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In chemography, grid-based maps sample molecular descriptor space by injecting a set of nodes, then linking them to some regular 2D grid representing the map. They include Self-Organizing Maps (SOM), and Generative Topographic Maps (GTM). Grid-based maps are predictive because any compound thereupon projected can "inherit" the properties of its residence node(s)node properties themselves "inherited" from node-neighboring training set compounds. This article proposes a formalism to define the trustworthiness of these nodes as "providers" of structure-activity information captured from training compounds. An empirical four-parameter Node Trustworthiness (NT) function of density (sparsely populated nodes are less trustworthy) and coherence (nodes with training set residents of divergent properties are less trustworthy) is proposed. Based upon it, a trustworthiness score T is used to delimit the Applicability Domain (AD) by means of a trustworthiness threshold TT. For each parameter setup, success of ensuing inside-AD predictions is monitored. It is seen that setup-specific success levels (averaged over large pools of prediction challenges) are highly covariant, irrespectively of the targets of prediction challenges, of the (classification or regression) type of problems, of the specific parameterization and even the nature (GTM or SOM) of underlying maps. Thus, success levels determined on the basis of regression problems (445 target-specific affinity QSAR sets) on

GTMs and levels returned by completely unrelated classification problems (319 target-specific active/inactive-labeled sets) on SOMs were seen to correlate to a degree of 70%. Therefore, a common, general-purpose setup of the herein proposed parametric AD definition was shown to generally apply to grid-based map-driven property prediction problems.

should have similar properties. Chemography is a domain of chemoinformatics dedicated to "flattening out" the CS, to be rendered as a human-readable 2D map. In virtue of the NB principle, close analogues within a CS sphere centered on a reference compound of property P will likely have property values close to P. Or, one may conceive P as a local characteristic of the CS -like a physical field filling the entire space, not only points where its "sources" (herethe reference compounds) are located. Structure-activity (SA) information is herewith "disembodied" from its original providers (the training molecules) and transferred to the CS. If so, then this high-dimensional property "field" should be mappable as intuitive 2D property landscapesso that the position of a compound on the 2D map may be predictive of its property.

One powerful approach in chemography, Generative Topographic Mapping (GTM) was introduced by Bishop, Svensen & Williams [START_REF] Bishop | GTM: The Generative Topographic Mapping[END_REF][START_REF] Bishop | Developments of the generative topographic mapping[END_REF] . Essentially a probabilistic, fuzzy generalization of Kohonen Self-Organizing Maps (SOMs) [START_REF] Kohonen | Self-Organizing Maps[END_REF][START_REF] Kohonen | Self-Organization and Associative Memory[END_REF] , GTM draws its multivalence [START_REF] Horvath | Generative Topographic Mapping Approach to Chemical Space Analysis[END_REF] specifically from its fuzzy-logics approach. Both approaches are grid-based, relying on a 2D grid of nodes laid out according to a regular pattern in the map plane (the "latent space"). These nodes are linked to the initial descriptor space and are associated to items from their descriptor space neighborhoodsalbeit the mathematical formalism used to achieve this strongly differs in the two approaches (SOMs employ "code vectors" while in GTMs nodes are bound to a flexible "manifold" inserted in CS and fitted against the "frame set" of compounds). In both approaches, nodes may serve as "probes" reporting local property values at corresponding CS coordinates, and hence become instrumental in generating 2D property landscapes.

By contrast to SOMs, where an item (a molecule) is assigned to one and only one node, GTM however interprets the statement "molecule M resides in node N" as a fuzzy truth, of real value 0<R N (M)<1. The sum of all R N (M)further on referred to as the Responsibility vector Rover all nodes equals one. In practice, the concept of responsibility is associated to the GTM algorithm, never to SOMs. Formally, one may nevertheless think about SOM "responsibilities" as a binary vector with R W (M)=1 for the "winning" node W, and R N (M)=0 for all others N≠W.

With this important specification, GTM and SOM-based property prediction are in this work described by the same R-based formalism, irrespective of the real (GTM) or binary (SOM) nature of this vector. Note that thislandscape-based, vide infraproperty prediction procedure proposed here is an extension of the standard GTM prediction mechanism, that can be seamlessly applied to GTMs and SOMs -and other "grid-based" mapsalike. Many other property prediction mechanisms based on SOMs and GTMs could be envisagedyet, this one is generally applicable to grid-based maps and therefore would also allow for an unified approach defining Applicability Domains.

Above-mentioned landscape construction is nothing but responsibility-mediated transfer of structure-activity information from the training set onto the nodes. Prediction represents the inversefirst, the compound is projected, and the predicted property is taken as the R-weighed mean of node properties. In GTM, any small structural change impacts R levels, and smoothly modifies predicted properties. Therefore, GTMs support full-blown predictive regression [START_REF] Gaspar | GTM-Based QSAR Models and Their Applicability Domains[END_REF] and classification [START_REF] Gaspar | Generative topographic mapping-based classification models and their applicability domain: application to the biopharmaceutics Drug Disposition Classification System (BDDCS)[END_REF] models (Quantitative Structure-Property/Activity Relationships, QS[P/A]Rs). On the contrary, SOMs are limited to postulating that the predicted property of any node resident would equal the mean of training set resident properties, a fixed value for each nodea direct consequence of the binary nature of their R vector. Thus, any change of structure not impacting on the SOM node assignment will have no consequence on SOM-predicted properties. SOMbased property landscapes are intrinsically "granular" with GTM-based landscapes are smooth. This being said, above differences are in practice not as clear-cut. On one hand, R vectors on GTM often are de facto binary, as compounds (routinely) happen to be associated to a single node, at R levels above 0.99999. On the other, SOMs could be enhanced by a fuzzy-logics formalism, defining real-value R scores as some decreasing function of the distance of item and code vector nodes. In this paper, however, the goal is not an in-depth benchmarking of GTMs against SOMs, but the use of two different paradigms of grid-based maps, GTMs and SOMs in order to search an Applicability Domain formalism which may apply to both, in spite of their differences.

