysis of the hy-
drological regime of the Congo river subbasins in this study relies on an improved algorithm for the SWAF 
product by including multiangular and dual-polarization acquisitions to determine soil, forest, and water 
contributions. The present study aims at contributing to a better understanding of the water surface dynam-
ics and hydrological processes in the CRB during the last decade. In the next sections, the CRB hydrology 
is described, followed by the used data sets and methods. The results focus on analyzing the hydrological 
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dynamics of the CRB from the open water surface perspective. The water dynamics are compared to existing 
water surface products, river levels, rainfall. The discussion section places the results of water extents in the 
context of existing recent studies over CRB.

2. Area of Study
The CRB hydrological basin spreads over 10 African countries (Angola, Burundi, Cameroon, Central Af-
rican Republic, Democratic Republic of Congo, Republic of Congo, Rwanda, South Sudan, Tanzania, and 
Zambia). It extends over 3.705 million square kilometers (Lehner et al., 2008). From the east-African rift the 
Congo-Lualaba-Chambeshi river system flow over 4,700 km toward the Atlantic Ocean. The wetland areas 
in CRB include flooded forests and inundated grasslands, both characterized by vegetation adapted to water 
saturated soils, anaerobic conditions, and frequent flooding. Flooded forests cover large areas in the center 
of the study site, mainly in the western part of the Democratic Republic of Congo and the northeastern 
part of the Republic of Congo (Bwangoy et al., 2010; Mayaux et al., 2000). This region is called the Cuvette 
Centrale, and includes the CRB peatlands that are the main carbon sink of the CRB (Dargie et al., 2019). 
They are temporarily or permanently inundated, and in all cases characterized by soils with poor drainage 
(Mayaux et al., 2002). The CRB can be divided into nine subbasins based on the HydroSHEDS basin data 
set (Figure 1). Details of the area, altitude, cover type, and slopes for each subbasin are provided in Table 1.
The CRB includes four major lakes: the Tanganyika lake in the eponym subbasin, the Kivu lake at the North 
of the same subbasin, the Tumba lake in the subbasin of the same name, and the Mai-Ndombe lake in the 
North of the Kasai subbasin. Along these four main lakes, we can also consider the Bangweulu, Mweru, 
and Kabamba lakes in the Upper Congo subbasin that form a hydrologic network at the source of the Congo 
river (Chambeshi river).

The annual mean temperature over CRB is about 25°C. The difference between the temperature of 
the warmest month (March) and the coldest month (July) is of 2°C (Bultot,  1974). The annual rainfall 
is ∼1,900  mm/yr along an east-west trend across the basin, decreasing northward and southward to 
∼1,100 mm/yr (Alsdorf, 2016). The northern part of the basin experiences a minor rainy season from Sep-
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Figure 1. Geography of the CRB. Base map corresponds to the altitude in meters, over which are overlaid the main 
rivers (blue lines), the borders of the CRB (thick black line), the delimitations of the nine subbasins (black lines), and 
the altimetry height stations at the subbasin outlets (red triangles). CRB, Congo River Basin.
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tember to November and a major one from the first half of March to early May. In the southern part of the 
basin, the minor rainy season lasts from February to May and the major rainy season occurs between Sep-
tember and December (Samba et al., 2008).

The Congo river discharge varies strongly across the year (Alsdorf et al., 2016), with high discharge in No-
vember-December and low discharge in July-August. At the city of Kinshasa, close to the outlet of the entire 
CRB, Vanden Bossche and Bernacsek (1990) shows a discharge variation between 23,000 and 75,000 m3/s, 
with an average value at 41,200  m3/s. This average value is coherent with the discharge of 40,662  m3/s 
provided in Alsdorf et al. (2016), and with the average river flow from a century of data from 1902 to 2010 
determined at 40,612 m3/s (Laraque et al., 2013a).

3. Materials
3.1. Data Sets for the L-Band Water Surface Retrievals

3.1.1. L-Band Passive Microwave

Earth observation from space in passive L-band has emerged in the last decade by the launch of the SMOS 
satellite from ESA in 2010 and more recently in 2015 by the launch of the SMAP satellite from NASA. 
The SMOS mission is a joint program of the European Space Agency (ESA), the French Space Agency 
(CNES), and the Spanish Centro para el Desarrollo Tecnologico Industrial (CDTI) in the framework of the 
Earth Explorer Opportunity Mission initiative. It observes using a 2D interferometric radiometer in pas-
sive microwave at 1.4 GHz (L-band). The satellite is in Sun-synchronous orbit with a 06:00 LST ascending 
equator crossing time and a 18:00 LST descending equator crossing time. The globe is fully imaged twice 
every 3 days. The radiometric product from SMOS is the brightness temperature (TB). This signal is highly 
sensitive to the water in the first centimeters of the soil (Kerr et al., 2001). Clouds and rain have a negli-
gible effect on the signal (Ulaby, 1982) and the atmospheric contribution is limited and well known (Kerr 
et al., 2012). The microwave signal is to a lesser extent sensitive to the vegetation, with L-band frequency 
being less impacted by the vegetation than higher frequencies (Ulaby, 1982). The SMOS mission provides 
multiincidence-angle observations at full polarization. In this study, the SMOS Level (L) 3 TB (RE04v300) 
(Al Bitar et al., 2017) produced by the Centre Aval de Traitement des Données SMOS (CATDS) are used. 
These data are projected on the Equal-Area Scalable Earth (EASE) Grid version 2 with a spatial resolution 
of 25 × 25 km at 30° latitude. The main features of the SMOS L3 TB are: (i) the L3 TB for horizontal (H) and 
vertical (V) polarizations are expressed at the top of the atmosphere over the terrestrial reference frame; and 
(ii) they are bin averaged every 5° from 2.5° to 62.5°. In the present study, SMOS L3 TB are used from 2011 
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Subbasin 
name

