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We investigate spatiotemporal chaos dynamics in a finite nanoparticles array with Kerr-type nonlinear
response, excited by an incident plane wave of varying intensity and tunable frequency close to the localized
plasmon resonance of a single particle. Considering dipole-dipole coupling between the nanoparticles described
by their polarizability, we compute the temporal evolution of the dipoles and numerically extract the Lyapunov
spectra, allowing us to characterize different dynamical behaviors. Furthermore, we estimate the Kaplan-Yorke
dimension that provides a measure of the strange attractor complexity. We show that time-modulated solutions
which are generated at the onset of modulational instability experience secondary instabilities leading to a
complex nonlinear dynamic. It is also shown that in the highly nonlinear regime, the spatiotemporal chaos is
robust and exists in a large range of parameters that we have determined numerically.

DOI: 10.1103/PhysRevB.100.165423

I. INTRODUCTION

Assemblies of metal nanoparticles (MNPs) allow manip-
ulating light in compact photonic components by exploiting
localized surface plasmon resonances (LSPs) [1]. Their ability
to confine and enhance the intensity of light makes them
choice elements for designing sensors [2], nanolasers [3],
or interfaces for enhanced Raman spectroscopy [4] among
other applications. In particular, chains of nanoparticles have
been investigated for light waveguiding with subwavelength
lateral confinement in experimental [5–7], analytical [8,9],
and numerical [10,11] linear studies. Peculiar properties of
LSPs allow increasing nonlinear processes close to reso-
nance, and many theoretical and experimental investigations
have been carried out within the plasmonics community con-
cerning second-harmonic generation and two photon lumi-
nescence [12,13]. Other fascinating possibilities have been
recently foreseen in exploiting third-order susceptibility of
metal nanosystems, as they exhibit particular nonlinear plas-
monics modes. The latter could be used for conceiving active
photonic devices allowing to manipulate light in a new way:
metal nanoantennas with Kerr-like susceptibility can show
self-oscillation [14] and radiation switching [15], while one-
or two-dimensional periodic assemblies of MNPs have re-
cently been theoretically demonstrated to support bistability,
switching waves [16], localized states like bright or dark
solitons or oscillons [17–19], and Anderson localization [20].
However, little work has been performed on the extreme and
fascinating case of spatiotemporal chaos.

*gaetan.leveque@univ-lille.fr

Generally speaking, a chaotic dynamic reflects the persis-
tence of an irregular behavior in a deterministic system with
a small number of degrees of freedom. Hence, by extension,
spatiotemporal chaos is the chaotic emergence of independent
subdomains in a deterministic system with a large number of
degrees of freedom. If its occurrence challenges the possibility
of “controlling light with light” at the nanoscale, it can as
well find applications in artificial intelligence [21–23] or
communication encryption [24].

In this paper, we investigate spatiotemporal chaos (STC) in
a linear chain of closely coupled silver nanoparticles (AgNPs)
embedded in glass, under plane-wave excitation closely tuned
to the LSP resonance of one single particle. Our findings
show that our system only exhibits STC when subjected to
an external homogeneous field with longitudinal polarization
(electric field parallel to the chain axis), therefore we focus on
this case in the following. We start with a brief reminder of the
model and the dispersion relation method which allows us to
analytically determine stationary homogeneous solutions and
their stability [14,16,25,26]. Next, we present the theoretical
procedure applied to characterize spatiotemporal chaos, based
on the computation of Lyapunov spectra and the correspond-
ing correlation length. We finally present our results, show-
ing how our methodology allows a complete, quantitative
characterization and robustness of the spatiotemporal chaos
dynamics in a large range of parameters.

II. MODEL AND BASIC EQUATION

We consider the system of Fig. 1(a), consisting in a one-
dimensional chain of identical spherical nanoparticles made
of silver, that are embedded in a silica matrix with relative
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FIG. 1. (a) Schematic view of array of nanoparticles with a
nonlinear response illuminated by an electric field with longitudinal
polarization. (b) The extinction cross section Cext as linear optical
response of a spherical nanoparticle of silver with radius a = 10 nm.
Insets show the amplitude of the electric near-field enhancement
around the nanoparticle at the dipolar resonance λ0 ≈ 401 nm.

permittivity εh � 2.15. The particle radius is a = 10 nm and
the array period is d = 30 nm.

