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Abstract

Hyperspectral remote sensing is now an established tool to determine shallow water prop-

erties over large areas, usually by inverting a semi-analytical model of water reflectance. How-

ever, various sources of error may make the observed subsurface remote-sensing reflectance

deviate from the model, resulting in an increased retrieval error when inverting the model

based on classical least-squares fitting. In this paper, we propose a probabilistic forward

model of shallow water reflectance variability that describes two of the main sources of er-

ror, namely, (1) the environmental noise that includes every source of above-water variability

(e.g., sensor noise and rough water surface), and (2) the potentially complex inherent spectral

variability of each benthic class through their associated spectral covariance matrix. Based

on this probabilistic model, we derive two inversion approaches, namely, MILE (MaxImum

Likelihood estimation including Environmental noise) and MILEBI (MaxImum Likelihood

estimation including Environmental noise and Bottom Intra-class variability) that utilize the

information contained in the proposed covariance matrices to further constrain the inversion

while allowing the observation to differ from the model in the less reliable wavebands. In this

paper, MILE and MILEBI are compared with the widely used least-squares (LS) criterion

in terms of depth, water clarity and benthic cover retrievals. For these three approaches,

we also assess the influence of constraining bottom mixture coefficients to sum to one on
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estimation results.

The results show that the proposed probabilistic model is a valuable tool to investigate the

influence of bottom intra-class variability on subsurface reflectance, e.g., as a function of

optical depth or sensor noise. As expected, this influence is critical in very optically shallow

waters, and decreases with increasing optical depth. The inversion results obtained from

synthetic and airborne data of Quiberon Peninsula, France, show that MILE and MILEBI

generally provide better performances than LS. For example, in the case of airborne data

with depth ranging from 0.44 to 12.00 m, the bathymetry estimation error decreases by

about 32% when using MILE and MILEBI instead of LS. Estimated maps of bottom cover

are also more consistent when derived using sum-to-one constrained versions of MILE and

MILEBI. MILE is shown to be a simple but powerful method to map simple benthic habitats

with negligible influence of intra-class variability. Alternatively, MILEBI is to be preferred

if this variability cannot be neglected, since taking bottom covariance matrices into account

concurrently with mean reflectance spectra may help the bottom discrimination, e.g., in the

presence of overlapping classes. This study thus shows that taking potential sources of error

into account through appropriate paramerizations of spectral covariance may be critical to

improve the remote sensing of shallow waters, hence making MILE and MILEBI interesting

alternatives to LS.

Keywords: Bottom intra-class variability, Environmental noise, Maximum likelihood

estimation, Radiative transfer model inversion, Shallow water hyperspectral remote sensing,

Spectral covariance

1. Introduction1

Optical remote sensing provides an outstanding opportunity to monitor aquatic environ-2

ments from local to global scales, potentially offering high temporal and spatial resolutions,3

e.g., as allowed by recent advances in unmanned aerial vehicles or by the Sentinel-2 mission4

developed by the European Space Agency within the “Copernicus” program (Aschbacher &5

Milagro-Pérez, 2012; Drusch et al., 2012). The use of such high spatial resolution data (i.e.,6

less than a few dozen meters) is particularly critical for coastal and inland waters, e.g., to7

map heterogeneous benthic habitats (Mishra et al., 2006; Hedley et al., 2012b), to detect8

coral bleaching (Andréfouët et al., 2002; Hedley et al., 2012a) or to monitor small lakes and9

rivers (Joshi & D’Sa, 2015). As compared with the open ocean, coastal and inland waters10
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are generally more complex environments, whose remotely-sensed reflectance may be highly11

variable due to simultaneous changes in bathymetry, water quality, bottom type, water sur-12

face and atmospheric conditions. In shallow waters, the decoupling of these effects has been13

shown to be more accurate when using hyperspectral data instead of multispectral data (Lee14

& Carder, 2002; Lee et al., 2013). Indeed, a higher number of spectral bands as well as15

an increased spectral resolution allow reducing confounding effects between optically-active16

parameters, e.g., by detecting the subtle changes in reflectance that originate from narrow17

absorption regions potentially present in bottom albedo (Kutser et al., 2003; Hochberg &18

Atkinson, 2003; Hedley et al., 2012a; Botha et al., 2013).19

20

In coastal environments, hyperspectral remote sensing methods that allow the simultane-21

ous retrieval of bathymetry, water quality and benthic cover are usually based on a radiative22

transfer model that describes how light propagates in water (Mobley, 1994). This inverse23

problem is generally solved using either look-up tables (LUTs) or iterative optimization24

(Dekker et al., 2011). In the first case, a spectral library corresponding to different combi-25

nations of depth, water quality and benthic cover is pre-computed using an exact (Mobley,26

1994) or approximated (Lee et al., 1998) radiative transfer model. For each image pixel,27

the measured reflectance is then matched with the closest simulated spectrum in the LUT.28

CRISTAL (Comprehensive Reflectance Inversion based on Spectrum matching and TAble29

Lookup) (Mobley et al., 2005) and ALLUT (Adaptive Linearized Look-Up Trees) (Hedley30

et al., 2009) as denoted by Dekker et al. (2011) are examples of such approaches. The inverse31

problem can also be solved by numerically optimizing a cost function that relates measured32

and simulated reflectance spectra. In this case, the forward model used for simulation has33

to be sufficiently fast to permit multiple runs for each image pixel. To this end, a number of34

analytical and semi-analytical models have been developed under various assumptions and35

water types (Maritorena et al., 1994; Lee et al., 1998; Albert & Mobley, 2003). These models36

approximate the radiative transfer equation and generally simulate the reflectance of shal-37

low waters as a function of sun-sensor geometry, depth, bottom albedo and water-column38

inherent optical properties (i.e., absorption and scattering properties of the water column).39