Surface 
area (km2)

Min 
altitude 

(m)

Max 
altitude 

(m)

Mean 
altitude 

(m)
Forest 

(%)

Ground and 
sparse vegetation 

(%)
Mean 

slope (°)

STD 
slope 

(°)

Upper CRB 453,078 548 1,967 1,135 77.00 18.40 2.16 3.07

Tanganyika 266,511 551 3,071 1,164 52.97 33.03 3.28 5.15

Middle CRB 973,778 295 3,183 603 85.60 13.60 3.33 3.83

Ubangui 648,276 295 1,719 611 84.95 14.57 2.19 1.84

Tumba 14,083 289 404 323 80.35 7.95 1.31 1.36

Sangha 285,043 287 1,956 522 89.87 9.79 2.88 2.52

Lower CRB 67,658 272 831 465 54.92 42.65 3.96 4.27

Kasai 894,489 272 1,492 745 83.42 15.83 3.47 3.58

Kinshasa 102,307 1 1,319 520 43.49 54.19 4.86 4.56

The forest land cover and the ground and sparse vegetation land cover are extracted from the European Space Agency-
Climate Change Initiative land cover product (see Section 3.3.3 for product description). Mean and STD of the slopes 
were calculated from SRTM data.

Table 1 
Characteristics of Each Congo River Basin (CRB) Subbasin
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to 2017 over the Congo Basin. Angles of 32° ± 5°, 40° ± 5°, and 47° ± 5° in both horizontal (H) and vertical 
(V) polarizations are considered to retrieve the water fraction over the tropical basin.

3.1.2. Skin Temperature

The surface skin temperature produced by the European Centre for Medium-range Weather Forecasting 
(ECMWF) was used in this study. They were obtained from the SMOS L3 preprocessor, which computed the 
spatiotemporal interpolated weather data from the ECMWF reanalysis products over the EASE 2.0 grid at 
the time of revisit of the SMOS satellite.

3.1.3. Land Cover Maps

The Globe Cover product from the International Geosphere-Biosphere Programme (IGBP) were used as 
land cover. The IGBP land cover map is obtained using images from the Moderate Resolution Imaging Spec-
troradiometer (MODIS) with a spatial resolution of 0.005° covering years 2001–2012 (Broxton et al., 2014; 
Friedl et al., 2010). After projection over the EASE2.0 grid, the forest classes were used to determine the 
forest contribution on the total SMOS TB. The latest release of the ESA Climate Change Initiative (CCI) land 
cover map was also used (Bontemps et al., 2013). The water/no-water global mask at 150 m is built using 
Synthetic Aperture Radar (SAR) data in combination to Landsat-derived products from years 2003 to 2012. 
Data were downloaded from http://www.esa-landcover-cci.org/. From the 37 classes provided, we used in 
this study the five classes related to water areas—that is, water bodies, cropland irrigated, or postflooding, 
tree cover flooded fresh or brackish water, tree cover flooded saline water, and shrub or herbaceous cover 
flooded fresh/saline/brackish water.

3.2. Comparison Data Sets

The comparison data sets are used for two objectives. First to indirectly access the accuracy, physical sound-
ness, and spatial coherence of the retrieved water surface fractions. Second to link several components of 
the water cycle (precipitation, flooded area, and water height) of the CRB subbasins. In the study, only open 
access data were selected for the comparison.

3.2.1. Water Surface Extent Maps

Four water fraction products were considered for the comparison:
 –  The Global Surface Water Occurrence (GSWO) data set consists in global occurrence of inundated area 

at 30-m resolution over the 1984–2013 period (Pekel et al., 2016). This data set has been obtained from 
the processing of the entire archive of optical data from the Landsat 5 Thematic Mapper, the Landsat 7 
Enhanced Thematic Mapper-plus and the Landsat 8 Operational Land Imager. The data are available at 
https://global-surface-water.appspot.com/. The GSWO was resampled over the EASEv2 25 km for the 
comparison

 –  The classes corresponding to water bodies extracted from the IGBP land cover map described in 
Section 3.1.3

 –  The classes corresponding to water bodies extracted from the ESA CCI land cover map
 –  The SWAMPS data provided daily surface water globally at 25-km resolution from 1992 to 2013. This 

product is based on the combination of passive and active microwave sensors (SSM/I, ERS, QuikSCAT, 
and ASCAT) and visible sensors (MODIS) (Schroeder et al., 2015). In our study, data from 2010 to 2013, 
coinciding with SMOS data availability over the CRB, were considered and averaged over the 4 years

For each of the four products, the water classes were aggregated and resampled to obtain the water fraction 
(%) present in each cell of the EASE v2.0 grid.

