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Abstract: This paper explores the accuracy in using an artificial neural network (ANN) to estimate
root-zone soil moisture (RZSM) at multiple worldwide locations using only in situ surface soil
moisture (SSM) as a training dataset. The paper also addresses the transferability of the trained ANN
across climatic and soil texture conditions. Data from the International Soil Moisture Network (ISMN)
were collected for several networks with variable soil texture and climate classes. Several scaling,
feature extraction, and training approaches were tested. An artificial neural network employing
rolling averages (ANNRay) of SSM over 10, 30, and 90 days was developed. The results show that
applying a standard scaling (SSCA) to the ANN input features improves the correlation, Nash-Sutcliffe
efficiency (NSE), and root mean square error (RMSE) for 52%, 91%, and 87%, respectively, of the
tested stations, compared to MinMax scaling (MMSCA). Different training sets are suggested, namely,
training on data from all networks, data from one network, or data of all networks excluding one.
Based on these trainings, new transferability (Tranl) and contribution (Contl) indices are defined.
The results show that one network cannot provide the best prediction accuracy if used alone to train
the ANN. They also show that the removal of the less contributing networks enhances performance.
For example, elimination of the densest network (SCAN) from the training enhances the mean
correlation by 20.5% and the mean NSE by 42.5%. This motivates the implementation of a data
filtering technique based on the ANN'’s performance. A median, max, and min correlation of 0.77,
0.96, and 0.65, respectively, are obtained by the model after data filtering. The performances are
also analyzed with respect to the covered climatic regions and soil texture, providing insights into
the robustness and limitations of the approach, namely, the need for complementary information in
highly evaporative regions. In fact, the ANN using only SSM to predict RZSM has low performance
when decoupling between the surface and root zones is observed. The application of ANN to obtain
spatialized RZSM will require integrating remote sensing-based surface soil moisture in the future.

Keywords: soil moisture; root-zone soil moisture; artificial neural networks; ISMN

1. Introduction

Soil moisture is considered an important land parameter that stimulates interactions between the
water and energy cycles, since it controls the partitioning of the mass and energy fluxes between land
and the atmosphere [1]. Furthermore, soil moisture is integrated into several hydrological applications
relevant to water resource decision-making [2]. Surface soil moisture (SSM) (0-5 cm) and root-zone
soil moisture (RZSM) (30 cm~-1 m), the two components of this variable, are both of interest. SSM is
a key parameter that controls various processes in environmental systems [3] and is an important
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driver of water and heat fluxes between land and the atmosphere. However, monitoring and forecast
applications such as operational agriculture monitoring and crop yield forecasting [4] rely more on
RZSM [5]. In addition, RZSM is of interest for short- and medium-range meteorological modelling
and hydrological studies over vegetated areas [6]. Its knowledge is crucial for vegetation restoration,
runoff and erosion processes [7], as well as climate change [8].

Soil moisture information can be retrieved through three main sources, namely, in situ
measurements [9], model-based estimates, and satellite observations (for instance, the Soil Moisture and
Ocean Salinity (SMOS) mission [10], the Soil Moisture Active Passive (SMAP) mission [11], the Advanced
Microwave Scanning Radiometer (AMSR) [12], and the Advanced Scatterometer (ASCAT) [13]). In situ
measurements are crucial for calibrating and validating the latter two [14,15]. Furthermore, land cover
change or climate-related trends in the water cycle can be detected through long-term time series of in
situ soil moisture (SM) observations [2]. The International Soil Moisture Network (ISMN) is one of the
most exhaustive data hosting facilities, providing in situ soil moisture measurements collected from
operational networks around the world [2]. Satellites cannot retrieve RZSM information because of the
shallow penetration depth of spaceborne data, which is on the order of a few centimeters [16]. RZSM is
nonlinearly related to SSM through different hydrological processes, such as diffusion processes [17].
Various computational techniques can be used to retrieve RZSM estimates based on weather forcing
and surface information. Land surface models (LSMs) and agronomical models are among the most
widely used methods (Surfex [18], ISBA [19], CLM [20], Aquacrop [21], SAFYE [22], etc.). However,
the parameter identification and forcing data going into these models may be subject to errors and
potentially lead to inaccurate tracking of the long-term evolution of soil moisture. This drawback
advances the need for data assimilation techniques [23]. Nevertheless, land data assimilation systems
(LDAS) may also propagate errors. Data-driven methods are suggested to overcome these drawbacks,
including artificial neural networks (ANNs). ANNs have been widely used in the field of hydrology
since the first hydrological implementation of ANN-based modelling by French et al. [24], and they have
been used, among other applications, for soil moisture estimation [25]. ANNSs are, first, not affected by
the errors induced by a potential misconception of the physical relationships, as they do not require
explicit configuration of these relationships [26]. In addition, ANNs require just a one-time calibration
to be efficient with less heavy computational costs and provide instant estimations of soil moisture
once instrument data are loaded [26]. The aforementioned advantages of ANNSs, compared to other
methods, explain several attempts to estimate RZSM based on surface information using ANNS.
However, few studies have assessed the quality of RZSM estimations on a global scale [27].

The aim of this study is to investigate the ability of an ANN to predict RZSM based solely on in
situ SSM information. This paper investigates the accuracy of the predicted RZSM over different soil
moisture networks. A methodology is also suggested to determine the contribution of a given network
to the global results and the transferability of the predictions across different networks. The different
steps to reach this objective consist of (1) assessing the impact of the temporal parametrization of the
input SSM, the scaling technique, and the impact of the training/validation/test sets; (2) evaluating
the transferability and the contribution of a given network in the training process to determine the
limitations; and (3) applying a data filtering technique to remove low-quality data.

2. Materials and Methods

2.1. In Situ Soil Moisture Datasets from ISMN

Several areas of the globe with different soil and climate parameters were considered.
The measurements of soil moisture used in this study are provided by eight networks from ISMN.
Figure 1 illustrates the location of the selected networks in the study.
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Figure 1. The International Soil Moisture Network (ISMN) network distribution (adapted from the
ISMN web data portal, scale 1 cm:1000 km).

