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ABSTRACT

The application of the full potential of stellar seismology is made difficult by the improper modelling of the upper-most layers of
solar-like stars and their influence on the modelled frequencies. Our knowledge of these so-called ‘surface effects’ has improved
thanks to the use of 3D hydrodynamical simulations, however, the calculation of eigenfrequencies relies on empirical models for
the description of the Lagrangian perturbation of turbulent pressure, namely: the reduced-Γ1 model (RGM) and the gas-Γ1 model
(GGM). Starting from the fully compressible turbulence equations, we derived both the GGM and RGM models by using a closure
to model the flux of turbulent kinetic energy. We find that both models originate from two terms: the source of turbulent pressure due
to compression produced by the oscillations and the divergence of the flux of turbulent pressure. We also demonstrate that they are
both compatible with the adiabatic approximation and, additionally, that they imply a number of questionable assumptions, mainly
with respect to mode physics. Among other hypotheses, it is necessary to neglect the Lagrangian perturbation of the dissipation of
turbulent kinetic energy into heat and the Lagrangian perturbation of buoyancy work.
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1. Introduction

Systematic differences between observed and modelled eigen-
frequencies is a long-standing problem in stellar seismology.
For the Sun and solar-like stars, this has been identified
and found to be associated with an improper modelling of
their uppermost layers (e.g. Brown 1984; Dziembowski et al.
1988; Christensen-Dalsgaard & Thompson 1997). To circum-
vent this problem, well-chosen combinations of frequen-
cies (e.g. Roxburgh & Vorontsov 2003) or ad-hoc corrections
(Kjeldsen et al. 2008; Ball & Gizon 2014; Sonoi et al. 2015) are
commonly used. Nevertheless, to be able to exploit all the infor-
mation contained in the observed frequencies, the physics under-
lying the surface effects must be understood.

To this end, Rosenthal et al. (1999) used 3D hydrodynam-
ical simulations, which allowed them to account for the mean
turbulent pressure (as well as convective backwarming; see
Trampedach et al. 2017) in the equilibrium structure. Their
work was followed by Piau et al. (2014), Magic & Weiss (2016),
Houdek et al. (2017), Jørgensen & Weiss (2019), Schou & Birch
(2020) for the Sun and Sonoi et al. (2015, 2017), Ball et al.
(2016), Trampedach et al. (2017), Jørgensen et al. (2017, 2018,
2019, 2021), Manchon et al. (2018), Jørgensen & Angelou
(2019), Houdek et al. (2019), Mosumgaard et al. (2020) for
solar-like stars. A drawback of this approach is the need to
compute adiabatic eigenfrequencies using empirical models to
describe the Lagrangian perturbation of turbulent pressure.

For this purpose, Rosenthal et al. (1999) introduced two
empirical models. The reduced-Γ1 model (RGM), which is
based on the argument that the perturbation of turbulent pres-
sure is negligible compared to the perturbation of gas pres-
sure, and the gas-Γ1 model (GGM), which is based on a
consideration that the perturbations of gas pressure and turbu-
lent pressure are in phase. The authors favoured the GGM as it
permits them to better reproduce the observed solar frequen-
cies. Most of the above-mentioned works then applied the GGM,
except in a few cases (e.g. Jørgensen & Weiss 2019), where
the RGM was guided by the non-adiabatic calculation from
Houdek et al. (2017). However, the latter was recently chal-
lenged by Schou & Birch (2020), using the eigenfunctions as
inferred directly from 3D numerical simulations. Therefore, the
issue of surface effects remains and it demands extensive the-
oretical investigation to gain insights into the physics of the
problem.

In this work, we aim at deriving and then assessing the theo-
retical validity of the GGM and RGM empirical models.

2. Equation governing the turbulent pressure

When including the mean turbulent pressure in the adiabatic
oscillation equations, the Lagrangian perturbation of turbulent
pressure is to be prescribed. This is the role of the GGM and
RGM models, which are extensively described in Appendix A.
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To derive them, a first step is to express the equation for turbulent
pressure.