3.2.2. Altimetry Data

The flood extent variations over time are compared with water height values from satellite altimetry for each 
subbasin outlet (Figure 1). The water level time series (in meters) for each virtual station over the 2011–2017 
time period were downloaded from the Hydroweb database (http://hydroweb.theia-land.fr/). The water 
level computation method and the location of the virtual stations are presented in Da Silva et al. (2010). 
The Jason altimeter series, in particular Jason-2 and Jason-3, and Sentinel-3 are selected. The Jason series 
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operate at Ku-band (13.575 GHz) and C-band (5.3 GHz) and have a revisit period of ∼9.9 days (Birkett & 
Beckley, 2010). Jason-2 was launched in 2008 and ended operations in 2019. Jason-3 was launched on Jan-
uary 2016. The first Sentinel-3A altimetry satellite (Donlon et al., 2012) was launched on February 2016, it 
operates at Ku-band (13.575 GHz) and C-band (5.41 GHz). It consists as of December 2019 of two satellites 
(Sentinel-3A and -3B). Worth noting that the available Jason-1/2/3 virtual stations over the Sangha and 
Lower Congo subbasins were far from the outlets and were not considered in the analysis. Only Sentine-3A 
data from 2016 to 2019 were used for these two basins.

3.2.3. Precipitation Data

The 3B42 TRMM v7 daily rainfall data are used with a spatial resolution of 0.25 × 0.25. This data set is ob-
tained by combining satellite information from the passive Tropical Microwave Imager (TMI) and Precipita-
tion Radar (PR) onboard the Tropical Rainfall Measuring Mission (TRMM), a Japan—US satellite launched 
in November 1997, and the Visible and InfraRed Scanner (VIRS) onboard the Special Sensor Microwave 
Imager (SSM/I) (Huffman et al., 1995, 2007). It is available on the Goddard Earth Sciences Data and In-
formation Services Center (GES DISC) website: http://daac.gscf.nasa.gov. Over the CRB, large differences 
between the precipitation data based on satellite observations have been noticed. The TRMM data were 
identified as the most coherent with the observed gauged river discharge (Alsdorf et al., 2016).

4. Surface WAter Fraction Determination From L-Band to SWAF
4.1. Retrieval Algorithm

The methodology presented in Parrens et al. (2017) has been extended and adapted to the CRB particular-
ities. In the previous version, only contributions from forested and water surfaces were considered. In the 
case of the CRB, there is need to consider contributions from water, forest, and soil surfaces because the 
CRB exhibits more complex land cover patterns than the Amazon. In fact, the observed area in the CRB 
encompasses more different kinds of grounds than in the Amazon. Indeed, whereas the Amazon can be 
modeled as either water or tropical forest, the Congo River Basin has >40% of its total area being croplands 
and natural vegetation mosaics. The use of the algorithm presented in Parrens et al. (2017) over the CRB 
was unsatisfactory due to this complex mosaic of grounds, with a large overestimation of water surfaces in 
the areas outside forests for all polarization and incidence angle. In terms of brightness temperature, the 
signature of the soil and the forested surfaces is quite different (Ulaby, 1982). From Fresnel's law, it is clear 
that a better detection of water surface extent (with or without vegetation) can be obtained using dual-po-
larization and multiangular TB contributions. This is an essential modification to better characterize the 
spatial heterogeneity of the CRB. Here, by we consider that for a given scene, the brightness temperature 
(TB) at the top of atmosphere (TOA) as the sum of the elementary contributions from forest, soil, and water 
surfaces

           , , , ,TOA W s SOIL F FTB q p F q p F TB q p F TB q p (1)

where TBTOA is the TB at top of atmosphere in Kelvin (K) which should corresponds to the TB observed 
by SMOS after correction of the Faraday and geometric rotation, TBW is the modeled water TB (K), TBSOIL 
is the soil TB (K), TBF is the forest TB (K). FW, FS, and FF are the corresponding surface fractions (with 
FW + FS + FF = 1); q stands for the incidence angle index and p for the polarization index (H or V).

An overview of the SWAF algorithm is presented in Figure 2. To be able to determine more precisely the 
Surface WAter Fraction in the whole CRB, we introduced a soil component with a localized soil brightness 
temperature to represent either vegetation or croplands. To diminish the possible misdetections and dis-
pose of the variations in the TB due to low vegetation cover, the use of an equation system with different 
polarizations and angles is proposed in this study. Various equation systems were tested against only one 
in the former algorithm (1–2 polarizations, 1–2–3–4 incidence angles). The best results in terms of spatial 
cover and preciseness were obtained using an equation system with two polarizations and three incidence 
angles, hence the use of a six equations system. This configuration is the one presented in this study, using 
both H and V polarization, and 32.5°, 40°, and 52.5° incidence angles, and that for the ascending orbit (less 
RFI probability compared to descending orbit). The outputs of the SWAF algorithm are the estimated water 
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(FW) and soil (FS) fractions (in red). The prior forest fraction FF is set from the IGBP forest fraction. The 
inputs (TB L3 SMOS, ESA-CCI, IGBP, ECMWF) are presented in green, the modeled TB in blue, and the an-
cillary data are in purple. Unauthorized emissions in L-band from the ground can induce Radio Frequency 
Interference (RFI) (Soldo et al., 2015). For this reason, the TB is filtered when the RFI probability exceeds 
25%. The orange values in Figure 2 correspond to the interpolated values of TBF and TBS, see next section). 
TBW(q,p) is modeled using the Klein and Swift (1977) model based on the parameterization in Ulaby (1983) 
and using the physical skin temperature from ECMWF of the closest water body. The frequency, angle, 
polarization, and physical temperature of the water surface are required for the TBW modeling. FW and FS 
are constrained in the inversion process to the interval [0, 1 − FF]. An iterative minimization scheme of the 
sum of quadratic differences between modeled and SMOS TBTOA over polarizations and angles is applied 
to retrieve FW and FS.

