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Abstract

Service Function Chaining (SFC) has gained momentum as one of the build-

ing blocks of the 5G ecosystem. Indeed, SFC combined with other promising

technologies such as Software Defined Networking (SDN) as well as Network

Slicing form the basis for enabling the 5G network services and fulfilling their

requirements. Many contributions have been made to support and enforce SFC,

from chain composition to its deployment and life-cycle management. However,

few research works study SFC orchestration, and even fewer consider the multi-

domain context, which remains an open issue with many challenges that need to

be tackled in order to provide end-to-end services. In this paper, we contribute

to filling this gap by introducing a novel architecture for orchestrating and en-

forcing multi-domain SFCs. The proposed architecture leverages on the ETSI

MANO standard, as well as SDN and the hierarchical SFC principles, and is ag-

nostic to the packet forwarding technology used by each administrative domain.

We also implement a Proof of Concept (PoC) that employs different SFC en-

capsulation types to evaluate the architecture, where the obtained results prove

our architecture’s efficiency, we’re also able to draw conclusions related to the

encapsulation methods to implement. Finally, we discuss open research issues.
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1. Introduction

The upcoming generation of networks (5G) is set to accommodate new

heterogeneous use cases with specific requirements, such as enhanced Mobile

Broadband (eMBB), Ultra Reliable Low Latency Communications (URLLC),

and massive Machine Type Communications (mMTC); in order to do so, new

technologies and paradigms have emerged, namely Network Function virtual-

ization (NFV) that allows a better flexibility in management, Software Defined

Networking (SDN) which enables dynamic network programming, and Service

Function Chaining (SFC) which is the process of steering traffic through a set

of functions in an ordered manner to deliver an end-to-end service. Many re-

search and standardization contributions have been made to enable the SFC

paradigm, but most of these efforts have focused on the scenario where the SFC

is deployed on a single administrative domain. However, there are cases where

a service requires that its functions be deployed on more than one domain, due

to the lack of resources, strict latency or resiliency requirements, or functional

considerations. Among the scenarios of multi-domain SFCs, we can cite the

Edge deployment use cases such as Industrial IoT [1], or autonomous vehicles

[2], where sensor data is first pre-processed by functions deployed at the Edge

of the network, before being sent to the Core network for further analysis. The

service operator might not dispose of sufficient Edge servers to cover the whole

sensing area. A cost-efficient solution would then be to deploy the Edge part of

the SFC on the Edge servers of an IaaS provider, and forward the traffic back to

the core cloud of the service operator. A more generic use case for multi-domain

SFCs leverages on the Function-as-a-Service cloud service model, where the ser-

vice tenant doesn’t own any infrastructure, but composes its custom SFC using

Service Functions that are provided by different FaaS operators, and chained

together to create the end-to-end multi-domain SFC [3].

The multi-domain scenario introduces a set of new challenges. Indeed, due to

security considerations, administrative domains are reluctant to divulge details

on their infrastructure, and do not grant full control over the SFCs that may be
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deployed on their domain; thus offering limited visibility and control to the SFC

owner. This requires adaptations of the procedures of automated management

and configuration of the physical and virtual resources, and of the life-cycle

management of the Service Chain, also referred to as SFC orchestration. Fur-

thermore, since each domain operates independently, interoperability issues may

arise due to possibly different encapsulation and packet forwarding protocols,

calling for the implementation of additional measures in order to guarantee com-

patibility and perform packet forwarding along the SFC from end to end. In

this work, we tackle these issues by presenting a novel reference architecture

for SFC orchestration that enables the deployment of Service Function Chains

spanning multiple administrative domains, agnostically to the SFC encapsula-

tion methods that are implemented by each domain. Note that in the following,

the terms multi-domain and cross-domain can be used interchangeably.

This paper’s contributions are three-fold : first, we propose an orchestra-

tion architecture that leverages on existing standardization efforts in order to

ensure an end-to-end orchestration of multi-domain SFCs regardless of the in-

ternal communication protocols used by each domain, with a multi-domain SFC

deployment protocol that performs the necessary configurations to enable the

end-to-end packet forwarding. Second, we implement a PoC of our architec-

ture, and perform an extensive evaluation based on various Key Performance

Indicators (KPI) using different encapsulation protocols. Third, we provide an

analysis of open issues for future research works.

This article is organized as follows. We first provide a brief background on

the existing contributions to the topic in section 2. Next we describe our pro-

posed architecture in section 3, and the PoC implementation and its evaluation

results are detailed in section 4. We then proceed by discussing open issues in

section 5 before concluding the paper in section 6.
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2. Background and Motivation

The general architecture for Service Function Chaining is described in the

RFC 7665 [4]. It comprises Service Functions (SF) that perform specific treat-

ment of ingress traffic, Service Function Forwarders (SFF) that are responsi-

ble for steering the traffic between the SFs according to a pre-defined Service

Function Path (SFP) which is equivalent to ETSI’s VNF Forwarding Graph

(VNFFG)[5], and classifiers at the ingress of each SFC domain that perform

classification in order to determine the SFC that a packet belongs to, and en-

capsulate it accordingly. SFC proxies can also be used in case some Service

Functions don’t support SFC encapsulation. However, this architecture only

considers the basic scenario where the SFC is deployed on a single domain.

Indeed, the multi-domain context is much more complex, especially when the

domains belong to different administrative entities, which would be reluctant to

disclose details on their infrastructure, and operate their domains independently.

Multiple contributions have been made in multi-domain service orchestra-

tion, multi-domain SFC, and SFC packet forwarding. They can be classified as

follows:

2.1. Multi-Domain SFC Placement

A number of contributions [6, 7, 8, 9, 10, 11] studied SFC placement with lim-

ited visibility, where two main architectural approaches are employed. With the

first approach, a distributed algorithm is executed on all domains, and messages

are exchanged in order to determine the best option without disclosing infor-

mation to external parties. The second approach allows a logically centralized

coordinator to collect information disclosed by the domains, and reconstitutes

an abstract global view of the network in order to perform placement. How-

ever, these works only study the multi-domain SFC placement problem, which

is only a part of the SFC orchestration process, and is not sufficient for ensuring

the effective end-to-end deployment, as it requires additional steps such as the

configuration of the different SFC components, and the required information
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exchange. Other contributions [12, 13] have also explored multi-domain Virtual

Network Embedding (VNE), which has similarities with SFC placement, but

is different. Indeed, the VNE problem concerns the embedding of undirected

graphs, and doesn’t consider the order constraints of SFCs, which can affect the

end-to-end latency [14, 15]. Furthermore, similar to the previously mentioned

works, these contributions only consider the placement phase.