The linear response of a single AgNP shows a dipolar LSP
resonance at λ0 ≈ 401 nm, with amplitude field enhancement
reaching 20 inside the particle, Fig. 1(b). This large value
induces enhanced nonlinear processes. We assume that the
metal nanoparticles present a nonlinear Kerr-like response,
and we define the nonlinear dielectric permittivity as

εNL
Ag = ε∞ − ω2

p

ω(ω − iν)
+ χ (3)

∣∣E(in)
n

∣∣2
, (1)

where ε∞ = 4.96, h̄ωp = 9.54 eV, h̄ν = 0.055 eV [27] [here-
inafter we assume exp (iωt ) time dependence], χ (3) � 3 ×
10−9 esu is the cubic susceptibility, and E(in)

n is the local field
inside the nth particle. Note that in centrosymmetric materials
like silver or gold, the second-order nonlinearity is suppressed
in volume and arises from symmetry breaking close to the
metal interface, resulting in a small contribution compared to
volume Kerr-like nonlinearity [28–30]. Finally, the chain is
excited by an external plane wave with longitudinal polariza-
tion, with respect to the chain axis, and angular frequency ω

close to the surface plasmon resonance ω0 of an individual
particle.

The array period d satisfies the condition d � 3a, and
the wavelength of the driving field is much larger than a
single sphere, so that we can consider spheres as point

dipole [31] whose LSP angular frequency reads then ω0 ≈
ωp/

√
ε∞ + 2εh. According to Ref. [25], the temporal dy-

namical response of metal nanoparticle arrays excited by
an arbitrary optical field fulfilling ω ≈ ω0 can be described
by the following equation (explicit details are given in the
Appendix):

−i
dPn

dτ
+ (−iγ + 	 + |Pn|2)Pn +

∑
m �=n

Gn,mPm = En, (2)

where Pn = pn

√
χ (3)/(

√
2(ε∞ + 2εh)εha3) and En =

−3εh

√
χ (3)E (ex)

n /
√

8(ε∞ + 2εh)3 are the dimensionless
slowly varying amplitudes of respectively the longitudinal
dipole moments and external electric fields, and
γ = ν/2ω0 + (k0d )3εh/(ε∞ + 2εh) which describes thermal
and radiation energy losses. The coefficient

Gn,m = η

(
ik0d

|n − m| + 1

|n − m|2
)

e−ik0d|n−m|

|n − m|
is responsible for the dipole-dipole interaction between the
nth and mth particles, τ = ω0t is the dimensionless time,
	 = (ω − ω0)/ω0 is the detuning, k0 = ω0

√
εh/c is the wave

number with c the speed of light, and the coupling coefficient
is defined as η = 3εh(a/d )3/(ε∞ + 2εh). The interaction is
not limited to closest neighbors but involves all particles of the
chain, even if the dependency on the distance makes it weaker
for particles further away from each other [32]. This is an
important difference between the above model corresponding
to Eq. (2) and the discrete Lugiato-Lefever equation, where
particles’ interaction results from the discretized Laplacian
term in the form A(Pn+1 + Pn−1 − 2Pn), as investigated for
instance in Ref. [33].

III. LINEAR STABILITY ANALYSIS

We focus our study on a plane wave normally incident onto
the chain with longitudinal polarization, for which En = E0

for all particles. Steady homogeneous solutions, correspond-
ing to equal and constant dipole moments (Pn = P0), can
be obtained from Eq. (2) by setting dPn/dτ = 0, and are
described by the following relation:⎧⎨

⎩
⎛
⎝|P0|2 + 	 + Re

+∞∑
j=1

Aj

⎞
⎠

2

+
⎛
⎝Im

+∞∑
j=1

Aj − γ

⎞
⎠

2⎫⎬
⎭|P0|2

= |E0|2, (3)

where Aj = 2η( j−3 + ik0d j−2) exp(−ik0d j), and the symme-
try Gn,m = Gm,n has been taken into account in the summa-
tion. Any positive and real root S0 = |P0|2 of Eq. (3) defines a
steady homogeneous solution P0 = √

S0eiϕ , where

tan ϕ = Im Aj − γ

	 + Re Aj + S0
. (4)

Two examples of the dependence of |P0|2 on |E0|2 are
shown in Fig. 2 corresponding to monostable and bistable
regimes. Indeed, when 	 < 	c = −Re

∑+∞
j=1 Aj − √

3(γ −
Im

∑+∞
j=1 Aj ), |P0|2 becomes multivalued (red curve, bistable

regime), while it is single valued for 	 > 	c (blue curve,
monostable regime). The transition between the two regimes
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FIG. 2. Dependence of the absolute value of homogeneous po-
larization |P0|2 of the nanoparticles on the intensity of the external
field |E0|2 for two cases depending on detuning parameter 	: with
	 = −0.1, the system is monostable, while when 	 = −0.2, the
system is bistable. The critical value is 	c = −0.1224.

is illustrated by a movie in the Supplemental Material [34].
It has been recently shown that in the case of a transversal
excitation [35], such a bistable dependence can support the
existence of kinks and solitons [16].

