
HAL Id: hal-03133234
https://hal.science/hal-03133234v1

Submitted on 21 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

AI-driven quantification, staging and outcome prediction
of COVID-19 pneumonia

Guillaume Chassagnon, Maria Vakalopoulou, Enzo Battistella, Stergios
Christodoulidis, Trieu-Nghi Hoang-Thi, Severine Dangeard, Eric Deutsch,

Fabrice Andre, Enora Guillo, Nara Halm, et al.

To cite this version:
Guillaume Chassagnon, Maria Vakalopoulou, Enzo Battistella, Stergios Christodoulidis, Trieu-Nghi
Hoang-Thi, et al.. AI-driven quantification, staging and outcome prediction of COVID-19 pneumonia.
Medical Image Analysis, 2021, 67, pp.101860. �10.1016/j.media.2020.101860�. �hal-03133234�

https://hal.science/hal-03133234v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Medical Image Analysis (2020)

Contents lists available at ScienceDirect

Medical Image Analysis

journal homepage: www.elsevier.com/locate/media

AI-Driven quantification, staging and outcome prediction of COVID-19 pneumonia

Guillaume Chassagnona,b,c,1, Maria Vakalopouloud,e,f,1, Enzo Battistellad,f,g,1, Stergios Christodoulidish,i, Trieu-Nghi Hoang-Thia,
Severine Dangearda, Eric Deutschf,g, Fabrice Andreh,i, Enora Guilloa, Nara Halma, Stefany El Hajja, Florian Bomparda, Sophie
Neveua, Chahinez Hania, Ines Saaba, Aliénor Campredona, Hasmik Koulakiana, Souhail Bennania, Gael Frechea, Maxime Barata,b,
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gUniversité Paris-Saclay, Institut Gustave Roussy, Inserm 981 Molecular Radiotherapy and Innovative Therapeutics, 114 Rue Edouard Vaillant, 94800 Villejuif,
France
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A B S T R A C T

Coronavirus disease 2019 (COVID-19) emerged in 2019 and disseminated around
the world rapidly. Computed tomography (CT) imaging has been proven to be an im-
portant tool for screening, disease quantification and staging. The latter is of extreme
importance for organizational anticipation (availability of intensive care unit beds, pa-
tient management planning) as well as to accelerate drug development through rapid,
reproducible and quantified assessment of treatment response. Even if currently there
are no specific guidelines for the staging of the patients, CT together with some clinical
and biological biomarkers are used. In this study, we collected a multi-center cohort and
we investigated the use of medical imaging and artificial intelligence for disease quan-
tification and staging. Our approach relies on automatic deep learning-based disease
quantification using an ensemble of architectures, and a data-driven consensus for the
staging of the patients fusing imaging biomarkers with clinical and biological attributes.
Highly promising results on multiple external/independent evaluation cohorts as well as
comparisons with expert human readers demonstrate the potentials of our approach.
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1. Introduction

COVID-19 emerged in December 2019 in Wuhan,

China (Zhu et al., 2020) caused by the SARS-Cov-2 virus,

and it could lead to respiratory failure due to severe viral

pneumonia (Zhou et al., 2020). The disease spread worldwide

leading the World Health Organization to declare it as a

pandemic in March 2020. One of the important actions to

handle the pandemic is the fast and robust use of imaging along

with clinical and biological comorbidities for the quantification

and staging of patients upon their hospital admission. Being

able to identify patients that need intubation upon admission is

very important and essential for the management of a hospital’s

resources and the most optimal management of patients.

Moreover, a robust staging of the patients could also facilitate

proper selection of patients for different treatments, reducing

the unnecessary use of the hospital’s intensive care units. To

the best of our knowledge, currently the staging of the patients

is mainly based on clinical and biological biomarkers such as

age, sex and other comorbidities (Zhou et al., 2020; Li et al.,

2020a; Yuan et al., 2020; Tang et al., 2020; Onder et al., 2020;

Guo et al., 2020; Terpos et al., 2020), while the role of imaging

is mainly focusing on an estimation of the disease extent from

CT scans. This estimation is mainly done by medical experts

and hence suffers from inter- and intra-observer variability.

In this study, we investigated an automatic method (Figure 1)

for COVID-19 disease quantification and staging that extracts

and selects image characteristics directly from the CTs and fuse

them with known clinical and biological markers. A variety of

image characteristics are used providing insights about their use

on patient staging and better disease understanding. The contri-

butions of this study are three-folds: (i) a tool for automatic dis-

ease quantification based on 2D & 3D deep convolutional neu-

ral networks (CNNs) is developed, facilitating severity estima-

tion for optimal patient care, (ii) a COVID19-specific holistic,

highly compact multi-omics patient signature integrating imag-

1Guillaume Chassagnon & Maria Vakalopoulou & Enzo Battistella have
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2Corresponding author: n.paragios@therapanacea.eu

ing, clinical, and biological data and associated comorbidities

for automatic patient staging is presented, (iii) short and long-

term prognosis for clinical resources optimization offering al-

ternative/complementary means to facilitate triage are reported.

To the best of our knowledge this is among a few systematic

efforts to quantify disease extent, to discover low dimensional

and interpretable imaging biomarkers and to integrate them to

clinical variables into short and long term prognosis of COVID-

19 patients.

The paper is organized as follows: we first review related

work mainly focusing on interstitial lung diseases (ILDs) dis-

eases, which is followed by a description of all the components

and implementation details of our method. We then present the

acquired multi-center dataset, the evaluation setting, and the

results of our experiments. Furthermore, we discuss in detail

similarities and differences of our method with other recently

proposed methods for quantification and staging of COVID-19.

Lastly, we present possible directions for future research.

2. Related Work

In this section, we provide a short review of previous stud-

ies on quantification of ILDs since COVID-19 and ILDs share

a lot of similarities due to their diffuse pathological manifesta-

tions, such as ground glass opacities, band consolidations, and

reticulations. Furthermore, we elaborate on studies that tackle

severity or treatment response for such types of disease.

2.1. ILD Quantification

There are numerous studies proposed the last years on au-

tomatic quantification of ILD diseases using CT scans. The

main goal of these studies is to develop models that are able

to identify one or more types of different pathological lung tis-

sue in ILD cases (such as ground glass, consolidation, honey-

combing, etc) and successfully separate them from the healthy

tissue. Initial efforts were mainly based on classification

schemes. In particular, small patches including only a sin-

gle tissue type were extracted and described using a number

of handcrafted features focusing mainly on texture, then these



Chassagnon et al. / Medical Image Analysis (2020) 3

Fig. 1. Overview of the method for automatic quantification, staging and prognosis of COVID-19. Our study includes 8 independent cohorts, resulting in
693 Covid-19 patients in total. A variety of clinical and biological attributes were collected and combined with imaging biomarkers for short and long term
prognosis of COVID-19 patients. Our study is composed by three different steps: (i) Proposing a state-of-the-art deep learning based consensus of 2D &
3D networks for automatic quantification of COVID-19 disease, reaching expert-level annotations, (ii) A radiomics study integrating interpretable features
extracted from disease, lung and heart regions. A consensus-driven COVID-19 low dimensional bio(imaging)-holistic profiling and staging signature
has been proposed using robust machine learning algorithms, fusing imaging, clinical and biological attributes. & (iii) An ensemble of robust linear &
non-linear classification methods for the proper identification of patients that need intubation.

features were used to train different machine learning classi-

fiers (Gangeh et al., 2010; Huber et al., 2012). Following recent

advances in deep learning and especially the success of convo-

lutional neural networks (CNNs), researchers have recently em-

ployed such tools also in thoracic imaging tasks (Chassagnon

et al., 2019), with ILD quantification being among them. The

main advantage of CNNs is their ability to generate features

automatically from the input, and create meaningful represen-

tations for the studied per time problems. In particular, a

patch-based framework using a convolutional architecture is

presented in (Anthimopoulos et al., 2016) for the automatic

quantification of 5 different ILD patterns. Similarly, in (Gao

et al., 2018) a patch-based approach is adapted to classify them

in 6 different ILD patterns. Even if the method reported higher

performance than other methods based on handcrafted features,

the use of patches, besides being time consuming and ineffi-

cient, does not exploit the texture of the entire lung.