Moreover, grid-based maps offer straightforward means to assess the trustworthiness of its landscape-based predictions. Two criteria of node trustworthiness can be envisaged. The first is the cumulated responsibility of node residents, i.e. the node density. Nodes with low cumulated training set responsibilities are basically terra incognitamarginal levels of association to training set compounds makes the assignment of a node property value technically possible, but not trustworthy. The second is the coherence of the property data contributing to a node, i.e. the spread (R-weighed standard deviations) of the resident propertiesshowing that some map zones may be more NB-compliant than others. High coherence is mandatory for high trustworthiness.

The prediction of a compound property is, in GTM, however tributary to all the nodes to which this compound is associated with tangible responsibility values. Each node has its own "Node Density" (ND) and "Node Coherence" (NC)how would these impact on the global trustworthiness of prediction? Furthermoreif the predicted compound is equally strongly associated to a node characterized by a high activity value and a node of low activity value, is it senseful to accept the R-weighted mean of these diverging values as predicted value? This aspect quantitatively measured by the standard deviation associated to the R-weighted mean valuewill be further on termed "Prediction Coherence" (PC) to be distinguished from abovementioned "Node Coherence" (NC). Eventuallyhow to best combine all the cited aspects into one clear-cut decision-making trustworthiness score? Paradoxically, even though GTM-based property prediction offers an extremely versatile control of its Applicability Domain (AD), and even though the potential power of such AD control has been understood and advertised in previous publications [START_REF] Gaspar | GTM-Based QSAR Models and Their Applicability Domains[END_REF][START_REF] Kaneko | Data Visualization, Regression, Applicability Domains and Inverse Analysis Based on Generative Topographic Mapping[END_REF] , this versatility makes it impossible to easily formulate "the" obviously best mode to define trustworthiness, and its threshold value delimiting the AD. So far, in our hands GTM-driven predictions were used as such, with at best some empirical, ill-defined minimum density requirements to be satisfied, awaiting for a systematic study to explore the relative merits of envisageable trustworthiness scoring schemeshence, this contribution.

Actually, this study goes one step further, and first investigates whether landscape nodes involved in prediction should be no longer contribute proportionally to the R values of the compound to predict, but have their effective impact modulated by their density and coherence factors. Intuitively, such a strategy makes sense -nodes are the "sources of knowledge" which transfer to the candidate to be predicted the knowledge learned about the CS distribution of property P on the basis of training set compound. Sources most relevant to the compound to predict (nodes of higher level of association R) should impact most on prediction (R-weighted averaging is paramount). Yet, it might be senseful to dampen the relative impact of less trustworthy sources (empty or non-coherent nodes). A mathematical formalism in this sense is proposed here, involving a few tunable parameters.

Eventually, trustworthiness of node sources (NC, ND) and coherence of prediction (PC) are combined into a final trustworthiness score T. Predictions at T above user-specified thresholds were carried out and evaluated. AD-dependent predictions need be assessed in terms of two (often) conflicting criteria: prediction accuracy and AD coverage of the external set. A good T criterion would typically allow increasing accuracy at the cost of lowering coverage, as more constraining thresholds are applied. In order to avoid complex Pareto front analysis, (coverage, accuracy) pairs were here characterized by three complementary quality scores QC, QA, QU. All the three are geometric means of coverage and accuracy, with one being biased to be more sensitive on Coverage (QC), another to respond more to Accuracy (QA), while the default third is Unbiased (QU) and equally sensitive to both.

A large number of pK i (-log of the thermodynamic instability constant of protein-ligand complexes) quantitative (regression) prediction problems were run over a pool of 445 different biological targets endowed with enough (>100) associated ligands of reported K i in ChEMBL v.26. Systematically, a randomized 30% of each set was taken out as external set, while the remaining 70% served to generate pK i landscapes on the seven general-purpose "universal" maps previously developed by our team. Prediction of external pK i values was then performed, for all envisaged AD-defining parameters. Coverage (fraction of external set within herein defined AD) and accuracy (here, R 2* values, vide infra) were monitored. For each target, randomized external set extraction was repeated 25 times, as prediction scores may significantly change in response to training versus external set composition. It is thus possible to count how many of these 25 trials returned (coverage, accuracy) pairs of high QC, QA or QUand implicitly, to monitor the percentage of "successful" predictions throughout the pool of prediction challenges featuring the 445 QSAR sets on the seven GTMs. The question whether preferred AD-defining strategies would depend on the nature of the used GTM (based on significantly different molecular description schemes) was also addressed. Furthermore, it is important to verify whether the findings of the regression-based AD definition quest are of general validityirrespective of both target nature and QSAR problem nature. 319 additional biological targets for which ChEMBL does not offer sufficient pK i data for large enough quantitative QSAR sets but reports enough activity data to generate a classification QSAR series (discriminating between empirically defined "actives" versus "inactives") were employed to this purpose. As GTM-driven "fuzzy binary classification landscapes" treat the probability to belong to a class rather than the other as a real-value score, they technically behave like regression landscapes. The mathematical formalism provided here applies irrespectively of whether the molecular property P(M) is a real value or a class number (1=inactive/2=active). However, Balanced Accuracy (BA) is used as accuracy criterion in the latter case. As a side remark, multi-class classification problems require a different mathematical formalism and are not covered here. However, this is not a real limitation, because any C-class classification problem can be reformulated as C independent binary classification challengeseach focused on segregating members of a class c=1..C from respective non-members.

The final key point addressed here is checking whether GTM-based trustworthiness definitions may as well apply to SOMs, herewith showing that the herein developed formalism may apply to several grid-based mapping algorithms. To this purpose, four "universal" SOMs US 1 -US 4 were constructed in following the evolutionary universal GTM selection procedure [START_REF] Sidorov | Mappability of drug-like space: towards a polypharmacologically competent map of drug-relevant compounds[END_REF] , using strictly the same 236 active/inactive binary classification QSAR problems for map quality assessmentbut adapting the map-encoding "chromosome" to accommodate SOM-specific instead of GTMspecific parameters. The 319 above-mentioned classification problems were eventually enacted on US 1 -US 4 , following the established protocol. Collaterally, this allows to quantitatively assess ifand in how far -GTMs are, as expected but so-far never formally provenmore effective predictors than SOMs.