Next, we study the linear stability of the homogeneous
nonlinear state P0 to a spatially harmonic perturbation in the
form δPn = δP0 exp (−iKdn + λτ ), where K is the modula-
tion wave number, δP0 is the amplitude of the perturbation
(|δP0| � |P0|), and λ is the instability growth rate. Using the
model Eq. (2) and expanding it to the first order in δP0, we
obtain the following dispersion relation [25]:

λ= Im
+∞∑
j=1

Bj − γ+

√√√√√|P0|4 −
⎛
⎝2|P0|2 + 	 + Re

+∞∑
j=1

Bj

⎞
⎠

2

,

(5)

where we have set Bj = Aj cos(Kdj). The contour λ = 0 in
the (|P0|2, Kd ) plane defines the neutral curve that determines
the marginal stability where the steady state is neither ampli-
fied nor attenuated. It is given by the following equation:

|P0|2 = 1

3

⎧⎨
⎩−2

⎛
⎝	 + Re

+∞∑
j=1

Bj

⎞
⎠

±

√√√√√
⎛
⎝	 + Re

+∞∑
j=1

Bj

⎞
⎠

2

− 3

⎛
⎝γ − Im

+∞∑
j=1

Bj

⎞
⎠

2
⎫⎪⎬
⎪⎭. (6)

For any value of K for which λ is positive, the perturbation
grows exponentially in time and the homogeneous solution P0

is unstable. Figure 3 shows the instability domains in the plan
(|E0|2, |P0|2) and (Kd, |P0|2), respectively, for a monostable
regime. It appears that the growth rate λ reaches positive val-
ues in the excitation range |E0|2 = 9 × 10−6–2.12 × 10−3. At
the bottom edge, the system destabilizes at the most unstable
spatial frequency Kd ≈ 0.7, whereas at the top edge, similar
behavior occurs at Kd = π . Close to the two corresponding

FIG. 3. (a) Homogeneous stationary solution |P0|2 as a function
of the excitation intensity |E0|2. The solid line corresponds to stable
states, the dashed line to unstable states. (b) Marginal stability curve,
the system is unstable in the parameter domain within the curve. The
detuning is set to 	 = −0.07. Dotted horizontal lines show the limits
of the instability.

pump values, the system presents stable harmonic spatial
modulations, which evolve in more complex spatiotemporal
dynamics for intermediate values. Inside the instability do-
main limited by the neutral curve [Fig. 3(b)], the nonlin-
ear dynamics becomes more complex including transitions
to spatiotemporal chaos. In the following, we focus on the
occurrence and the characterization of spatiotemporal chaos,
which appears in a large spectrum of wave numbers K .

IV. SPATIOTEMPORAL CHAOS

In the weak nonlinear limit, the statical description of the
nonequilibrium behavior of random dispersive waves is well
developed by the wave theory or order-parameter description,
for dissipative systems [36]. Both approaches are known
to provide the appropriate theoretical formulation. However,
such approaches break down for strong nonlinearities, where
the complex dynamic can be highly impacted by nonlinear
excitations, e.g., solitons, collapses, and shocks. In this strong
nonlinear regime, dominated by spatiotemporal chaos, no
general theory exists. However, powerful mathematical tools
have been developed to characterize spatiotemporal chaotic
regimes. One popular tool is the generalized Lyapunov ex-
ponents (Lyapunov spectrum), which is particularly adapted
to spatiotemporal systems [37,38]. Here, the characterization
of complex dynamical behavior can be, indeed, achieved by
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FIG. 4. For 	 = −0.07, N = 140, and two pump intensities (left column: |E0|2 = 1.00 × 10−5; right column: |E0|2 = 12.37 × 10−5);
(a) and (b) show the dynamic of |Pn|2 obtained by numerical simulations of Eq. (2); (c) and (d) are the spatial spectra of the |Pn|2 profile at
τ = 104; (e) and (f) are the spectra of Lyapunov exponents.