Many of the already proposed CNNs have further been

adapted to perform the task of semantic segmentation in an end-

to-end fashion instead of only image classification. Semantic

segmentation refers to the task of infering a class for each of the

pixels of an image instead of a single class for an image. Such

models can be found in literature both in 2D (Badrinarayanan

et al., 2017; Ronneberger et al., 2015) and 3D (Çiçek et al.,

2016) and have also been used for ILD quantification. The

authors of (Vakalopoulou et al., 2018) present the coupling of

2D fully convolutional networks with deformable registration

for the automatic quantification of systemic sclerosis disease.

Moreover, in (Anthimopoulos et al., 2018) the authors propose

the use of dilated filters for the segmentation of different ILD

tissue types. Furthermore in (Bermejo-Peláez et al., 2020) an

ensemble of 2D, 2.5D and 3D networks is proposed for the
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segmentation of 8 different radiographic ILD patterns. At this

point, it is important to note that since COVID-19 shares similar

patterns with ILDs, these recent advances on ILD quantification

are of great assistance for the development of tools for its quan-

tification.

2.2. ILD Staging

Staging of patients with ILDs is very important as it could

greatly help clinicians with their daily practice, while choos-

ing treatment options (Kolb and Collard, 2014). There have

been a number of studies recently that try to identify and extract

biomarkers from CT scans and associate them with the severity

and treatment of ILD patients. These biomarkers are usually

enhanced with clinical and physiological information to pro-

vide a scoring system as survival predictor. Among the variety

of biomarkers, disease extent is one of the most powerful ones

providing strong associations with severity and mortality (Cot-

tin and Brown, 2019; Tomassetti et al., 2015). Visual scoring

of the disease extent on CT can be time-consuming (Robbie

et al., 2017) highlighting the need for tools for automatic dis-

ease quantification. Moreover, except the disease extent, the

location of the disease is also very important for the staging.

In (Depeursinge et al., 2015; Christe et al., 2019) the quan-

tification of the disease is performed on different lung regions

providing descriptive information about the severity of the ILD

patients.

A variety of works report that radiomics, quantitative fea-

tures extracted from the images, provide valuable information

about the severity and response to treatment for different dis-

eases including cancer (Sun et al., 2018). These features could

also provide very good tools for monitoring disease progres-

sion and therapeutic response (Wu et al., 2019). In particular,

in (Bocchino et al., 2019) intensity-based characteristics such

as skewness and kurtosis were used together with disease ex-

tent to distinguish between systemic sclerosis patients with and

without ILD diseases. Moreover, in (Lafata et al., 2019) a va-

riety of image radiomics and their relationship with the pul-

monary function were investigated. Their results indicate that

high-throughput radiomics data extracted from the lungs may

be associated with pulmonary function as measured by com-

mon PFT metrics.

3. Methodology

In this section, we describe our AI driven scheme for the

quantification of CT scans for patients suffering from COVID-

19 pneumonia. Furthermore, we provide a method for the au-

tomatic selection and combination of multi-modal variables to-

wards a holistic signature designed for the COVID-19 triage. In

the following parts of this section, we provide details for all the

different components of the system.

3.1. Lung, breast and heart segmentation

Segmentation of the heart and breast were extracted by using

the software ART-Plan (TheraPanacea, Paris, France). ART-

Plan is a CE-marked solution for automatic annotation of or-

gans, harnessing a combination of anatomically preserving and

deep learning concepts. The segmentation of lungs was also

performed using ART-Plan software, but the models used were

re-trained using COVID-19 patients in order to address proper

segmentation of diseased lungs. In particular, the existing lung

models, providing segmentation of left and right lungs, were re-

trained using 50 full COVID-19 lung annotations provided by

medical experts. The models were evaluated on 130 COVID-19

patients partially annotated by two different experts, reporting

mean dice coefficient higher than 0.96 for both left and right

lungs and mean standard deviation lower than 0.015. Moreover,

the segmentation of the model was similar to the one provided

by the medical experts with dice coefficient 0.96 versus 0.97

respectively.

3.2. Ensemble of deep architectures for disease quantification

Our proposed COVID-19 pattern segmentation tool was built

using an ensemble method combining 2D & 3D deep learn-

ing architectures. All the COVID-19 related CT abnormalities

which are similar to other ILD diseases (ground glass opacities,

band consolidations, and reticulations) were segmented as a sin-

gle class. The proposed method (CovidENet) borrows elements

from already established fully convolutional neural network de-

signs from literature (Çiçek et al., 2016; Badrinarayanan et al.,
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Algorithm 1 AtlasNet Inference
1: procedure AtlasNet Inference
2: S Ð sample
3: Ci Ð the i-th trained network
4: for i P i..N do
5: step 1:
6: Ti Ð argminEpT̂ ; S , Aiq

7: S warped
i Ð TipS q

8: step 2:
9: S warped,seg

i Ð CipS
warped
i q

10: step 3:
11: S seg

i Ð T ´1
i pS warped,seg

i q

12: step 4:
13: S seg Ð CombinepS seg

i q

2017) while it incorporates powerful design aspects such as de-

formable registration methods for natural data augmentation.

The combination of the different CovidENet components has

been performed using their scoring output (before hard deci-

sion) fusing the output of the different networks based on ma-

jority voting. This is a rather standard technique when combin-

ing prediction between multiple neural networks.

3.2.1. CovidE2D component

Deep learning architectures based on 2D networks are com-

monly used for the segmentation of ILD diseases (Anthimopou-

los et al., 2018; Vakalopoulou et al., 2018) due to a lot of times

limited annotated datasets that are available for the specific task

and the 2D nature of the annotations. In this paper, we based

the first component (CovidE2D) of our CovidENet architecture

on AtlasNet 2D architecture (Vakalopoulou et al., 2018). Al-

tasNet has already been used for ILD segmentation in systemic

sclerosis patients, achieving very good performance on limited

annotated ILD datasets. AtlasNet couples deformable regis-

tration with deep learning performing data augmentation in a

natural way while preserving the human anatomy. The main

idea lies in training different deep learning classifiers (Ci) in a

simplified space, after registering each sample (S i) on prede-

fined templates/atlases (Ai). During inference (Algorithm 1),

the final segmentation is obtained by using the inverse transfor-

mation (T ´1
i ) to back-project to the original anatomy, while a

majority voting scheme is used to produce the final projection,

combining the results of the different networks.

For the registration of the CT scans to the templates, an elas-

tic registration framework based on Markov Random Fields

was used, providing the optimal displacements for each tem-

plate (Ferrante et al., 2017). In particular, the registration is

performed by a non-linear transformer T , corresponding to the

operator that optimizes in the continuous domain Ω the follow-

ing energy,

EpT ; S , Aiq “

ĳ

Ω

k
ÿ

j“1

w jρ jpS ˝ T, AiqdΩ` α

ĳ

Ω

ψpT qdΩ (1)

where ρ j corresponds to the different similarity metrics (sum

of absolute difference, normalised cross correlation, etc) used

to compare the source 3D volume to the target anatomy, w j

are linear constraints factorizing the importance of the differ-

ent metric functions and ψp¨q is a penalty function acting on the

spatial derivatives of the transformation.

Concerning the details of the architecture, in our experiments

each Ci consists of a SegNet (Badrinarayanan et al., 2017)

based architecture. More specifically, for the CovidE2D models

the CT scans were separated on the axial view. Each network

included 5 convolutional blocks, each one containing two Conv-

BN-ReLU layer successions. Maxpooling layers were also dis-

tributed at the end of each convolutional block for the encoding

part. Upsampling operators were used on the decoding part to

restore the spatial resolution of the slices together with the same

successions of layers.

3.2.2. CovidE3D component

To fully exploit the 3D nature of our dataset, the second com-

ponent of our proposed CovidENet is based on a 3D fully con-

volutional network similar to 3D-UNet (Çiçek et al., 2016). In

order to train this model, 3D sub-volumes of the CT scan that

fully included without any downsampling either the left or right

lung were extracted. The corresponding sub-volumes were also

extracted from the ground truth annotation masks. To this end,

we trained the model with the CT scan sub-volume as input and

the annotation as target. As far as the architecture is concerned,

the model consisted of five blocks with a down-sampling oper-

ation applied every two consequent Conv3D-BN-ReLU layers.