The selected datasets (346 stations) are presented in Table 1 and fill the following criteria:

- Soil moisture data lie within the temporal range (January 2013-December 2019) to maximize
common temporal coverage. Some stations do not have data that cover the whole temporal
interval (absence of measurements, gaps generated after quality control) but are still selected as
long as they fall into that period. The total number of considered records is 10,054,406 hourly
values. The representativeness and size of the training dataset is an important criterion since
ANNs are data-driven methods [27].

- A station is selected when soil moisture data are available at a depth of 5 cm for SSM and depths
ranging between 30 and 60 cm for RZSM. Stations do not always have the same sensor installation
and layout. Some stations have horizontal sensors (depthgom = depthy,), whereas, for other
stations, soil moisture sensors are disposed vertically (depthfom <> depthy,). In the latter case,
stations that fall into the interval [30, 60 cm] were chosen.

- A station is selected if it has at least 3000 hourly soil moisture values (cf. Sections 2.2.2 and 3.2).

Table 1. Overview of selected ISMN networks.

Network Country Number of Selected Stations sell;:;ﬁ ﬁfnS;M Seilrars Le“‘i;};o(:fr{;e)cmd

AMMA-CATCH  Benin, Niger 5 (3 in Benin +2 in Niger) 40 CS616 191,997
BIEBRZA-S-1 Poland 3 50 GS-3 11,401
CTP-SMTMN China 54 40 EC-TM/5TM 716,139
HOBE Denmark 29 55 Decagon-5TE 819,591
FR-Aqui France 5 30, 34, 50 ThetaProbe ML2X 200,087
OZNET Australia 19 30 Hydra Probe-CS616 519,938

SCAN USA 209 50 Hydraprobe-Sdi-12/Ana 6,777,222

SMOSMANIA France 22 30 ThetaProbe ML2X 818,031
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Hourly values of SSM and RZSM at different depths (Table 1) along with their quality flags were
extracted from the ISMN data portal. In addition, static variables such as soil texture, land cover,
and climate classification were downloaded for each station.

The selected stations have different soil textures (Figure 2) and different climate classes according
to the Koppen-Geiger climate classification (Figure 3). The heterogeneity of clay and sand percentages
as well as climate classes will help us infer the potential impact of forgoing this information in the
training process.

175 = Clay (0--> 30cm) 120 3 Clay (30--> 100cm)
I Sand (0--> 30cm) Sand (30--> 100cm)
w150 g
s 5100
2125 2 -
@ % 80
%5100 s
é 75 g 60
£ —
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00 10 20 30 40 50 60 70 80 90 100 00 10 20 30 40 50 60 70 80 90 100
“percentage of clay”, “percentage of sand” “percentage of clay”, “percentage of sand”
(a) (b)

Figure 2. Clay/sand percentages for all of the stations. (a) Clay/sand percentages for the depth interval
[0, 30 cm]. (b) Clay/sand percentages for the depth interval [30, 100 cm].
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Figure 3. Climate class repartition for the SM stations (the color code is the same as that used in the
updated world map of the Képpen—Geiger climate classification [28]).

2.2. Methods

2.2.1. Configuration of the Artificial Neural Network

ANNSs can be single or multilayered. The multilayer perceptron (MLP), which is a multilayer
feed-forward ANN, is one of the most commonly used ANNs and is considered as the most popular in
water resources. A multilayer perceptron is a variant of the original model proposed by Rosenblatt in
the 1950s and it has one or more hidden layers between its input and output layers. The neurons are
organized in layers such that neurons of the same layer are not interconnected and that the connections
are directed from lower to upper layers [29]. Each neuron returns an output based on a weighted
sum of all inputs and according to a nonlinear function called the transfer or activation function [30].
The input layer, made up of SSM values, is connected to the hidden layer(s), which is made up of
hidden neurons. The final estimates of the ANN are given by an activation function associated with
the final layer called the output layer, using a sum of the weighted outputs of the hidden neurons.
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Under the assumption of an ANN with one hidden layer, the whole process can be summarized by the

following equation:
L

N
Y = 60 wif1 () Xiwij +b1) +b2) (1)
=1 i=1

where Y is the output of the ANN and f; and f, are the activation functions of the hidden layer and
the output layer, respectively. wjj and wj are the weights given to the neurons in the input layer and
hidden layer, respectively. by and b, are the biases of the input layer and hidden layer, respectively.
L and N are the number of hidden neurons and inputs, respectively. Figure 4 includes a simplified
diagram of a fully connected ANN with one hidden layer.

—| Tmsitu SSM | | In—sitl.: RZSM |

|Tempora1 parametrization‘

5§
rolling rolling rolling
averages | | averages |( averages
over 10 over 30 over 90
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\ rly . RZSM
A - Scaled’
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Performance metrics
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Figure 4. Data processing scheme.

Considering that problems with two hidden layers are rarely encountered and even if the
corresponding ANN configuration can represent functions regardless of shape [31], we tested a one-
and two-hidden layer ANN architecture. For the number of hidden neurons, a small number leads
to underfitting, which may lead to inaccurate detection of complicated signals within the data [32].
In contrast, too many hidden neurons lead not only to overfitting that makes the information contained
in the training set insufficient to train all of the hidden neurons but also to a longer training time [32].
Given this information and based on preliminary analysis of the output performances in terms of
root mean square error (RMSE) not shown in this paper, an ANN architecture of one hidden layer
with 20 hidden neurons was adopted for the remainder of the paper. A tangent sigmoid function was
selected as the activation function of the hidden layer due to its anti-symmetry feature, which may
accelerate the learning process [27]. A linear function was associated with the output layer. This can be
justified by the experiments in [33], where they show that MLPs made up of one input layer, one hidden
layer with a nonlinear transfer function, and one output layer with a linear transfer function can
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approximate any function with a finite number of discontinuities. A quadratic cost function is used as
a loss function, and stochastic gradient descent (SGD) is used as the optimization algorithm.