Note that, whenever possible, the latter can further be related to specific inherent optical40
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properties and concentrations of optically-active water constituents (Brando et al., 2009).41

42

Due to its accurate performance and simplicity, the Euclidean distance has generally been43

used to assess the goodness-of-fit between the observation and the model, either when using44

LUTs (Mobley et al., 2005; Hedley et al., 2009, 2012a) or iterative optimization (Lee et al.,45

1999, 2001; Lee & Carder, 2002; Albert & Gege, 2006; Klonowski et al., 2007; Dekker et al.,46

2011; Jay et al., 2012; Giardino et al., 2012; Garcia et al., 2014a; McKinna et al., 2015; Jay47

& Guillaume, 2016). Note that in the case of iterative optimization, the use of Euclidean dis-48

tance for model inversion corresponds to nonlinear unweighted least-squares fitting. However,49

this cost function does not fully consider the information contained in the reflectance data.50

In particular, it does not utilize spectral covariance (i.e., covariance between wavebands), yet51

such knowledge of the data structure may be useful to improve the retrieval accuracy due to52

the non-negligible correlation between hyperspectral bands (Gillis et al., 2013).53

54

Importantly, as the least-squares method tries to find the best possible fit between the55

observation and the model, it is not designed to handle possible deviations between them.56

For example, the “environmental noise equivalent reflectance difference” (Brando & Dekker,57

2003) (hereafter called environmental noise and denoted NE∆rE) may lead the measured58

subsurface reflectance to strongly differ from the modeled one. For a given spectral band,59

NE∆rE corresponds to the reflectance standard deviation as estimated over an “as homoge-60

neous as possible” water area. As a result, it not only takes into account the sensor noise, but61

also scene-specific above-water variability, including atmospheric variability, effects related62

to the rough water surface, refractions of diffuse and direct sunlight, and residuals from im-63

perfect atmospheric, air-water interface and sun glint corrections (Brando & Dekker, 2003;64

Brando et al., 2009; Botha et al., 2013). To consider such errors within model inversion,65

Brando et al. (2009) and Botha et al. (2013) have weighted the contribution of each wave-66

band according to the inverse of NE∆rE . In doing so, the influence of the noisiest and least67

accurate spectral bands is reduced, which lowers the estimation variance.68

69

Another important source of error between the measured and simulated spectra is the70
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inherent spectral variability of each considered benthic class. Based on PlanarRad simu-71

lations and a comprehensive bottom spectral library, Hedley et al. (2012b) have actually72

demonstrated that this is one of the primary limiting factors for benthic mapping purposes73

(whereas sensor noise is only a minor factor). Indeed, while a single mean reflectance spec-74

trum is generally used to characterize the spectral response of each benthic class, many75

authors show that such intrinsic variability may sometimes be greater than the mean re-76

flectance itself, either at the local or global scales (Hochberg et al., 2003; Mobley et al., 2005;77

Hedley et al., 2012b; Petit et al., 2017). Therefore, this variability may strongly affect the re-78

trieval accuracy if it is not (or not properly) taken into account during the inversion process.79

To this end, assuming that the bottom reflectance spectrum only varies according to a single80

multiplicative factor across all the wavebands, several authors have proposed to estimate this81

factor for each possible substrate (Lee et al., 1999; Fearns et al., 2011; Garcia et al., 2014b;82

Petit et al., 2017). Under the same assumption, using the Spectral Angle Mapper (SAM) as83

a cost function may also decrease the detrimental influence of bottom intra-class variability,84

since the SAM is insensitive to variations in the global reflectance magnitude (Brando et al.,85

2009; Botha et al., 2013; Petit et al., 2017). However, this spectral variability cannot always86

be reliably represented using a single multiplicative factor (Hochberg et al., 2003; Hedley87

et al., 2012b), thus making the development of alternative inversion methods highly desirable.88

89

In this study, we first propose a realistic probabilistic model of shallow water reflectance90

variability based on the semi-analytical model of Lee et al. (1998) and that fully describes91

the influences of environmental noise and bottom intra-class variability. Both sources of92

error are considered to be Gaussian and characterized by a mean vector and a spectral93

covariance matrix. Then, using this modeling, we develop two new inversion approaches94

based on maximum likelihood estimation that enable a pixelwise retrieval of all optically-95

active parameters, i.e., bathymetry, water clarity parameters and benthic cover. These two96

approaches are compared with the classical least-squares method using both simulated and97

airborne data.98
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Figure 1: Location of the three study sites S1, S2 and S3.

2. Data99

2.1. Study area100

As shown in Fig. 1, the overall study area is located in the Quiberon Bay on the French101

west coast (around 47◦31’N, 3◦05’W). Three sites (hereafter denoted S1, S2 and S3) were102

chosen in order to include a large bathymetric range and various bottom covers. Site S1103

and Site S2 are located near the shore in the Bay of Plouharnel (47◦34’46”N, 3◦06’24”W),104

and are characterized by relatively shallow waters (less than 5 m at the time of acquisitions)105

and heterogeneous bottom covers including sand, brown algae, seagrasses and oyster farming106

structures. Site S3 is located a few kilometers away from the Quiberon peninsula (47◦28’11”N,107

3◦02’18”W) and is characterized by a large bathymetric range (from 4 to 12 m at the time108

of acquisitions) and a nearly uniform sandy bottom.109

2.2. Image acquisition and preprocessing110

Eight hyperspectral images were acquired on September 14-18, 2010 around solar noon111