6 Chassagnon et al. / Medical Image Analysis (2020)

Additionally, five decoding blocks were utilized for the decod-

ing path, were at each block a transpose convolution was per-

formed in order to up-sample the input. Skip connections were

also employed between the encoding and decoding paths. The

dimensions of the input that corresponded to the spatial dimen-

sions of the CT scan and consequently the spatial dimensions

of the features maps were not bound to some fixed dimension

in order to feed the entire left/ right lung volumes. As such,

3D volumes of arbitrary spatial dimensions could be fed to the

network and thus the batch size was fixed to 1.

3.3. Holistic Multi-Omics Profiling & Staging

In order to combine disease extent with disease characteris-

tics and patients commodities, we investigate a variety of imag-

ing characteristics extracted using disease, cardiac and lung

segmentations. These imaging characteristics (radiomics) were

then combined with meaningful clinical and biological indi-

cators that have been reported to be associated prognosis of

COVID-19. Patient charts were reviewed to assess short term

(4 days after the chest CT) and long term prognosis (31 days

after the chest CT). For the staging task, patients were divided

in 2 groups: those who died, or required mechanical ventila-

tion either at the initial or at a subsequent admission as severe

cases (S), and the rest as non-severe cases (NS). For the progno-

sis task, three distinct subpopulations were defined: those who

had a short term negative (SD = short-term deceased) outcome

(deceased within 4 days after admission), those who didn’t re-

cover (LD= long-term deceased) within 31 days after the chest

CT (either died after day 4 or still intubated at day 31) and those

who recovered (LR= long-term recovered). The last two groups

formed the short intubated (SI) group of patients.

3.3.1. Features Extraction

Radiomics features were extracted from the CT scans us-

ing the previously described segmentations of the disease, lung

and heart. As a preprocessing step, all images were resampled

by cubic interpolation to obtain isometric voxels with sizes of

1mm. Subsequently, disease, lung and heart masks were used

to extract 107 radiomic features for each of them (left and right

lung were considered separately both for the disease extent and

Fig. 2. Correlation between body mass index (BMI) and fat ratio.

entire lung). These features included first order statistics (maxi-

mum attenuation, skewness, 90th percentile etc), shape features

(surface, maximum 2D diameter per slice, volume etc) and tex-

ture features (GLSZM, GLDM, GLRLM etc). For the extrac-

tion, the open source Pyradiomics library was used (Van Gri-

ethuysen et al., 2017).

Two other image indexes were also calculated, namely dis-

ease extent and fat ratio. The disease extent was calculated as

the percentage of lung affected by the disease in respect to the

entire lung volume. The disease components were extracted by

calculating the number of individual connected components for

the entire disease regions. The fat ratio, calculated as an indica-

tor of obesity, was used as a surrogate of the body mass index

and calculated by dividing the volume of thoracic fat by the vol-

ume of the thorax. The index was defined in an unsupervised

manner. To obtain fat segmentation, CT scans were smoothed

using a Gaussian kernel with a standard deviation of 2. Then, a

threshold of the densities in the range of [29, 130] was applied

on the smoothed CTs to isolate the fat regions. Fat masks were

calculated starting from the highest to the lowest part of the

lungs. In order to avoid gender bias, we used breast segmenta-

tion to exclude breast fat. Then the volume of the fat segmenta-

tion was divided by the body volume. To validate this morpho-

metric measurement we assessed its correlation with BMI in the

362 patients for which BMI was available and we found a strong

correlation using Pearson correlation (r= 0.64; pă 0.001; Fig-

ure 2).
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3.3.2. Holistic Biomarker Selection

Using all the calculated attributes (clinical, biological, imag-

ing) we constructed a high dimensional space of size 543, in-

cluding clinical/biological variables. A min-max normalization

of the attributes was performed by calculating the minimum and

maximum values for the training and validation cohorts. The

same values were also applied on the test set.

To prevent overfitting and discover the most informative and

robust attributes for the staging and prognosis of the patients

we propose a robust biomarker selection process. Feature selec-

tion is very important for classification tasks and has been used

widely in literature especially for radiomics (Sun et al., 2018).

First, the training data set was subdivided into training and val-

idation on the principle of 80%-20% maintaining the distribu-

tion of classes between the two subsets identical to the observed

one. To perform features selection, we have created 100 subdi-

visions on this basis and evaluated variety of classical machine

learning - using the entire feature space - classifiers such as

Decision Tree Classifier, Linear Support Vector Machine, XG-

Boosting, AdaBoost and Lasso. These classifiers were trained

and validated to distinguish between severe (S) and non severe

(NS) cases. In addition to these 5 classifier-based feature selec-

tion approaches, we also considered statistics-based approaches

based on Mutual Information, Chi-squared statistics and Uni-

variate linear regression tests. Each of these methods was used

to assess the importance of the features regarding outcome pre-

diction. Features were ranked according to their prevalence,

the total number of splits they were selected in, for each of the

methods. Our experiments indicated that different classifiers

highlight different attributes as important. In order to take ad-

vantage of the different feature selection properties, we adopted

a consensus feature selection method by selecting features with

the highest sum of prevalence over all methods. Besides, to

maintain structural properties, we selected the features in the

top 5 prevalence in each region.

3.3.3. COVID-19 Multi-Omics Profiling Signature

Using the aforementioned selection method, we have ex-

tracted 15 different radiomics features. These features belong

to: features from imaging and in particular from the disease re-

gions (5 features), lung regions (5 features) and heart features

(5 features). On these radiomics features biological and clini-

cal data were added (6 features: age, sex, high blood pressure

(HBP), diabetes, lymphocyte count and CRP level) and image

indexes (2 features: disease extent and fat ratio). At the end our

biomarker consisted of 23 features in total.

Regarding imaging features, we identified the following fea-

tures as more important for the prognosis of the COVID-19 pa-

tients. These features include both first and second order statis-

tics together with some shape features.

• Disease areas: Non- Uniformity of the Gray Level De-

pendence Matrix (GLDM), Dependence Non-Uniformity

of the GLDM, Mesh Volume, Voxel Volume, Non-

Uniformity of the Gray level Run Length Matrix

(GLRLM).

• Lung areas: Kurtosis, Mean Absolute Deviation, Zone

Emphasis of the GLSZM, Non-Uniformity of the GLSZM,

Variance of the GLSZM.

• Heart areas: Maximum 2D diameter Slice, Non-

Uniformity of the GLSZM, Sphericity, Flatness, Minimum

Length on the Axis.

The selected disease area features capture both disease extent

and disease textural heterogeneity. Disease textural heterogene-

ity is associated with lesions, the presence of which generates

imaging pattern more complex than pure ground glass opacities

usually found in mild disease. The selected lung features cap-

ture the dispersion and heterogeneity of lung densities, both of

which may reflect the presence of an underlying airway disease

such as emphysema but also the presence of sub-radiological

disease. Lastly, the selected heart features can be seen as a sur-

rogate for cardiomegaly and coronary calcifications.

3.3.4. Staging Mechanism

The staging/prognosis component was addressed using an

ensemble learning approach. Similarly to the biomarker ex-

traction, the training data set was subdivided into training and
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validation sets on the principle of 80%-20%. This subdivi-

sion was performed such that the distribution of classes be-

tween the two subsets was identical to the observed one. We

have used 10-fold cross validation on this basis and evalu-

ated the average performance of the following supervised clas-

sification methods: Nearest Neighbor, {Linear, Sigmoid, Ra-

dial Basis Function (RBF), Polynomial Kernel} Support Vec-

tor Machines (SVM), Gaussian Process, Decision Trees, Ran-

dom Forests, AdaBoost, XGBoosting, Gaussian Naive Bayes,

Bernoulli Naive Bayes, Multi-Layer Perceptron & Quadratic

Discriminant Analysis. These classifiers have been trained us-

ing the identified holistic signature. For each binary classifi-

cation task a consensus model was designed selecting the top

5 classifiers with acceptable performance, ą 60% in terms of

balanced accuracy, as well as coherent performance between

training and validation, performance decrease ă 20% for the

balanced accuracy. The selected models were trained and com-

bined together through a weighted winner takes all approach to

determine the optimal outcome. The weights granted to each

selected classifier determined according to the rank of this clas-

sifier on validation regarding balanced accuracy weighted with

a higher importance the best performing algorithms. Then, the

selected classifiers were retrained using the entire training set,

and their performance was reported on the external test cohort.