As an outline, this article focuses on strategies to optimize predictivity of grid-based map landscapes, in proposing a means to quantify node trustworthiness as "providers" of neighborhood information learnt at training stage. To this purpose, a mathematical formalism featuring a few tunable parameters and a series of prediction success criteria is introduced.

Predictive landscapes rely on "universal GTMs" or on-purpose built "universal SOMs". They are built on hand of ChEMBL-extracted training sets associated with either continuous regression (pK i values) or binary (activity class) data. Since universal SOMs were not described before, short Methods and Results chapters are needed to properly introduce them.

The relative performance of the various setups is impacted by the chosen "points of view" embodied by the complementary success criteria: setups guaranteeing high coverage are not the same as ones providing high prediction accuracy. With this is mind, the following key questions were addressed here:  Are preferred AD-defining strategies dependent on the nature of the used GTM (based on significantly different molecular description schemes)?

 Are they problem category specific, or are there consensus setups which maximize success in both regression and classification problems?  Are they map type specific, or are there consensus setups which maximize success of both GTM and in SOM-driven models?

Based on this study, and dependent on the coverage versus accuracy-oriented point of view of the user, the tunable parameters were assigned values guaranteeing a general compliance of the AD control schemes with all the prediction scenarios covered here.

Eventually, a visual illustration of the concepts involved in the AD definition is shown, as an aid to highlight and understand prediction errors.

Methods

GTM construction has been already extensively described in literature. Likewise, the philosophy and technical details at the basis of the herein used Universal maps were also largely described [START_REF] Sidorov | Mappability of drug-like space: towards a polypharmacologically competent map of drug-relevant compounds[END_REF] . Therefore, this article will only focus on the methodology of predictive landscapes, based on the already introduced responsibility vector R N (M), featuring the level of association of an item (compound) M to each of the nodes N of the GTM.

Universal SOMs

Universal SOMs were generated by an evolutionary algorithm exploring the parameter space associated to the herein used SOM_PAK software 14 , while the fitness function used to select the maps was the same mean cross-validated BA score over the 236 active/inactive binary classification QSAR problems used to power the universal GTM search [START_REF] Sidorov | Mappability of drug-like space: towards a polypharmacologically competent map of drug-relevant compounds[END_REF][START_REF] Lin | Multi-task generative topographic mapping in virtual screening[END_REF] . Each of the four US was based on the same descriptors used by the corresponding universal GTM, i.e. descriptor choice as a degree of freedom of the evolutionary process was disabled. The six SOM-specific degrees of freedom encoded by the chromosome are given in the Appendix document available as Supplementary Information.

Predictive Landscape Construction

As mentioned in Introduction, the methodology below applies to both GTM and SOM-driven property prediction, with the provision that SOM "responsibility" vectors are binary, with R W (M)=1 for the "winning" node W, and R N (M)=0 for all others N≠W. A property landscape is defined by transferring properties P from training set (TS) molecules (M) onto the strongly associated nodes. P may be any continuous molecular property, or a binary class label in fuzzy classification landscapes. Many-class classification problems are not considered here. This paragraph outlines how to calculate a predictive landscape (i.e. the set of node-associated property values NP N ) together with associated AD-relevant criteria (density, coherence).

The cumulated responsibility on a node, CR N , is the sum of training molecule responsibilities: (1) Note that theoretically is always positive, since all are positive values rendered by radial basis functions. Practically, R values are stored on file with a precision of 10 -5 . Thus, nodes with no "tangible" responsibilityfor all moleculeshave

The magnitude is dependent on training set size and map resolution (number of nodes), thus requires some normalization before being used as a node density (ND) criterion in trustworthiness estimation. Here, it was empirically decided to assign the most populated node ND=1.0 and empty nodes ND=0.0, hence

The responsibility-weighed mean property value of residents is computed on each node N as the node property NP N :

(

The associated responsibility-weighed standard deviation value of the property, (NP N ) is:

This standard deviation reflects the degree of consistency of the property on the map. It is small if most compounds located in the same region of the map have similar property values. It is large if there is no relation between the property value and this location on the map.

This observation can be translated into a coherence score, , defined as follows:

(

The node coherence is a dimensionless value <1, but always positive (the standard deviation of a distribution cannot exceed its range width). The score is maximal if the compounds located near the considered node share similar property values (NB compliance); it is maximal if there is no relation between this node and the property value. The symbol P denotes property range width.

At null , is undefined and set to zero: empty nodes are completely incoherent, by definition. Otherwise, , as the standard deviation of a property cannot exceed its range width.

The case of empty nodes and the Min-Mean Toggle (MMT).

For nodes void of any tangible responsibilities, and hence equations (3) to ( 5) are not applicable. Default NP values are assigned to empty nodes, depending on a "Min-Mean Toggle"

MMT:

-With the toggle set to "mean", empty nodes are assigned to the average property of the training set:

. It is the reasonable expectation if nothing is known about a chemical space zone.

-Toggle at "min" assigns a chosen expectation of the activity level. In the present case it is the lowest property value observed in the training set: .

The minimum value was chosen in the present case, because with all herein predicted bioactivity scores (pK i or activity classes) "minimum" is synonymous to low activity. Thus, the MMT degree of freedom chooses between two empirical postulates about the behavior of compounds in chemical space zones not covered by the training set: "mean" assumes those activities to be "average" (as predicted by a null model), "min" assumes those molecules to be inactive.