2.2.2. Features and Scaling

The input and target datasets are preprocessed such that only dates with both SSM and RZSM
measurements available are kept. All other dates not filling this condition are dropped. The observed
proxy variable (dielectric constant) by in situ instruments is in some cases corrected with soil temperature.
Since our objective in these exercises is to test the capacity of SSM to predict RZSM, surface temperature
was not considered in the feature construction. Land cover and climate conditions have a high impact
on the variability of SSM, and RZSM is mainly linked to SSM through diffusion in porous media and
evapotranspiration. These processes present variable specific time scales based on soil properties.
Based on that, different temporal configurations were assessed for ANN input features:

- ANNp: A one-feature ANN such as the feature is the hourly values of SSM.

- ANNDp: A one-feature ANN such as the feature is the daily mean values of SSM.

- ANNRay: A three-feature ANN such as the three features is the SSM backward rolling average
values over 10, 30, and 90 days.

The target dataset (i.e., the RZSM dataset) is truncated for each station; for example, the first
value fitted in the neural network is the 2160th available hourly RZSM value (applying the rolling
average over 90 days on SSM requires the truncation of input and target data at the 2160th value,
which corresponds to 90 days of hourly soil moisture retrievals). The target and input data are then
scaled to fall into the same range of values. Non-scaling training was performed, and two scaling
methods were tested:

- SSCA (Standard scaling): Standard scaling or Z-score normalization transforms the distribution of
a dataset such that the mean and standard deviation of the observations are 0 and 1, respectively,
using Equation (2):

X —X

2

Znorm =
Ox

where Z,orm is the normalized data, x is the input, X is the mean, and oy is the standard deviation of
the input data [32].

- MMSCA (MinMax scaling): This scaling scheme constrains the range of each input feature or each
output of a neural network. This is usually performed by rescaling the features or outputs from
one range of values to a new range of values. Generally, the features are rescaled to lie within a
range of 0 to 1 or from —1 to 1. The rescaling is often accomplished by using a linear interpolation
formula such as [34]:

Xj — MINyalyue

Xi, = (maxtarget - mintarget) x| ]+ mintarget 3)

MaXyalue — MINyalye

where X! is the scaled data, x; is the input, maxtarget and minarget are the new maximum and minimum
values, respectively, and maxy,jye and miny,jye are the original maximum and minimum values of the
input data, respectively.

The data are scaled and more precisely standardized before the training step. The result vector
leaving the ANN (i.e., the vector of predicted RZSM) is in the standardized format and has to be
“de-standardized”. The same goes for the standardized in situ RZSM [32]. Subsequently, performance
metrics are computed.
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2.2.3. Training and Test Configuration

As mentioned above, one of the objectives of this paper is to assess the genericness of the model.
Another point to investigate, at this level, is the training set and assess the impact of its density and its
data quality, for instance. For this, different configurations were considered and termed as follows:

- ANN-TOT refers to a training/test approach where 70% of the whole global dataset (70% of the
stations of all networks) forms the training set, the remaining 30% of the global dataset consists of
a validation set, and the test set is made up of the whole dataset.

- ANN-Net; refers to a training/test approach where 70% of the values belonging to the stations of
a given network (Net;) form the training set, the remaining 30% of values remaining in Net; serve
as a validation set, and the test set is made up of the whole dataset.

- ANN-(TOT-Net;) refers to a training/test approach where 70% of the whole global dataset minus
the values of a given network (Net;) form the training set, the remaining 30% of the global
dataset minus measurements of Net; serve as a validation set, and the test set is made up of the
whole dataset.

2.2.4. Performance Indicators

Individual Station Performance Metrics

The model is assessed through the following performance metrics: bias, Pearson correlation
coefficient, Nash—Sutcliffe efficiency (NSE) (Equation (4)), and RMSE. The final step of the processing
(Figure 4) consists of the comparison of the actual values of RZSM with the predicted values and
outputting individual performance metrics of each station.

2
NSE = 1 ZT(RZSMinsitu - RZSMpredicted)

(4)
2
ZI;I(RZSMinsitu - RZSMinsit’u)

where N is the length of the SM dataset of the considered station.
In addition to the individual performance metrics generated for each station, performance metrics
are also generated for all the stations per network.

Skill Indices

Different skill indices are computed to assess the transferability and the contribution of a given
network to the training process. First, the performance differences between ANN-TOT and ANN-Net;
are assessed through a coefficient termed Tranlney (Transferability Index), which is based on the
correlation values yielded by each test network (Netj) (Equation (5)).

corrANN-Neti (Netj) — corrann-TtoT (Net;)
corrann-ToT (Net;)

TranINeti_Neq = 100 x

®)

Subsequently, the contribution of a given network can be assessed when the performance
results yielded by ANN-(TOT-Net;) are compared with those yielded by ANN-TOT. Consequently,
we computed the coefficient Contlney (Contribution Index) (Equation (6)).

COIT ANN-(TOT-Neti) (Netj) — COITANN-TOT (Netj)

ContINeti—Netj =100 x

(6)

COITANN-TOT (Netj)

Both indices are based on correlation values. This choice can be justified by the importance
of this indicator, which is often used in the assessment of level agreement between soil moisture
products [35]. The correlation is sensitive to both the skill of retrievals with regard to short-term soil
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moisture anomalies and their ability to capture typical soil moisture seasonal cycling [36]. Moreover,
selection of the SSCA removes the bias.

2.2.5. Data Filtering

A filtering method was developed to detect underperforming stations and eliminate them from
the training dataset. The filtering is based on setting qy, quantiles of the correlation values yielded
by each test station using the ANN-TOT approach. Once the training/test process is over and the
performance metrics for each station are retrieved, a loop runs through the stations one by one
and selects those whose correlation is less than the gy, quantile of correlation. The training/test
process is then reconducted such as the training set is made up of 70% of the non-eliminated stations,
the validation set is made up of the remaining 30% of the non-eliminated stations, and the test set is
formed by both eliminated and non-eliminated stations. This operation is repeated q times. This new
training/test approach is hereafter referred to as ANN-TOT-Qual-Stat (“Qual” represents quality since
this method aims to improve the quality of results).