3.3.5. Prognosis Mechanism

To perform the short-term deceased (SD), long-term De-

ceased (LD), long term recovered (LR) classification task, a

SD/SI (SI: intubated at 4 days) classifier and a LD/LR clas-

sifier was applied in a hierarchical way, performing first the

short-term staging and then the long-term prognosis for patients

classified as in need of mechanical ventilation support. More

specifically, a majority voting method was applied to classify

patients into SD and SI cases. Then, another hierarchical struc-

ture was applied on the cases predicted as SI only to classify

them into the ones who didn’t recover within 31` days of me-

chanical ventilation (LD) and the ones who recovered with 30

days on mechanical ventilation (LR).

3.4. Implementation Details

3.4.1. Deep Learning Segmentation

In order to train all the models, each CT scan was normalized

by cropping the Hounsfield units in the range r´1024, 300s.

A variety of hyperparameters including loss functions, learn-

ing rates, optimizers had been tested and in this section we

report the ones with the best performance for each compo-

nent. Regarding implementation details, 6 templates/ atlases

(Ai) were used for the AtlasNet framework together with nor-

malized cross correlation and mutual information as similarity

metrics for the registration to each template. All 6 models of

the CovidE2D networks were trained using weighted cross en-

tropy loss. Moreover, the CovidE3D network was trained using

a dice loss. CovidENet aims to fuse different training strategies

(2D, 3D) as well as different loss functions to fully explore the

capabilities of deep learning architectures. 2D networks have

been proven to be very robust for the ILD segmentation using

cross entropy as it is reported from a variety of studies (Anthi-

mopoulos et al., 2018; Vakalopoulou et al., 2018).

For the CovidE2D experiments we used classic stochastic

gradient descent for the optimization with initial learning rate

= 0.01, decrease of learning rate = 2.5 ¨ 10´3 every 10 epochs,

momentum =0.9 and weight decay =5 ¨ 10´4. For CovidE3D

experiments we used the AMSGrad and a learning rate of 0.001.

TensorFlow library (Abadi et al., 2016) was used for the imple-

mentation of the CovidENet components.

The training of a single network for both CovidE2D and

CovidE3D was completed in approximately 12 hours using a

GeForce GTX 1080 GPU, while the prediction for a single CT

scan was done in a few seconds. Training and validation curves

for one template of CovidE2D and the CovidE3D networks are

shown in Figure 3. Early stopping has been used for ending the

training process and the most appropriate model for each Cov-

idENet component was the one that was performing the best in

the validation set until this point.

3.4.2. Covid-19 Multi-Omics Profiling & Staging

For the feature selection, features having the best combined

prevalence (sum of prevalences over the 8 selection techniques)
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Fig. 3. Training and validation curves for one template/ atlas (Ai) of Co-
vidE2D and the CovidE3D.

were kept. For this feature selection task, Decision Tree Clas-

sifier was taken of maximum depth 3, Linear SVM was taken

with a linear kernel, a polynomial kernel function of degree 3

and a penalty parameter of 0.25, XGBoosting was used with a

regression tree boosted over 30 stages, AdaBoost was used with

a Decision Tree Classifier of maximum depth 2 boosted 3 times

and Lasso method was used with 200 alphas along a regulariza-

tion path of length 0.01 and limited to 1000 iterations.

Concerning the implementation details, to overcome the un-

balanced dataset for the different classes, each class received a

weight inversely proportional to its size. For the NS versus S

majority voting classifier the top 5 classifiers consists in RBF

SVM, Linear SVM, AdaBoost, Random forest, Decision Tree.

The SVM methods were granted a polynomial kernel function

of degree 3, the Linear kernel had a penalty parameter of 0.3

while the RBF SVM had a penalty parameter of 0.15. In addi-

tion, the RBF SVM was granted a kernel coefficient of 1. The

Decision Tree classifier was limited to a depth of 2 to avoid

overfitting. The Random Forest classifier was composed of 25

of such Decision Trees. AdaBoost classifier was based on a

decision tree of maximal depth of 1 boosted 4 times. For the

SI versus SD majority voting classifier the top 5 classifiers con-

sists in polynomial SVM, Linear SVM, Decision Tree, Random

Forest and AdaBoost. The Linear and Polynomial SVM were

granted a polynomial kernel function of degree 2 and a penalty

parameter of 0.35. The Decision Tree classifier was limited to

a depth of 1 and Random Forest was composed of 50 of such

trees. AdaBoost classifier was based on a decision tree of max-

imal depth of 1 boosted 2 times. Finally, the LR versus LD

majority voting classifier was only using the 4 classifiers with

balanced accuracyą 0.6 namely Linear and Sigmoid SVM, De-

cision Tree, and AdaBoost Classifiers. The SVM methods were

defined with a kernel function of degree 3 and a penalty param-

eter of 1. Decision Tree was defined to a depth of 1, AdaBoost

being defined with such a Decision Tree boosted 3 times. For

the implementation of all the models Scikit-learn library was

used (Pedregosa et al., 2011).

4. Dataset

This retrospective multi-center study was approved by our In-

stitutional Review Board (AAA-2020-08007) which waived the

need for patients’ consent. Patients diagnosed with COVID-19

from March 4th to April 5th from eight large University Hospi-

tals were eligible if they had positive reverse transcription poly-

merase chain reaction (PCR-RT) and signs of COVID-19 pneu-

monia on unenhanced chest CT. Only the CT examination that

was performed at initial evaluation was included in our dataset.

Exclusion criteria were (i) contrast medium injection and (ii)

important motion artifacts. No patient was intubated at the time

of the CT acquisition. A total of 693 patients, after all the ex-

clusion criteria were applied, formed the full dataset (321, 360

CT slices).

Chest CT exams were acquired on 4 different CT models

from 3 manufacturers (Aquilion Prime from Canon Medical

Systems, Otawara, Japan; Revolution HD from GE Health-

care, Milwaukee, WI; Somatom Edge and Somatom AS+ from

Siemens Healthineer, Erlangen, Germany). The different acqui-

sition and reconstruction parameters are summarized in Table 1.

CT exams were mostly acquired at 120 (n=481{693; 69%) and

100 kVp (n=186{693; 27%). Images were reconstructed us-

ing iterative reconstruction with a 512ˆ 512 matrix and a slice

thickness of 0.625 or 1 mm depending on the CT equipment.

Only the lung images reconstructed with high frequency kernels

were used for analysis. For each CT examination, dose length

product (DLP) and volume Computed Tomography Dose Index

(CTDIvol) were collected.
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Center A Center B Center C Center D Center E Center F Center G Center H
CT equip-
ment

Somatom AS+ Resolution HD Aquilion Prime Somatom Edge Revolution HD Aquilion Prime Revolution HD Somatom AS+

Kilovoltage 100-120 120 100-120 100-120 120-140 100-120 120 100-120

DLP
(mGy.cm)

109˘ 42
[44-256]

306˘ 104
[123-648]

102˘ 30
[43-189]

131˘ 44
[55-499]

177˘ 48
[43-276]

115˘ 26
[75 - 186]

285˘ 108
[70 - 679]

332˘ 156
[179 - 755]

CTDIvol
(mGy)

3.2˘ 1.5
[1.2-11.9]

8.7˘ 2.8
[3.9-18.5]

2.7˘ 0.9
[1.0-5.3]

3.2˘ 0.9
[1.4-9.5]

5.5˘ 1.8
[1.2-12.3]

2.5˘ 0.6
[1.7-4.3]

7.9˘ 2.9
[1.7-18.0]

8.5˘ 4.0
[4.4-19.8]

Slice thick-
ness

1mm 0.625mm 1mm 0.625mm 1mm 1mm 0.625mm 1mm

Convolution
Kernel

i70 Lung FC51-FC52 i50 Lung FC51-FC52 Lung i70

Iterative
reconstruc-
tions

SAFIRE 3 ASIR-v 80% IDR 3D0.67 SAFIRE 4 ASIR-v 60% IDR 3D ASIR-v 60% SAFIRE 3

Table 1. Acquisition and reconstruction parameters of the dataset used in this study. Note: For quantitative variables, data are presented as mean ˘ standard
deviation, and numbers in brackets indicate their range. CT = Computed Tomography ; CTDIvol = volume Computed Tomography Dose Index ; DLP = Dose
Length Product.