Node Trustworthiness

The below proposed Node Trustworthiness (NT) score serves to modulate the participation of each node in the prediction processwith highly populated and homogeneous nodes expected to contribute more. NT is postulated to increase with node density ND, equation (2), and coherence NC, equation ( 5), according to the simple working hypothesis below: (6) where  and  are tunable parameters, which will be subject to an exhaustive scan in this work. The relative importance of ND N and NC N is controlled by the values of the exponents  and  that were allowed to take values of (0.0, 0.01, 0.1, 0.5, 1.0, 2.0). Trustworthiness becomes independent of the density and the coherence if ==0. The parameter  plays the role of a default trustworthiness level and is set to take the values (0.0, 0.01, 0.1, 0.5); if non-null, it prevents the score to be undefined in the case both density and coherence are together null. The denominator in equation ( 6) is a normalization factor, ensuring that the most trustworthy of all nodes of the trained landscape is assigned . At the opposite end, signals that such nodes will be completely ignored in predictions. The entire grid of (, combinations was explored, excluding redundancies (if ==0, all nodes will have irrespective of . Note that may become zero only for empty nodes and only if =0 and >0. Otherwise, their trust level remains positive and thus the MMT-chosen value becomes relevant, while at =0 and >0 prediction results are MMT-independent.

2.4

The NT-sensitive prediction protocol.

The rule to interpolate the property (below, "^" stands for "predicted") of a molecule M accounting for node trustworthiness is: (7) which resumes to if all nodes are equally trustworthy. The normalizing factor at denominator is the mean node trustworthiness of residence nodes concerning M:

(8)
The weighted mean serving as predicted value is associated to a standard deviation:

The standard deviation expresses the divergence of the node properties based on which the molecular property is extrapolated. It is, in addition to the mean node trustworthiness , the other key contributor to the trustworthiness of the prediction of M: (10) is large if (1) M predominantly resides in trustworthy nodes and (2) the standard deviation of the prediction is small in comparison to the activity range , e.g. nodes of residence have nearly equal node property values; it is small otherwise.

Applicability domain definition and performance criteria.

The score is finally used to take an applicability domain decision. For an external set, at given (, T), all molecules M reaching a user-chosen Trustworthiness Threshold TT are considered as inside the AD. The AD coverage fraction is: (11) Eventually, is compared to actual for all compounds within the AD, in order to establish the prediction quality criterion. For categorical problems, BA is classically defined as the mean of proportions of well classified actives and well classified inactives, respectivelyranging from zero to one, with random classifier performance at 0.5. For regression problems, the root-mean-squared error of prediction has been reported to the standard deviation of over the entire QSAR series, prior to its randomized split into training and external sets. It is translated into a determination coefficient of a given prediction simulation: (12) This measure is independent on fluctuations of the dynamic range of the property within the randomly picked external set. Note that the quality criteria above (f AD and R 2* , respectively BA) are all tributary to the five parameters . The first four control the prediction mechanism, whereas the latter controls the subset of predictions considered inside the AD. For TT, considered values were (0.0, 0.5, 0.7, 0.8, 0.9, 0.95). In view of above-mentioned redundancies, 1062 distinct combinations were systematically scanned.

Data sets

All the ligand structures used were imported from ChEMBL [START_REF] Gaulton | ChEMBL: a large-scale bioactivity database for drug discovery[END_REF] and standardized according to the default procedure of our web server http://infochim.u-strasbg.fr/webserv/VSEngine.html. GTM landscape-based regression models were benchmarked against a series of 445 QSAR sets extracted from ChEMBL v.26. Each such set consists of ligands binding with known thermodynamic inhibition constant to a given biological target. The 445 considered targets are all the ones featuring ≥100 distinct ligands of known K i , excluding imprecise entries (K i larger or smaller than indicated value). Since employed molecular descriptors are stereochemistryinsensitive, strict uniqueness of standardized, stereochemistry-void canonical SMILES is required. Unique SMILES associated to multiple K i values diverging by more than one order of magnitude were discarded. The property used in predictions was pK i .

Classification models were acted on binary active/inactive QSAR sets previously extracted for Universal map construction and validation [START_REF] Sidorov | Mappability of drug-like space: towards a polypharmacologically competent map of drug-relevant compounds[END_REF] . Please refer to that article for a detailed discussion of their preparation and the assignment protocol of active versus inactive status. After excluding targets already covered by the 445 regression problems, 319 distinct classification QSAR sets remained.

Benchmarking protocol

Each regression QSAR set was projected on each of the seven Universal maps, further on referred as U 1 …U 7 . As prediction was run independently for each map, this amounts to 445×7=3115 series of predictions. For each such series, a systematic scan over combinations of the four tunable parameters is started.

A "prediction challenge" is run at given for each set, on every map. Therefore, the number of regression prediction challenges performed here equals 3,308,130 = 1062 (scanned parameter quintuplets) times 3115 (QSAR set, Universal Map) combinations. A prediction challenge consists of the following key steps:

1. First, a random split of associated QSAR data into "training" (70%) and "external test" (30%) is proposed.

2.

Training data are used to build the pK i landscape on the given map and to define the NT scores of nodes therein in accordance to set values.

3. Eventually, external compounds are projected on the above landscape, with output of and respectively .

4. Looping over considered TT values, entries satisfying the AD threshold are selected and quality criteria f AD and R 2* are reported as associated to the given setup .

5. The cycle of (randomized data splittinglandscape constructionpredictionevaluation) is repeated, until having recorded 25 entries for each TT value.

Thus, a prediction challenge returns 25 entries per TT value, concerning a given QSAR data set on a given map.

The same procedure was then applied to the 319 binary classification problems, employing U 1 as a representative GTM and monitoring problem-specific pairs. Eventually, these classification problems were also processed on the four universal SOMs US 1 -US 4 .

At any given setup, f AD and R 2* and respectively BA may significantly fluctuate in response of the randomized composition of training versus external set. Are there any setups providing systematic advantages in terms of , respectively ?

As mentioned in Introduction, the quality of (coverage, accuracy) pairs cannot be captured by a single number but can be characterized by three "view-point-specific" coverage-focused (QC), accuracy-focused (QA) and unbiased (QU) quality criteria. To this purpose, the accuracy criteria R 2* and BA must first be normalized to a [0,1] range, by mapping the lowest relevant value to 0.