2.2. Multi-Domain Service Orchestration

Multiple contributions proposed orchestration solutions that extend the ETSI

MANO [5] reference architecture. The ETSI framework for Orchestration and

Management (MANO) has been extended in its third release [16] in order to

support multi-domain orchestration by adding a reference point (Or-Or) that

allows orchestrators to communicate. The document defines the exchanged in-

formation format between the orchestrators for service deployment such as Net-

work Service Descriptors (NSD). Nonetheless, this information is not sufficient

to deploy an end-to-end SFC; indeed, each domain along the chain ought to

be aware of the global SFC that its sub-SFC belongs to, in order to properly

identify the packets at its ingress. The local domains should also be aware of the

next domain that the packets should be forwarded to, so that the end-to-end

packet steering is ensured. In [17], a reference architecture for multi-domain

NFV orchestration is proposed, and an overview of the remaining open issues

and challenges is provided. Similarly, an orchestration architecture for multi-

domain Network Slice deployment and resource management is depicted in [18].

However, these works don’t consider SFCs and the constraints related to packet

processing order.

2.3. SFC Orchestration

The authors of [19] introduce ETSO, a modular ETSI NFV-MANO compli-

ant framework that ensures an end-to-end SFC orchestration. Likewise, Medhat

et al. [20] detail X-FORCE, an ETSI NFV-MANO compliant SFC orchestra-

tion framework that integrates an SFC orchestrator in the reference architecture,
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and Ding et al. [21] present OpenSCaaS, a platform that leverages on SDN and

NFV to provide SFC as service. Nevertheless, these works ignore the issues

related to the multi-domain aspect of SFC deployment, such as the end-to-end

packet forwarding and identification at each domain, or the possible heterogene-

ity in packet encapsulation and traffic steering methods. In [22], the authors

present Cloud4NFV, a platform for SFC orchestration across data-centers; the

solution adopts a non-tagging classification approach, in which classification is

performed at each hop of the SFC. However, this approach generates consider-

able latency as each packet needs to be classified at each hop. Furthermore, it

considers that the distributed data-centers belong to the same domain. An IETF

draft [23] proposes two methods for inter-data-center SFC deployments: One

with multiple SFC domains where each domain’s management is constrained

to itself, meaning that each domain is only aware of the sub-SFCs that are de-

ployed within its own infrastructure, as well as the next hop, and is unaware of

the higher-level SFC details and configuration. And the second method, with

a single SFC domain, where a single logical entity manages the SFC across do-

mains. This approach supposes that the local domains delegate enough control

and visibility to the centralized coordinator in order to operate the multi-domain

SFC from end to end, which might not always be possible.

2.4. Multi-Domain SFC Packet Forwarding

As for SFC packet forwarding, multiple traffic steering methods have been

proposed: header-based methods, such as Network Service Headers (NSH) [24,

25], tag-based methods [26] [27], and programmable switch-based methods [28].

A comprehensive survey on traffic steering methods for SFC can be found in

[29]. However, these solutions enable SFC packet forwarding inside a single

domain only. The RFC 8459 [30] attempts to tackle the multi-domain issue by

proposing a hierarchical multi-level network architecture for SFC that allows the

decomposition of a large network into a set of independent sub-domains. Each

sub-domain is viewed by the top-level as a Service Function along the end-to-end

SFC. At the ingress or egress of each sub-domain, the packets are re-classified in
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order to be forwarded along the corresponding higher level or lower level path.

This re-classification is performed by an interfacing function called Internal

Boundary Node (IBN) that acts as an SFC-aware Service Function (SF) in the

higher-level domain, and as a classifier in the lower-level domain. Nevertheless,

the RFC assumes that all the sub-domains are part of the same administrative

domain, and does not consider multi-domain issues related to visibility and inter-

operability. Another draft [31] proposes a horizontal approach for multi-domain

NSH. SFCs that span multiple domains are divided into a set of single-domain

segments, and the identifier of the next domain’s classifier is encapsulated in the

metadata part of the NSH encapsulation. However this architecture can only

be applied to NSH-aware domains. Indeed, since the encapsulation and traffic

steering methods are not always the same in every domain, it is necessary to

integrate interfacing entities in each domain that would ensure the end-to-end

service delivery, regardless of the underlying technologies by performing inter-

domain packet forwarding, encapsulation/decapsulation or tunneling of packets,

as well as communication protocol negotiation.

At the time of this writing and to the best of our knowledge, this paper is

the first contribution that addresses all of the aforementioned issues related to

multi-domain SFC. Namely, this work tackles the end-to-end SFC deployment

and configuration, inter-domain packet forwarding, and the heterogeneity in

encapsulation methods.

3. Proposed Architecture

3.1. Overview

In this section, we describe our proposed multi-domain orchestration ar-

chitecture for Service Function Chaining. It extends existing standardization

efforts, namely the third release of the ETSI NFV MANO specification[5] [16],

as well as the hierarchical SFC principle proposed by the IETF[30]. Note that in

this contribution, the multi-domain context applies to cases where SFCs are de-

ployed across domains that belong to different administrative entities, but also
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to cases where the domains belong to the same administrative entity, but are

operated independently for functional reasons, or for security concerns. This

can be the case for branches of the same company for example. We assume

that prior to SFC deployment, an enrollment procedure is performed by the do-

mains in order to participate in the multi-domain SFC deployment, under the

supervision of the multi-domain orchestrator. We suppose that this procedure

is performed by the administrative entities, where mutual agreements are made

in order to set the amount of resources made available by the local domains, as

well as the cost per unit. SLAs and security requirements may also be negoti-

ated between the operators. Further, this procedure is also meant to perform

authentication, and establish mutual trust between the different entities, as the

local domains are delegated partial control over the SFCs. At the end of the

enrollment procedure, secure communication channels are established between

the orchestrators.