For the COVID-19 radiological pattern segmentation part, 50

patients from 3 centers (A: 20 patients; B: 15 patients, C: 15

patients) were included to compose a training and validation

dataset, 130 patients from the remaining 3 centers (D: 50 pa-

tients; E: 50 patients, F: 30 patients) were included to compose

the test dataset (Table 2). The patients from the training cohort

were annotated slice-by-slice, while the patients from the test-

ing cohort were partially annotated on the basis of 20 slices per

exam covering in an equidistant manner the lung regions. The

proportion between the CT manufacturers in the datasets was

pre-determined in order to maximize the model generalizability

while taking into account the data distribution.

For the staging (NS/S) and prognosis (short and long-term)

study, 513 additional patients from centers A (121 patients), B

(157 patients), D (138 patients), G (77 patients) and H (20 pa-

Training/Validation
Dataset (Centers A+B+C;
N=50)

Test Dataset
(Centers D+E+F;
n=130)

p value

Age (y) 57˘ 17 [26-97] 59˘ 16 [17-95] 0.363
No. of Men 31(62) 87(67) 0.534
Disease
extent*
Manual 18.1˘ 14.9 [0.3-68.5] 19.5˘ 16.5 [1.1-75.7] 0.574
Automated - 19.9%˘ 17.7 [0.5-73.2] -
DLP
(mGy.cm)

180˘ 124 [43-527] 139˘ 49.0 [43-276] 0.026

CTDIvol
(mGy)

4.9˘ 3.4 [1.0-13.0] 4.0˘ 1.9 [1.2-12.3] 0.064

Table 2. Patient characteristics for the automatic quantification of
COVID-19 disease. Note: For quantitative variables, data are presented as
mean ˘ standard deviation, and numbers in brackets indicate their range. CT
= Computed Tomography; CTDIvol = volume Computed Tomography Dose
Index; DLP = Dose Length Product.

tients) were included. Data of 536 patients from 5 centers (A,

B, C, D and H) were used for training and those of 157 patients

from 3 other centers (E, F and G) composed an independent test

set (Table 3). In addition to the CT examination - when avail-

able - patient sex, age, and body mass index (BMI), blood pres-

sure and diabetes, lymphocyte count, CRP level and D-dimer

level were also collected (Table 3).

For short-term outcome assessment, patients were divided

into 2 groups: those who died or were intubated in the 4 days

following the CT scan composed the severe short-term outcome

subgroup, while the others composed the non-severe short-term

outcome subgroup. For long-term outcome, medical records

were reviewed from May 7th to May 10th, 2020 to determine if

patients died or had been intubated during the period of at least

one month following the CT examination. The data associated

with each patient (holistic profiling), as well as the correspond-

ing outcomes both in terms of severity assessment as well as

in terms of final outcome and readers assessment will be made

publicly available.

Fifteen radiologists (GC, TNHT, SD, EG, NH, SEH, FB, SN,

CH, IS, HK, SB, AC, GF and MB) with 1 to 7 years of experi-

ence in chest imaging participated in the data annotation which

was conducted over a 2-week period. For the training and vali-

dation set for the COVID-19 radiological pattern segmentation,

the whole CT examinations were manually annotated slice by

slice. On each of the 50 cases (23, 423 axial slices) compos-

ing this dataset, all the COVID-19 related CT abnormalities
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(ground glass opacities, band consolidations, and reticulations)

were segmented as a single class. Additionally, the whole lung

was segmented to create another class (lung). To facilitate the

collection of the ground truth for the lung anatomy, a prelimi-

nary lung segmentation was performed with Myrian XP-Lung

software (version 1.19.1, Intrasense, Montpellier, France) and

then manually corrected. For the test cohort, 20 CT slices

equally spaced from the superior border of aortic arch to the

lowest diaphragmatic dome were selected in a total of 130 pa-

tients composing a 2, 600 images dataset. Each of these images

were systematically annotated by 2 out of the 15 participat-

ing radiologists who independently performed the annotation.

Training/Validation Dataset
(Centers A+B+C+

D+H; n=536)

Test Dataset
(Centers E+F+G;
n=157)

p value

Age (y) 63˘ 16 [22-98] 62˘ 17 [17-98] 0.495
No. of Men 374(70) 103(78) 0.321
High blood
pression*

235 (44) 71 (45) 0.773

Diabetes* 97 (18) 37 (24) 0.888
Body mass in-
dex (kg{m2)*

27.7˘ 5.1 [17.0-44.1] 27.1˘ 5.1 [14.5-42.7] 0.390

Lymphocyte
count
(ˆ109{L)*

1.3˘ 2.7 [0.1-48.5] 1.3˘ 3.3 [0.23-41.0] 0.915

CRP (mg/L)* 104.3˘ 82.9 [1.0-430.7] 94.2˘ 74.8 [2.0-342] 0.166
D-dimers (mi-
crog/L)*

2458˘ 6533 [181-86248] 815˘ 924 [168-6138] ă 0.001

Disease ex-
tent**

22.2˘ 18.4 [0.0-89.8] 24.0˘ 18.7 [1.1-89.8]

Fat ratio on CT 18.6˘ 5.9 [1.7-42.3] 18.3˘ 5.5 [2.7-30.6] 0.589
Short-term
outcome

0.994

Deceased 28(5) 8(5)
Intubated 80(15) 23(15)
Alive and Not
Intubated

428(80) 126(80)

Follow-up du-
ration
Worsening
during follow-
up***

0.554

Deceased 69(13) 17(11)
Intubated 68(13) 22(14)
DLP
(mGy.cm)

181˘ 115 [43-755] 218˘ 106 [ 43-679 ] ă 0.001

CTDIvol
(mGy)

4.9˘ 3.2 [1.0-19.8] 6.1˘ 3.0 [1.2-18.0] ă 0.001

Table 3. Patient characteristics for the automatic staging and progno-
sis tools. Note: For quantitative variables, data are presented as mean ˘

standard deviation, and numbers in brackets indicate their range. For qual-
itative variables, data are numbers of patients, and numbers in parentheses
are percentages. CT = Computed Tomography, CTDIvol = volume Computed
Tomography Dose Index; DLP = Dose Length Product. *Available clinical
data: n “ 692 for diabetes and high blood pressure(leading to 0.19% of miss-
ing data on the training set), n “ 674 for lymphocyte count (leading to 2.05%
and 5.10% of missing data on the training and test sets respectively), n “ 654
for CRP (leading to 4.66% and 8.92% of missing data on the training and test
sets respectively), n “ 362 for Body Mass Index, and n “ 339 for D-dimers.
**Percentage of lung volume on the whole CT. ***Data available for 688
patients.

Annotation consisted of manual delineation of the disease and

manual segmentation of the lung without using any preliminary

lung segmentation.

Furthermore, 3 radiologists, an internationally recognized

expert with 20` years of experience in thoracic imaging

(ReaderA), a thoracic radiologist with 7` years of experience

(ReaderB) and a resident with 6-month experience in thoracic

imaging (ReaderC ) were asked to perform a triage (severe ver-

sus non-severe cases) and for the severe cases (short-term de-

ceased versus short-term intubated) prognosis process to predict

the short-term outcome.

5. Experimental results

5.1. Statistical Analysis

The dice similarity score (DSC) was calculated to assess

the similarity between the 2 manual segmentations of each CT

exam of the test dataset and between manual and automated

segmentations. The Hausdorff distance (HD) was also calcu-

lated to evaluate the quality of the automated segmentations in

a similar manner. Disease extent was calculated by dividing

the volume of diseased lung by the lung volume and expressed

in percentage of the total lung volume. Disease extent mea-

surement between automated and manual segmentations were

compared using paired Student’s t-tests. Similarly, correlation

between disease extent measurents from Covid2D, Covid3D,

CovidENet and manual segmentations were compared using

Spearman correlation coefficient.

For the stratification of the dataset into the different cate-

gories, classic machine learning metrics, namely balanced ac-

curacy, weighted precision, and weighted specificity and sensi-

tivity were utilized.

5.2. Disease Quantification

The evaluation of CovidENet together with its components

and the comparison with the 2 independent experts is sum-

marised in Table 4. CovidE2D component performed better

than the CovidE3D for the segmentation of COVID-19 disease.