Here, and while Let the normalized values be designed as Q: (13) Herewith the three quality criteria are defined as: (14) Three quality thresholds (low, L=0.4; medium, M=0.6; high, H=0.8) were envisaged, making it straightforward to count the percentage of situations in which a given parameter vector  managed to reach a prediction quality score exceeding a given threshold. Formally, the success rate of a setup over a given pool  of predictions according to criterion QX at threshold Y represents the percentage of situations in which setup delivered the expectation QX>Y, out of the total number of times has been used for prediction within the pool . The latter consists of conveniently regrouped prediction challengesby problem type, by maps or map families, as listed in Table 1 below. The analysis of the success rate aims at answering the following questions:

1. How do success rates depend on the employed quality criteria, QX, and success rate threshold, Y?

2. Are there setups that can be considered globally better, irrespective of challenge pools, and the nature of the problem (classification or regression)?

3. Are there setups that can be considered globally better, irrespective of map parameters, and even the nature (GTM or SOM) of the mapping algorithm?

space by the evolutionary procedure. Indeed, the distribution histograms of the shifts in crossvalidated Balanced Accuracies XVBA of QSAR sets on the GTM, with respect to the equivalent performance of the same set on the equivalent SOM, are clearly biased towards positive values, for all the k=1..4 four pairs of corresponding maps.

Figure 1: Distribution of the XVBA shift for each of the 236 QSAR sets achieved on universal GTMs versus equivalent (same descriptor space-based) universal SOMs. U i are universal GTMs , US i are universal SOMs; the i index refers to a given descriptor space common to both U i and US i .

Targets seen to better cross-validate on GTMs are clearly a majority, whereas QSAR sets better discriminated on SOMs are rare, and are only marginally enhanced. Fuzzy logics-based gridbased mapping is clearly a winning strategy.

The double putative impact of trustworthiness: general discussion.

The key noveltyand also putative source of confusionof this work is that node trustworthiness is being assigned two distinct roles: it (conditionally) influences upon predicted values, according to equation (7), and then contribute to estimate the global trustworthiness of predictions, according to (10). Property prediction using grid-based maps is practically a "data fusion" exercise: nodes to which the compound is assigned are "data sources" on hand of which a final "decision" concerning the compound predicted properties must be made. By default, this "decision" consists in taking the R-weighed mean of node properties. The present work however argues that trustworthiness of the "data sources" should also be considered herea common sense strategy in data fusion. Here, importance of robust data sources (trustworthy nodes) is enhanced proportionally to NT. If a compound is shared between a coherent and a low coherence, activity cliff-ridden node, the NT factor will enhance the contribution of the former "safer source" in mean prediction (relative to the default, R-weighted contribution). Turning this NT-bias off is implicitly achieved by setting the exponents  and  in equation ( 6) to zero, as covered by the present benchmarking -the current formalism is fully "backwards compatible" with the standard grid-based map prediction process.

Of course, the above only concerns cases in which there are several data sources to ponder upon.

In SOMsand, very often, on GTMs, whenever R vectors are de facto binary (~100% of residence in a single node)the only node in question becomes, by default, the most trustworthy one. If its NT equals zero, no property prediction can be performed and the molecule is forcibly out of the AD. Else, the molecule property will be assigned to the mean property of the nodethe best envisageable estimate under given circumstances. However, even if NT did not directly impact on predicted values, it will nevertheless serve in the user's decision-making on whether to trust or to discard this prediction, its second key role. Thus, a predicted value based on a single low-density or uncoherent node cannot be "corrected"but will be labeled as untrustworthy according to its low T(M) value from equation (10).

Quality Criteria and Thresholds

A setup is successful according to a given quality criterion at a given threshold if its coverage and accuracy values are fulfilling the specified constraints. The third paragraph of the Appendix in Supplementary Information intuitively illustrates what it practically means to achieve "success" according to a quality criterion QC, QU and QA. Covariance analysis of success scores (details in Appendix) showed that success counts at considered thresholds remain largely proportional -meaning the relative merit of parameter sets is actually independent on the threshold. Therefore, further discussion will focus on the medium and high levels of performance only. Concerning the nature of the criteria, the analysis (details in Appendix) showed that success scores based on compromise QU are fairly correlated to both the QA-and the QC-based oneswhile the accuracy-and coverage-based criteria are indeed complementary (uncorrelated). Therefore, QU can be further on ignored.

Is setup success map-dependent?

Success scores for regression problems were monitored according to GTMs U 1 to U 4 , then compared to each other and to the global success scores obtained over the full set of seven universal GTMs. Likewise, success rates of classification problems monitored on US 1 to US 3 were compared to each other and to the global success scores obtained over the full set of four universal SOMs. These results are reported in Figure 2. The correlation is high for all pairwise map comparisons. The proficiency of a setup is therefore independent of the map. Within a large pool of QSAR problems of a same type and within a given category of grid-based maps (GTM or SOM), the setups optimizing coverage-focused and respectively accuracyfocused predictive performance appear to be independent on the map parameters, including the molecular descriptors it is based upon. Of course, these descriptors are the ultimate reason for which a molecule is (fuzzily or not) assigned to a given node and not to another. However, the same (well-tuned) trustworthiness analysis schemes tends to give the good results, irrespective of the map. There are no setups to work well with one specific map and fail with all others, in spite of the widely different nature of the chemical information represented on these maps. So far, results suggest that node trustworthiness may indeed be coherently tuned as a function of node density and coherence, independently of the nature of the map. problem. The pertinence of a setup scheme therefore does not significantly depend on the particular problem it is being applied to. This is a key result, which completes the previous observation that well-tuned trustworthiness analysis schemes are also independent of the map nature. Please refer to the fourth paragraph of the Appendix document for a detailed analysis, with examples, of this result.

Is setup success dependent on the SOM vs GTM nature of the map?