3. Results and Discussion

Figure 5 illustrates the RZSM outputs of the ANN model through two selected examples over
French networks. The time series shown below present in situ RZSM in blue, ANN-predicted RZSM
(with ANN-TOT) in red, and in situ SSM in green over the stations “Hillan2” (network “FR-Aqui”)
and “Lezignan-Corbieres” (network “SMOSMANIA”). We can see that RZSM predictions follow up
the evolution of in situ RZSM with almost a positive bias during dry events and a negative bias during
wet events. Some fake peaks are sometimes generated after an abrupt increase or decrease in SSM.

In-situ RZSM
- Predicted RZSM (ANN-TOT)
In-situ SSM
0.25
)
€
©0.20
E
<
2
-g 0.15
€
3
a
0.10
0.05

2015-07 2016-01 2016-07 2017-01 2017-07 2018-01 2018-07 2019-01 2019-07 2020-01
Date

(a)

0.40 —— In-situ RZSM
: —-- Predicted RZSM (ANN-TOT)
e In-situ SSM

e @ ©
NN W
o wu o

soil moisture (m3/m3)

o
a
[t

(b)

Figure 5. In situ SSM, in situ RZSM, and predicted RZSM times series. (a) Station “Hillan2” (“FR-Aqui”).
(b) Station “Lezignan-Corbieres” (“SMOSMANIA”).
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3.1. Impact of Scaling

The three scaling schemes presented in the methods section were tested using the different training

approaches (cf. Section 2.2.2). Figure 6 displays the statistical distributions as histogram plots yielded

by the three scaling schemes for the training approach ANN-TOT.
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Figure 6. Performance metrics for all of the stations with the different scaling schemes; blue—MMSCA,;
red—SSCA; green—no scaling (training approach: ANN-TOT). (a) Bias. (b) Correlation. (c) NSE
(Nash-Sutcliffe efficiency; NSE values less than 10 were replaced by —10 for better readability).
(d) RMSE.

The results highlight the importance of scaling to improve the performance metrics, given the

poor performance when the data are unscaled (very negative NSE reaching —285.76, high RMSE
values with an average value of 0.0872 m3/m?). This confirms the statement that the application of
preprocessing transformations to the input data is always profitable in practice before presenting data
to the neural network [37] and that scaling techniques enhance the reliability of the trained network [38].

The outputs are likewise post-processed to obtain the required output values. It is, then, more relevant
to only compare MMSCA with SSCA.

Bias is considerably reduced with the application of SSCA. This is expected, as the SSCA method
by construction tends to eliminate bias. These values ranged between —0.002 and 0.002 m3/m? for
SSCA, whereas MMSCA vyielded bias values between —0.105 and 0.196 m3/m3.

Correlation values are quite similar for the two scaling methods. An insignificant difference of less
than 0.001 for correlation values is obtained by MMSCA and SSCA for approximately 60% of the
stations (206 stations). Approximately 52% of the stations (181 stations) have higher correlation
values with SSCA, approximately 6% of the stations (23 stations) have the same correlation values
for both scaling methods, and the remaining stations (142 stations) have higher correlation values
with MMSCA.

RMSE values are also improved with SSCA in comparison with MMSCA mainly due to the
enhancement of bias correction. Approximately 87% of the stations (302 stations) show lower RMSE
values with SSCA, approximately 7% of the stations (25 stations) have invariable RMSE values,
and the remaining stations (19 stations) have better RMSE values with MMSCA. The maximum
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decrease (and thus, improvement) in RMSE is recorded for the “Reynolds Homestead” station
(“SCAN” network) with SSCA such that the decrease is equal to 0.145 m3/m3. RMSE values yielded
by SSCA and no scaling are consistent with previous results advanced in [27] for RZSM estimates
at a depth of 50 cm in the case of the “SCAN” network. Actually, the authors in [27] used linear
rescaling to compare ANN-simulated soil moisture (generated by SMOS data) to the reference
datasets (GLDAS-1/Noah output). The ANN-simulated RZSM values were bias-corrected to
match the mean and standard deviation of the reference set. The authors in [27] obtained a mean
RMSE of 0.054 m®/m? following bias correction against a mean RMSE of 0.082 m?/m3 without bias
correction. In our case, for the network “SCAN”", SSCA gives a mean RMSE equal to 0.042 m3/m3
against a mean RMSE of 0.090 m3/m? without scaling. For SSCA, RMSE is equal to the unbiased
root mean square error (uUbRMSE) since bias is eliminated by construction. In fact, the relation
between these two metrics is as follows:

RMSE? = ubRMSE? + bias? 7)

- NSE values are drastically improved when the SSCA is applied. Approximately 91% of the
stations (315 stations) have better NSE values. The best improvements are recorded for stations
“PrairieView#1” and “GuilarteForest”, which belong to the network “SCAN”, such as NSE
differences (SSCA-MMSCA), which are equal to 86.827 and 85.483, respectively. The difference
in behavior between correlation and NSE can be explained by the fact that NSE is a function of
RMSE (Equation (8)). Given that RMSE is considerably reduced for most stations with SSCA,
NSE is improved.

RMSE?
5 8)
%

NSE =1 -

where the symbol “o0” refers to the observation, i.e., in situ RZSM.
While the results in terms of correlation are close, the enhancement in bias correction justifies the
choice of SSCA as the scaling method. For this reason, it is adopted for the rest of the paper.

3.2. Impact of the Temporal Information

The three-temporal preprocessing approaches for feature extraction, presented in the methods
section, yield close results with slightly better results for the backward rolling average (ANNRay)
(Figure 7). The mean correlation is equal to 0.509, 0.511, and 0.561 with the hourly, daily mean,
and rolling average SSM values, respectively. Similarly, the mean NSE is equal to 0.260, 0.263, and 0.325,
and the mean RMSE is equal to 0.0392, 0.0391, and 0.0359 m?/m? with the hourly, daily mean, and rolling
average SSM values, respectively. In light of the results above, the backward rolling average approach
(ANNRay) is adopted for the rest of the paper.