This is indicated by the higher DSC and HD values achieved

by the CovidE2D component (Figure 4). However, their fusion
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Methods
Dice Hausdorff Distance

Mean Median STD Mean Median STD
Obs1 Obs2 Obs1 Obs2 Obs1 Obs2 Obs1 Obs2 Obs1 Obs2 Obs1 Obs2

CovidE2D 0.69 0.67 0.70 0.68 ˘0.13 ˘0.13 9.40 9.23 9.33 9.30 ˘1.83 ˘1.80
CovidE3D 0.62 0.65 0.67 0.70 ˘0.17 ˘0.16 9.43 8.70 9.43 8.60 ˘1.87 ˘1.81
CovidENet 0.69 0.70 0.71 0.73 ˘0.13 ˘0.13 9.18 8.75 9.16 8.72 ˘1.86 ˘1.78
Obs1-Obs2 0.70 0.72 ˘0.12 9.16 9.16 ˘1.83
CovidENet 0.70 0.72 ˘0.12 8.96 8.94 ˘1.82

Table 4. Quantitative evaluation of the CovidENet and its components CovidE2D & CovidE3D architectures in terms of Dice Coefficient and Hausdorff

Distance. In particular, the mean, median and standard deviation for each of the developed tools are presented together with comparison with the 2
independent experts. With bold we indicate the highest values per metric.

Fig. 4. Box-Plot in terms of DSC and HD between CovidENet and its indi-
vidual components, Obs1 & Obs2. One can observe that CovidENet (blue)
performs better and closer to Obs1-Obs2 (red) DSC and HD metrics than
its individual components CovidE2D & CovidE3D.

led to a significant improvement, comparable to human read-

ers. Moreover, CovidENet performed equally well compared to

trained radiologists in terms of DSC and better in terms of HD

(Figure 4, 6 and Table 4). The mean/median DSCs between the

Fig. 5. Plots indicating the correlation between disease extent automati-
cally measured and the average disease extent measured from CovidE2D,
CovidE3D and CovidENet respectively and the manual segmentation. Dis-
ease extent is expressed as the percentage of lung affected by the disease.
The red line shows a perfect correlation (Spearman R =1). Spearman cor-
relation coefficients are displayed for each comparison.

two expert annotations on the test dataset were 0.70{0.72 for

disease segmentation while DSCs between CovidENet and the

manual segmentations were 0.69{0.71 and 0.70{0.73. In terms

of HDs, the average expert distance was 9.16mm while it was

8.96mm between CovidENet and the experts.

Furthermore, the superiority of CovidENet is indicated by

the disease extent evaluated on the test dataset. In particular,

no significant difference was observed between disease extent

evaluated by the CovidENet and the manual segmentations’ av-

erage (19.9%˘ 17.7r0.5´ 73.2s vs 19.5%˘ 16.5r1.1´ 75.7s;

p= 0.352). As shown in Figure 5 correlation to disease ex-

tent from manual segmentations was better when using Covi-

dENet (r “ 0.94, p ă 0.001) compared to Covid3D (r “ 0.71,

p ă 0.001) or Covid2D (r “ 0.92, p ă 0.001) which overseg-

mented the disease.

Examples of disease segmentations are presented in Figure 6.

One can observe that the segmentations provided by CovidENet

are very close to the ones generated by the experts. In particular,

the algorithm detects the diseased regions even in the case that

they are relatively small capturing all the different opacities of

COVID-19 such as ground glass and consolidation.

5.3. COVID-19 Holistic Multi-Omics Profiling & Staging

The holistic COVID-19 pneumonia signature is presented in

(Table 5) along with the correlations with outcome. The av-

erage signature for the severe and non-severe case in the test

set are presented in Figure 7. Consensus ensemble learning

through majority voting was used to determine the subset of

AI methods that have robust, reproducible performance with

good generalization properties. Human “reader+++” was used
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as a reference through consensus among three chest radiologists

(resident, 7` years of experience, 20` years of experience in

thoracic imaging). Our method aiming to separate patients with

S/NS outcomes had a balanced accuracy of 70% (vs 67% for

human readers consensus), a weighted precision of 81% (vs

78%), a weighted sensitivity of 64% (vs 70%) and specificity

of 77% (vs 64%) and outperformed the consensus of human

readers (Figure 7, Table 6). Our method successfully predicted

81% of the severe/critical cases opposed to only 61% for the

consensus reader. The superiorty of our approach is also indi-

cated by the higher AUC reported (0.76), in comparison with

the one achieved by the different readers (0.69). Severe cases

as depicted in Figure 7 referred to diabetic men, with higher

level of volume/heterogeneity of disease and C-reactive protein

Fig. 6. Qualitative analysis for the comparison between manual and the
proposed CovidENet disease quantification. Delineation of the diseased ar-
eas on chest CT in different slices of COVID-19 patients. From left to right:
Input, CovidENet-segmentation, Obs1-segmentation, Obs2-segmentation.

Features Correlation
S/NS SI/SD LR/LD

Age 0.067 0.674 0.334
Sex 0.132 -0.049 -0.059
CRP 0.002 0.015 0.018
HBP 0.033 0.293 0.332
Diabetes 0.065 -0.130 -0.061
Lymphocytes 0.033 0.020 0.012
Fat Index 0.055 -0.192 0.122
Disease Extent 0.328 -0.069 0.214

Heart

Non-uniformity
on the GLSZM 0.067 -0.137 -0.112

Sphericity -0.161 -0.246 -0.101
Flatness -0.126 -0.039 -0.110
Minimum Length
on the Axis 0.044 0.067 -0.083

Left Right Left Right Left Right

Lung

Kurtosis -0.284 -0.289 0.077 0.009 0.005 0.006
Mean Absolute
Deviation 0.305 0.322 -0.003 -0.001 0.017 -0.026

Zone Emphasis
on the GLSZM 0.299 0.318 -0.023 0.045 0.213 0.199

Non-Uniformity
on the GLSZM -0.305 -0.305 -0.018 -0.031 -0.174 -0.138

Variance
on the GLSZM 0.305 0.348 0.018 0.031 0.174 0.138

Disease

Mesh Volume 0.297 0.363 -0.087 0.024 0.209 0.125
Volume Volume 0.297 0.363 -0.087 0.024 0.209 0.125
Dependence
Non-Uniformity
on the GLDM

0.266 0.338 -0.067 10´4 0.202 0.168

Non-Uniformity
on the GLDM 0.287 0.363 -0.079 0.017 0.203 0.142

Non-uniformity

on the GLRLM
0.284 0.340 -0.076 0.037 0.194 0.123

Table 5. Correlation between outcome and the 23 features of the holistic
COVID19 signature. Note: GLSZM =Gray Level Size Zone Matrix, GLRLM
= Gray Level Run Length Matrix, GLDM = Gray Level Dependence Matrix,
LD = long-term-deceased, LR = long-term deceased, NS = non severe, S =
severe, SI = short-term intubation , SD = short-term deceased.

levels. Moreover, as indicated in Figure 7 the non-uniformity

on GLRLM for both lung and disease together with the disease

extent seems to contribute considerable to the classification of

the patients to NS versus S cases.

5.4. Prognosis & Staging

The COVID-19 pneumonia pandemic spiked hospitaliza-

tions, while exerting extreme pressure on intensive care units.

In the absence of a cure, staging and prognosis is crucial for

clinical decision-making for resource management and experi-

mental outcome assessment, in a pandemic context. Our objec-

tive was to predict patient outcomes prior to mechanical ven-

tilation support. The proposed ensemble classifier aiming to

predict the SD/(LD or LR) had a balanced accuracy of 88%

(vs 81% for human readers consensus), a weighted precision

of 94% (vs 87%), a weighted sensitivity of 94% (vs 88%) and

specificity of 81% (vs 75%) and outperformed consensus of hu-



14 Chassagnon et al. / Medical Image Analysis (2020)

Fig. 7. COVID-19 Holistic Multi-Omics Signature & Staging: Spider chart representing average profiles (average values of the variables after normalization
between 0 and 1) with respect to severe versus non-severe separation are shown along with prevalence of biomarkers (diameter of the circle). The prevalence
of the biomarker corresponds here to the number of selections of the biomarker during the feature selection process. Classification performance, confusion
matrices and area under the curve with respect to the proposed method and the consensus of expert readers (reader+) are reported on the right side.
Selective associations of features with outcome (NS/S) are shown at the top right of the figure (box plots).

man readers (Table 6). Our method for prognosis of SD/ LD/

LR had a balanced accuracy of 71%, a weighted precision of

77%, a weighted sensitivity of 74% and specificity of 82% to

provide full prognosis (Figure 8). Concerning the performance

of our method for the classification of LD and LR patients (Ta-

ble 7), our ensemble classifier reports a balance accuracy of

69%, a weighted precision of 76% a weighted sensitivity of

74% and a weighted specificity of 65%. As indicated also in

Figure 8 the performance of our method reach an AUC of 0.86

for the SD, a 0.86 for the LR and 0.76 for the LD classes. More-

over, the age, HBP and lung non uniformity on the GLSZM

seems to associate better for this task.