2.1. Averaged equation for turbulent pressure

We start with the equation for the averaged Reynolds stresses
(e.g. Canuto 1997; Gatski & Bonnet 2013):

dri j

dt
= −ri j ∂kũk − r jk ∂kũi − rik ∂kũ j − ∂k ρu′′i u′′j u′′k − u′′i ∂ jPg

− u′′j ∂iPg + u j ∂kτik + ui ∂kτ jk , (1)

where the overbar denotes the Reynolds average and the tilde
denotes the Favre average (see Appendix A for a definition),
ui is the i component of the velocity field, Pg is the gas pres-
sure (it includes contributions from the radiative field as well as
body forces), ρ is the density, τ jk is the viscous stress tensor,
and ri j ≡ ρu′′i u′′j are the Reynolds stresses, where u′′i is the i-th
component of the velocity fluctuation around its Favre average
(ũi). We also employ the notations, ∂t ≡ ∂/∂t and ∂i ≡ ∂/∂xi,
Einstein’s notation for repeated indices, and the pseudo-
Lagrangian derivative is defined by d/dt ≡ ∂/∂t + ũ j ∂/∂x j.

We then consider the rr component of Eq. (1) (where r is the
radial coordinate) and identify the Reynolds average with the
horizontal average. Thus, we obtain:

1
2

dPt

dt
= −

3Pt

2
∂rũr − u′′r ∂rPg − ∂r

(
Fvisc

rrr + F turb
rrr + F p

r

)
+ P′g ∂ru′′r − τrk ∂kur , (2)

where Pt ≡ ρu′′r u′′r is the turbulent pressure, F turb
rrr ≡ ρu′′r u′′r u′′r /2,

Fvisc
rrr ≡ −ur τrr, and F p

r = u′′r P′g. Except for notational differ-
ences, Eq. (2) is strictly equivalent to Eq. (16b) in Canuto (1997).
The first term of the right-hand side of Eq. (2) is a source of tur-
bulent pressure due to the compression produced by radial oscil-
lations. The second term corresponds to the pressure work (or
the buoyancy work), which is a source of turbulent pressure in
convective regions. The three following terms in brackets corre-
spond to transport terms. Finally, the last two terms are dissipa-
tive terms.

Several assumptions are now needed. The molecular dif-
fusion flux (Fvisc

rrr ) is neglected compared to the other fluxes
appearing in Eq. (2). This is justified as we are considering
fully developed turbulence with high Reynolds numbers (e.g.
Nordlund et al. 2009). The last term of Eq. (2) is assumed to be
proportional to the rate of dissipation of turbulent kinetic energy
into heat, that is, τrk ∂kur ∝ τi j ∂iu j. This standard assumption
is made possible because dissipation by molecular forces occurs
at almost isotropic small scales (e.g. Pope 2000). Finally, the
pressure-dilatation term (P′g ∂ru′′r ) is neglected because it scales
as the square of the turbulent Mach number (Sarkar 1992) (the
maximum is about 0.3 in the Sun). By adopting those approxi-
mations, Eq. (2) is reduced to:

dPt

dt
= −3 Pt ∂rũr − 2 u′′r ∂rPg − ∂rF

p
r − ∂rF turb

rrr −
2
3
ρε , (3)

where ρε ≡ τi j ∂iu j is the dissipation rate of turbulent kinetic
energy into heat.

2.2. Modelling the transport of turbulent pressure

The flux of turbulent pressure, F turb
rrr in Eq. (3), is diffi-

cult to model in the uppermost layers of solar-like stars for

which the down-gradient approximation fails (see Canuto 2009;
Kupka & Muthsam 2017). To overcome this issue, we adopt
the closure initially proposed by Canuto (1992) (see also
Canuto 2011) and supported by 3D direct numerical simulations
(Kupka & Muthsam 2007). It reads:

F turb
iir = c−1 k

ε
Fε

r , (4)

where F turb
iir is the flux of turbulent kinetic energy, Fε

r ≡ ρεu′′r
is the flux of turbulent dissipation, k ≡ rii/(2ρ) is the specific
turbulent kinetic energy, and c is a parameter to be specified.

From Eq. (4), we then obtain:

∂rF turb
rrr =

α

c
ω−1 ∂rFε

r − αF turb
iir ∂r lnω , (5)

where ω ≡ ε/k is the turbulence frequency and

α ≡
∂rF turb

rrr

∂rF turb
iir

. (6)

The parameter α, which can be understood as the degree of
anisotropy of the flux of turbulent kinetic energy, will be sup-
posed to be known and obtained directly from the solar 3D
numerical simulation (see Sect. 3.2).