(the solar zenith angle being close to 50o) using an airborne Hyspex VNIR-1600 push-broom112

camera (Norsk Elektro Optikk, Norway). The flight altitude was 650 m, resulting in a 0.5 m113

spatial resolution. The camera acquired successive lines of 1600 pixels and 160 spectral bands114
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ranging from 410 to 987 nm. The spectral sampling interval and full width at half maxi-115

mum were 3.7 nm and 4.5 nm respectively. Only 105 bands in the 410-800 nm domain were116

kept when removing the strong water and oxygen absorption regions. Further, a three-band117

aggregate was performed similarly to the PRISM instrument developed by the Jet Propul-118

sion Laboratory (Mouroulis et al., 2014), therefore leading to a 11 nm sampling interval (35119

bands). This allows us to enhance the signal-to-noise ratio while keeping similar estimation120

results (Hochberg & Atkinson, 2003; Garcia et al., 2015).121

122

After conversion to spectral radiance, images were geometrically corrected using ground-123

based targets whose positions had been measured using a real-time kinematic GPS. Images124

were then geolocated, the estimated georeferencing accuracy not exceeding one pixel at the125

sea level. Atmospheric correction was performed using the ATCOR model (Richter, 2012).126

A set of multiplicative factors (one for each spectral band) were derived comparing ATCOR127

apparent reflectance spectra and ground-based spectro-radiometric measurements of above-128

water reference targets (colored tarpaulins) placed on the nearby beach (Clark et al., 2002).129

These factors were finally applied to the entire images in order to correct residuals from the130

radiative transfer algorithm and to obtain the reflectance images. Note that some results of131

atmospheric correction have already been presented by Jay & Guillaume (2016). Sun glint132

(Hedley et al., 2005) and the air/water interface (Lee et al., 1999) were corrected in order133

to finally obtain the subsurface remote-sensing reflectance r(λ) (in sr−1). For each day of134

acquisition, the environmental noise NE∆rE (in sr−1) (Brando & Dekker, 2003) was estimated135

over optically deep waters according to the methodology proposed by Wettle et al. (2004).136

As shown in Fig. 2, its spectral shape is similar to those obtained in previous studies (Brando137

et al., 2009; Wettle et al., 2004), i.e., NE∆rE is nearly constant across all wavebands and138

mainly increases in the blue domain, where the sensitivity of the CCD sensor is the lowest139

and spectral variations in incident light are the strongest.140

2.3. Data used for depth and phytoplankton concentration estimations141

The eight hyperspectral images were used to evaluate the accuracy of bathymetry re-142

trieval. For each image, the depth was only known in a few 6×6 m2 flat sandy-bottom areas143
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Figure 2: Environmental noise as measured on September 18, 2010.

thanks to sonar measurements and a tide model. A total of 14 validation points (depth144

ranging from 0.44 to 12 m) were therefore available to assess the accuracy of bathymetry145

estimation.146

In addition, phytoplankton concentration was also measured concurrently with most airborne147

acquisitions in Site S3. To do so, water samples were collected at the surface and bottom148

(whose depth ranged from 4.70 to 12 m) levels to better account for a possible vertical gra-149

dient in phytoplankton concentration. Chlorophyll-a and pheopigment concentrations were150

measured according to the French standard NF T 90117 (AFNOR, December 1999). Surface151

and bottom phytoplankton concentrations were then given by the sum of chlorophyll-a and152

pheopigment concentrations, and averaged so as to obtain a single measurement for each153

sampled area. These mean values were finally used to derive the absorption coefficient of154

phytoplankton at 440 nm (denoted P , in m−1) similarly to Lee et al. (1999). In total, 8 vali-155

dation points (phytoplankton concentration ranging from 1.25 to 1.95 µg.L−1, corresponding156

to P ranging from 0.069 to 0.093 m−1) were available (still over 6×6 m2 flat sandy-bottom157

areas within which P was assumed to be homogeneous).158

Note that no data were available to assess the retrievals of the other optically-active wa-159

ter constituents, namely, colored dissolved organic and detrital matter as well as suspended160

matter (see Section 3.1.1).161

2.4. Data used for bottom cover estimation162

The above eight images were also used to assess bottom cover estimation over the 14163

6×6 m2 flat sandy-bottom areas of known depth. In addition, one of these images was164
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Figure 3: True color composite image derived from the deglinted subsurface hyperspectral image that was
used to assess bottom cover estimation.

used to assess the tested methods over more complex bottom covers (Fig. 3). This image165

was acquired over a 0.22 km2 area located in site S2. This shallow area was part of a large166

oyster farming area and was thus relatively heterogeneous, both in terms of bottom cover and167

bathymetry (the depth ranged from about 1 m in the left-hand part to 5 m in the top-right168

part, with locally sharp changes in bathymetry due to the presence of oyster racks). Various169

bottom types were identified in this area. Numerous oyster racks were present on a mostly170

sandy bottom. Some of these wooden structures were empty (e.g., in the upper left part of171

the image), but most of them were full of oyster bags at the time of acquisition. Depending172

on when these bags had been put on racks, they could partly or completely be covered with173

green algae and/or brown algae. Lastly, there was a large seagrass meadow in the upper right174

part of the image, as well as small patches of brown algae irregularly distributed within the175

image (e.g., between oyster racks in the lower left part). Note that the colored tarpaulins176

present on the left-hand side (in the middle of which depth was 2.83 m) were ignored in this177

study.178

For each bottom class and based on expert knowledge, numerous endmember spectra were179
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Figure 4: Reflectance distributions of sand, oyster bag, seagrass/green alga and brown alga classes as esti-
mated from the areas emphasized in the airborne hyperspectral image shown in the middle. For each plot,
the darkest and brightest shades correspond to the 25-75% and 5-95% quantiles resp., whereas the median
and mean spectra are indicated by dashed and dash-dot lines resp..

extracted from supplementary hyperspectral images acquired over the neighboring zones in180