Moreover, in order to assess the impact of each feature

category on the implemented models we performed an ab-

lation study by successively removing one category of fea-

tures from the 6 categories defined for each classification

task. Results are presented in Table 8. The feature cate-

gories were identified as follows: a) D0: disease extent, b)

D1: disease variables that are shape/geometry related, c) D2:

disease variables that are tissue/texture, d) O1: heart/lungs

variables that are shape/geometry related, e) O2: heart/lungs

variables that are tissue/texture, f) B1: age, gender, biologi-

cal/obesity/diabetes/fat/high blood pressure. One can observe

that the Clinical Only category contributes a lot for the separa-

tion of SD/LD/LR while for the NS/S cases their contribution

is marginal, in contrary to the other imaging characteristics.

6. Discussion

AI-enhanced imaging, clinical and biological information

proved capable to identify patients with severe short/long-term

outcomes, bolstering healthcare resources under the extreme

pressure of the current COVID-19 pandemic. The information

obtained from our AI staging and prognosis could be used as an

additional element at admission to assist decision making.
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Fig. 8. Short & Long Term Prognosis. Spider chart representing average profiles (average values of the variables after normalization between 0 and 1) with
respect to the short deceased (SD), long deceased (LD) and long recovered (LR) classes are shown along with their correlations with the outcome (diameter
of the circle). The presented correlation corresponds to Pearson Correlation for LR/LD outcome (Table 5). Classification performance, confusion matrices
and area under the curve with respect to the proposed method and - when feasible - the consensus of expert readers (reader+) are reported on the right
side. ROC curves correspond to one-vs-all classification of the SD/LR/LD patients. Selective associations of features with final outcome (LD/LR) are shown
at the bottom of the figure (box plots).

Variety of studies have reported the use of deep learning for

the diagnosis and quantification of COVID-19 with CT scans.

In particular, studies have already reported on deep learning di-

agnosing COVID-19 pneumonia on chest CTs. In (Li et al.,

2020b) the authors proposed the use of a deep learning ar-

chitecture based on ResNet50 for the diagnosis of COVID-19

reporting very high performances, while they investigated the

attention maps produced from their network. A very similar

method is presented in (Mei et al., 2020) reporting the use of

deep learning on COVID-19 diagnosis. Moreover, in (Huang

et al., 2020) the authors propose the use of a UNet architecture

for the quantification of the disease using 14482 slices for train-

ing and 5303 slices for test, reporting a median DSC of 0.8481.

Since their dataset is not publicly available, it is not possible

to perform a direct comparison. A 3D deep learning architec-

ture (DenseUNet) is proposed in (Chaganti et al., 2020) for the

quantification of COVID-19 disease. The segmentation is then

used to regress a number of scores proposed in that study such

as lung high opacity, lung severity, percentage of high opacity

and percentage of opacity. Again, a direct comparison could not

be reported, as the evaluation of the method was not performed

using DSC or HD, since the performance was measured on the

ability to regress the proposed scores.

Assessing the severity of COVID-19 patients is also a very

quickly evolving topic in the medical community with some

methods being currently under review. Extracting valuable

information from the imaging using recent advances is very

important and could potentially facilitate the clinical practice.

Starting with, disease extent is known to be associated with

severity (Li et al., 2020a; Yuan et al., 2020) as well as that the

disease textural heterogeneity reflects more the presence of het-

erogeneous lesions than pure ground glass opacities observable

in mild cases. In (Li et al., 2020c), the authors proposed the use

of Siamese networks for the severity assessment of COVID-19
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Balanced
Accuracy

Weighted
Precision

Weighted
Sensitivity

Weighted
Specificity

NS/SI/SD
ReaderA 0.62 0.77 0.68 0.69
ReaderB 0.59 0.75 0.67 0.65
ReaderC 0.61 0.76 0.68 0.62
Reader``` 0.63 0.77 0.70 0.67
Reader´´´ 0.61 ˘0.01 0.76 ˘0.01 0.68 ˘0.01 0.66 ˘0.03
Proposed 0.67 0.81 0.63 0.80
NS/S
ReaderA 0.69 0.79 0.70 0.67
ReaderB 0.66 0.77 0.70 0.62
ReaderC 0.65 0.76 0.70 0.60
Reader``` 0.67 0.78 0.70 0.64
Reader´´´ 0.67 ˘0.01 0.77 ˘0.01 0.70 ˘0.01 0.63 ˘0.03
Proposed 0.70 0.81 0.64 0.77
SI/SD
ReaderA 0.81 0.87 0.88 0.75
ReaderB 0.79 0.84 0.84 0.74
ReaderC 0.81 0.87 0.88 0.75
Reader``` 0.81 0.87 0.88 0.75
Reader´´´ 0.81 ˘0.01 0.87 ˘0.01 0.87 ˘0.01 0.75 ˘0.03
Proposed 0.88 0.94 0.94 0.81

Table 6. Prognosis of medical experts and their consensus for the
Non Severe (NS) versus Severe (S), Intubated (SI) versus Deceased (SD)
and NS/SI/SD patients Note: Classification Performance ReaderA (Senior),
ReaderB (Established), ReaderC (Resident), Reader``` (Consensus among
Human Readers), Reader´´´ (Average performance of Human Readers).

directly from CT scans. In (Bai et al., 2020), the authors pro-

posed a deep learning pipeline based on LSTMs using 2D CT

slices and a fusion of imaging and clinical information to as-

sess the severity and progression of COVID-19 patients. The

proposed method reports an accuracy of 89.1% on a test cohort

of 80 patients, outperforming classical machine learning tech-

niques. Besides having a smaller test cohort, our method ex-

plores features that are interpretable helping better understand-

ing of the disease and providing additional information for the

staging of the patients. Moreover, recently (Lassau et al., 2020)

proposed the assessment of severity using a deep learning tool

Classifier
Balanced
Accuracy

Weighted
Pecision

Weighted
Sensitivity

Weighted
Specificity

Train Test Train Test Train Test Train Test
L-SVM 0.77 0.62 0.81 0.7 0.74 0.63 0.81 0.61
S-SVM 0.63 0.69 0.71 0.76 0.56 0.63 0.7 0.74
AdaBoost 0.82 0.69 0.84 0.76 0.8 0.74 0.83 0.65
Decision
Tree 0.7 0.72 0.8 0.78 0.6 0.68 0.81 0.76

Ensemble
Classifier 0.82 0.69 0.84 0.76 0.8 0.74 0.83 0.65

Table 7. Performance for the Deceased (LD) and Recovered (LR) in the
long-term outcome for each of the selected classifiers and their ensemble.
Note: P-SVM = Support Vector Machine with a polynomial kernel; S-SVM
= Support Vector Machine with a sigmoid kernel.

achieving an AUC of 0.76 on a completely independent co-

hort. Again even if we can not perform a direct comparison

our method reports similar performance in a completely inde-

pendent cohort, while it is based on interpretable features ex-

tracted from different regions. Finally, in (He et al., 2020) a

2D deep learning based approach using a multi-task learning is

presented in order to separate COVID-19 patients to severe and

non severe cases.