Now, using Eq. (5), we can rewrite Eq. (3) as:

dPt

dt
= −3 Pt ∂rũr − 2 u′′r ∂rPg −

2
3
ρε −

α

c
k
ε
∂rFε

r

− ∂rF
p
r + αF turb

iir ∂r lnω , (7)

where one still needs a prescription for the flux of turbulent dis-
sipation. To do so, we use the equation governing ε. A stan-
dard procedure consists in constructing a parametric ε-equation
as is done in two-equation models (e.g. k − ε models). Follow-
ing this approach, we can write (e.g. Pope 2000; Wilcox 2006;
Gatski & Bonnet 2013):

ρ
dε
dt

+ ∂rFε
r = −cε1 ω Pt ∂rmrũr − cε2 ρε ∂rũr − cε3 ω u′′k ∂kPg

− cε4 ρωε . (8)

The first term in the right-hand side of Eq. (8) is related to
the production of turbulent kinetic energy by compression. The
second term represents for the effect of bulk compressions and
expansions onto ε (Coleman & Mansour 1991). The third term is
related to production of turbulent kinetic energy by the buoyancy
work, and the last term is related to both the viscous destruction
and production due to vortex stretching (Gatski & Bonnet 2013).
The coefficients cε1, c

ε
2, c

ε
3, and cε4 are discussed in the following

section.

3. Recovering the gas-Γ1 and reduced-Γ1 models

Here, we derive an expression for the Lagrangian perturbation
of turbulent pressure and make a number of assumptions and
discuss their validity.

3.1. Perturbation of turbulent pressure

Using Eq. (7) together with Eq. (8), we obtain the desired expres-
sion for the equation governing turbulent pressure:

dPt

dt
=

(
3 −

αcε2
2c

Φ −
αcε1
c

)
Pt

ρ

dρ
dt

+

(
αcε3
c
− 2

)
u′′r ∂rPg

+

(
αcε4
c
−

2
3

)
ρε +

α

c
ρ

ω

dε
dt
− ∂rF

p
r + αF turb

iir ∂r lnω , (9)
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where we used the averaged continuity equation (Eq. (A.5)) and
Φ ≡ rii/Pt is the anisotropy factor.

To go further, we assume the following hypothesis: (H1) The
Lagrangian perturbation of the pressure-velocity fluctuations is
neglected, that is, δF p

r = 0. (H2) The turbulence frequency (ω)
is supposed to vary on a length scale that is much larger than
the length scale of Fiir. Accordingly, the second term of the
right-hand side of Eq. (5) can be neglected and, thus, the last
term of Eq. (9) vanishes. (H3) The Lagrangian perturbation of
α is neglected, that is, δα = 0. (H4) The Lagrangian pertur-
bation of the dissipation of turbulent kinetic energy into heat
(δε) is neglected. (H5) The perturbation of the buoyancy work,
δ(u′′r ∂rPg), is neglected. (H6) The Lagrangian perturbation of
density is assumed to be real.

Perturbing Eq. (9) and applying H1 to H6, we get:

δPt

Pt
=

(
3 −

αcε2
2c

Φ −
αcε1
c

)
δρ

ρ
, (10)

where δPt and δρ are the pseudo-Lagrangian perturbations of
turbulent pressure and density, respectively. As an introduction
to the next section, we can already mention that Eq. (10) allows
us to recover the RGM and GGM models.

Tracing back the origin of Eq. (10) shows that it results from
two terms in Eq. (2): the source of turbulent pressure due to
compression produced by the oscillations and the divergence of
the flux of turbulent pressure. It is also important to mention
that points H1 to H6 are fully consistent with the assumptions
made to obtain the equation for the perturbation of gas pres-
sure (δPg, see A.9 and Appendix B). Moreover, given H1, H3,
and H6 and further neglecting the perturbation of the radiative
flux, we find that H5 is equivalent to adopting the adiabatic limit
(see Appendix C). Hence, both equations for δPt (Eq. (10)) and
δPg (Eq. (A.9)) are compatible with the adiabatic approxima-
tion. Conversely, the adiabatic approximation on its own is not
sufficient to derive Eqs. (10) and (A.9).