Site S2 during low tide (Fig. 4). It is worth mentioning that, due to intra-class variability181

and because these zones are a few hundred meters to a dozen kilometers from the zones used182

to assess the inversion methods (Fig. 1), the extracted endmember spectra may not perfectly183

match those encountered in the whole study area. Selecting reflectance spectra of emerged184

substrates directly from the remote-sensing images allowed us to avoid potential issues of185

intercalibration between airborne and ground-based sensors. However, note that, since empty186

wooden structures were too thin to fill entirely the 0.5×0.5 m2 pixels of hyperspectral images,187

they were not included as a possible endmember. Further, green algae and seagrasses were188

grouped into a single class corresponding to green vegetation elements. Four bottom classes189

were thus used, namely sand, oyster bags, brown algae and seagrasses/green algae (note that190

these surfaces were assumed to be Lambertian). The corresponding reflectance distributions191
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were estimated based on 150 to 3,000 image spectra, and all show some intra-class variability192

around the mean reflectance spectra (Fig. 4). Such variability may be due, e.g., to the bottom193

chemistry itself (e.g., variations in chlorophyll content in seagrasses/green algae) or to the194

bottom 3-D arrangement that may make the illumination conditions within the surface highly195

variable (Manolakis et al., 2003). Given the similar magnitudes of brown alga, seagrass/green196

alga and, to a lesser extent, oyster bag mean reflectance spectra, such variability potentially197

makes the identification of these three partially overlapping classes quite difficult.198

3. Methodology199

3.1. Forward modeling of subsurface remote-sensing reflectance200

3.1.1. Bio-optical modeling201

In this study, we use the semi-analytical model r̃(λ) developed by Lee et al. (1998, 1999)

to express the subsurface remote-sensing reflectance as measured from nadir as a function

of depth H (in m), bottom albedo ρb(λ) (unitless), total absorption and backscattering

properties of the water column a(λ) and bb(λ) resp. (in m−1), and subsurface solar zenith

angle θs (in
o):

r̃(λ) = r∞(λ)
(
1− e−(kd(λ)+kcu(λ))H

)
+

ρb(λ)

π
e−(kd(λ)+kbu(λ))H (1)

where the subsurface remote-sensing reflectance of optically-deep water r∞(λ) (in sr−1) and202

attenuation coefficients kd(λ), k
c
u(λ) and kb

u(λ) (in m−1) are related to a(λ), bb(λ) and θs by:203

r∞(λ) =

(
0.084 + 0.17

bb(λ)

a(λ) + bb(λ)

)
bb(λ)

a(λ) + bb(λ)
(2)

kd(λ) =
a(λ) + bb(λ)

cos θs
(3)

kb
u(λ) = 1.04(a(λ) + bb(λ))

(
1 + 5.4

bb(λ)

a(λ) + bb(λ)

)0.5

(4)

kc
u(λ) = 1.03(a(λ) + bb(λ))

(
1 + 2.4

bb(λ)

a(λ) + bb(λ)

)0.5

. (5)

Eq. (1) to Eq. (5) have been used and validated in numerous studies dealing with shallow204

water remote sensing over a wide range of coastal waters (Lee et al., 1999, 2001; Klonowski205
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et al., 2007; Goodman et al., 2008; Brando et al., 2009; Hedley et al., 2009; Dekker et al.,206

2011; Fearns et al., 2011; Garcia et al., 2014a; Jay & Guillaume, 2014; McKinna et al.,207

2015; Jay & Guillaume, 2016; Petit et al., 2017). In the absence of in-situ measurements of208

inherent optical properties to develop a site-specific bio-optical model, the total absorption209

and backscattering coefficients are given by the sum of the contributions of optically-active210

water constituents and parameterized according to the generic expressions of Lee et al. (1998)211

and Dekker et al. (2011):212

a(λ) = aw(λ) + [a0(λ) + a1(λ) lnP ]P +Ge−0.015(λ−440) (6)

bb(λ) = bb,w(λ) +X

(
550

λ

)0.5

(7)

where aw(λ) and bb,w(λ) (in m−1) are the pure water absorption and backscattering coeffi-

cients (Buiteveld et al., 1994; Morel, 1974), a0(λ) and a1(λ) (unitless) are empirical spectra

tabulated by Lee et al. (1998), P (in m−1) is the absorption coefficient of phytoplankton at

440 nm, G (in m−1) is the absorption coefficient of colored dissolved organic and detrital

matter at 440 nm, and X (in m−1) is the particle backscattering coefficient at 550 nm. The

above parameterizations of absorption coefficients of phytoplankton and colored dissolved

organic and detrital matter have been shown to be sufficiently accurate over a wide range

of coastal waters (Lee et al., 1999, 2001; Lee & Carder, 2002; Goodman et al., 2008; Hedley

et al., 2009; Dekker et al., 2011; Hedley et al., 2012a; Jay & Guillaume, 2014, 2016). Note

also that the power law exponent used to model particle backscattering was set to -0.5, which

is adequate for normal to more turbid coastal waters (Lee et al., 2001).