Figure 1 illustrates our proposed architecture, where two SFCs are deployed

on three independent domains, the first SFC spans domains A and B while

the second SFC is deployed on domains B and C. At the physical layer level,

each domain disposes of a set of computing and forwarding elements that are

connected through the physical network. At the virtualization layer, Virtual

Network Functions (VNFs) are deployed on the computing nodes and are con-

nected through Virtual Links, these VNFs will act at the SFC layer as Service

Functions, IBNs, and classifiers, and the SFC packet steering is ensured by the

Service Function Forwarders (SFFs). Traffic steering relies on SDN, where the

SDN controller of each domain is responsible for the configuration of each net-

work element in order to perform the desired forwarding of packets. For the sake

of brevity, these layers are only detailed for the first domain. We highlight in

red the components and interfaces that are added or extended by our proposal.

Namely, the multi-domain orchestrator and its interfaces with the local domain

orchestrators, as well as the IBN and its configuration interface.
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Figure 1: Architecture for Multi-Domain SFC Orchestration
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Local Domain Orchestration:. At the orchestration level, each domain possesses

its own NFV Management and Orchestration entities as defined by ETSI’s spec-

ification, and is independent in its SFC management (identification, encapsu-

lation, and so on). Therefore, we consider that each domain is only aware of

its local sub-SFCs and the next hop, and ignores details on the global SFC and

its other sub-chains. Note that although the Virtual Infrastructure Manager

(VIM) and WAN Infrastructure Manager (WIM) are separate entities, they are

connected to the other MANO blocks through similar reference points. There-

fore, for the sake of simplicity, we represent them as one block. Moreover,

the local domain orchestrators are connected to a Multi-Domain Orchestrator

(MDO) through an interface that extends the Or-Or reference point, as it sup-

ports the exchange of additional information that is required for multi-domain

SFC deployment, and that isn’t supported by that reference point (see Section

3.3).

Multi-Domain Orchestrator. The MDO is responsible for ensuring the end-to-

end deployment of the global SFC, and could also be a local domain orchestrator.

During the SFC deployment, the MDO first performs an initial placement of its

VNFs, and partitions the NSD accordingly. Then, the sub-NSDs are sent to

each local domain orchestrator, along with additional information in order to

configure the local IBNs, as will be further discussed in Section 3.2. That

information allows the IBNs to perform the inter-domain packet forwarding, by

identifying the SFC of the incoming packets, as well a the next hop at the end

of the SFC.

Internal Boundary Node. We leverage the hierarchical SFC proposal of the

IETF [30] by incorporating the IBN as the interfacing entity mentioned above.

However, the RFC supposes that the WAN domain (higher level) is SFC-aware,

which is not always the case in a multi-domain scenario. Therefore, we also

study in this contribution the case where the WAN domain is not SFC-aware,

which means that our IBN implements a different method for the inter-domain

packet steering: At the domain’s egress, the IBN strips off the local domain
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encapsulation of the packets, and sends them to the next domain’s IBN in the

global chain through the border gateways. And at a domain’s ingress, the IBN

acts as a classifier by identifying the global chain and sub-chain that each packet

belongs to, and adding the corresponding local domain encapsulation. In order

to perform these operations, the IBN should keep a mapping table of the global

service path that each sub-chain belongs to, as well as the next hop after the

end of the sub-chain as will be illustrated in Section 3.3. This mapping table

is constructed using information obtained from the MDO, and the local NFVO

through WIM and VIM, respectively.

It is important to highlight that the classification that is performed by the

ingress IBNs is different than the one performed by the classifier at the beginning

of the chain. Indeed, the classifier receives the original packets, and determines

the SFC (first sub-SFC in our case) that they belong to using information that

is provided by the client, then encapsulates them accordingly. On the other

hand, the ingress IBN performs classification using the encapsulation that is

inserted by the egress IBN of the previous domain, and that is either determined

by the MDO, or from an inter-IBN negotiation protocol. Furthermore, the

SFC classifiers are configured by the local NFVO through the VIM, while the

classification components of the IBNs are configured by the WIM, which is

responsible for the WAN (inter-domain) configuration. Therefore, we consider

them as two separate logical entities as illustrated in domain B.

. Thanks to this multi-level setting, our architecture is agnostic to the encap-

sulation and forwarding protocols used internally by the local domains. Each

domain is independent and able to use whichever protocol to ensure the for-

warding for its sub-chains as long as the QoS requirements of the Service Level

Agreement (SLA) are respected. The IBNs would undertake the task of applying

the necessary changes to the packet’s encapsulation in order to forward them to

the outer domains. Therefore, the only compatibility that needs to be ensured

is the one between consecutive IBNs for inter-domain packet forwarding.
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3.2. Multi-Domain SFC Instantiation Process

We hereby describe the SFC Instantiation process over multiple domains.

Figure 2 illustrates the workflow that takes place when instantiating a multi-

domain SFC. At first, the customer, who wishes to deploy its SFC, sends its

Network Service Descriptor (NSD) to the multi-domain orchestrator; in turn,

the latter will perform an initial placement of the chain, that will determine the

domains where each Service Function will be placed based on the information

that has been disclosed by each domain as will be discussed in Section 3.2.1.

Once the initial placement has been determined, the request is partitioned to

sub-chains depending on the domain where each VNF of the SFC has been

assigned as will be detailed in Section 3.2.2. Once the sub-NSDs are created,

and the global service path is determined, the multi-domain orchestrator creates

a mapping between the global service path ID and the position of the sub-chain

in that path with the domain where it will be deployed. Taking the example

of the Network Service Headers (NSH) encapsulation [25], the path ID would

correspond to the Service Path Identifier (SPI), and the position in the path

would correspond to the Service Index (SI). The multi-domain orchestrator then

proceeds by sending to each local domain orchestrator the corresponding sub-

NSD, as well as the global path ID that the sub-SFC belongs to, its position

in the SFC, and the identifier of the next domain that the packets should be

forwarded to if applicable.

Upon receiving that information, each local orchestrator performs a local

placement of its sub-SFC and deploys it, then instructs its local SDN controller

to create the local Service Path of the sub-chain using the sub-VNFFG. The

SDN controller then creates the Service Path, and installs the flow rules on the

Service Forwarders of the domain in order to route the packets according to the

Service Path. The controller will then return the local Service Path ID to the

local orchestrator that will in turn add an entry to the IBN’s mapping table that

is comprised of the global Service Path ID and the position of the sub-SFC, the

corresponding local Service Path ID, and the next domain to send the packets

to, if applicable. These mappings will allow the IBN to identify the packets at its
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ingress on one hand, and on the other hand, to forward the packets to the next

domain at the end of the sub-chain. Afterwards, the local orchestrator confirms

to the multi-domain orchestrator that the sub-SFC has been deployed. In turn,

the multi-domain orchestrator will confirm the deployment of the complete SFC

after receiving confirmation from each domain.