The first assumption, H1, is essentially equivalent to neglect-
ing the perturbation of the convective flux (δFconv

r ) because F p
r

is proportional to the convective flux as shown by Canuto (1997)
(see his Eq. (35c)). Such an assumption is, however, not strictly
valid because the perturbation of the convective flux does not
vanish even in the adiabatic limit (e.g. Sonoi et al. 2017). H2 is
difficult to properly assess because we need to determine ε and
the simplest possible way to do this is to consider ε ∝ k3/2/Hp
(e.g. Pope 2000), where the dissipation length-scale is assumed
to scale as the pressure scale-height (Hp). Using, the solar 3D
simulation described in Belkacem et al. (2019), we may readily
find that H2 is valid near the super-adiabatic peak but not in the
quasi-adiabatic regions. For H3, it is equivalent to assuming that
perturbations of horizontal and vertical contributions of turbu-
lent kinetic energy adjust instantaneously to each other and are
thus in phase. A look at the third-order equation on fluxes (see
Canuto 1997) demonstrates that the situation is much more com-
plex because many terms are capable to introduce some redistri-
bution and, in turn, phase shifts, when perturbed. Concerning
H4 and H5, it consists of neglecting the Lagrangian perturba-
tion of both the turbulent dissipation and the buoyancy work.
For mode damping, these two contributions exactly compensate
the contribution of turbulent pressure in the limit of a vanish-
ing flux of turbulent kinetic energy and with Γ3 − 1 = 2/3,
where Γ3 ≡ (∂ ln T/∂ ln ρ)s (e.g. Ledoux & Walraven 1958;
Grigahcène et al. 2005). More recently, Belkacem et al. (2019)
demonstrated using the normal modes of a 3D solar hydrody-
namical simulation that the perturbation of both terms plays an

essential role for the mode damping rates. Hence, as modal sur-
face effects also partly rely on the phase differences between the
perturbations of density and turbulent pressure, the impacts of
those contributions to surface effects ought to be assessed defini-
tively. Finally, H6 assumes that adding the mean turbulent pres-
sure to the hydrostatic equilibrium only introduces a negligible
phase shift to the perturbation of density in the adiabatic limit.
These remarks lead to questions regarding the validity of both
the RGM and GGM models because, even in the adiabatic limit,
they introduce oversimplifying hypotheses regarding the proper-
ties of turbulent convection and mode physics.

3.2. Application to solar p-mode frequencies

Now we go on to investigate how Eq. (10) permits us to recover
the GGM and RGM models. One prerequisite is the specifica-
tion of the coefficients, cε1 and cε2. A commonly accepted value
for the first coefficient is cε1 ' 1.44 (e.g. Pope 2000; Wilcox
2006; Gatski & Bonnet 2013). For cε2, we adopt the model of
Coleman & Mansour (1991) which gives:

cε2 =
1
3

[
1 + 3n (Γ1 − 1) − 2cε1

]
, (11)

where n ' 0.75 is the exponent of the viscosity law on temper-
ature. Indeed, Eq. (11) is aimed at accounting for the effect of
bulk compressions and expansions onto ε due to the dependence
of the viscosity on temperature (Coleman & Mansour 1991). We
note that Eq. (11) was obtained using the rapid distorsion theory
(see Hunt & Carruthers 1990; Cambon et al. 1993, for reviews)
and under the assumption of adiabatic compression. In the quasi-
adiabatic regions of the solar convection zone, those approxima-
tions are relatively applicable because the modal period is much
shorter than both the typical turn-over time scale and the ther-
mal time scale. However, in the super-adiabatic layers, those
time scales become of comparable magnitude and the validity
of Eq. (11) becomes questionable. Therefore, the adopted value
of cε2 used in this work must be considered a guideline, rather
than a firm value.

In this way, we computed the frequency differences (for
radial modes) between the observed frequencies, taken from
Broomhall et al. (2009) and Davies et al. (2014), and theoreti-
cal frequencies computed with a classical shooting method. For
the latter, we used the RGM, GGM, and the model developed in
this work using several values of the closure coefficient, c (see
Eq. (4)). Theoretical frequencies have been obtained by integrat-
ing Eqs. (A.7)–(A.9), complemented by either Eq. (A.12) for the
RGM, Eq. (A.13) for the GGM, and Eq. (10) for the model pro-
posed in this article. The equilibrium model had been obtained
by patching a CESTAM model together with a solar ANTARES
3D simulation (see Belkacem et al. 2019, for details) using the
same methodology as described in Sonoi et al. (2015). The 3D
model is however not exactly solar because the effective temper-
ature is 5750 ± 18 K and the chemical composition is (X,Y,Z) =
(0.7373, 0.2427, 0.0200) with Grevesse et al. (1993) mixture. To
allow for a comparison with observed solar frequencies, the
3D model is patched with a CESTAM model with a helium
abundance of 0.2485 and the resulting frequencies are rescaled
to match the standard solar frequency (GM�/R3