In this study, given the high spatial resolution of considered images (0.5 m), the bottom

albedo is parameterized using a linear combination of only two pure substrates similarly to

Brando et al. (2009) and Hedley et al. (2009):

ρb(λ) = B1ρb,1(λ) +B2ρb,2(λ) (8)

where ρb,1(λ) and ρb,2(λ) are two known substrate albedos (e.g., obtained from ground-based213

measurements or a generic spectral library). The scalars B1 and B2 (unitless) may represent214
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the fractional covers of both substrates within the considered pixel, so in this case, only one215

bottom coefficient B is required, i.e., B1 = B, B2 = 1−B and 0 ≤ B ≤ 1 (Klonowski et al.,216

2007; Goodman & Ustin, 2007; Brando et al., 2009; Hedley et al., 2009, 2012a). Alterna-217

tively, Fearns et al. (2011) and Garcia et al. (2014b) used a mixture of benthic reflectances218

normalized at 550 nm, and they estimated the relative brightness of each substrate without219

imposing any constraint on the mixture coefficients to be retrieved. In this case, a single220

multiplicative factor is used to model both the fractional cover and the brightness (or magni-221

tude) of each substrate. Although the sum-to-one constraint applies for the fractional cover,222

the brightness of substrate ρb,1 is independent from that of substrate ρb,2. As a result, the223

mixture coefficients B1 and B2 are independent and do not necessarily sum to one. It is worth224

noting that, even though such a modeling enables the magnitudes of ρb,1 and ρb,2 to vary,225

it also adds an extra degree of freedom during the inversion process. This may increase the226

estimation noise and require post-processing steps in order to smooth estimated maps, e.g.,227

using median filtering (Fearns et al., 2011). In the following, we test these two approaches228

in order to assess the impact of the sum-to-one constraint on estimation performance.229

3.1.2. Probabilistic modeling230

As widely accepted in the community (Jay & Guillaume, 2011; Hedley et al., 2012a;

Jay et al., 2012; Gillis et al., 2013; Garcia et al., 2014b; Jay & Guillaume, 2014; Knudby

et al., 2016), the measured subsurface remote-sensing reflectance, denoted in vector form

r = [r(λ1), ..., r(λL)]
t (where L is the number of wavebands), is assumed to follow a mul-

tivariate Gaussian distribution with mean µ = E [r ] and spectral covariance matrix Γ =

E [(r − E(r ))(r − E(r ))t]. The mean vector is parameterized using the bio-optical model

presented in Section 3.1.1, which may be written in matrix notation as

µ(∆) = (I −K c)r∞ +K b

(
B1

ρb,1

π
+B2

ρb,2

π

)
(9)

where ∆ = [H,P,G,X,B1, B2]
t, r∞ = [r∞(λ1), ..., r∞(λL)]

t, I is the L × L identity matrix,231

K c = diag
[
e−(kd(λi)+kcu(λi))H

]
i∈J1;LK

,K b = diag
[
e−(kd(λi)+kbu(λi))H

]
i∈J1;LK

, and ρb,i = [ρb,i(λ1), ..., ρb,i(λL)]
t.232

233
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The different sources of deviations between the measured and simulated spectra can be

modeled via an appropriate parameterization of Γ . In the probabilistic modeling subse-

quently used within the proposed MILE (MaxImum Likelihood estimation including En-

vironmental noise) inversion method (Section 3.2), we assume that the random variability

around mean µ(∆) can be described using the full spectral covariance matrix of the envi-

ronmental noise, Γ surf , similarly to Hedley et al. (2012a), Garcia et al. (2014b) and Knudby

et al. (2016). The subsurface remote-sensing reflectance is then modeled as

r =
[
(I −K c)r∞ +K b

(
B1

ρb,1

π
+B2

ρb,2

π

)]
+ nsurf (10)

where the random vector nsurf follows a multivariate Gaussian distribution with zero mean234

and covariance matrix Γ surf . Note that, in real scenarios, Γ surf can be estimated over opti-235

cally deep waters similarly to NE∆rE .236

237

However, Eq. (10) only allows the bottom remote-sensing reflectances
(
ρb,1/π

)
and

(
ρb,2/π

)

to vary according to the multiplicative factors B1 and B2. As an alternative to this usual

bottom modeling, the proposed MILEBI (MaxImum Likelihood estimation including Envi-

ronmental noise and Bottom Intra-class variability) probabilistic modeling uses a multivariate

Gaussian distribution to describe the reflectance inherent variability of each benthic class.

Due to the compromise offered between accuracy and mathematical tractability, the Gaus-

sian modeling has been widely used to develop hyperspectral remote-sensing algorithms that

must take into account the spread of each class of materials (and therefore potential overlaps

between these classes) to obtain good performances, e.g., classification and target detection

algorithms (Manolakis et al., 2003; Melgani & Bruzzone, 2004; Palmason et al., 2005). Pre-

liminary tests (not shown here for the sake of brevity) demonstrated that, except for a small

minority of samples corresponding to extreme data points, the bottom intra-class variabil-

ities presented in Fig. 4 could indeed be reliably represented using multivariate Gaussian

distributions. In this case, the subsurface remote-sensing reflectance can be modeled as

r =
{
(I −K c)r∞ +K b

[
B1(µb,1 + nb,1) +B2(µb,2 + nb,2)

]}
+ nsurf (11)
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where µb,i is the mean remote-sensing reflectance spectrum of bottom class i and nb,i follows

a multivariate Gaussian distribution with zero mean and covariance matrix Γ b,i. Separating

deterministic terms from random terms in Eq. (11) leads to

r =
[
(I −K c)r∞ +K b

(
B1µb,1 +B2µb,2

)]
+ [nsurf +K b(B1nb,1 +B2nb,2)] . (12)

The corresponding total covariance matrix is obtained by applying Γ = E [(r − E(r))(r − E(r))t]

to Eq. (12) and by assuming that nb,1, nb,2 and nsurf are independent:

Γ (∆) = K b

[
B1

2Γ b,1 +B2
2Γ b,2

]
K b + Γ surf . (13)