3.2.1. Request Placement

Request placement is performed by both the MDO and the local domain

orchestrators. During the first placement, the MDO determines where each

VNF of the SFC should be placed, using information from the NSD, such as the

resource and functional requirements of VNFs, or the deployment constraints.

Regarding the local placement of the sub-SFCs by each domain orchestrator,

the sub-NSD information is also taken into account. Note that this placement

is performed by dedicated algorithms and methods, which have been largely

studied in the literature, and are out of the scope of this paper. For example,

the centralized multi-domain SFC placement solutions that have been proposed

in [6, 7, 8] can be used to perform SFC placement on both levels (MDO and local

orchestrators). VNF, VL, and CP counters are reinitialized upon the creation of

each new sub-NSD; adding a VNF, VL, and CP to a sub-NSD implies copying

their descriptors from the original NSD, and adding their IDs to the VNFFG

descriptor accordingly.

3.2.2. Request Partitioning

The NSD partitioning process is detailed in Figure 3 and is performed as

follows: The consecutive VNFs that have been placed on the same domain are

grouped in order to create sub-NSDs for each domain, and external connection

points are added at their extremities in order to link those sub-SFCs to the rest

of the global SFC, and forward the traffic out of the local domain. Based on

these sub-SFCs and connection points, new sub-NSDs are created as illustrated

in figures 4 and 5.
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Figure 2: Multi-domain SFC instantiation workflow
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Figure 3: NSD Partitioning workflow

. In this example, we provide two examples for NSD partitioning, depending on

the SFC placement. The NSD is modeled using the standardized Topology and

Orchestration Specification for Cloud Applications (TOSCA) data model [32],

which is also simplified in order to only keep the information that is relevant

to our case, namely the VNF Forwarding Graph (VNFFG) and the Forward-

ing Path (FP). As illustrated in Figure 4, the original SFC comprises 3 VNFs

which are connected by Virtual Links VL1 and VL2 through their respective

Connection Points: CP11 for VNF1, CP21 and CP22 for VNF2, and CP31 for

VNF3, the Forwarding Path is composed of an ordered list of the Connection

Points the packets are forwarded to. After the initial placement has been per-

formed by the orchestrator, we consider two placement possibilities : in the first

scenario, we suppose that VNF1 and VNF2 are mapped to one domain, and

VNF3 is mapped to a second one; the second scenario supposes that each VNF

is mapped to a different domain. According to that placement, the original NSD

is then partitioned as shown in Figure 5: each sub-SFC except the last one ends
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Figure 4: Original SFC and its VNFFG before partitioning

in an external Connection Point that will ensure that the packets are routed

out to the domain’s IBN, and every sub-SFC except the first one will start with

an external Connection Point that will forward the packets from the domain’s

IBN. Note that each domain’s respective IBNs are not included in the NSD as

they are not deployed with the SFC, indeed, they are deployed by the domain

in order to serve all of the SFCs. Furthermore, this NSD partitioning essentially

depends on the output of the SFC placement process. Indeed, for other SFC

placement scenarios, the NSD would have also been partitioned differently.

3.3. End-to-End Packet Forwarding

In the following, we detail how the end-to-end packet forwarding is ensured.

Figure 6 shows the color-coded mapping tables of the different components in

our architecture after a Service Chain’s deployment. The multi-domain orches-

trator keeps track of where each part of each SFC is deployed, and each SDN

controller manages the packet forwarding for the local sub-chains by pushing

the forwarding rules into the SFFs; through the SFC instantiation workflow,

the IBNs have been made aware of the mapping between the higher level and

lower level encapsulations, as well as the next domain to forward the packets

to at the end of the sub-chain. In this example, the SFC packet flow originates
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Figure 5: Sub-SFCs and their VNFFGs after the partitioning depending on the SFC Placement
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Figure 6: End-To-End SFC Packet Forwarding Mechanism
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from VNF1 in the first domain, it is forwarded by the SFFs to the second VNF

then out to the IBN by relying on the NSH encapsulation, as well as the in-

stalled forwarding rules. Once the packets reach the IBN, the latter identifies

the global service path and index, and using its mapping table, determines the

next hop for the global SFC, which in that case is the domain B. The IBN then

proceeds to strip off the lower-domain encapsulation, and forward the packets

to the border gateway in order to route them to the IBN of domain B. At this

point, we can identify two possibilities for inter-domain packet forwarding :

The WAN domain is SFC aware. In this case, the IBN re-encapsulates the

packets using the higher level SFC encapsulation, and the border gateways as

well as the WAN domain routers would act as SFFs, and would forward the

packets to the next domain’s IBN. The receiving IBN would then act as a SF at

the higher-level, and as a classifier at the lower-level, stripping off the higher level

encapsulation then adding the required sub-chain encapsulation upon receiving

the packets. In order to perform SFC packet forwarding, the inter-domain

forwarders would need to be connected to a control plane that manages the

higher level chains, such as an SD-WAN controller that would be connected to

the multi-domain orchestrator.

The WAN domain is not SFC aware. A more general and realistic scenario

supposes that the SFC encapsulation is not supported by the WAN domain

forwarders. In that case, the packets ought to be tunneled between the IBNs

of each domain, which supposes that a discovery protocol has been performed

in order to identify the IBNs of each domain, and that at least each pair of

consecutive IBNs in the higher level path are able to exchange packets using

the same protocol. Once an IBN receives the packets, the sub-chain that they

belong to is identified through re-classification, and the corresponding lower

level encapsulation is added before forwarding to the first SFF. However, since

the packets are processed by different VNFs along the path, the packet state at

the egress of a domain’s sub-chain might differ depending on the higher-level

placement performed by the MDO. Indeed, VNF processing of packets alters
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their content, which means that the payload and/or header fields of packets at

the egress of a VNF N are different than those of packets at the egress of the

VNF N+1, thus making it difficult to keep track of the changes. Therefore, the

classification at an IBN’s ingress can be performed in two manners :

• Determine the classification rules for each IBN depending on the higher-

level placement, which supposes that the MDO is aware of the state of the

packets at the egress of each Service Function of the chain.