Hourly values
0.5 -+ Dailymean values
Rolling averages values

0.0

Nash-Sutcliffe

-1.0

—0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Correlation

Figure 7. Correlation and NSE scatter plots (training approach: ANN-TOT); blue cross—ANNy;
red star—ANNp; green circle—ANNRay.
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3.3. Impact of the Training Approach

To assess the transferability of the trained ANN across networks, we suggested the training
approach ANN-Net;, which corresponds to training over one network. Table 2 presents the TranIneti
values as introduced in Section 2.2.4. Columns indicate the training approach, and rows specify
the network on which the test was done. A positive cell value means that ANN-Net; outperforms
ANN-TOT and vice versa for negative values.

Table 2. Transferability index (Tranl) for the selected networks.

Training ANN-AMMA- ANN- ANN-CTP- ANN-FR- ANN- ANN- ANN- ANN-
Test CATCH BIEBRZA-S-1 SMTMN Aqui HOBE OZNET SCAN SMOSMANIA
AMMA-CATCH +1.12% +0.10% +0.61% +0.61% 0% 0% -1.02% +0.51%
BIEBRZA-S-1 —0.66% +3.53% -2.21% —0.55% —0.55% -3.31% -1.88% +0.99%
CTP-SMTMN —0.88% -3.62% +0.77% —-0.33% +0.33% +0.11% —-0.99% -0.21%
FR-Aqui +0.46% —3.56% -1.26% +2.53% -1.49% -3.1% —2.76% —2.07%
HOBE —2.40% -1.49% -1.03% -1.83% +0.34% -0.92% -1.26% —0.34%
OZNET -5.03% —6.42% -1.51% —5.28% —-0.50% +1.26% -1.89% -3.02%
SCAN -1.5% -1.39% -1.07% -1.07% —-0.43% —0.64% +0.11% -1.28%
SMOSMANIA +0.57% -1.82% +0.11% -0.57% +1.82% -1.25% -3.65% +3.53%

The first result that can be drawn when comparing ANN-TOT with ANN-Net; is that the latter
gives slightly better results when the test network is Net;, i.e., the model works better for a given
network when the training is solely processed on that network. The positive Tranlne coefficients
displayed in the diagonal element of Table 2 demonstrate that.

Further observations can be drawn from Table 2. As expected, ANN-Neti performs worse
than ANN-TOT when applied to the networks on which the training has not been performed.
The training approach ANN-BIEBRZA-5-1 (i.e., training processed on the BIEBRZA-5-1 network)
displays the maximum performance loss compared to ANN-TOT (average loss of —1.83%). Actually,
the “BIEBRZA-S5-1"” network has only three usable stations for our study (i.e., which satisfy the
conditions established in Section 2.1), which contain little data (Table 1). The stations of this network
have high organic carbon content (39.4%), as provided by ISMN based on the Harmonized World Soil
Database v1.1 by IIASA, unlike the rest of the stations where organic carbon content <10%. Besides,
the grassland site of “BIEBRZA-S-1" network is located on an intensively mowed, drained meadow
with semi-organic soil (muck-peat soil). There, the surface soil layers featured a strong annual cycle
with a maximum amplitude of around 60 vol. % [39]. These observations may explain the behavior of
the BIEBRZA-S-1 network.

The “OZNET” test network delivered the worst performance compared to the other test networks
when the training was run on the other networks. Figure 8 displays the correlation and NSE values for
the stations of the “OZNET” network with different training approaches. The behavior of the “OZNET”
test network may be explained by the climate specificities of this region of the world, which are
characterized by reversed seasons compared to the Northern Hemisphere.

Moreover, some networks are not representative of other networks, i.e., ANN-Net; performs
worse than ANN-TOT for the Net; test network and vice versa (ANN-Net; performs worse than
ANN-TOT for test network Net;). If we separately consider the “OZNET” and “FR-Aqui” test networks,
we see that ANN-TOT gives better correlation values than ANN-FR-Aqui and ANN-OZNET. Actually,
the FR-Aqui network is situated in southwestern France (Figure 1), and its sites cover “the Les Landes”
forest of the Bordeaux-Aquitaine region with one additional site (Parcmeteo) in Bordeaux city. The soil
texture in the “Les Landes” forest is mainly sandy and characterized by the presence of dark organic
matter to a depth of 30 cm. The “OZNET” network lies within the Murrumbidgee River Catchment
in Australia. The soil texture in the top layer is predominantly silty loam, loamy sand, and sandy
loam. The study area of network “OZNET” covers farms of flood irrigation and dryland cropping
(Coleambally Irrigation Area (CIA)) and pastures of grazing.
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Figure 8. Performance metrics for the stations of the “OZNET” network with the different training
approaches. (a) Correlation. (b) NSE.

In this paragraph, the Contl indices obtained from the ANN-TOT and ANN-(TOT-Net;) setups
are presented. The aim of Contl is to help assess the potential influence of a given network Net;.
Table 3 presents the Contl values as introduced in Section 2.2.4. Columns indicate the training approach,
and rows specify the network on which the test was performed. A positive cell value indicates that
ANN-(TOT-Net;) outperforms ANN-TOT and vice versa for negative values. The first observation
that can be drawn from Table 3 is the positive impact the extraction of the “SCAN" network from
the training process would have on all of the test networks except for “OZNET” (loss of —0.13%
against ANN-TOT) and “SCAN” (loss of —0.53% against ANN-TOT). This is an interesting case study
since “SCAN” is the densest network (Table 1). The negative impact induced by the elimination of
the “SCAN” network from the training process on the “OZNET” network can be explained by the
climate classification of the stations of both networks. Actually, 7 stations of the “OZNET” network
have a common climate class (“cfa”) with approximately 30% of the stations of the “SCAN" network
(66 stations). The remaining 12 stations of the “OZNET” network share the climate class (“Bsk”) with
approximately 20% of the stations of the “SCAN" network (41 stations).