means of Lyapunov exponents, which provide information
about permanent dynamics with sensitivity to close initial
conditions [39]. When the largest Lyapunov exponent is posi-
tive, the system develops a chaotic regime but not necessarily
a spatiotemporal chaos. To distinguish between these dynam-
ical behaviors, it is necessary to determine the Lyapunov
spectrum constituted by the set of exponents. Spatiotempo-
ral chaos has a Lyapunov spectrum with a continuous set
of positive values. In contrast, chaos possesses a Lyapunov
spectrum with a discrete set of positive values. We have
computed such exponents using a Gram-Schmidt orthonor-
malization process [40] on a finite chain of N nanoparticles.
The Lyapunov exponents are labeled λi, where i = 1, . . . , 2N .
In our system, there are 2N Lyapunov exponents because each
longitudinal dipole Pn is a complex scalar and possesses one
degree of freedom (two dimensions). They are ordered such
that λp � λq (p � q).

A typical situation is depicted in Fig. 4 where we show
numerical results corresponding to a stable modulation (	 =
−0.07 and |E0|2 = 1 × 10−5, left column) and a fully de-
veloped STC (	 = −0.07 and |E0|2 = 12.37 × 10−5, right
column). The trajectories, calculated taking as an initial con-
dition the homogeneous solution, are plotted in Figs. 4(a)
and 4(b) together with the spatial Fourier transform of |Pn|2
computed at τ = 104 [Figs. 4(c) and 4(d)] and the Lyapunov
spectra [Figs. 4(e) and 4(f)]. In the stable situation, the
Fourier spectrum shows discrete harmonic frequencies, with

a fundamental frequency Kd ≈ 0.7, consistent with the value
corresponding to the lowest edge of the instability area of
Fig. 3. The associated Lyapunov spectrum has a complete set
of negative values. In contrast, the STC regime is character-
ized by a continuous Fourier spectrum and a continuous set of
positive values, confirming the spatiotemporal nature of the
chaotic evolution.

From the spectra of Lyapunov exponents, we extract the
Kaplan-Yorke dimension (DKY), defined by [41]

DKY ≡ p +
∑p

i=1 λi

|λp+1| (7)

where p is the largest integer satisfying
∑p

i=1 λi > 0. Figure 5
shows DKY as a function of the number N of nanoparticles,
and corresponding Lyapunov spectra. We see that this dimen-
sion increases linearly with the size of the system [42], which
physically means that the structure and the complexity of the
spatiotemporal chaos does not change with N , as long as it is
large enough. Associated to the Kaplan-Yorke dimension, the
slope of DKY (see Fig. 5) as a function of N allows defining
the quantity α through

α = d

(
∂DKY

∂N

)−1

. (8)

This parameter constitutes an important characterization of
the complexity of the spatiotemporal chaos; it is a function of
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FIG. 5. (a) Kaplan-Yorke dimensions as a function of the number
of particles N is indicated by the blue points for 	 = −0.07 and
|E0|2 = 12.37 × 10−5. The linear growth of DKY dimension is fitted
by a slope of 0.983, as shown by the red line. (b) The spectrum of
Lyapunov exponents correspond to each number of particles N .

the pump intensity |E0|2 and the detuning 	, and is related
to the correlation length of the chaotic subdomains within
the system of nanoparticles. Its evolution is displayed on
Fig. 6(a) as function of the excitation intensity for 	 = −0.07.
We notice that the correlation length reaches finite values
only in a limited range of intensities in the middle of the
instability domain. The correlation length decreases with the
intensity until it reaches α/d � 1 in the vicinity of |E0|2 =
10−4–3 × 10−4, for which the system exhibits well developed
STC and consecutive dipoles are almost uncorrelated. Finally,
the correlation length quickly diverges and STC disappears,
and a more ordered dynamic takes place. Moreover, in the two
pump excitation windows, located at 1.5 × 10−4–2 × 10−4

and 3 × 10−5–4 × 10−5, the system exhibits restabilization,
where different localized structures such as oscillons [17] can
be observed.

Typical trajectories have been plotted for chosen values
of the pump intensities in the parameter domain where the
correlation length reaches finite values. The aspect of those
trajectories qualitatively agrees with the evolution of α with
|E0|2. Restabilization is obvious in the first shaded window
(iii), where trajectories are characterized by spatially qua-
sistable oscillations, and in the second shaded window (v),
where a more complex superposition of alternating stable
dipoles, low amplitude large-scale front, and walking solitons
is observed.