• Include in the inter-domain packet encapsulation information that allows

the IBN to identify the global SFC of the packets and their position.

In the PoC of this work, we assume that the WAN domain is not SFC aware,

and that the sub-SFC of each packet at a domain’s ingress is determined by

including the higher-level SFC ID in the inter-IBN encapsulation, which can be

translated to the sub-chain encapsulation using the IBN’s mapping table.

4. Implementation

Next, to validate our proposal, we implement a Proof of Concept of the

proposed architecture to deploy multi-domain SFCs, and run multiple experi-

ments in order to evaluate the performance of the components that have been

deployed.

4.1. Testbed Setup

In the following, we depict our Proof of Concept of the proposed archi-

tecture. As illustrated in Figure 7, our deployment testbed is built over two

physical hosts that represent two different domains. Note that in the following,

the terms domain and server can be used interchangeably. We also leverage on

LXC [33] containers that are used in order to host the different Service Func-

tions connected through OVS (Open vSwitch) [34] switches that ensure packet

forwarding using OpenFlow rules. Version 2.11.0 is used in order to support

the NSH encapsulation. The physical hosts are interconnected using VXLAN
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Figure 7: Proof of Concept Testbed Implementation

tunnels. Packet processing is performed by the classifiers, IBNs and VNFs us-

ing the Python-based library scapy [35], and the traffic is generated using the

hping3 packet assembler [36]. We implemented, using Python scripts, our multi-

domain orchestrator that performs NSD partitioning, as well as local domain

orchestrators that ensure the sub-SFC deployment. In addition, we used a basic

SDN controller that will construct the classification and forwarding rules for

each SFC, and enforce them at the switch level, as well as the classifiers and

IBNs at the domain’s borders.

The hardware and software setup is outlined in Table 1.

In order to support Service Chaining, two different encapsulation methods

are used, a header-based encapsulation with the NSH header, and a tag-based

encapsulation with MPLS Segment Routing:

• The Network Service Header [25] encapsulation is illustrated in Figure

8, the SFC Identifier is encoded into the 3-byte Service Path Identifier

(SPI) field, and the position of the packet inside the chain is encoded into

the Service Index (SI) field; this tuple allows the SFFs to determine the

next hop for the packets. This header is added upon the classification

of packets, and each time the packet passes through a Service Function

along the chain, the SI is decremented. In this implementation, we use
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Multi Domain Orchestrator

CPU Intel Core (2 Cores), 2.40GHz

RAM 8GB

OS Ubuntu 16.04, 64 bits

Domain 1

CPU Intel (32 Cores), 2.60GHz

RAM 128GB

OS Ubuntu 16.04, 64 bits

Domain 2

CPU Intel Xeon (4 Cores), 2.93GHz

RAM 16GB

OS Ubuntu 16.04, 64 bits

Table 1: Testbed Hardware and Software Configuration

the NSH MD-Type 1, which is the fixed-length metadata type, therefore,

the Network Service Header’s size is fixed to 24 bytes.

• The Segment Routing [37] encapsulation is depicted in Figure 9, where

the classifier encapsulates the forwarding path into a packet as a list of

hops, therefore reducing the amount of state information that needs to

be stored on the forwarding devices. In our implementation, we leverage

Figure 8: Network Service Header Encapsulation
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Figure 9: MPLS-Based Segment Routing Encapsulation

on Multi Protocol Label Switching (MPLS) headers, where each Service

Function ID is encoded into a 20-bit MPLS label. The SFFs determine

the next hop by reading the label field of the outer MPLS header, and

each time a packet passes by a Service Function, the outer MPLS header

is stripped off, so that the packet can be routed to the next SF in the SFC.

The MPLS header is 4-bytes in size, which means that the encapsulation

size at any position in the SFC is 4 ∗ n bytes, with n being the number

of remaining SFs that the packet has to be forwarded to. Therefore, the

encapsulation size decreases as packets get further into the Service Chain.

We evaluate our implementation using four key metrics. First, we observe

the overall deployment time of the end-to-end SFCs from the reception of the

NSD, up to the successful configuration of all of the SFs and forwarding elements

(classifier, SFF, IBN). The SFC placement time is disregarded as it is dependent

on the placement algorithm, which has been explored in the literature and is out

of the scope of this paper. The second evaluation metric will be the end-to-end

latency for each SFC length and each encapsulation scenario; additionally, we

measure the delay added by the encapsulation and forwarding of the packets.

We will therefore ignore the time consumed by the specific processing of each

Service Function and only consider the encapsulation/decapsulation processing

time. Finally, we observe the CPU load that is generated from the processing

of packets by the SFC components.
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Figure 10: End-to-End SFC Deployment Time

4.2. End-to-End Deployment time

For this experiment, we generate NSDs for SFCs of lengths that range be-

tween 4 to 30 Service Functions. Since our deployment doesn’t include the

SFC placement process (out of the paper’s scope), we set pre-defined placement

combinations for each SFC. Each SFC of 4 to 20 VNFs is split in equal halves

between the domains, and for the other SFCs, due to hardware limitations, the

first 10 VNFs are deployed on the first domain, and the remaining VNFs on

the second one. The classifier and IBN of each domain are also deployed on

separate containers. The experiment is performed for 20 iterations. Figure 10

features the average deployment times as well as the 95% Confidence Interval

(C.I). Furthermore, the green bars represent the mean time for the orchestration

operations, which encompasses the NSD partitioning by the MDO, the sub-NSD

file transfer to the local orchestrators, as well as the Service Function, Classifier

and IBN configuration by the local domains; while the orange bars represent the

OVS configuration time, and the blue bars illustrate the mean VNF deployment

time at the VIM level. The total end-to-end deployment time is the sum of all

three bars, and can be measured as the time elapsed from the reception of the
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(a) Traffic Rate = 2MB/s (b) Traffic Rate = 10MB/s (c) Traffic Rate = 50MB/s

Figure 11: End-to-End Latency with 50 SFCs

SFC request by the MDO until the reception of the last confirmation message

from the local orchestrators, as illustrated in Figure 2.