6.1. Clinical Impact

To the best of our knowledge this study is the first to

have developed a robust, holistic COVID-19 multi-omics sig-

nature for disease staging and prognosis demonstrating an

equivalent/superior-to-human-reader performance on a multi-

centric data set. Our approach complied appropriate data col-

lection and methodological testing requirements beyond the ex-

isting literature (Mei et al., 2020). The proposed holistic signa-

ture harnessed imaging descriptors of disease, underlying lung,

heart and fat as well as biological and clinical data. Among

them, disease extent is known to be associated with severity (Li

et al., 2020a; Yuan et al., 2020), disease textural heterogene-

ity reflects more the presence of heterogenous lesions than pure

ground glass opacities observable in mild cases. Heart features

encode cardiomegaly and cardiac calcifications. Lung features

show patients with severe disease having greater dispersion and

heterogeneity of lung densities, reflecting the presence of an

underlying airway disease such as emphysema and the pres-

ence of sub-radiological disease. Among clinical variables, a

higher CRP level, lymphopenia and a higher prevalence of hy-

pertension and diabetes were associated with a poorer outcome,

consistent with previous reports (Zhou et al., 2020; Guo et al.,

2020; Terpos et al., 2020). Interestingly, age was less predictive

of disease severity than of poor outcome in severe patients. This

is linked to the fewer therapeutic possibilities for these gener-

ally more fragile patients. Lastly, the average body mass index

(BMI) in both non-severe and severe groups corresponded to

overweight. Despite being correlated with BMI, the fat ratio

measured on the CT scanner was only weakly associated with

outcome. Several studies have reported obesity to be associated
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Study
Case Task Balanced Accuracy Weighted Precision Weighted Sensitivity Weighted Specificity

Training Test Training Test Training Test Training Test

All Features

NS/S 0.73 0.70 0.82 0.81 0.67 0.64 0.80 0.77
SI/SD 0.90 0.88 0.92 0.94 0.92 0.94 0.88 0.81
LD/LR 0.82 0.69 0.84 0.76 0.8 0.74 0.83 0.65
SD/LD/LR 0.77 0.71 0.8 0.77 0.78 0.74 0.9 0.82

Without D0

NS/S 0.73 0.7 0.82 0.8 0.68 0.65 0.79 0.74
SI/SD 0.89 0.88 0.92 0.94 0.92 0.94 0.88 0.81
LD/LR 0.56 0.5 0.74 0.54 0.74 0.74 0.39 0.26
SD/LD/LR 0.65 0.58 0.73 0.64 0.76 0.74 0.79 0.72

Without D1

NS/S 0.74 0.69 0.82 0.8 0.67 0.64 0.8 0.74
SI/SD 0.89 0.88 0.91 0.93 0.91 0.93 0.88 0.81
LD/LR 0.56 0.5 0.74 0.54 0.74 0.74 0.39 0.26
SD/LD/LR 0.65 0.58 0.73 0.64 0.76 0.74 0.79 0.72

Without D2

NS/S 0.73 0.69 0.82 0.8 0.67 0.64 0.8 0.74
SI/SD 0.89 0.88 0.91 0.93 0.91 0.93 0.88 0.81
LD/LR 0.58 0.5 0.74 0.54 0.76 0.74 0.48 0.26
SD/LD/LR 0.67 0.58 0.73 0.64 0.76 0.74 0.82 0.72

Without O1

NS/S 0.73 0.7 0.82 0.79 0.72 0.73 0.75 0.67
SI/SD 0.89 0.88 0.91 0.93 0.91 0.93 0.88 0.81
LD/LR 0.58 0.5 0.73 0.54 0.74 0.74 0.42 0.26
SD/LD/LR 0.66 0.58 0.72 0.64 0.76 0.74 0.81 0.72

Without O2

NS/S 0.75 0.69 0.83 0.8 0.67 0.62 0.82 0.76
SI/SD 0.89 0.88 0.91 0.93 0.91 0.93 0.88 0.81
LD/LR 0.78 0.59 0.82 0.68 0.83 0.68 0.72 0.5
SD/LD/LR 0.74 0.65 0.78 0.73 0.79 0.7 0.87 0.78

Without B1

NS/S 0.73 0.71 0.82 0.81 0.67 0.66 0.79 0.77
SI/SD 0.67 0.58 0.74 0.65 0.74 0.67 0.6 0.48
LD/LR 0.74 0.53 0.79 0.64 0.79 0.68 0.7 0.37
SD/LD/LR 0.58 0.41 0.59 0.48 0.59 0.48 0.73 0.66

Clinical Only

NS/S 0.71 0.58 0.8 0.73 0.68 0.58 0.73 0.58
SI/SD 0.89 0.88 0.91 0.93 0.91 0.93 0.88 0.81
LD/LR 0.73 0.53 0.79 0.64 0.8 0.68 0.65 0.37
SD/LD/LR 0.72 0.6 0.77 0.7 0.78 0.7 0.85 0.74

Table 8. An ablation study of the different selected features. A leave-one-out method has been applied by removing one feature sequentially to test the
features importance and the performance robustness. Note: a) D0: disease extent, b) D1: disease variables that are shape/geometry related, c) D2: disease
variables that are tissue/texture, d) O1: heart/lungs variables that are shape/geometry related, e) O2: heart/lungs variables that are tissue/texture, f) B1: age,
gender, biological/obesity/diabetes/fat/high blood pressure. LD = long-term-deceased; LR = long-term deceased; NS = non severe; S = severe; SI = short-term
intubation; SD = short-term deceased.

with severe outcomes (Huang et al., 2020; Chaganti et al., 2020)

and an editorial described the measurement of anthropometric

characteristics as crucial to better estimate the risk of compli-

cations (Stefan et al., 2020). However a meta-analysis showed

that whereas being associated with an increased risk of COVID-

19 pneumonia, obesity was paradoxically associated with re-

duced pneumonia mortality (Wynants et al., 2020). Overall,

the combination of clinical, biological and imaging features

demonstrates their complementary value for staging and prog-

nosis.

6.2. Future Work

In conclusion, artificial intelligence enhanced the value of

chest CT by providing fast accurate and precise disease extent

quantification and by helping to identify patients with severe

short-term outcomes. This could be of great help in the current

context of the pandemic with healthcare resources under ex-

treme pressure. Beyond the diagnostic value of CT for COVID-

19, our study suggests that AI should be part of the triage pro-

cess. Our methodology provides a deep learning-based pipeline

that provides disease quantification comparable to the human

experts, while it explores image characteristics, fusing them
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with clinical and biological data in order to perform staging of

the patients to non severe, needed intubation and deceased. Our

prognosis and staging method achieved state of the art results

through the deployment of a highly robust ensemble classifi-

cation strategy with the use of image characteristics and pa-

tients’ characteristics available within the image’ metadata. In

terms of future work, we are planning to investigate and gener-

ate tools for the multiclass disease segmentation and investigate

in depth the characteristics of each class and their association

with severity. Our findings could have a strong impact in terms

of (i) patient stratification with respect to the different therapeu-

tic strategies, (ii) accelerated drug development through rapid,

reproducible and quantified assessment of treatment response

through the different mid/end-points of the trial, and (iii) con-

tinuous monitoring of patient’s response to treatment.

Appendix A. Tables for the prognosis and staging

Classifier
Balanced
Accuracy

Weighted
Pecision

Weighted
Sensitivity

Weighted
Specificity

Train Test Train Test Train Test Train Test
L-SVM 0.7 0.67 0.79 0.78 0.71 0.71 0.69 0.64
RBF-SVM 0.75 0.68 0.82 0.79 0.7 0.67 0.79 0.7
Decision
Tree 0.71 0.67 0.82 0.82 0.61 0.53 0.81 0.81

Random
Forest 0.72 0.68 0.81 0.79 0.69 0.69 0.75 0.68

AdaBoost 0.72 0.67 0.83 0.82 0.63 0.54 0.82 0.81
Ensemble
Classifier 0.73 0.7 0.82 0.81 0.67 0.64 0.8 0.77

Table A.9. Performance for the Severe (S) and Non-Severe (NS) short-term
outcome for each of the top-5 selected classifiers and their ensemble pre-
sented in Section 5. Note: L-SVM = Support Vector Machine with a linear
kernel; RBF-SVM = Support Vector Machine with a Radial Basis Function
kernel.

Classifier
Balanced
Accuracy

Weighted
Pecision

Weighted
Sensitivity

Weighted
Specificity

Train Test Train Test Train Test Train Test
P-SVM 0.88 0.7 0.89 0.76 0.84 0.74 0.92 0.67
Decision
Tree 0.9 0.88 0.92 0.94 0.92 0.94 0.88 0.81

Random
Forest 0.9 0.81 0.92 0.91 0.92 0.9 0.88 0.81

AdaBoost 0.9 0.88 0.92 0.94 0.92 0.94 0.88 0.81
Gaussian
Process 0.95 0.77 0.96 0.83 0.96 0.84 0.94 0.7

Ensemble
Classifier 0.9 0.88 0.92 0.94 0.92 0.94 0.88 0.81

Table A.10. Performance for the Intubated (SI) and Deceased (SD) pa-
tients in the short-term outcome outcome for each of the top-5 selected
classifiers and their ensemble presented in Section 5. Note: P-SVM = Sup-
port Vector Machine with a polynomial kernel.
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