The Pearson correlation score of versus reaches 0.744, witnessing that the impact of setup on the success scores largely follows a same trend, irrespective of the fundamental difference between the SOM and the GTM (all other things being, in as far as possible, equalnotably molecular descriptors). Since it was already established that the various SOMs tend to be highly covariant in terms of success score rankings, also strongly correlates to the generic , all SOMs confounded (Pearson score 0.75). QC-based scores typically tend to correlate even better than their QA-based counterparts and exceed 0.8. However, in terms of absolute scores, success rates continue to be significantly higher on the GTM, in line with the cross-validation results from Figure 1. The most successful setup on US 1 achieved QA>H in 18.5% of class@US1 attempts, while being successful in 23.7% of equivalent GTM-base challenges class@U1with respect to which it is ranked only 10 th . The absolute best result achievable within class@U1 amounts to 25.6%.

Ultimately, a triple "jump" in problem configuration spacefrom GTMs to SOMs, from regression to classification, from one pool of biological targets to anotheris characterized by the correlation level of versus . With a robust Pearson score of 0.69 (0.76 for QC), this finally underlines that node trustworthiness may indeed be quantified independently of node construction history and underlying mathematics. A few representative setups can be seen to define node trustworthiness in a way that systematically enhances prediction success and intelligently delimits AD throughout the spectrum of grid-based maps.

What are the good setups?

Note that a full-blown correlation of success score values throughout the series of monitored setup parameter combinations is not even necessary to define one or more parameter combinations of general use with grid-based maps. It is sufficient to find some combinations that are systematically ranked amongst the best in each of the prediction challenges on the GTMs and SOMs. Sorting and respectively in order to eventually pick parameter combinations with the best mean rank in both lists returns the following Table 2.

Table 2: Setups being consensually top-ranked in terms of accuracy-and respectively coverage-focused success scores (QA, QC) at H thresholds, for both regression problems on GTMs and classification problems on SOMs. For each setup, its rank with respect to regression problems is listed in column U, while US reports its rank within the classification problem pool. "< >" stands for the mean of the two ranksthe criterion by which these setups were selected. On yellow background -the "default" setup corresponding to no trustworthiness considerations and no AD control. As expected, optimal parameterization of the trustworthiness-driven AD delimiter will differ respective to whether the focus is set on accuracy or on coverage. Of course, there is no simple relationship between the trustworthiness threshold TT and coveragethere is only a local rule stating that at given method, training and test sets, coverage will decrease with increasing TT.

Setup

Otherwise, the fraction of test set predictable at trustworthiness > TT first of all depends on the test set, and its degree of overlap with training molecules. It is expected to see rather large TT values selected when the focus is on accuracy in left-hand Table 2 (0.7 or 0.8 in 9 out of the 10 setups), and zero (in 7 out of the 10; right-hand Table 2) when exhaustive coverage is preferred.

This however does not prevent QA-selected setups to occasionally support very high, or even total coverage of test sets.

Higher values are also associated to intrinsically enhanced coverage, ensuring that all nodes may be technically used for prediction, including empty nodes. Unless , if the dependency of trustworthiness on node density has a non-zero exponent , empty nodes will not contribute at all to prediction and therefore test compounds having tangible responsibilities only on empty nodes are non-predictable, even at TT=0. If or , this "hard" AD exclusion is deactivated: full coverage of any arbitrary test set can be guaranteed, at least at TT=0. Notably, the default "AD-less" setup (1.00,0.00,0.00, mean;0.00) implemented by the current GTM predictor unsurprisingly qualifies amongst the top coverage-focused setup strategies but it is not the top one. This is just one of many setups guaranteeing 100% coverage, and it is not the most accurate one. It is closely followed in terms of ranking by analogues at TT>0. In those cases, prediction trustworthiness is controlled only by the coherence of prediction as in equation ( 9), since at all nodes are equally trustworthy. Yet, setting TT>0 does not improve ranking in terms of coverage. In accuracy-focused ranking QA>H, this "AD-less" setup is ranked #153 out of 1062, with an absolute success score of 0.14% (roughly twice as small as top accuracy-focused setups).

In terms of Mean-Min-Toggle MMT, under coverage-focus, a clear preference is observed for "coloring" empty nodes by the mean of training set compound property values. The situation is less clear when accuracy focus is appliedwhich is expected, as the latter setups actively downweigh the impact of empty nodes on prediction, hence making the choice of the assigned property largely irrelevant. Yet, if empty nodes must be used for prediction in the name of complete test set coverage, the most rational strategy is MMT="mean". This choice has no negative impact on accuracy-focused setups, thus MMT="mean" is the universally best option.

With focus on accuracy, the exponent controlling the impact of node density on its trustworthiness is best set to 0.1low, but never zero. Essentially, such a low exponent specifically penalizes empty and nearly empty nodes but has a limited impact for reasonably populated nodes. By contrast, results prone a rather strong dependence (linear, or even quadratic) of node trustworthiness on node coherence.

Thus, in an accuracy-focused strategyand independently of the nature of the prediction problems and the underlying grid-based mapswe herein propose to modulate node trustworthinesssee equation ( 6)as proportional to , with a trustworthiness threshold of the order of 0.7 to delimit the AD.

As already mentioned, co-opting empty nodes into the prediction process is a key "strategy" to increase coverage, so coverage-based focus typically allows for even lower , albeit values of 0.5 also appear towards the bottom of the preference list. There is no clear trend in terms of in the right-hand columns of Table 2 meaning that there is no unique recipe to scale down contributions from nodes lacking coherence and herewith achieve an improvement throughout the (entire) test set. Node coherence is best used as an out-of-AD trigger for test set compounds with significant residence rates in low coherence nodes. Still, if focus is on coverage then the result quality will be little impacted by the way of modulating node weights in terms of coherence. The first two ranked setups of the coverage-focused scenario are practically not significanlty more performant than the default setup in the third positionthus, the latter can be safely used for predictions in situations when a predicted value should be mandatorily returned for the whole training set ( . This is notably the case in cross-validation, for failure to do so would result in incomplete set of experimental-predicted data. The north-western red marker represents a test compound (Figure 4) falling outside the training set-covered zone (Figure 3). Its affinity is set to the training set mean, which is nevertheless two orders of magnitude above its actual affinity. Similarly, the central orange marker pinpoints towards an only slightly more populated zone of average trustworthiness: the in there projected training set compound (Figure 4) is also predicted to be ~100 times more potent than it actually is. There are several more examples of misprediction that may be associated to low local trustworthiness: at TT=0, the root-mean-squared pK i prediction error over the entire test set is of 0.95 log units (R 2 =0.67). AD restrictions at increased TT translate in better prediction accuracy (at decreased coverage): RMSE=0.91 for 258/275 compounds within the AD at TT=0.7, whereas at TT=0.8 only 78 test compounds remain within AD but are accurately predicted within RMSE=0.52. compoundsyet, the mispredicted test compound may be the one less well fitting into the area.