4.2. Reference Forest and Soil Brightness Temperatures

In order to provide the SWAF algorithm with a representative and updated forest reference brightness tem-
perature, the observed TB for each pixel with a 100% forest cover is interpolated from the IGBP land cover. 
The forest reference TBF matrix is updated for every SMOS acquisition for each couple of polarization and 
incidence angle.

A similar approach is applied for the reference soil TB (TBS) where only permanently nonflooded areas 
are considered using a threshold on the land cover map to obtain a “soil reference map.” The map consists 
in the fusion of five classes from ESA-CCI land cover map—that is, water bodies, cropland irrigated or 
postflooding, tree cover flooded fresh or brackish water, tree cover flooded saline water, and shrub or herba-
ceous cover flooded fresh/saline/brackish water—corresponding to the maximum theoretical flood extent. 
A threshold at 0.6% provided good performance on the SWAF estimation without being too restrictive.

4.3. Postprocessing

The retrieved water fraction is obtained over the L3TB daily product, which is constituted of ascending or 
descending TB over the swath, since the satellite provides a 3-days global coverage. To obtain a continuous 
water fraction map, a linear interpolation for each pixel independently. In the case of the CRB, the water 
surface was not retrieved over the minimum extents of the Tanganyika lake.

5. Results
The following calculations were computed using the two H and V polarization and three incidence angles 
(32.5°, 40°, and 52.5°) for the ascending orbit. Those values allowed the best compromise between angle 
discrimination, water detection estimation, satellite swath width, and RFI detection.
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Figure 2. Scheme of the Surface WAter Fraction retrieval algorithm.
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5.1. Water Surface Extent Maps

Daily water fraction maps were computed over the entire CRB during the 2011–2017 period. The calculation 
of the mean and standard deviation (STD) values for each pixel during the entire time period is provided in 
Figure 3. The main river and lake network (Congo, Kasai, Lualaba, Ubangui, Sangha rivers, and Tangany-
ika, Bangweulu, Mweru, Kivu, Kabamba, Tumba, Mai-Ndombe lakes) can be depicted in the mean SWAF 
map (Figure 3a). The mean flooded area for the CRB is found to be about 89,408 km2 (2.39% of the entire 
basin). Significant flood areas can be distinguished in the eastern part of the Ubangui subbasin and the 
eastern part of the Kasai subbasin.

The SWAF STD map shows up to 0.1 variability of the water fraction values over the period at the scale of 
625 km2. The mean STD for the whole basin is about 9.2 × 10−3. In particular, the Bangweulu lake showed 
an important variation of the water fraction (STD > 0.2). Another area that showed a significant variation 
of water surface are the Cuvette Centrale area and the Kasai subbasin with an STD up to 0.06.

The monthly mean water fraction over the 2011–2017 period is shown in Figure 4. A maximum of total 
flooded area is identified in April with 99,225  km2 (2.66% of total CRB), and a minimum in July with 
78,602 km2 (2.11% of total Congo area). This dynamic corresponds to a variation of 20,623 km2 (0.55%). The 
dry season is observed in the southern part of the whole basin for June-July, and in the northern part during 
December-January.

In Figure 3, it is indicated the location of the Kindu city in the southern part of the Middle Congo subba-
sin, in the Maniema province (Lat: −2.95°, Lon: 25.91°). Kindu is located Northeast of a large floodplain 
(∼15,000 km2), which presents yearly floods from November to May (see Figure 4). This floodplain shows 
the sensitivity of the SWAF approach for the detection of yearly flood cycles.

5.2. Identification of Extreme Events Over 2011–2017

For each subbasin, the flood extent time series has been plotted with the mean flood extent regime over the 
2011–2017 period in the background as a reference (Figure 5). The flood extent has been smoothed using 
a Hanning filter of 31 days. This smoothing has not been applied to the mean flood extent regime. The dif-
ference between the flood regime and actual time series enables the depiction of flood and drought events. 
Hence, the 2014 extreme floods are observed in the Upper Congo, Tumba, Sangha, and Lower Congo subba-
sins. The winter 2015–2016 flood event is observed in the Tanganyika, Middle Congo, Tumba, and Kinshasa 
subbasins. The summer 2016 flood anomaly is detected on the Upper Congo, Tanganyika, Middle Congo, 
and Kasai subbasins. During 2017, the Ubangui, Sangha, and Lower Congo subbasins showed high flood 
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Figure 3. Mean and standard deviation maps of Surface WAter Fraction for the 2011–2017 time period. The black cross indicates the location of the Kindu city.
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extent. Drought anomalies are also observed in winters of 2011–2012, 2012–2013 and 2014–2015, 2015, and 
winter 2016–2017. The winter 2011–2012 drought anomaly is observed in the Kinshasa subbasin. The win-
ter 2012–2013 drought is observed in the Sangha subbasin. The winter 2014–2015 drought is observed only 
for the Middle Congo subbasin. The drought of 2015 is observed in the Upper Congo and Tanganyika sub-
basins. The drought of winter 2016–2017 is observed in the Tumba, Sangha, and Lower Congo subbasins.