In Eq. (12), possible deviations between the observed subsurface remote-sensing reflectance238

r and the model (left-hand term of the sum) are not only due to the environmental noise,239

but also to the intrinsic spectral variability of each benthic class. As expected, for the ith240

class, the influence of this variability is proportional to Bi, and becomes negligible when241

depth and/or turbidity increase(s) (because of progressive attenuation by K b). Also, if Γ b,1242

and Γ b,2 perfectly describe the bottom intrinsic variabilities, the parameters B1 and B2 only243

represent fractional covers, so the sum-to-one constraint applies. In this case, the MILEBI244

probabilistic modeling disentangles the fractional cover (which is taken into account by a245

single multiplicative factor B = B1 = 1− B2) from intra-class variabilities (which are taken246

into account through the bottom covariance matrices Γ b,1 and Γ b,2), which is not possible247

when using Eq. (10). Alternatively, relaxing the sum-to-one constraint may allow potential248

deviations from the assumed Gaussian modeling.249

3.2. Inversion methods250

In this study, various inversion methods are derived based on the above two probabilis-

tic models of shallow water reflectance variability. All these inversion methods consist in

maximizing the likelihood of observing r given the set ∆ of water column parameters to be

estimated. Under the Gaussian assumption, the likelihood is defined as

P(r |∆) =
[
(2π)L|Γ (∆)|

]−1/2
e−

1

2
(r−µ(∆))tΓ (∆)−1(r−µ(∆)). (14)
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The maximum likelihood estimate ∆̂ML(r) is the value of ∆ that maximizes the likelihood:

∆̂ML(r) = argmax
∆

P(r|∆). (15)

In Eq. (14), the mean vector µ(∆) is given by Eq. (9) for every tested inversion method.

The main difference between the methods actually lies in the parameterization of Γ (∆).

In MILE, Γ (∆) = Γ surf does not depend on ∆ since it only characterizes the above-water

variability. Eq. (14) can thus be simplified, and the MILE estimate ∆̂MILE(r) is given by

the minimum Mahalanobis distance between the measured and simulated spectra:

∆̂MILE(r) = argmin
∆

(r− µ(∆))tΓ surf
−1(r− µ(∆)). (16)

In MILEBI, Γ (∆) depends on ∆, so Eq. (14) cannot be further simplified:

∆̂MILEBI(r) = argmax
∆

{[
(2π)L|Γ (∆)|

]−1/2
e−

1

2
(r−µ(∆))tΓ (∆)−1(r−µ(∆))

}
(17)

where Γ (∆) is given by Eq. (13).

In this paper, MILE and MILEBI are compared to the widely used least-squares (LS) method.

Note that the LS estimate can also be obtained by maximizing the likelihood in Eq. (14),

taking Γ = σ2
I where σ is a positive real number and I is the L × L identity matrix (i.e.,

uncertainties of all spectral bands are assumed to be uncorrelated and of equal variances).

The LS estimate ∆̂LS(r) is given by the minimum Euclidean distance between the measured

and simulated spectra:

∆̂LS(r) = argmin
∆

(r− µ(∆))t(r− µ(∆)). (18)

Comparing Eq. (16), Eq. (17) and Eq. (18) shows that, unlike LS, MILE and MILEBI utilize251

the information contained in the spectral covariance matrix to further constrain the inversion.252

In addition, both methods allow some deviations between the measured and simulated spectra253

by giving the less reliable wavebands little weights in the cost function. For MILE, these are254

located in the domains of strong environmental noise. For MILEBI, these wavebands not255
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Table 1: Methods compared in this study and derived from the likelihood function presented in Eq. (14).
Subscript “S21” indicates the use of the sum-to-one constraint.

Method ∆ µ(∆) Γ (∆)

LSS21 [H,P,G,X,B] (I −K c)r∞ +K b

(

B
ρb,1

π
+ (1− B)

ρb,2

π

)

σ2
I

MILES21 [H,P,G,X,B] (I −K c)r∞ +K b

(

B
ρb,1

π
+ (1− B)

ρb,2

π

)

Γ surf

MILEBIS21 [H,P,G,X,B] (I −K c)r∞ +K b

(

B
ρb,1

π
+ (1− B)

ρb,2

π

)

K b

[

B2Γ b,1 + (1− B)2Γ b,2

]

K b + Γ surf

LS [H,P,G,X,B1, B2] (I −K c)r∞ +K b

(

B1

ρb,1

π
+ B2

ρb,2

π

)

σ2
I

MILE [H,P,G,X,B1, B2] (I −K c)r∞ +K b

(

B1

ρb,1

π
+ B2

ρb,2

π

)

Γ surf

MILEBI [H,P,G,X,B1, B2] (I −K c)r∞ +K b

(

B1

ρb,1

π
+ B2

ρb,2

π

)

K b

[

B1
2Γ b,1 + B2

2Γ b,2

]

K b + Γ surf

only correspond to the domains of strong environmental noise, but also to the domains of256

strong bottom intrinsic variabilities.257

Implementing MILE, MILEBI and LS with or without the sum-to-one constraint on bottom258

mixture coefficients results in the six methods summarized in Table 1. Note that other259

cost functions, such as SAM or least-squares on spectral derivative (Brando et al., 2009;260

Botha et al., 2013; Petit et al., 2017), could also be tested, since, for example, SAM may261

provide more accurate bathymetry retrieval than LS (Petit et al., 2017). We, however, only262

compared MILE, MILEBI and LS (1) in order to focus primarily on the influence of Γ (∆)263

parameterization on the inversion, and (2) because LS generally offers a better tradeoff than264

SAM and least-squares on spectral derivative for accurately retrieving all the parameters at265

the same time (Petit et al., 2017).266

3.3. Implementation of inversion methods267

For the six methods presented in Table 1, the cost function was iteratively optimized268

using the trust-region reflective algorithm implemented in MATLABR© (version 8.0.0, The269

MathWorks Inc., Natick, MA, 2012) within the “lsqcurvefit” function. Lower and upper op-270

timization bounds were similar to those found in the literature for turbid waters (Hedley et al.,271