�)1/2/(2π) =
99.85537 µHz (G is the gravitational constant, M� the solar
mass, and R� the solar radius). Such a procedure is sufficient for
our purposes, even if a frequency shift remains at low frequen-
cies, because we are interested in differential effects. From this
patched model, all the equilibrium quantities have been inferred.
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Figure 1 shows that both the frequency differences obtained
using the GGM and the RGM models can be recovered by
adjusting the value of the closure coefficient, c, introduced in
Eq. (4). First, we considered what guidance for c we might
take from existing 3D numerical simulations. A value of c ≈
0.6 was derived from four direct numerical simulations of
fully compressible convection, two of which were discussed in
Kupka & Muthsam (2007). Those simulations were done with
the ASCIC3 code (Muthsam et al. 1995), which is used for such
work because it does not introduce, directly or indirectly, sub-
grid scale viscosities: dissipation takes place by way of explicit,
physical viscosity and a very small contribution from time inte-
gration only. The data were collected for a total of 12 differ-
ent model configurations (five of which have been discussed in
detail in Muthsam et al. 1995, 1999). They covered a range in
Prandtl number Pr from 0.1 to 1 at a ‘zone Rayleigh number’ of
105 to 106. For a horizontal domain width eight times the size
of this zone depth and with three to four granules found along
each horizontal direction, this implies a ‘granulation diameter-
based Rayleigh number’ that is ∼16 to 50 times larger or an
Ra in the range of 106 to 5 × 107. This yields a product of
Ra and Pr in the range of 105 to 5 × 107. That (squared) ratio
of the thermal diffusion time scale to the buoyancy time scale
agrees with results for the upper part of the solar convection zone
(Kupka et al. 2020) despite the fact that the convection zones are
much more shallow than in the solar case, where additionally
Pr � 10−6. Kupka & Muthsam (2007) found c ≈ 0.6 in all cases
where sufficient numerical resolution had been ensured, also
for cases not shown therein. Confirming those results for much
lower values of Pr and a higher ratio of total flux to radiative
flux would be useful. Recalling the discussion in Belkacem et al.
(2019) on computing the dissipation rate from realistic solar
simulations, we have to point out here that large eddy simula-
tions, whether they use hyperviscosity, a Smagorinsky-type sub-
grid scale model, or a Riemann solver, are not the best tools for
computing Fε

r or ε; those quantities depend on viscosity related
processes which peak near small multiples of the grid scale.
This could heavily bias computations of those quantities by the
numerical method used. We thus consider conclusions based on
low Pr direct numerical simulations for the physical range of
Ra · Pr of interest as the safer way to estimate c. In comparison,
the ratio α from Eq. (5) can be safely estimated from solar gran-
ulation simulations, as the contributions to this quantity peak at
length scales resolved in those simulations.

4. Conclusions

By using the Reynolds and Favre-averaged, fully compressible
Navier-Stokes equations, we demonstrate that it is possible to
develop a model which recovers both the RGM and GGM empir-
ical models. Interestingly enough, this is based on a relation that
has been shown to originate from a compensation between the
source of turbulent pressure due to compression produced by the
oscillations and the divergence of the flux of turbulent pressure.
We show the RGM and GGM models are compatible with the
adiabatic approximation but this also implies more drastic and
unrealistic physical assumptions regarding turbulence and mode
physics.

A comparison with solar frequencies shows that while recov-
ering the RGM and GGM, the results are sensitive to the closure
coefficients (c in Eq. (4) but also cε2 appearing in Eq. (10)). To
consolidate the value of these parameters, only direct 3D numer-
ical simulations prove useful. Unfortunately, this is still out of
reach for the Sun due to the limits on our current numerical
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Fig. 1. Frequency difference for radial solar modes between the
observed frequencies, as inferred by Broomhall et al. (2009) and
Davies et al. (2014), and the modelled frequencies computed using the
GGM model, the RGM model, and the model of the present work (see
text for details).

capacities. Hence, extrapolations from more accessible param-
eter ranges remain necessary.