5.3. Comparison With Existing Water Surface Extent Maps

The mean water fraction map extracted from the SWAF algorithm has been compared with four water ex-
tent maps described in Section 3.2. For each pixel, the differences between the mean SWAF over the 2011–
2017 period and each data set have been computed. Figure 6 shows the difference maps between SWAF and 
the other data sets along with the histograms of each data set over the CRB and over forest areas only. The 
SWAF algorithm shows higher total water surface extent compared with the other products: +13,763 km2 
more than GSWE, +18,788 km2 more than ESA-CCI, +38,696 km2 more than IGBP, and +43,135 km2 more 
than SWAMPS (Table 2.).

Compared to GSWO and ESA-CCI maps, SWAF underestimates the water extent along the main rivers and 
the borders of the lakes. SWAF water fraction products detect more water surfaces under forests as shown 
in the histogram over the forest areas at low water fraction values (Figure 6f). SWAF detects more flood 
extent than the IGBP water map, except in the center of the small lakes and along the rivers. SWAF detects 
more water than SWAMPS in nearly all the cases yet small differences are identified over the Tanganyika 
lake borders. The histogram in Figure  6 shows that SWAF values are always higher than the SWAMPS 
values. SWAF is higher than IGBP for water fractions up to 0.5 and then lower for higher water fractions. 
SWAF is—despite a few exceptions—higher than GSWO and ESA-CCI values. This behavior is particularly 
marked for values between 0.6 and 0.8.
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Figure 4. Monthly mean Surface WAter Fractions over the 2011–2017 time period.



Water Resources Research

5.4. Hydrological Dynamics of the Congo Subbasins

For each subbasin, normalized cumulative rainfall, cumulative flood area, and normalized water heights 
at each subbasin outlet are plotted in Figure 7. Flood extent time series are in red and the normalized total 
rainfall from TRMM data for each subbasin in blue. Both flood extent and normalized rainfall time series 
have been smoothed using a Hanning filter (Harris, 1978) of 31 days. The water heights from altimetry are 
located at the closest virtual station to the outlet (black lines in Figure 7). The normalized water height time 
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Figure 5. Time series of the total flood extent observed for each Congo subbasin (red) using SWAF algorithm. The mean annual flood extent over the 2011–
2017 observation period is displayed in gray. SWAF, Surface WAter Fraction.
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series is short over the Sangha and Lower Congo subbasin (2016–2017) due to the lack of adequate virtual 
station with a long time series close to the outlet.

As expected from the hydrological cycle processes, a lag between the beginning of the rainy season and the 
flood extent peak can be noticed, along with a lag between flood extent peak and the water height level at 
the outlet of each subbasin. The lag values are reported in Table 3. The following comments can be given 
for each subbasin:

 –  The Upper Congo subbasin presents a high lag between rainfall and flood extent (67 days on average dur-
ing the 2011–2017 period) with a correlation value equal to 0.89 when the lag is removed. This is due to 
the presence of lakes that act like a buffer for water flow. This buffer induces a lag between maximum 
water extent and water height at the outlet of 28 days (correlation with a lag of 28 days: 0.90).

 –  The Tanganyika subbasin flood extent variations are linked to large temporary ponds east of the main 
Tanganyika lake. The extent variations are correlated with the rainfall regime (r  =  0.7) with low lag 
(∼26 days). We also observe a good correlation between the flood maximum extent and water height (lag 
of ∼5 days, r = 0.68).

 –  The Middle Congo subbasin presents a bimodal variation with rainfall peaks at the first and last trimes-
ter of each year. The flood extent and water height follow the rainfall regime with a time lag of 45 and 
30 days, respectively (r = 0.77 with a lag of 20 days).

 –  The Ubangui subbasin presents a small dry season in the rainfall regime. This might lead to the observed 
plateau phase in the flood extent. That flood extent varies little within the rainfall season whereas the 
water height presents a small lag with the flood extent. The water height peak is within a month of the 
end of the flood extent plateau phase.

 –  The Tumba subbasin presents a wet climate with a small dry season during July-August. The flood occurs 
during 100 days with a maximum extent in November, synchronic with the water height peak (r = 0.91).
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Figure 6. Difference between the mean SWAF map over the 2011–2017 time period and four other products: (a) GSWO extent; (b) ESA-CCI water bodies; (c) 
IGBP water bodies; and (d) SWAMPS mean water fraction over the 2010–2013 time period. And histogram of all the data sets: (e) over the whole Congo basin. 
(f) Histogram over the forest area of the Congo basin. CCI, Climate Change Initiative; ESA, European Space Agency; GSWO, Global Surface Water Occurrence; 
IGBP, International Geosphere-Biosphere Programme; SWAF, Surface WAter Fraction; SWAMPS, Surface Water Microwave Product Series.
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 –  The Sangha subbasin presents a bimodal rainfall regime, with a first wet season from February to June, 
and the second from August to November. Between those rain seasons and the flood extent, there is a 
mean lag of about 50 days, with the maximum flood extent reached in November. The correlation be-
tween the flood extent and the water height at the outlet reaches 0.80.