2009; Garcia et al., 2014b, 2015), i.e., 0 ≤ H ≤ 30 m, 0 ≤ P ≤ 0.5 m−1, 0 ≤ G ≤ 0.5 m−1,272

0 ≤ X ≤ 0.08 m−1, 0 ≤ B1, B2 ≤ 1.5 and 0 ≤ B ≤ 1.273

274

A special attention was given to the initialization step. While default parameter values275

(Lee et al., 2001; Klonowski et al., 2007; McKinna et al., 2015) or reflectance-derived values276

(Lee et al., 1999; Dekker et al., 2011; Jay & Guillaume, 2016) may be used as initial guesses,277

Garcia et al. (2014a,b) have shown that different initial guesses could lead to different local278
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minima and therefore different parameter estimates. This step may be more critical in the279

case of maximum likelihood estimation because considering spectrally-correlated noise may280

introduce more local minima in the parameter solution space (Garcia et al., 2014b). In this281

paper, we thus implemented a Latin Hypercube Sampling scheme as proposed by Garcia et al.282

(2014b) to generate preliminary LUTs containing 100,000 initial guesses and corresponding283

simulated reflectance spectra. Normal distributions were used for H , P , G and X , and uni-284

form distributions bounded by the above lower and upper bounds were used for B, B1 and285

B2. Empirical values were used for means and standard deviations of normal distributions:286

means were set to 0, while standard deviations were set such that the value of the probability287

density function at half maximum corresponded to one-third of the upper bound (e.g., we288

used a standard deviation of 8.5 m for H). Only positive sets of parameters were then kept289

to build the LUTs. The use of such normal distributions allowed us to sample more finely the290

regions of the parameter space where the reflectance strongly varies with depth and water291

clarity parameters, namely, shallow waters and high water clarity (Hedley et al., 2009; Jay292

& Guillaume, 2016). For each measured spectrum to be inverted, the 100 sets of parameters293

corresponding to the 100 closest spectra in the LUT were averaged to provide a single initial294

guess for the iterative optimization process. In vegetation remote sensing, averaging multiple295

best solutions instead of retaining only the best one is known to increase the estimation296

accuracy when the inversion problem is ill-posed and/or the reflectance model is not fully297

accurate (Darvishzadeh et al., 2011; Verrelst et al., 2015; Jay et al., 2017).298

299

In this study, four substrates were identified as possible endmembers (Fig. 4). As only300

two of them could be used in the bottom reflectance model (Eq. (8)), we implemented the301

same type of approach as Brando et al. (2009), i.e., (1) each measured reflectance spectrum302

was inverted using each of the six possible pairs of substrates (note that this requires gener-303

ating six preliminary LUTs for initialization), and (2) these six pairs were sorted according to304

their P(r |∆) value. For similar reasons as for initialization and unlike Brando et al. (2009)305

who only retained the best pair (i.e., corresponding to the highest P(r |∆) value, Pmax), the306

solution was here obtained by averaging all pairs whose P(r |∆) values were sufficiently close307

to Pmax, i.e., within n% of Pmax. In the following, the value of n was investigated based on308
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simulated data (Section 4.2), testing n = 0 (i.e., only the best pair is retained), 1 and 2%.309

The optimum value was then used for processing the airborne data (Section 4.3).310

311

The four bottom intra-class covariance matrices used in MILEBI and MILEBIS21 were312

estimated from hyperspectral images acquired at low tide, similarly to the mean reflectance313

spectra (see Section 2.4). It is worth noting that inverting the covariance matrices detailed in314

Table 1 requires (at least) as many samples (i.e., spectra) as spectral bands for Γ surf and Γ b,i315

estimations. The more samples we have, the more accurate the estimations. In this paper,316

a minimum of 150 spectra (for oyster bag class) were used, this number being substantially317

higher than the number of spectral bands (35).318

3.4. Performance assessment319

3.4.1. Simulated data320

We conducted two series of simulations, each of which corresponded to a different model321

to generate the synthetic data set. For the first data set, we used the probabilistic modeling322

of Eq. (10), therefore assuming that the random variability is only described by Γ surf . The323

influence of water column properties was studied at four depths, i.e., 1, 5, 10 and 20 m, and324

intermediate water clarity as given by Garcia et al. (2015), i.e., P = 0.1 m−1, G = 0.1 m−1,325

and X = 0.01 m−1. The bottom was given either as one of the four substrates shown in326

Fig. 4, or as a 50%/50% mixture of two substrates, thus resulting in ten tested bottom spec-327

tra. Note that intra-class variability was not simulated for this data set. We used the Γ surf328

matrix that was estimated over optically deep waters from the airborne data set presented329

in Section 2, the diagonal of Γ surf being given as the square of NE∆rE shown in Fig. 2. The330

sun-sensor geometry was identical to that used for airborne acquisitions, i.e., nadir viewing331

and a solar zenith angle of 50o.332

The second synthetic data set was generated using the probabilistic modeling of Eq. (12).333

As compared with the first data set, the only difference related to the simulation of bottom334

reflectance, which was here not only modeled using multiplicative factors, but also using ran-335

dom vectors nb,1 and nb,2. These vectors were generated based on the intra-class covariance336

matrices estimated from airborne data (see Section 3.3).337
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For each data set, the “mvnrnd” MATLAB function allowed us to generate 100 noise-338

perturbed spectra for every depth and bottom reflectance, hence providing 4,000 simulated339

spectra in total. These spectra were then inverted using the six methods and according to340

the procedure described in Section 3.3. The estimation performances were evaluated in terms341

of mean absolute error (MAE), which has proven to be a more reliable measure of error than342

the classical root mean square error (Willmott & Matsuura, 2005).343

3.4.2. Airborne data344

The retrievals of bathymetry, absorption of phytoplankton at 440 nm and bottom cover345

were also assessed using the airborne data set (Section 2). For each 6×6 m2 flat sandy-bottom346

area (thus containing 12×12 pixels), the semi-analytical model was inverted for each pixel347

using the six methods, and estimated values ofH , P and bottom coefficients were compared to348

their actual values whenever possible. The six methods were also used to retrieve the bottom349

cover for the image presented in Fig. 3, the estimated benthic habitats being qualitatively350

evaluated by visual inspection.351

4. Results and discussion352

4.1. Influences of environmental noise and bottom intra-class variability on subsurface re-353

flectance354

A preliminary study was conducted to quantify the influences of environmental noise355

and bottom intra-class variability on the measured subsurface reflectance, based on the total356

covariance matrix presented in Eq. (13). Representing this matrix for the four depths in-357

vestigated in the simulations (same water quality) and the four pure substrates presented in358