The strength of our method for characterizing STC chaos,
through numerical computation of the Lyapunov correlation

FIG. 6. (a) Lyapunov correlation length α as a function of the
pump intensity |E0|2 for 	 = −0.07; gray regions represent two win-
dows of restabilization (auto-organized structures). (b) Illustrative
trajectories for chosen values of the pump intensity: (i) 1 × 10−5,
(ii) 2.9 × 10−5, (iii) 3.5 × 10−5, (iv) 11 × 10−5, (v) 18 × 10−5, (vi)
22 × 10−5.

length, resides in its ability to completely quantify STC in the
plane of control parameters (	, |E0|2), as shown in Fig. 7,
where the inverse of the correlation length is plotted. To con-
struct this figure, Lyapunov spectra have been computed for
N = 80, 100, . . . , 160 from trajectories. The Kaplan-Yorke
dimension has been extracted from a linear regression of
DKY(N ), and we only kept values for which the coefficient
of determination is larger than 0.9. The STC domain is well
bounded within the domain of modulational instability, and
slightly overlap the bistability area, in blue. In this latter case,
only the upper branch is unstable, so trajectories have been
initialized with the corresponding stationary homogeneous
solution. Few restabilization windows appear, around (	 =
−0.12, |E0|2 = 3 × 10−4), (	 = −0.07, |E0|2 = 2 × 10−4),
and (	 = −0.07, |E0|2 = 3.5 × 10−5). From Fig. 7, we can
also deduce that the lower bound of the Lyapunov density
dimension α is about αmin = d/2. As α is roughly interpreted
as the range of the chaotic fluctuations, that is the minimal
size chaotic subdomains, we can conclude that the intersphere
distance d is an additional degree of freedom to control the
spatiotemporal chaos in the system.

Finally, we can wonder if such a complex dynamical be-
havior is accessible to experimentation. As stated by Noskov
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FIG. 7. Evolution of the inverse of the Lyapunov correlation
length α/d , in the parameters plane (	, |E0|2). The gray background
delimits the modulationally unstable domain for the monostable
regime, while the blue one indicates the bistability domain, for which
only the upper branch is unstable. The white background represents
the stable domain for stationary homogeneous solutions.

et al. [16], large laser intensities can induce thermal damages
to silver nanoparticles, but this effect could be avoided using
picosecond pulses, long enough to observe STC as the tran-
sitory regime is about 10 fs while a characteristic time of the
temporal chaos is about a few optical periods. Moreover, if
measuring the time evolution of the dipoles of each nanopar-
ticle can be difficult, chaos could be characterized probing
the near field of a few particles within the chain, or directly
working with the field scattered by the system, which can be
used as an observable as it will contain a temporal signature
of the STC.

V. CONCLUSION

In conclusion, we have investigated the complex spa-
tiotemporal behavior of dipolar moments supported by spher-
ical metal nanoparticles assembled in linear chains with
subwavelength period. It has been shown that the onset of
the spatiotemporal chaos when varying the pump power can
be detected by computing Lyapunov spectra. When, for a
fixed detuning, the pump power is increased from a sta-
tionary homogeneous solution, modulational instability arises
first, characterized by only negative Lyapunov exponents.
For larger pump powers, we observe a transition to contin-
uous spectra with a subsequent set of positive exponents,
characteristic of spatiotemporal chaos. We confirmed the
nature of this behavior by verifying the linear increase of
the Kaplan-Yorke dimension, extracted from the Lyapunov
spectra, with the number of particles in the chain. From this
extensive parameter, we were able to compute the Lyapunov
density dimension, an intensive quantity corresponding to the
characteristic size of the chaotic subdomains, which as such
gives the measure of the spatiotemporal chaos as a function
of the control parameters of the system. This powerful tool
allows mapping the whole parameter space, which not only
evidences the region of the spatiotemporal chaos inside the

balloon delimiting the modulational instability, but also un-
veils stability islands within the chaotic region. Interesting
openings can be foreseen, either exploiting the wide range
of shapes and arrangements of nanoparticles made available
by nanofabrication [43], or combining nonlinear plasmonics
with emergent topics like topology [44]. Finally, we believe
that this theoretical demonstration and characterization of the
spatiotemporal chaos in an ensemble of subwavelength glob-
ally coupled plasmonic nanoparticles will be of interest for
physical areas beyond plasmonic systems, since applications
of spatiotemporal chaos spread all over the areas of modern
nonlinear science.