Table 3. Contribution index (Contl) for the selected networks.

Training ANN-(TOT- ANN-(TOT- ANN-(TOT- ANN-(TOT- ANN-(TOT- ANN-(TOT- ANN-(TOT- ANN-(TOT-
Test AMMA-CATCH) BIEBRZA-S-1) CTP-SMTMN) FR-Aqui) HOBE) OZNET) SCAN) SMOSMANIA)
AMMA-CATCH —-0.20% —-0.10% -0.31% —-0.20% 0% 0% 0.92% 0%
BIEBRZA-S-1 —-0.44% —0.44% —0.66% -0.22% —-0.44% —-0.33% —-0.33% -0.11%
CTP-SMTMN 0% 0% —0.33% 0.11% 0% 0% 0.66% 0.22%
FR-Aqui —0.46% —-0.35% —0.46% —-0.58% —0.12% -0.12% 1.61% -0.12%
HOBE -0.11% -0.11% -0.23% -0.11% -0.23% -0.11% 0.34% 0.11%
OZNET 0% —0.13% —0.38% 0% —0.13% —0.38% —0.13% 0.25%
SCAN 0% 0% 0.11% 0% 0% 0% —-0.53% 0%
SMOSMANIA —-0.12% —-0.23% -0.81% 0% 0% 0.12% 2.77% 0.69%

In addition, the aforementioned observation demonstrates the impact of data quality on
performance. Although “SCAN”" is the densest network, its elimination refines the results (positive
Contl values). Figure 9 helps assess the data quality of the “SCAN” network. When considering the
training approach ANN-TOT, negative values of NSE and correlation are yielded by approximately
19% (41 stations) and 7% (16 stations) of the stations belonging to “SCAN”. NSE and correlation values
less than 0.5 are obtained for approximately 80% (166 stations) and 40% (87 stations) of the stations
in the “SCAN" network. Similarly, with the training approach ANN-SCAN, negative values of NSE
and correlation are recorded for approximately 18% (38 stations) and 8% (18 stations) of “SCAN"
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stations. NSE and correlation values less than 0.5 are given by 85% (179 stations) and 40% (85 stations)
of its stations.
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Figure 9. Performance metrics for the “SCAN” test network with ANN-TOT, ANN-SCAN,
and ANN-(TOT-SCAN). (a) Correlation. (b) NSE.

Examining “SCAN" stations one by one shows that station “LyeBrook” (2042) gives the lowest
NSE and correlation values: —1.037 and —0.849. A closer look into the soil moisture time series of this
station (Figure 10) reveals, on the one hand, data gaps that were well identified in the ISMN quality
flag and, on the other hand, constantly low SSM values over a long period of time. Many phenomena
may be behind the registration of a constant value over time, such as frost periods and longer sensor
dropouts [40]. These constant values lead to an inaccurate prediction of RZSM by the ANN that
automatically predicts constant RZSM values in the period overlapping with constant SSM values.

oo it W
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T\ |
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Figure 10. In situ SSM, in situ RZSM, and predicted RZSM of station “LyeBrook” (“SCAN" network).

From another perspective, the “SCAN” test network is not influenced by the elimination of the
other networks from the training dataset (0% loss), except for “CTP-SMTMN” and “SCAN”". This can
be explained, first, by the density of the “SCAN" network, which represents 67.4% of the whole dataset.
This dominant proportion makes the weight of other networks such as “BIEBRZA-5-1" (0.11% of the
whole dataset) or “AMMA-CATCH” (1.9% of the whole dataset) not relevant against the density of the
“SCAN” network in the training approach ANN-TOT. The elimination of the “CTP-SMTMN" network
(7.12% of the whole dataset), i.e., the application of the training approach ANN-(TOT-CTP-SMTMN),
leads to worse results compared with ANN-TOT. Actually, the “CTP-SMTMN" network stations are
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either located in the “ET” (tundra) (83% of the stations, i.e., 45 stations) or “Dwc” (9 stations) climate
classes. Both climate classes are solely covered by this network. This shows the importance of a good
sampling of climate classes to perform accurate estimates.

As a conclusion from the results above, the “SCAN” network was removed from both the training
and the test datasets (Figure 11). The mean correlation and mean NSE are improved by 20.49% and
42.46%, respectively. Correlation values less than 0.5 are yielded by 31.21% of the stations (108 out
of a total of 346 stations) and 15.33% of the stations (21 out of a total of 137 stations) before the
elimination of “SCAN" and after the elimination of “SCAN”, respectively. Correlation values greater
than 0.7 are recorded for 40.75% of the stations (141 out of a total of 346 stations) and 55.47% of the
stations (76 out of a total of 137 stations) before the elimination of “SCAN" and after the elimination of
“SCAN”, respectively. Negative NSE values are obtained by 14.45% of the stations (50 out of a total
of 346 stations) and 6.57% of the stations (9 out of a total of 137 stations) before the elimination of
“SCAN” and after the elimination of “SCAN", respectively. NSE values greater than 0.5 are recorded
for 33.53% of the stations (116 out of a total of 346 stations) and 53.28% of the stations (73 out of a total
of 137 stations) before the elimination of “SCAN" and after the elimination of “SCAN”, respectively.

1.0
« Before the elimination of 'SCAN'
»  After the elimination of 'SCAN'
0.5
(]
&
g 0.0
3 40
= LT
n "
g—0 5 oy tw
et
“'10 .

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Correlation

Figure 11. Correlation and NSE scatter plots. Blue circle—before the elimination of the “SCAN"
network; red star—after eliminating the “SCAN” network.

3.4. Data Filtering

As previously described in Section 2.2.5, the developed filtering method is intended to identify the
underperforming stations and remove them from the training process. The method is a straightforward
exclusion using qg, quantiles of the correlation vector given by the test stations when ANN-TOT is
adopted. Table 4 presents the number of eliminated stations (ES) and non-eliminated stations (NES) in
accordance with the value of g.