 –  The Lower Congo subbasin present a long rainy season, and a short dry season during July-August. Its 
peak of flood extent is in average in December, in the middle of the rainy season. No specific relation 
between flood extent and water height at the outlet can be determined from these time series.
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Figure 7. Time series of the total flooded area derived from SWAF (red), the normalized total rainfall from TRMM 3b42v7 data set (blue), and the normalized 
water height elevation (black) of the subbasin outlet altimetry height station. SWAF, Surface WAter Fraction; TRMM, Tropical Rainfall Measuring Mission.
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 –  The Kasai subbasin presents a long rainy season, and a short dry sea-
son during July-August. The flood extent is synchronous with to the 
rainfall regime (r = 0.86). The water height variation presents mostly 
a bimodal behavior, with a first peak in December, and a second peak 
in April. The lag between the flood extent and the water height peak 
is of 29 days (lag of 29 days leads to r = 0.76).

 –  The Kinshasa subbasin presents a 200-days long rainy season extend-
ing from September to March. The flooded area is relatively small 
compared to the other subbasins and concentrated on the banks of 
the river and the Eastern part. The flooding dynamics is highly corre-
lated to the precipitation (r = 0.83). The water height peak happens 
in average 15 days after the flood extent peak.

The lengths of the rainy and flooding seasons have been measured for 
each subbasin. To such an aim, start and end of each season from the 
TRMM and SWAF time series have been detected. The threshold of de-
tection has been determined from the minimum value of the whole time 
series plus 1.5 times the standard deviation value. The rainy and flood 
season lengths, along with the lag between rainfall, flood extent, and wa-
ter height at the outlet have been displayed in Figure 8.

Following the threshold criterion, the longest rainy season occurs in the Middle Congo subbasin, which 
corresponds to the tropical rain forest extent mostly. The shortest occurs in the Upper Congo basin. The 
longest flood happens in the Ubangui subbasin and the shortest in the Tanganyika and Tumba subbasins. 
As expected, the duration of the flood season does not correspond directly to the length of the rainy season. 
Furthermore, due to the difference in size of each subbasin (from 14,083 to 973,778 km2), different regimes 
within a subbasin may have different impacts on flooding. The month of maximum flood extent from the 
SWAF water fractions for the whole 2011–2017 period is displayed in Figure 9. Results have been filtered 
with a majority (also known as mode) filter of size 9. This filter generalizes and reduces single pixel mis-
classifactions (Davies, 1988).

The Upper CRB, East Tanganyika, South Middle CRB, and northern Ubangui parts of their subbasins pres-
ent maximum flood extent in the first half of the year. In particular, it presents an emphasis on the Jan-
uary-March period in the south of the Congo basin, and in April-June for the North Congo basin (Uban-
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Subbasin

Rainfall and flood extent
Flood extent and sub-basin outlet 
water height

Proportion of flooded 
area for 2011–2017

Time lag 
(days)

Lagged 
correlation

Time lag 
(days) Lagged correlation Min. (%) Max. (%)

Upper Congo 67 0.89 28 0.90 2.55 5.86

Tanganyika 26 0.70 5 0.68 13.69 15.81

Middle Congo 28 0.53 20 0.77 0.58 1.14

Ubangui 8 0.73 60 0.56 0.42 1.24

Tumba 41 0.34 1 0.91 6.19 8.73

Sangha 49 0.68 1 0.80 0.53 1.64

Lower Congo 23 0.76 7 0.68 1.65 5.31

Kasai 0 0.86 29 0.76 0.68 2.22

Kinshasa 0 0.83 10 0.56 0.95 2.63

The time lag is indicated (in days), along with the corresponding correlation coefficient. The proportion of minimum/
maximum flooded area for the whole 2011–2017 period is also indicated.

Table 3 
Lag Between Rainfall and Flood Extent, and Between Flood Extent and the Water Height Level at the Outlet of Each 
Subbasin

Data set

Mean 
surface 
(km2)

Minimum 
water extent 

(km2)

Maximum 
water extent 

(km2)

SWAF  89,408 78,602 99,225a

ESA-CCI 70,620 — —

SWAMPS 46,273 — —

Global Surface Water Occurrence 75,645 — —

IGBP 50,712 — —
aThe maximum surface for SWAF is 119,874 if the surfaces are summed 
up considering the peak date for each subbasin.
Abbreviations: CCI, Climate Change Initiative; ESA, European Space 
Agency; GSWO, Global Surface Water Occurrence; IGBP, International 
Geosphere-Biosphere Programme; SWAMPS, Surface Water Microwave 
Product Series

Table 2 
Mean, Minimum, and Maximum Water Extent Over the Congo River 
Basin (CRB) for the Considered Data Sets
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gui subbasin). Conversely, the West Tanganyika, West Middle Congo, South Ubangui and Sangha, Tumba, 
Lower Congo, Kasai and Kinshasa subbasins present maximum extents in the second half of the year. In 
particular, it presents a strong emphasis for the November-December months in the Cuvette Centrale area, 
which presents the most noticeable floods.