APPENDIX: EQUATIONS FOR THE SLOWLY
VARYING AMPLITUDES

We present a detailed landscape of the derivation of Eq. (2)
which describes the nonlinear dynamics of the chain. We start
from the Fourier transforms of the nth particle electric-dipole
moments,

α−1
n (ω)pn = E(ex)

n +
∑
m �=n

En,m, (A1)

where

αn(ω) = εh

{
i
2

3
k3 + εNL

Ag (ω) + 2εh

a3
[
εNL

Ag (ω) − εh
]
}−1

(A2)

is the electric polarizability of the nth silver particle, and E(ex)
n

is the amplitude of the plane wave acting on the nth particle.
The dipole-dipole interaction between mth and nth particle is
given by

En,m =
(

(1 + ikd|n − m|)3(u0 · pm)u0 − pm

εh|n − m|3d3

+ k2 pm − (u0 · pm)u0

εh|n − m|d
)

e−ikd|n−m|, (A3)

where u0 is the unit vector going from the mth to the nth
particle, and k = (ω/c)

√
εh is the wave number.

Since the frequency shift from the resonance value �ω =
ω − ω0 is too small, |�ω|/ω0 � 1, we decompose α−1

n (ω),
which acts on the particle polarization, in the vicinity of ω0 =
ωp/

√
ε∞ + 2εh to the first order of the Taylor series, and we

take into account derivatives of time describing the widening
of the light spectrum which is small,

α−1
n (ω) ≈ α−1

n (ω0) + dα−1
n

dω

∣∣∣∣
ω=ω0

(
�ω − i

d

dt

)
. (A4)

Assuming that χ (3)|E(in)
n |2 � 1 and ν/ω0 � 1, we find that

α−1
n (ω) ≈ − 1

3a3ε2
h

[
− i(ε∞ + 2εh)

ν

ω0
+ χ (3)

∣∣E(in)
n

∣∣2

− 2i(k0a)3εh + 2(ε∞ + 2εh)

ω0

(
�ω − i

d

dt

)]
.

(A5)
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The local field inside the nth particle is given by

E(in)
n = 3εh

εAg + 2εh

⎛
⎝E(ex)

n +
∑
m �=n

En,m

⎞
⎠

= 3εh

εAg + 2εh
α−1

n (ω)pn

≈ 3pn

a3[εAg(ω) − εh]
. (A6)

In the vicinity of the surface plasmon resonance of an indi-
vidual particle ω0, where we have εAg ≈ −2εh, we can write

E(in)
n ≈ − pn

εha3
. (A7)

Replacing Eq. (A7) into Eq. (A5) and then into Eq. (A1), we
have

−i
1

ω0

dpn

dt
+

[
�ω

ω0
− i

(
ν

2ω0
+ εh

ε∞ + 2εh
(k0a)3

)

+ χ (3)

2ε2
ha6(ε∞ + 2εh)

|pn|2
]

pn

= − 3a3ε2
h

2(ε∞ + 2εh)

⎛
⎝E(ex)

n +
∑
m �=n

En,m

⎞
⎠. (A8)

Introducing the dimensionless parameters τ = ω0t , 	 =
�ω/ω0, γ = ν/2ω0 + (k0a)3εh/(ε∞ + 2εh), and

Pn = pn

√
χ (3)√

2(ε∞ + 2εh)εha3
, (A9)

En = −3εhE(ex)
n

√
χ (3)√

8(ε∞ + 2εh)3
, (A10)

finally, we obtain the equation

−i
dPn

dτ
+ (−iγ + 	 + |Pn|2)Pn = En −

∑
m �=n

An,m, (A11)

where

An,m = η

2

(
(1 + ikd|n − m|)3(u0 · Pm)u0 − Pm

|n − m|3

+ (kd )2 Pm − (u0 · Pm)u0

|n − m|
)

e−ikd|n−m| (A12)

and

η = 3εh

(ε∞ + εh)

( a

d

)3
.

Taking into account that the relatively low strength of dipole-
dipole interaction due to η ∝ (a/d )3 � 1, we set An,m(k) =
An,m(k0).

Considering a longitudinal excitation, in which Pm =
±Pmu0, we find

An,m = η

(
ik0d

|n − m| + 1

|n − m|2
)

e−ik0d|n−m|

|n − m| Pm = Gn,mPm.

(A13)
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