Its estimated affinity of 5.2 is much lower than its experimental value, of 7.9. Last but not least, the green marker corresponds to a genuine activity cliffboth training and test compounds are clearly similar, but the two former are highly potent (9.1 and 7.4, respectively) whereas the latter (predicted at 8.6) is not (experimental 6.7). 

Conclusions

In chemography, grid-based maps such as SOM and GTM sample molecular descriptor space by injecting a set of nodes, then linking them to some regular 2D grid representing the map. They support property prediction models, because any compound thereupon projected can "inherit" the properties of its residence node(s) -node properties themselves "inherited" from nodeneighboring training set compounds. In previous publications, the transparent control of the Applicability Domain of such approaches was often mentioned as one of their inherent strengths.

This contribution illustrates how to practically implement such control.

This work is however not an exhaustive approach to all possible AD definitions, but it is one of general applicability to GTM and SOM. The composite AD criterion introduced here integrates two key aspects of applicability: closeness to dense training space zones [START_REF] Tropsha | Best Practices for QSAR Model Development, Validation, and Exploitation[END_REF] and data/prediction coherence [START_REF] Horvath | Predicting the Predictability: A Unified Approach to the Applicability Domain Problem of QSAR Models[END_REF] . Othernot necessarily node-based -AD criteria exist. The GTM-specific log likelihood criterion 10 may serve to reject species that are too "far" from the manifold. Eventually, nothing would prevent the usage classical "bounding box"-type ADs 20 in initial descriptor space.

This article is a systematic study focusing on the trustworthiness of map nodes as "providers" of Based upon the NT function, a trustworthiness score T is defined as the product between the mean NT of nodes participating to the prediction and the coherence PC of the predicted mean.

The role of T is to define the Applicability Domain (AD) within a trustworthiness threshold TT.

Prediction simulations were run on a large scale, co-opting a significant part of to-date publicly available structure-activity data sets (ChEMBL v. 26). Regression problems were represented by 445 target-specific sets of ligands with reported K i values, biological targets being as diverse as possible (all with ligand series exceeding 100 members were featured). A series of classification problems was selected to include, out of the in-house curated active/inactive-labeled ChEMBL ligand sets, 319 targets that were distinct from the 445 above.

The previously constructed universal GTMs served on one hand as supports for predictive challenges. On the other, in order to expand the scope of this study to other grid-based mapping techniques, analogous "universal SOMs" were calibrated and entered in the study. This collaterally represented an opportunity to eventually provide quantitative proof to thepresumably true, but previously never explicitly checkedclaim that GTM fuzziness is paramount to improve their predictive power over SOMs.

For each parameter setup over all considered "pools" of challenges (combinations of QSAR sets and various maps), success of ensuing inside-AD predictions was monitored. This success is tributary to the end user's needsin some circumstances, accurate predictions at the cost of discarding large parts of the external set as out of the AD are paramount. By contrast, compulsory return of a prediction for the entire external set is mandatory. Accordingly, "accuracy-focused" and "coverage focused" success criteria were designed.

It is seen that setup-specific success levels (averaged over large pools of prediction challenges) are highly covariant, irrespectively of the targets of prediction challenges, of the (classification or regression) type of problems, of the specific parameterization and even the nature (GTM or SOM) of underlying maps. Thus, success levels determined on the basis of regression problems on GTMs and levels returned by completely unrelated classification problems on SOMs were seen to correlate to a degree of 70%. Therefore, a common, general-purpose setup of the herein proposed parametric AD definition was shown to generally apply to grid-based map-driven property prediction problems.

It appears that node trustworthiness can be intrinsically defined to characterize any node as a "supplier" of learnt structure-activity informationand this irrespectively of the training compounds, the nature of the learnt variable or the mathematics behind the grid-based mapping mechanism. There are two key distinctions between GTM and SOM. The first is the algorithm defining the coordinates of the nodes: "manifold-based" for GTM and "code vector-based" for SOMs. The other is the nature of the R vector: continuous for GTM (albeit in practice often binary within employed numerical precision), binary for SOM. Thus, in a "metaheuristics" space of possible grid-based maps, encoding node localization as 0="manifold-based" versus 1="code vector based", respectively the nature of R (0=continuous, 1=binary), GTM is metaheuristics (0,0) and SOM its diagonally opposed (1,1). Alternative options (0,1): GTM with forced binary R vectors and (1,0): SOM with fuzzy-logics sharing of an item over several near nodes, are technically valid possibilities, albeit not customary ones. Or, the same AD-defining strategy, with the same parameters, applies to both "extreme" metaheuristics (0,0) and (1,1). It thus may be safely assumed to apply to other grid-based mapping techniques, such as the hypothesized (0,1) and (1,0), approaches.

For an accuracy-focused strategyand independently of the nature of the prediction problems and the underlying grid-based mapswe herein propose to modulate node trustworthinesssee equation ( 6)as proportional to , with a trustworthiness threshold of the order of 0.7 to delimit the AD. If focus is on coverage, then the default approach (not modulating node weights by their trustworthiness and setting MMT to "mean") is still one of the best strategies.