6. Discussion
As shown in Figure 5, the detection of extreme events using surface ex-
tent provides reliable information about the drought and floods during 
the last decade at the subbasin scale. The annual flood already mentioned 
in Section 5.1 Southwest of the city of Kindu were not depicted by the 
other data sets used in the comparison section of the paper. This is an 
important point, as these yearly floods can lead to disastrous impacts in 
this area. For instance, >3,600 people were made homeless in Novem-
ber 2015 due to important floods after an abnormally dry beginning of 
year (UN OCHOA, 2015). This is concordant with the time series of the 
Middle Congo basin observed in Figure 5. This observation can be made 
due to the increased temporal information and sensibility of the observa-
tion-based product developed in this study. The temporal information is 
gained by the 3 days revisits of the SMOS sensor (Kerr et al., 2010) and 
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Figure 8. Hydrological indicators over the Congo River Basin: (a) lag between rainfall and flood, (b) lag between flood 
and outlet water height, (c) rainy season length, (d) flood season length. CRB, Congo River Basin.

Figure 9. Map of the month corresponding to the maximum flooded areas 
over the Congo River Basin after the application of a majority filter of size 
9.
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the sensibility due to the use of L-band radiometry which enables depiction of water surfaces in Tropical 
environment (Parrens et al., 2017).

The month of maximum flood extent (Figure 9) for each subbasin of CRB provides new observation-based 
knowledge of the water dynamics. The CRB can be divided from this information into two big systems. The 
upstream part with a maximum extent in the first five months of the year and the downstream part with 
a maximum extent in the last 5 months of the year. In particular, the very important flood area of the Cu-
vette Centrale is mostly flooded in December, with a ∼20 days lag compared with the rainfall for the Lower 
Congo subbasin and a ∼40 days lag for the Tumba subbasin. O'loughlin et al. (2013) showed the complexity 
of the determination of river flow dynamics in the central part of the CRB and the need for inclusion of 
hydraulic constraints in the modeling which were not present in previous studies (Beighly et al., 2011; Lee 
et al., 2011). The results from the current study confirm the complexity of the processes and provide addi-
tional tools to constrain the river modeling. The positions of the five constraints determined in O'loughlin 
et al.  (2013) which can induce backwaters correspond to high dynamics of water surfaces. In his book, 
Robert et al. (1946) defined from a topogeological point of view the Cuvette Centrale as the central concave 
depression of the interior plateau of the CRB with an altitude lower than 500 m. Bwangoy et al. (2010) esti-
mated the wetland area at 359,556 km2 (31.79%) of the 1,176,000 km2 total area of the Cuvette Centrale. In 
our study, we associate the wetlands of the Cuvette Centrale based on the month of maximum flood extend 
as shown in Figure 9. Considering this approach, this area covers 332,620 km2 (28.28%) of the Cuvette Cen-
trale which is quite close to the previous evaluations.

Tropical climate is characterized by a high spatial and temporal variability compared to temperate climate 
(Wohl et al., 2012). Consequently, the change in response of climate and anthropogenic alterations is rapid. 
In the CRB, the hydrological processes need to be studied with a high temporal sampling. This study focuses 
on the high temporal dynamic of the water surface extent component leading to a better temporal knowl-
edge of this reservoir. The link between rainfall and water surface extent is also complex in the CRB due 
to the complex drainage systems and geomorphological and hydraulic properties. Ndehedehe et al. (2019) 
mention that runoff and evapotranspiration of each subbasin are also significant triggers of hydrological 
conditions other than rainfall. As shown in the results of Figures 7–9, the link between water surface ex-
tent, discharge, and rainfall is not homogeneous within a subbasin and highly differs from one subbasin to 
another.

The dearth of flood extent information over the Congo basin—the lack of reliable water extent dynamics 
products over Congo over the 2010s—is partially filled with the suggested methodology and resulting maps 
in this study. The use of L-band microwave SWAF extends the scope of estimation of the water surface ex-
tent in the Congo tropical basin. The water extents presented in this study were compared to the available 
remote sensing-based maps and dynamic products. Some products are static maps that cannot account for 
the dynamics in the area (for instance GSWO, IGBP, and ESA-CCI water bodies' products). Other products 
do not cover the area for the 2010s (SWAMPS is only available until 2013). In general, SWAF detects larger 
water extents surface over the whole Congo basin. Still, an underdetection of water surfaces with SWAF 
compared to GSWO and ESA-CCI in particular along the main rivers and lake borders (see Figure 6). This 
might be explained by three different factors. The first one is that the signal over water bodies can be con-
taminated by the adjacent soil through the Gibbs effect (Al Bitar et al., 2012). The second factor is that the 
reference brightness temperature for water bodies could be slightly erroneous as it relies on the physical 
Klein and Swift (1977) model. The Tskin estimation from ECMWF used could lead to a negative bias in 
water fraction. The last factor is the land cover close to river and lake borders. It is indeed, in the Congo 
river case, a complex mosaic of water surfaces, crop fields, low vegetation, and sparse forests. As each SMOS 
pixel represents a large 625 km2 area, a slight overestimation of the soil fraction or a too low TBs compared 
to reality can lead to a lower SWAF estimation in these complex areas.