Table 4. Number of eliminated stations (ES) and non-eliminated stations (NES) based on qy, quantiles.

q Number of ES  Number of NES
0.9 308 38
0.8 275 71
0.75 254 92
0.65 224 122
0.5 170 176
0.4 141 205
0.3 105 241
0.2 71 275

0.1 38 308
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After selecting the stations to remove, the training approach ANN-TOT-Qual-Stat is run as
described in Section 2.2.5, and performance metrics are yielded for all of the stations based on
the value of the qg, quantile. Figure 12 shows that the poorest performances (negative NSE and
negative correlation values) are recorded for the stations that were eliminated from the training
process (regardless of q). Such a result is expected. More importantly, for the non-eliminated stations,
q value 0.1 yields better performance metrics than the rest of q values until the level where the
correlation is equal to 0.5 and NSE is equal to 0. Beyond that level, q values yield quite similar
performance metrics with a slight enhancement for q = 0.9 (a maximum correlation of 0.963 against
0.955 with q = 0.9 and q = 0.1, respectively, and a maximum NSE of 0.922 against 0.809 for q = 0.9
and q = 0.1, respectively). The maximum correlation value is recorded for the station “Nalohou-Mid”
("AMMA-CATCH” network) with both q = 0.9 and q = 0.1. The correlation value yielded for the same
station before the application of this data filtering technique is equal to 0.856. Similarly, the maximum
NSE value is obtained by the station “Nalohou-Mid” with both q values, whereas it is equal to 0.593
before the application of the data filtering method. This station has a tropical savanna climate and is
characterized by strong seasonal dynamics that the ANN model manages to capture.
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Figure 12. Correlation and NSE values after data filtering.

Table 5 presents the improvement rate in correlation, NSE, and RMSE for the eliminated and
non-eliminated stations based on the qy, quantile. Of the non-eliminated stations, 60.98% (q = 0.4)
to 73.68% (q = 0.9) show better correlation values. A total of 67.85% (q = 0.1) to 100% (q = 0.9) of
the non-eliminated stations give better NSE values, and 39.94% (q = 0.1) to 100% (q = 0.9) yield
better RMSE.

Table 5. Improvement rates in the individual performance metrics for the eliminated stations (ES) and
non-eliminated stations (NES) based on the qy, quantiles.

Q Number of ES Number of NES Correlation NSE RMSE
0.9 308 38 48.7% of ES 28.57% of ES 34.41% of ES
: 73.68% of NES 100% of NES 100% of NES
08 275 71 44.72% of ES 26.18% of ES 36.72% of ES
: 63.38% of NES 97.18% of NES 97.18% of NES
0.75 254 % 47,24% of ES 24.8% of ES 17.71% of ES
’ 70.65% of NES 95.65% of NES 88.04% of NES
41.07% of ES 19.19% of ES 11.16% of ES
065 24 122 63.93% of NES 88.53% of NES 78.69% of NES
05 170 176 47.06% of ES 14.71% of ES 10.59% of ES
: 66.48% of NES 88.07% of NES 73.86% of NES
41.13% of ES 14.18% of ES 7.09% of ES
04 141 205 60.98% of NES 78.05% NES 63.41% of NES
39.05% of ES 13.33% of ES 7.62% of ES
03 105 241 66.39% of NES 78% of NES 60.17% of NES
0.2 71 275 25.35% of ES 11.26% of ES 0% of ES
: 60% of NES 73.45% of NES 50.18% of NES
01 38 308 23.68% of ES 13.16% of ES 0% of ES

63.31% of NES 67.85% of NES 39.94% of NES
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3.5. Impact of Climate and Soil Texture