It is thus difficult to draw a conclusion on which of the
two models is more appropriate in application. What compli-
cates the matter further, given the above-mentioned assumptions
which are needed to recover these empirical models, we can
safely conclude none of them are firmly physically grounded,
even in the adiabatic limit. However, we may still quantify the
hypotheses (H1 to H6) on which both RGM and GGM mod-
els rely, and more precisely, their individual effect on mode fre-
quencies. This will be made possible by either using a realis-
tic treatment of turbulent convection based on a time-dependent
and non-adiabatic treatment or by using normal modes of direct
3D numerical simulations. For the latter, dedicated long-duration
simulations (in order to have a sufficient statistic and to resolve
the normal modes) with a large spatial extension (to have a suf-
ficient number of normal modes) need to be computed and this
must be done by resolving all spatial scales to obtain an accu-
rate estimate of turbulent dissipation. For the former, a qualita-
tive leap forward is needed because current 1D formalisms based
on the mixing-length theory all have their shortcomings, includ-
ing issues related to free parameters and questionable physi-
cal assumptions (see Houdek & Dupret 2015, for details), which
prevent them assuring that we properly grasp the physics of the
problem.
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Appendix A: The gas-Γ1 (GGM) and reduced-Γ1
(RGM) empirical models

When turbulent pressure is included in the mean stratification
for computing the classical adiabatic oscillations, it is necessary
to determine the perturbation of turbulent pressure and, subse-
quently, the perturbation of total pressure (e.g. Rosenthal et al.
1999). To illustrate this scenario, let us begin by considering the
mass and momentum conservation equations, which read:

∂t ρ + ∂i (ρui) = 0 , (A.1)
∂t (ρui) + ∂k (ρuiuk) = −∂iPg − ρgi + ∂kτ jk , (A.2)

where Pg is the gas pressure, gi is the i-th component of the
gravitational acceleration, τ jk is the viscous stress tensor, ρ is
the density, and ui the i-th component of the velocity field. We
also employ the notation ∂t ≡ ∂/∂t and ∂i ≡ ∂/∂xi as well as
Einstein’s notation for repeated indices.

Equations (A.1) and (A.2) are averaged using both a classi-
cal Reynolds average and a density-weighted average (also com-
monly named to as Favre average, see Favre 1969). For a quan-
tity X, the Reynolds average is defined as:

X ≡ X − X′ , with X′ = 0 , (A.3)

and the Favre average is defined, for a quantity Y , by

Ỹ =
ρY

Y
sothat Y = Ỹ + Y ′′ and ρY ′′ = 0 . (A.4)

As we consider a compressible flow, using a Reynolds aver-
age for density and gas pressure and a Favre average for the
velocity field greatly simplifies the averaged equations (e.g.
Canuto 1997; Nordlund & Stein 2001; Belkacem et al. 2019).
Applying this procedure for Eqs. (A.1) and (A.2) gives

dρ
dt

+ ρ ∂iũi = 0 , (A.5)

ρ
dũi

dt
+ ∂krik = −∂iPg − ρ gi , (A.6)

where rik ≡ ρ u′′i u′′k are the Reynolds stresses (where u′′k is the
k-th component of the velocity fluctuation around its Favre aver-
age), the pseudo-Lagrangian derivative is defined by d/dt ≡
∂/∂t + ũ j ∂/∂x j. To derive Eqs. (A.5) and (A.6), gravity fluctua-
tions have been neglected and it has been assumed that viscosity
does not affect the mean momentum equation and thus the large-
scale flow (̃u j). It is important to notice that this approxima-
tion does not mean that viscous dissipation is neglected, because
it appears in the equations governing the turbulent quantities
(Canuto 1997).

We now identify the Reynolds average with the horizon-
tal average so that in Eq. (A.6) only the rr component of the
Reynolds stress remains. Turbulent pressure is thus defined by
Pt ≡ ρu′′r u′′r . In addition, we split the mean quantities such that
X = X0 + δX (where X0 ≡< X >t is the time-average of X and
δX is the pseudo-Lagrangian perturbation corresponding to the
radial oscillations). Therefore, from Eqs. (A.5) and (A.6), we
get the desired oscillation equations in the pseudo-Lagrangian
frame:

δρ

ρ0
+

1
r2

d
dr

(
r2ξr

)
= 0 , (A.7)

ρ0 σ
2ξr =

dδPtot

dr
+ δρ g0 , (A.8)

where σ is the angular frequency, ξr is the radial component of
the eigen-displacement (̃ur = iωξr) and δPtot = δPg + δPt is
the Lagrangian perturbation of total pressure. In addition, in the
adiabatic limit, we also have the thermodynamic relation:

δPg

Pg,0
= Γ1

δρ

ρ0
, (A.9)

which has been derived by using a number of approximations
that are explicitly stated in Appendix B. Therefore, except for the
boundary conditions, the system is not closed because we must
specify δPt or equivalently δPtot. We note that in the following
the subscript ‘0’ for denoting the temporally and horizontally
averaged quantities will be dropped for ease of notation.