It can be noticed overall that the total deployment time gradually increases

with SFC length, but it remains within the range of seconds with a total av-

erage time of 13.29s at the SFC length of 4 VNFs, and up to 86.93 seconds

at SFC length of 30. By breaking down these total times, it can be observed

that the VNF deployment process makes up for the largest portion of the SFC

deployment time. Indeed, it represents 56.7% of the total time, with 7.5s for

SFC length 4 and up to 78.16s representing 89.91% of the total deployment

time at SFC length of 30. In contrast, the OVS rule deployment process only

makes up for 3-8% of the total time, ranging from 1.16s at SFC length 4, up

to 2.79s at SFC length of 30 VNFs. The remaining time is consumed by the

orchestration operations with values that remain stable, ranging between 4.5s,

representing 33.86% of the total time, and 6.5s making up for 7.4% of the

total deployment time of the SFC. It is worth noting that since the sub-SFC

deployment is performed by each domain in parallel, the MDO waits for the

confirmation of all of the local orchestrators before concluding the end-to-end

deployment process, which means that the total deployment time is affected by

the hardware configuration of the least-performing domain.
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(a) Traffic Rate = 2MB/s (b) Traffic Rate = 10MB/s (c) Traffic Rate = 50MB/s

Figure 12: End-to-End Latency with 150 SFCs

(a) Traffic Rate = 2MB/s (b) Traffic Rate = 10MB/s (c) Traffic Rate = 50MB/s

Figure 13: End-to-End Latency with 450 SFCs

26



4.3. End-to-End Latency

For this metric, we deploy different numbers of SFCs with lengths of 4 to

30 VNFs, where multiple combinations of SFs are used in order to generate the

SFPs, and VNF sharing between SFCs is enabled, meaning that a given VNF

can serve as a Service Function for multiple SFCs. For this experiment, we

evaluate the end-to-end latency for 50, 150, and 450 SFCs.

Once the SFCs have been deployed, we generate packets from each SFC and

send them to the first domain’s classifier, then compute the time that it takes

for a packet to be received by the last node of its corresponding SFC depending

on the SFC length as well as the packet rate. We generate 6GB of traffic for

SFCs of lengths 4 to 30, and send it to the classifier at rates of 2MB/s, 10MB/s,

and 50MB/s. The process is repeated 10 times.

We also use three different encapsulation approaches : Network Service Headers

on both domains, Segment Routing encapsulation based on stacked MPLS labels

on both domains, as well as a hybrid approach where each domain uses a different

encapsulation (NSH and Segment Routing). In all scenarios, we assume that the

IBN at the end of the first domain strips off the SFC header, and adds a MPLS

label that can be used by the second domain’s ingress IBN in order to identify

the global SFC as well as the sub-SFCs position, and insert the local domain’s

corresponding headers, before sending the packet through the VXLAN tunnel

associated with the IBN of the second domain. Packets from SFCs of lengths

4 to 30 are generated and sent at rates of 2MB/s, 10MB/s, and 50MB/s. Each

SFC can be identified by the classifier using the packet headers and payload.

. Figures 11, 12, and 13 feature the measured latency in milliseconds as well

as the 95% Confidence Interval for each SFC number and packet rate. We can

observe that the end-to-end latencies range between 12ms and 125ms depend-

ing on the encapsulation type and SFC length, with slight variations related to

the number of SFCs and packet rate. Indeed, as SFC length increases, it can

be noticed that the full NSH scenario exhibits the lowest latency values, with

around 12-14ms for the shorter SFCs, and up to 61ms for the longer ones re-
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gardless of traffic rates and SFC number, with little increase in latency between

successive SFC lengths. In contrast, the latency values for the full Segment rout-

ing and hybrid scenarios increase at higher rates, reaching 125ms, and 109ms

respectively.

. This behavior can be explained by the total size of headers. Indeed, the NSH

header is fixed regardless of SFC length with 24 bytes for MD-Type 1, while

the Segment Routing encapsulation relies on stacked MPLS headers of 4 bytes,

where each header contains the ID of one SF in the chain; meaning that the

total packet size using the Segment Routing encapsulation becomes larger as

SFC length increases. It can also be observed here that the number of SFC

also affects the difference in latency for the longer SFCs (≥ 20 SFs), since the

latency values for the hybrid scenario are closer to the ones obtained with the

Segment Routing scenario when the number of SFCs increases. Indeed, the gap

between the hybrid and Segment Routing scenario’s latency values gradually

decreases from 12-17ms for 50 SFCs, to 11-15ms for 150 SFCs, and only 2-5ms

for 450 SFCs. In contrast, for the shorter SFCs (< 20 SFs), similar latency

values can be observed across traffic rates for SFC numbers of 50 and 150. For

SFC number 450, the hybrid scenario latency values exceed the ones obtained

using the Segment Routing encapsulation with up to 5ms, as for shorter SFCs,

the NSH header is still larger than the Segment Routing one.

4.4. Packet Processing Time

In addition to the end-to-end latency, we also measured during the previous

experiment the processing time by each component of the SFC from the recep-

tion of a packet until the emission of the new encapsulated packet. This allows

us to determine the latency added by the packet processing operations that are

necessary in order to implement both encapsulation types. Figure 14 features

the mean and 95% C.I of packet processing time for the classifier, service func-

tions and both ingress and egress IBNs of both domains,for both encapsulation

types regardless of the number of SFCs and packet rate; these two factors did
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Figure 14: Processing Time per SFC Component

not affect the results. For the classifier and egress IBN of the first domain, the

figure features the processing times for the NSH and Segment Routing encap-

sulations when the sub-SFC is composed of 4, 6, and 10 SFs. For the ingress

IBN on the second domain, the values are provided for the NSH encapsulation,

and Segment Routing when SFC length is of 4,10, and 20 SFs. For the Service

Functions, the values are provided for NSH, and Segment Routing when the

received packets have 20, 10, 5, or one label, which matches the first, middle,

and last position of the longest sub-SFC in each domain.