Over the whole CRB, the minimum SWAF flood extent reaches 78,602  km2 and the maximum extent 
99,225 km2 between 2011 and 2017. The SWAF minimum extent is slightly over the 72,600 km2 observed in 
Becker et al. (2018), when the SWAF maximum value is below the 111,532 km2 proposed. The difference in 
the maximum extent is due to the methodology used: in our case, the maximum value corresponds to the 
maximum extent observed over the whole CRB for 2011–2017, when in Becker et al. (2018) they summed 
the maximum extents of each subbasin for 1993–2007. Following their methodology, we get a maximum 
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extent of 119,874 km2. We have coherent values for the 2010s compared to the 1993–2007 time period of the 
GIEMS data, although slightly higher by a 6,000–8,000 km2. Additionally, even though the used retrieval 
algorithm relies on multiangular and dual polarization, it remains dependent on the reference map for 
homogeneous surface components. The choice of ancillary data can induce uncertainties and bias in the 
estimates. For instance, using the ESA-CCI land cover may induce errors in the south western part of the 
CRB corresponding to the Angola compared to the well mapped as the Democratic Republic of Congo. This 
is more relevant when the needed reference information of homogeneous surfaces is modeled over distant 
location from where the retrieval is done. Also, the use of the modeled physical temperature of the water 
bodies may induce negative bias. Finally, the current product is at a high temporal resolution but coarse spa-
tial resolution and it would profit from a downscaling approach similar to the SWAF Amazon application 
(Parrens et al., 2019), but this would require also a preliminary analysis of the digital elevation products is 
needed before.

7. Conclusion
The dynamics of the water surfaces over the CRB from 2010 to 2017 were analyzed with innovative remote 
sensing-based water fraction maps. The water surface dynamics show strong variability over the different 
subbasins of the Congo river for several hydrological information: lag with precipitation, flood duration, 
and maximum flood extent. A lag of 67 days between rainfall and inundation were found in the Upper 
Congo with a correlation value equal to 0.89, whereas no lag was detected in the Kasai subbasin with a 
correlation value equal to 0.86. It was also found that the duration of the rainy season is very different from 
the duration of the flood season. The temporal contribution to each floodplains and wetlands linked to the 
Congo discharge was evaluated. The month of maximum flood extent for each subbasin was determined. It 
varies from January to April for upstream subbasins and from September to December for downstream sub-
basin. Furthermore, a flood extent-based definition of the Cuvette Centrale is proposed in the paper which 
supplement the existing definitions based on river hydrology and vegetation.

These results were made possible using L-band radiometric data which can provide water surface dynam-
ics under vegetated areas. Thus, the spatial and temporal dynamics of wetlands, peatlands, and floodplain 
under the second largest tropical forest of the world can be analyzed. Extreme events such as the 2014 flood 
in the Upper Congo, Tumba, Sangha, and Lower Congo subbasins and the winter 2016–2017 drought in the 
same subbasins were detected.

To achieve this the SWAF methodology already developed over the Amazon basin was adapted to the CRB 
considering the differentiated contribution of soil, water, and forest covers using the polarization and angu-
lar information from the SMOS data. The obtained water surfaces were compared to three independent land 
cover maps (ESA-CCI, IGBP, and GSWO) prior to the hydrological analysis. It was found that, on average, 
more water surface extent was detected with the SWAF data. Along the rivers, less water was detected than 
IGBP and GSWO whereas in floodplains, wetlands, and peatlands, more water was observed. SWAF data 
were also compared to SWAMPS and it was found that SWAF detects more inland water than SWAMPS. 
Future studies should address the comparison of the current data set to outputs from regional hydrodynam-
ic models like Fleischmann et al. (2020) where the water surface products from EO were compared to 1D 
and 2D versions of the MGB-IPH model. This would be a preliminary analysis prior to implementation of 
assimilation techniques.

Further work is planned to add the current advancements into a broader context where the volume and 
stream flow will be considered. This will be achieved using altimetry data from existing sensors Sentinel-3 
and future missions, namely SWOT. The combined use of altimetry data over low vegetated areas with the 
disaggregation approach suggested in Parrens et  al.  (2019) may enable the monitoring of water storage 
terms. This would be justified by the low slope in the tropicals wetlands and the linear relation between 
water height and water volume in these conditions.
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Data Availability Statement
The SMOS products were provided by CNES and IFREMER through the CATDS-SMOS center. All data used 
in this study are publicly available with an open license for noncommercial use and they were all last accessed 
on October 10, 2020. Hydrological subbasins data set is available at https://hydrosheds.org/downloads. 
TRMM 3B43 data set is available at https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7370. ESA-CCI land 
cover maps data set is available at http://www.esa-landcover-cci.org/.ECMWF ERA5 data set is available at 
https://www.ecmwf.int/en/forecasts/datasets. GSWO data set is available at https://global-surface-water.
appspot.com/. SWAMPS data set is available at https://iridl.ldeo.columbia.edu/SOURCES/.NASA/.JPL/.
wetlands/.dailyinundation/.swamps_v3p1/. IGBP data set is available at http://www.igbp.net/. Altimetry 
data are available at http://hydroweb.theia-land.fr/.
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