To solve Eqs. (A.7) and (A.8), we need to specify a prescrip-
tion for the perturbation of total pressure. It is thus necessary to
express the perturbation of turbulent pressure with the perturba-
tion of density, so that:

δPt

Pt
= A

δρ

ρ
, (A.10)

where A is to be determined. Therefore, using Eq. (A.10), we
formally write:

δPtot

Ptot
= Γeff

1
δρ

ρ
, with Γeff

1 ≡

[
Γ1

Pg

Ptot
+A

Pt

Ptot

]
. (A.11)

Two empirical models have previously been introduced by
Rosenthal et al. (1999). The first is the RGM, which consists of
the argument that δPt = 0 orA = 0, so that Eq. (A.11) becomes:

δPtot

Ptot
=
δPg

Ptot
= Γeff

1
δρ

ρ
, where Γeff

1 =
Γ1Pg

Ptot
(A.12)

is called the reduced Γ1. This approximation was initially intro-
duced by Rosenthal et al. (1995) based on the observation that
some non-local mixing-length theory shows that density and gas
pressure perturbations are almost in phase quadrature with the
perturbation of turbulent pressure. The authors, therefore, con-
sidered that the real part of δPt can be neglected. The second
model is the GGM and has been introduced by Rosenthal et al.
(1999). It consists of arguing the opposite, namely, that the per-
turbation of gas pressure and turbulent pressure are in phase.
Hence, using A = Γ1 together with Eqs. (A.9), (A.10), and
(A.11), we obtain:

δPtot

Ptot
=
δPt

Pt
=
δPg

Pg
= Γ1

δρ

ρ
. (A.13)

As can be seen with Eqs. (A.12) and (A.13), both the RGM
and GGM present the major advantage of being easily imple-
mented for computing adiabatic oscillation while including the
effect of turbulent pressure, provided that the mean turbulent
pressure is prescribed. For GGM, it is sufficient to replace the gas
pressure by the total pressure in the classical adiabatic oscillation
equations while for the RGM, it is also necessary to replace Γ1
by the reduced Γeff

1 given by Eq. (A.12).

Appendix B: Relation between perturbation of gas
pressure and density

We follow the derivation proposed by Rosenthal et al. (1999),
which starts with the equation governing specific entropy. It
reads:

ρT
Ds
Dt

= −∂kFrad
k + τik∂kui , (B.1)
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where D/Dt ≡ ∂/∂t + ui∂i, ρ is the density, T is the temperature,
s is the specific entropy, Frad

k is the k-component of the radiative
flux, and τik is the viscous stress tensor.

Equation (B.1) can be recast in terms of gas pressure and
density by using the thermodynamic identity:

ρT
Ds
Dt

=
1

(Γ3 − 1)

[
DPg

Dt
−

Γ1Pg

ρ

Dρ
Dt

]
, (B.2)

where Pg is the gas pressure, (Γ3 − 1) ≡ (∂ ln T/∂ ln ρ)s. Then,
using Eq. (B.2) together with the conservation of mass, after
averaging, Eq. (B.1) finally becomes:

dPg

dt
= −Γ1Pg ∂iũi − Γ1Pg ∂iu′′i − u′′i ∂iPg − (Γ3 − 1) ∂kFrad

k

+ (Γ3 − 1) τik∂kui , (B.3)

which is strictly equivalent to Eq. (11) of Rosenthal et al. (1999).
Following the same authors, it is assumed that time-varying
parts (i.e. the Lagrangian perturbation) of the last four terms of
Eq. (B.3) are zero. Consequently, the perturbation of Eq. (B.3)
permits us to recover Eq. (A.9), that is

δPg

Pg
= Γ1

δρ

ρ
, (B.4)

which is the classical relation for adiabatic oscillations. We
note that we assumed

〈
Γ1Pg

〉
t
'

〈
Γ1

〉
t

〈
Pg

〉
t
, which is quite an

accurate approximation, as verified by our solar numerical 3D
simulation.