. The figure shows that the processing times for the Service Functions are simi-

lar for both domains, where the mean processing time for the NSH encapsulation

reaches 1.03ms and 1.16ms respectively. For Segment Routing, the processing

time decreases as the number of labels decreases, with values that range between

3.83ms and 0.29ms for the first and last SF respectively. Note that the differ-

ence in processing times between the domains is due to the different hardware

configurations of the servers as shown in Table 1. The same observation can

be made for the classifier and ingress IBN as the mean processing time using

Segment Routing increases with SFC length. The processing time reaches the
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value of 17.84ms when 20 labels are added by the ingress IBN as opposed to 5ms

for 4 labels. As for the NSH encapsulation, the process time remains minimal

with 2.84ms and 1.03ms for the classifier and ingress IBN, respectively.

. This difference can be imputed to the encapsulation process performed by

both components, which differs depending on the encapsulation type. Indeed,

once the sub-SFC is identified by the classifier and ingress IBN, if the NSH

encapsulation is enforced, the fixed-length header is added, and the packet is

directly sent to the first SF in the chain. However, for the Segment Routing

encapsulation, the ID of each SF in the SFP is encoded into an individual MPLS

label, meaning that for each SF in the chain, a 4-byte MPLS header is stacked

over the original packet. Therefore, the longer the SFC is, the longer it takes for

the classifier and ingress IBN to construct the MPLS encapsulation of the packet

before sending it to the next Service Function. Finally, the egress IBN exhibits

similar results for all SFC lengths in Segment Routing with a processing time of

1.76-2.08ms, which is due to the fact that the packets reaching the IBN always

have only one label left, regardless of SFC length. For the NSH encapsulation,

similar to the classifier, the processing time reaches 2.54ms.

. Another observation that can be made from comparing these results to the

end-to-end latency is that the processing time of a single Service Function rep-

resents 1-10% of the total latency when the ingress IBN’s processing time rep-

resents 8-14% of the total time for Segment Routing, and 1-10% for NSH.

Depending on the encapsulation type, the classifier processing time makes up

for 5-25% of the total time for NSH, while it represents 12-40% of the total

time for Segment Routing, depending on SFC length. As for the ingress IBN’s

processing time, it makes up for 4-20% of the end-to-end latency using NSH

and 2-16% using Segment Routing.

4.5. Processing Load

For this last metric, we probe the CPU load for each of the SFC components

in order to determine the CPU consumption of the classification, encapsulation,
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(a) Encapsulation: Network Service Headers

(b) Encapsulation: Segment Routing

Figure 15: CPU Usage of the SFC components for all rates and all SFCs
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and decapsulation operations for both NSH and Segment Routing headers. Fig-

ures 15a and 15b illustrate the CPU loads for the different components, for all of

the simultaneously deployed SFCs for NSH and Segment Routing respectively,

while Figures 16a and 16b show the CPU consumption values for an SFC com-

prised of 30 SFs for NSH and Segment Routing respectively, where 10 SFs are

deployed on the first domain, and the remaining 20 SFs are deployed on the

second domain. In all figures, the first part gathers the mean CPU consump-

tion values of the SFC components deployed on the first domain, namely, the

classifier, egress IBN, and SFs. While the second part comprises the remaining

SFs, and the ingress IBN that are deployed on the second domain. We measure

the CPU values for the traffic rates of 2MB/s, 10MB/s, and 50MB/s.

. In all figures, and for all of the components and encapsulations, we can no-

tice a slight increase in the CPU load when the traffic rate increases. It can

also be observed that for the NSH encapsulation, the CPU load remains stable

across components, while it fluctuates for Segment Routing depending on the

component, its function, and its position along the SFC. Looking at the CPU

values for all SFCs in Figure 15, we can determine that for NSH, the classifier

and egress IBN are the components that consume the most CPU, with values

between 53% and 84%, while the ingress IBN consumes 26-28% of CPU, and

the Service Functions consume 11-66% depending on the deployment server.

For Segment Routing, the CPU consumption for Service Functions are similar

for both servers, with values approximating 30% despite the difference in re-

sources between servers, which can be imputed to the fact that longer SFCs

are deployed on the second server. The egress IBN also consumes around 30%

of CPU, while the classifier and ingress IBN consume the most resources with

values of 92-99%, which is due to the process of adding the MPLS labels to the

packets at the entry of the domains.

Next, we consider the CPU usage results for the SFC comprising 30 VNFs,

as shown in Figure 16. For the NSH encapsulation, it can be seen that the

CPU load for all of the components of each server are similar, with values of
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(a) Encapsulation: Network Service Headers

(b) Encapsulation: Segment Routing

Figure 16: CPU Usage of the SFC components for all rates, for SFC of 30 VNFs
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57-65% for the first server, and 17-19% for the second server, except for the

last SF of the SFC, which only receives packets, consuming 5-6% of CPU. For

the Segment Routing encapsulation, the CPU usage is at its peak at the entry

of each domain, with values that exceed 90% for both the classifier, and the

ingress IBN. Then, the CPU usage gradually decreases from 60% in the first

SF, to 40% in the middle SF, then finally 28% in the last SF and egress IBN

of the first domain, and 6% in the last SF of the second domain. These values

correlate to the size of the packets that each Service Function needs to process,

as for each Service Function that a packet passes through, the outer MPLS

header is stripped off, thus decreasing the size of packets as they approach the

end of the sub-SFC as opposed to the NSH encapsulation, where the size of the

headers remains fixed while the value of the SI is decreased.

. Note that these values can change depending on the packet rate, as well as

the software and hardware configuration. They cannot be generalized to other

larger scale deployments as they may not apply.

4.6. Results Discussion

By synthesizing the obtained results, it can be concluded that the workflow

of our proposed architecture enables an end-to-end deployment across domains

with minimal time compared to the time consumed by VNF deployment at the

VIM level. It is dependent on the hardware configuration of the infrastructure

and the virtualization technology deployed by the operator. Moreover, as seen

in section 4.2, the orchestration and network rule deployment times remain

stable as SFC length increases, which proves the scalability of our architecture

regarding SFC length. As for the scalability related to the number of domains,

since the deployment process is performed by each local orchestrator in a parallel

manner, the number of domains would not have an effect on the end-to-end

deployment time. The latter would only be affected by the deployment time on

the least efficient domain, since the MDO waits for the confirmation messages

of all of the local orchestrators before concluding the SFC deployment process.
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Comparing the different results of the NSH and Segment Routing encapsu-

lations, and looking at the end-to-end latency in section 4.3, it can be noticed

that the values for the full Segment Routing and the hybrid scenarios increase

at a higher pace than those of the full NSH scenario as the SFC length increases

regardless of packet rate. Furthermore, by analyzing the individual processing

times of the different SFC components in section 4.4, we can perceive that the

values for NSH remain stable across components, while they get multiplied by

a factor of 5 to 17 for Segment Routing on the classifier and ingress IBN, de-

pending on SFC length. Both of these differences are due to the difference in

size between the Network Service Header and the Segment Routing header; the

latter getting larger as the SFC increases in size. This gap is at its peak value

at the ingress of a domain, as the Segment Routing encapsulation size decreases

along the chain. This explains why the difference in time is observed at the

classifier and ingress IBN level.