Figure 2 :

 2 Figure 2: Level of correlation (Pearson R 2 ) between setup success scores advocated by specific maps (Ui universal GTM #i, USiuniversal SOM #i) or by the consensus of the entire set of maps of a given category (Uall 7 GTMs, USall 4 SOMs), at M threshold. Color coding refers to the prediction poolquality criterion combination. The left-most blue U3-U4 bar reflects the degree of correlation between and , etc
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 5 Is setup success dependent on the nature of the QSAR problem and QSAR sets? The universal GTM U 1 represents the common ground on which both the 445 regression problems and the 319 classification problems were processed. Setup success scores obtained for the pool of regression problems, and respectively can be directly compared to their classification pool analogues and . Note that this comparison encompassed two key changes: the nature of the prediction problem (regression versus classification) and the QSAR sets per sethe two series of 445 and 319 sets do not have a single biological target in common. Nevertheless, the Pearson correlation scores are of 0.675 for regression-focused and 0.775 for classification-focused success rates, respectively. Trends in setup success scores are thus resilient with respect to simultaneous and radical changes in terms of QSAR sets, and the nature of the prediction

Figure 3 :

 3 Figure 3: Key landscapes for tracing of prediction errors of trypsin affinity on universal GTM#2. They represent (A) binary occupancy by the training set, (B) training set density distribution, (C) node coherence NC, (D) node trustworthiness NT, (E) prediction error of test set compounds and (F) the property landscape used for prediction. The four colored pointers correspond to the specific compounds highlighted in the text. Their structures are shown in the following Figures.

Figure 4 :

 4 Figure 4: Test set compounds located in zones void of, or sparsely populated by training molecules However (Figure 5), not all prediction failures can be traced back to lacking node trustworthiness the light-blue and green markers point towards rather trustworthy map areas. This is particularly true for the former case, representing a zone populated by rather weak training inhibitors of overall linear shape (the two training set inhibitors, gray background in FFF, have pK i values of 4.6 and 6, respectively). There are no obvious NB violations concerning training

Figure 5 :

 5 Figure 5: Examples of large prediction errors in relatively dense and coherent map areas (training set compounds are against a grey background, by contrast to the mispredicted test molecule).

  structure-activity information captured from training compounds, controlling prediction trustworthiness score as the key to delimit the AD of a predictive landscape. An empirical fourparameter Node Trustworthiness (NT) function of density ND (sparsely populated nodes are less trustworthy) and coherence NC (nodes with training set residents of divergent properties are less trustworthy) is proposed. NT is postulated to depend on ND and NC as , where  are three of the four above-mentioned tunable parameters. The fourth, the Min-Mean Toggle MMT encodes the empirical choice of how to "color" the empty nodes, which are not tangibly populated by any of the training set compounds.

  

Table 1 :

 1 Pools of prediction challenges.

	Pool Designation 	Description
	reg@U	Prediction challenges of the 445 regression QSAR sets on all the seven
		universal GTMs (445×7×25=77875 challenges)
	reg@Ui	Prediction challenges of the 445 regression QSAR sets on a specific universal
		GTM #i=1..7 (subsets of reg@U)
	class@U1	Prediction challenges of the 319 classification QSAR sets on universal GTM #1
		(for direct comparison to reg@U1)
	class@US	Prediction challenges of the 319 classification QSAR sets on all the four
		universal SOMs (319×4×25=31900 challenges)
	class@USi	Prediction challenges of the 319 classification QSAR sets on a specific
		universal SOM #i=1..4 (subsets of class@US)

Positive answers to points 2 and 3 above would mean that a context-and method-independent consensus on how to define trustworthiness in grid-based chemical space maps can be found. For each challenge pool quality criteria, QX, and success rate threshold, Y, a set of 1062 success rate values was collectedone for each investigated setup . These vectors of success rate values are subjected to covariance analysis. If is positively correlated to over all the , this means that roughly the same setups maximizing the success rate QX>Y of prediction challenges over pool  are also the ones maximizing success rates QX'>Y' of prediction challenges over pool '. Reciprocally, setups causing weak success rates in the context will not work in the context either. The degree of covariance is reported as the Pearson correlation coefficient of the linear regression line

The higher the Pearson score, the stronger the assumption that some common parameter set can be found to perform well in both the contexts and

. Low correlation means, on the contrary, that any specific setup yielding satisfactory results for problems in pool  according to the criterion QX>Y would be a bad choice when applied to the context .

Eventually, the last key aspect is to understand whether top performing setups are characterized by specific values or value ranges of the individual parameters , herewith establishing practical recipes on how exactly to best harness the trustworthiness issues in gridbased map predictors in order to maximize their predictive quality.

3 Results

Universal SOMs

Details about the corresponding SOM-specific setups can be found in the Table A1 of the Appendix document. Evolutionary "growth" of universal SOMs was a relatively easy exercise compared to the previously achieved GTM [START_REF] Lin | Multi-task generative topographic mapping in virtual screening[END_REF][START_REF] Casciuc | Virtual Screening with Generative Topographic Maps: How Many Maps Are Required[END_REF] construction, both because (a) the descriptor sets of the four top GTMs were used, without further considering descriptor choice as a degree of freedom and (b) SOM configuration has less tunable parameters. Therefore, if these SOMs would be shown to be less proficient active/inactive separators (in repeated three-fold crossvalidated simulations, following the same protocol used for GTM construction) over the 236 selection QSAR sets, this cannot be a consequence of insufficient sampling of SOM parameter

Tracking Prediction Errors on the Trustworthiness Landscape

The strength of grid-based map predictions is that the prediction process can be visually followed on the map, and better understood. Below, the prediction challenges of the affinity (pK i ) of trypsin (CHEMBL209) inhibitors on six universal map landscapes are traced in Figure 3. (E) represents the property landscape used for prediction. It is not density-modulated, thus displaying empty nodes at property value equal to the mean training set pK i value (which is a remarkably high 6.7, over this QSAR set very rich in potent actives).

Last but not least, the herein introduced trustworthiness criteria represent per se mappable properties that characterize chemical space and may help to track down prediction errors and activity cliffs in daily QSAR practice. 
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