The assumptions made to derive Eq. (B.4) from Eq. (B.3),
which consists of assuming that the Lagrangian perturbation of
the last four terms of Eq. (B.3) are zero, require further dis-
cussion. Indeed, as recognized by Rosenthal et al. (1999), those
approximations are quite radical. It is nevertheless useful to go a
step further and to explain the underlying physical assumptions.
To that end, let us recast Eq. (B.3) in the following form:

dPg

dt
= −Γ1Pg ∂iũi + (Γ1 − 1) u′′i ∂iPg + (Γ1 − 1) ∂i

(
u′′i P′g

)
− Γ1∂i

(
Pg u′′i

)
− (Γ1 − 1) P′g∂iu′′i − (Γ3 − 1) ∂kFrad

k

+ (Γ3 − 1) τik∂kui , (B.5)

where, for sake of simplicity and without loss of meaning, we
assumed that thermodynamic quantities are time-independent.
To recover Eq. (B.4) from Eq. (B.5), the Lagrangian perturba-
tions of the last six terms must be neglected. More precisely:

– The perturbation of the buoyancy work (u′′i ∂iPg), which also
appears as a source of turbulent kinetic energy and thus a
sink of thermal energy, is considered to be null.

– The perturbation of the divergence of the terms Pg u′′i and
u′′i P′g are set to zero. For the former, considering a per-
fect gas, it is proportional to the convective (enthalpy) flux
because of the relation:

Pgu′′i = R ρ T̃ ′′u′′i , (B.6)

where R is the ideal gas constant. Concerning u′′i P′g, it is also
essentially proportional to the convective flux as shown by
Canuto (1997) using a polytropic relation. Therefore, we can
conclude that neglecting the perturbation of those two terms
is equivalent to neglecting the perturbation of the convective
heat flux.

– The perturbation of the pressure-strain rate, P′g∂iu′′i , is
neglected. This can be justified as it scales as the squared
turbulent Mach number of the rate of dissipation of turbu-
lent kinetic energy into heat (Sarkar 1992). Hence, it can be
neglected because we are considering turbulent flow at rela-
tively low turbulent Mach numbers.

– The perturbations of the radiative flux as well as the dissipa-
tion rate of turbulent energy into heat (i.e. τik∂kui) are also
considered to be negligible.

Appendix C: Averaged equation for specific entropy

Furthermore, we now look towards inferring the averaged
entropy equation. To do so, rather than starting directly with
the entropy equation, we consider the equation governing the
enthalpy. It reads:

ρ
Dh
Dt

=
DPg

Dt
− ∂kFrad

k + τik∂kui , (C.1)

where D/Dt ≡ ∂/∂t + ui∂i and Frad
k is the k-component of the

radiative flux. Now, averaging Eq. (C.1) leads to:

ρ
d̃h
dt

=
dPg

dt
+ u′′k ∂kPg − ∂k

(
F

rad
k + Fconv

k − u′′k P′g
)

− P′g ∂iu′′i + τik∂kui , (C.2)

where Fconv
k ≡ ρh′′u′′k is the k-component of the convective flux.

Then using the thermodynamic relation, ρT̃ds̃ = ρd̃h−dPg, valid
at leading order, and identifying the Reynolds average to the hor-
izontal average gives:

ρT̃
ds̃
dt

= u′′r ∂rPg − ∂r

(
F

rad
r + Fconv

r − u′′r P′g
)
− P′g ∂iu′′i

+ τik∂kui . (C.3)

Neglecting the pressure-strain rate as for the equation governing
turbulent pressure and adopting the same notations, we finally
obtain:

ρT̃
ds̃
dt

= u′′r ∂rPg − ∂r

(
F

rad
r + Fconv

r − F p
r

)
+ ρε . (C.4)

Perturbing Eq. (C.4) thus permits us to derive an expression
for the perturbation of the buoyancy work. It reads:

δ
(
u′′r ∂rPg

)
= iσρT̃δs + δ

[
∂r

(
F

rad
r + Fconv

r − F p
r

)]
− δ (ρε) .

(C.5)

Using the same approximations as described in Sect. 3.1 to
derive Eq. (10), immediately leads to δs = 0.

L5, page 7 of 7


	Introduction
	Equation governing the turbulent pressure
	Averaged equation for turbulent pressure
	Modelling the transport of turbulent pressure

	Recovering the gas-1 and reduced-1 models
	Perturbation of turbulent pressure
	Application to solar p-mode frequencies

	Conclusions
	References
	The gas-1 (GGM) and reduced-1 (RGM) empirical models
	Relation between perturbation of gas pressure and density
	Averaged equation for specific entropy