Therefore, the choice of the implemented encapsulation type can be made

based on the typical length of the sub-SFC that ought to be deployed by each do-

main: a shorter sub-SFC may benefit from the Segment Routing encapsulation

as the total encapsulation size would remain minimal, thus ensuring a lower

overhead. However, the NSH encapsulation should be considered for longer

SFCs since the latter encapsulation type is not scalable. Indeed, the header size

for Segment Routing increases proportionally to SFC size, thus multiplying the

encapsulation times at both the classifier, and ingress IBNs of each domain, and

increasing the end-to-end latency compared to NSH, as well as packet overhead

which in turn would consume higher bandwidths. Additionally, as the header

size increases, the total packet size might exceed the Maximum Transfer Unit

(MTU), causing fragmentation issues. In terms of CPU usage, the results de-

tailed in section 4.5 are consistent with the previous metrics, where the CPU

usage for NSH is similar for the SFC components, with relatively low values,

while for Segment Routing, the CPU usage decreases as packets are forwarded

along the SFC, with higher consumption values at the entry of the domains, and

minimal values at the end of the chain. Therefore, more CPU resources should
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be allocated to the SFC components at the entry of the SFC. However, more

testing may be required in order to study the CPU usage of these components

in larger-scale networks.

5. Open Issues

In this paper, we proposed an architecture for end-to-end cross-domain SFC

implementation. We detailed the instantiation process workflow, as well as the

end-to-end packet forwarding mechanism. However, some challenges related to

cross-domain SFC implementation remain untackled. In this section, we outline

the identified research issues that are still open, and give a brief overview of the

existing research contributions.

5.1. End-to-End Life-cycle Management

In this work, we proposed an instantiation workflow for multi-domain SFC

deployment, but regardless of the level of control that the owner disposes of

(monitoring only, limited control, or full control), the SFC owner should be able

to perform life-cycle management operations on its service chain at runtime.

The Or-Or reference point provides interfaces that support basic Network Ser-

vice life-cycle management operations, but SFC life-cycle management requires

support of additional operations such as the addition, deletion, or reordering of

service functions. Furthermore, if one of the aforementioned operations leads

to the addition, or deletion, or the reordering of complete sub-chains, which

would alter the higher level Service Function Path, a mechanism should be

implemented in order to allow the re-configuration of the local domain IBNs.

5.2. Inter-domain Packet Forwarding

As previously stated, if we suppose that the WAN domain is not SFC aware,

each IBN needs to directly send the packets at the end of its sub-chain to the IBN

of the next domain, thus each IBN is required to dispose of information on how

to reach the IBN of the next domain for each sub-chain that has been deployed.

This can be achieved either by means of a discovery protocol that would be run
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by the IBNs in order to identify the IBNs of the other domains, or by obtaining

that information from the multi-domain orchestrator that would have to keep

track of the address of the IBN of each domain. Furthermore, when deploying

sub-SFCs, each pair of consecutive IBNs should also run a negotiation protocol

in order to determine the communication protocol that would be used in order

to exchange SFC packets, as well as the means to identify the higher-level SFC

that the packets belong to.

5.3. Encapsulation Mapping

If we consider the scenario where the WAN domain is SFC-aware, the IBN

strips off the higher level encapsulation of packets at each domain’s entry and

replaces it by the domain’s encapsulation for the identified sub-chain; the IBN

should also be able to retrieve and restore that same higher level encapsulation

at the egress of the domain. Note that the higher-level encapsulation might

contain specific metadata that could not be restored by a simple re-classification

of the packets by the IBN. The hierarchical SFC document by the IETF [30]

lists a few methods that could be envisaged to retain these metadata such as

header nesting, flow state saving, or pushing the upper level encapsulation into

the metadata field of the lower level encapsulation. However, at the time of this

writing, these methods have not yet been evaluated, and new ones could also

be proposed by future research works.

5.4. Security

As with any service, the confidentiality and integrity of data as well as the

SFC’s availability must be ensured. To this end, at the entry of the SFC, secu-

rity functions should inspect the entering traffic in order to avoid attacks and

intrusions. Then, each SFC component and link should be secured, as a compro-

mised SF or SFF would allow an attacker to access and/or change the content

of packets, or change the forwarding path of packets through packet header or

forwarding rule modification. This task is more challenging in a multi-domain

scenario, due to the independent management of each domain, as well as the
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inter-domain forwarding part. Therefore, each local domain should guaran-

tee the confidentiality and integrity of the SFC data that is processed by its

sub-SFC, and allow the implementation of end-to-end consistency verification

measures. Furthermore, since the SFC packets are forwarded between the do-

mains through untrusted networks, encrypted tunnels should be set between the

IBNs in order to ensure the confidentiality and integrity of the packets. Finally,

at the orchestration level, an authentication procedure should be run between

the orchestrators of each domain and the MDO, and the communication channel

should be secured.

6. Conclusion

In this paper, we introduced a novel architecture that enables multi-domain

SFCs deployment. The architecture is ETSI-MANO compliant, and leverages

on the hierarchical SFC principle by using the IBN as an interfacing entity for

the local domains. We also detailed the SFC instantiation process, as well as the

partitioning of the NSDs in order to perform the deployment of the sub-chains

on each local domain. We devised on an SDN-based technology-agnostic end-

to-end packet forwarding mechanism that ensures cross-domain compatibility

by adding interfacing components, and assessed its effectiveness with a Proof

of Concept implementation that has been evaluated by measuring different Key

Performance Indicators for SFCs. The obtained results demonstrate our archi-

tecture’s scalability and efficiency, and allows us to draw conclusions related

to the most suitable encapsulation type depending on SFC length. Finally, we

provides an analysis of the remaining open issues for end-to-end multi-domain

SFC implementation and management.
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