To investigate the model’s genericness and transferability, the model’s predictions are analyzed
across climatic regions and soil texture. For this exercise, data filtering is applied with a value of q
equal to 0.65, ensuring good screening of underperforming stations while providing good coverage of
the climate classes and soil properties. The new training was run on 70% of the previously detected
NES (122 stations), 30% of the remaining NES were used for validation, and the test was run on all of
the NES. Figure 13a,b present the correlation distribution with respect to the climate classes and the
percentage of subsurface clay. Clearly, data filtering with a threshold of 0.65 leads to under-sampling
in some cases, namely, for climate classes “Af”, “Am”, “Bwk”, and “Csb” and for the clay fraction
interval (30%, 40%), where only one sample was available. Figure 13a provides relevant insights into
the impact of climate regions on the results. It is clear that the stations belonging to “Aw”, the tropical
savanna climate class, yield the best correlation values. This observation can be explained by the
strong seasonal dynamics and the presence of wet/dry cycles for the stations of this particular class.
Group “B” (“BSk”, “BWh”, “BWKk”) includes desert areas where the link between SSM and RZSM is
weaker than elsewhere because of the evaporation rates and sporadic rainfall, which reduce the link
between observed SSM and RZSM and thus, the performances. This result is consistent with [35],
who worked on the assessment of the level of agreement between different LSM products. In fact,
they obtained low correlations in the deserts that have, by definition, low mean precipitation and a
correspondingly low precipitation variance. Reference [35] confirmed that model agreement should be
largest in regions with large variations in precipitation forcing because a larger precipitation variance
suggests a larger variation in the moisture storage that all of the models can more easily capture.
Moreover, an equilibrium and a regression approach were applied in [41] to establish a relationship
between SSM and RZSM. They confirmed that errors in the RZSM estimations are encountered more
for the first approach during periods of high surface evaporation or intermittent rainfall and when
there is significant evapotranspiration. This shows the limitations of predicting the RZSM from
SSM only, and in these specific conditions, it is of interest to include evapotranspiration-related
observation variables as input features to the ANN model. Evapotranspiration was identified as a
primary variable to predict RZSM in [42]. They showed that an ANN model trained with the dataset
of soil moisture profiles generated by the HYDRUS-1D model using meteorological data from the
lower Great Lakes region and tested on the same region was sensitive to evapotranspiration because
of its role in extracting moisture from the soil. While their results may be dependent on the model’s
physical assumptions and uncertainty in inputs, in our results using a statistical model with no a priori
assumptions, we reach the same conclusions. In Figure 13a, the “C” group, which covers areas of
good quality data (mainly “SMOSMANIA” and “FR-Aqui”) and is distinguished by dry/wet cycles,
yields good performance. These regions are of interest because they hold agricultural areas in Europe,
such as the southwest plains in France, where the knowledge of RZSM is of interest for sunflower
and maize crops. Mechanistic or physical modeling of the water movement in the soil in the current
state of knowledge is governed by the Richards equation. These approaches are very dependent
on soil hydrodynamic parameters. Several parsimonious approaches were utilized to counter these
drawbacks. Reference [6] used the recursive formulation of the exponential filter [43,44] to retrieve the
root-zone soil moisture index (SWI,) from the in situ SSM of the SMOSREX network in France and
the SIM model outputs. The seasonal and interannual variability of SWI;,, were also captured after
the optimization of the characteristic time length of the filter (Topt). Reference [6] found that over the
tested sites, no link could be established between soil texture and the characteristic time length T and
highlighted that there is a potential climatic effect that may exist but requires further investigation.
The exponential model can be assimilated in fluid mechanics to apply mass conservation equations to
an emptying bucket with a transfer function. Alternatively, the ANN does not require assumptions on
the model structure (non-linearity is addressed by increasing the complexity of the Neural Network),
and because of this, it can be considered more suitable to study its transferability. On the other hand,
CDF matching [45] and ANN [27,42] are two statistical methods that have been used to derive RZSM
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from SSM. While CDF matching determines the RZSM from SSM by correcting the SSM probability
density function to match the observed RZSM, ANNs do not require a priori knowledge of probabilities.
As such, they provide a more general framework and the trained ANN model can be applied outside
of the training dataset. However, they have some drawbacks as they require a larger dataset than CDF
matching to determine the network weighting coefficients. If not available, a risk of overfitting can
exist. In the current study;, this risk is not present considering the large number of available SSM and
RZSM datasets. Nonetheless, as shown in this paper, the results cannot be completely generalized in
areas of high evaporation, for instance. Figure 13a also presents the performance for the “Dfa” class,
which covers northern areas characterized by harsh cold winters. The presence of frost events may
explain a weaker link between SSM and RZSM and thus, weaker correlations. Reference [35] obtained
low average correlation values between the different LSM products in high northern latitudes and
explained that by the differences in the parameterization of snow and frozen soil for each product.
Overall, the performances across climate conditions obtained in our paper are coherent with the results
over the continental United States in [27]. In fact, the authors in [27] developed several ANN models to
retrieve RZSM at depths of 20 and 50 cm using data from sites located in the continental United States.
Each ANN model used a combination of soil texture, SSM, and cumulative values of air temperature,
surface soil temperature, rainfall, and snowfall for the input features. Reference [27] confirmed that
the retained soil moisture sites could not be considered representative of all soil and climate conditions
at a global scale and showed that the ANNs were effective at retrieving RZSM at a depth of 20 cm
with a correlation coefficient above 0.7 in most cases, whereas they were less effective at predicting
RZSM at 50 cm. This can be explained by surface—subsurface decoupling. Reference [41,46] showed
that for a given surface zone depth, the deeper the profile is, the less the correlation between surface
and profile soil moisture. Reference [47,48] also confirmed that this surface—subsurface decoupling,
controlled by the soil’s hydraulic properties, may occur in coarse-textured and stratified soils as well
as dry conditions. Reference [6] also showed that soil depth or thickness is the main factor impacting
RZSM retrieval. This exposes a second limitation in addition to the impact of evapotranspiration
mentioned above. Figure 13b shows that the low clay fractions present a larger dispersion of correlation
in comparison with percentages greater than 30%. In our case, the result can be explained by the small
number of stations having such clay percentages. In general, no direct relation between soil texture
and model performances can be concluded, which is in agreement with [6].
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Figure 13. Correlation boxplots after the application of the data filtering technique (q = 0.65) with
respect to climate classes (a) and subsurface soil clay percentage (b).

4. Conclusions

Throughout this study, we developed an ANN model to estimate RZSM based only on in situ
SSM information in several regions across the globe. The main conclusion of the study is that an ANN
of 1 hidden layer and 20 hidden neurons can provide accurate predictions of RZSM, provided that a
specific ANN configuration is considered. For instance, testing two scaling approaches, we found that
SSCA provided the best results, as it minimizes the bias by construction and improves the correlation,
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Nash-Sutcliffe, and RMSE when compared with MMSCA. Moreover, a neural network of three features
employing rolling averages of SSM over 10, 30, and 90 days is recommended over a single SSM
estimate. We assessed the transferability of the trained ANN across observation networks and the
contribution of each network to the model learning skills by developing two new indices (Tranl and
Contl). As expected, the results show that training with data from a single network cannot provide the
best predictions. More interestingly, our experiment showed the impact of moderate to low-quality
data on the performance of the model through the example of the network “SCAN”, which, while being
the densest (67.4% of the whole global dataset), deteriorated the performance of the model. Based on
this, we applied a statistical filtering method to eliminate underperforming stations. We analyzed
the model performances across climate classes and soil textures. The results showed that the model
performs best in regions with alternating wet and dry conditions, while performances were lower over
very dry areas with high evaporation rates and sporadic rainfall. This has been depicted by several
studies, and the results suggest that to enhance the accuracy over these regions, input features related
to the evapotranspiration process need to be added. We did not find relevant results about the impact
of soil texture on the model performance, but this should be further investigated with spatial data.
We also identified that decoupling between the surface and subsurface deteriorated the predictions of
RZSM over 50 cm in depth. In the future, SSM from Earth Observation (EO) will be tested with the
current approach to provide spatially distributed RZSM over different climate regions.
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