Fig. 4 allows us to see how these two sources of error make the observation deviate from the359

model (note that, if the bio-optical model in Eq. (9) would be perfect, the total covariance360

matrix would be the zero matrix).361

In the absence of water, the four bottom intra-class covariance matrices show quite different362

patterns and magnitudes (Fig. 5). While, overall, sand and oyster bag variabilities steadily363

increase with wavelength, brown algae and, to a lesser extent, seagrasses/green algae, show364

lower variability in the blue and red domains due to the strong chlorophyll absorption leading365
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Figure 5: Total covariance matrix (as defined by Eq. (13)) as a function of depth for the four pure substrates
investigated (P = 0.1 m−1, G = 0.1 m−1 and X = 0.01 m−1). The color scale is the same for every matrix.

to reflectance saturation. For the four substrates, the influence of bottom intra-class variabil-366

ity (resp., environmental noise) decreases (resp., increases) with increasing optical depth. At367

1 m and, to a lesser extent, 5 m, the subsurface reflectance variability in the visible domain is368

primarily driven by the bottom intra-class variability, showing that the latter should not be369

neglected for such optically shallow waters as also observed by Hedley et al. (2012b). Note370

that, at 1 m and for most wavebands larger than 700 nm, the water attenuation is already371

such that the total covariance matrix is mainly dominated by the environmental noise for the372

four substrates. At 10 m, the influence of environmental noise tends to overshadow that of373

bottom intra-class variability; only the variability of the brightest benthic class, namely sand,374

affects the subsurface reflectance in the domain of lower absorption (i.e., in the green region375

for this water type). In quasi-optically deep waters (20 m), the bottom is nearly not visible so376

only the environmental noise contributes to the total covariance matrix. Of course, note that377
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the relative influences of environmental noise and bottom intra-class variability as functions378

of optical depth depend on their magnitude, meaning that they should be re-evaluated for379

every sensor, study area, etc.380

To our knowledge, only a few authors (e.g., Hedley et al. (2012b)) have thoroughly analyzed381

the influence of bottom intra-class spectral variability on subsurface reflectance. Using the382

analytical expression in Eq. (13) appears as a simple but convenient way to undertake such an383

analysis and to investigate how accurate Eq. (8) is in modeling the total bottom reflectance.384

4.2. Estimation results obtained with the simulated data385

In Fig. 6 and Fig. 7, we show the inversion results obtained from the two synthetic data386

sets presented in Section 3.4.1. Importantly, as the bottom reflectance variability was simu-387

lated differently in these two data sets, we only present LSS21, MILES21, LS and MILE (resp.388

MILEBIS21 and MILEBI) bottom estimation results when using the first (resp. the second)389

data set. For both data sets, we, however, show the H , P , G and X estimation results for390

the six methods in order to study the influence of bottom mismodeling.391

392

For each method, the H estimation error is similar for both data sets and increases with393

depth (Fig. 6). It could be shown that this increase is caused both by a progressive H un-394

derestimation and by an increasing estimation variance. Overall, MILES21 and MILEBIS21395

(resp., MILE and MILEBI) provide lower errors than LSS21 (resp., LS). For example, at 10 m396

(first data set, n = 0%), the MAEs are 1.52, 1.63 and 2.32 m for MILEBIS21, MILES21 and397

LSS21 resp.. Using the sum-to-one constraint generally improves the performances, especially398

for H ≥ 5 m, MILEBI, MILE and LS respectively obtaining MAEs of 2.48, 2.46 and 3.14 m399

at 10 m.400

On the one hand, the P and G errors tend to show a bowl-shaped pattern with respect to401

depth (the minimum being located at 5 m in most cases), especially when considering the402

second data set. On the other hand, the X error steadily declines with increasing depth403

(Fig. 6). Similarly to H , MILE- and MILEBI-based methods generally better estimate these404

water clarity parameters than LS-based methods. This is more visible for H ≥ 5 m, for405

which similar errors are generally obtained with MILES21, MILEBIS21, MILE and MILEBI.406
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Figure 6: H , P , G and X (rows 1-4, resp.) estimation results obtained by applying the six methods (columns
1-6, resp.) presented in Table 1 to the synthetic data simulated using either Eq. (10) (solid lines) or Eq. (12)
(dashed lines). Black, turquoise and orange lines respectively correspond to the use of n = 0, 1 and 2% for
averaging the best bottom pairs.

For example, at 10 m (first data set, n = 0%), the P (resp., X) retrieval error decreases by407

about 30% (resp., 48%) when using one of these four methods instead of LSS21 or LS.408

While both data sets lead to similar results for H ≥ 5 m, strong differences appear for409

H = 1 m. When using the first data set, MILE-based methods offer the best performances410

for P and G, followed by MILEBI- and LS-based methods. In the case of X , MILES21 and411

MILE still perform better, followed by LS- and MILEBI-based methods. However, the errors412

obtained with MILE- and LS-based methods increase when using the second data set. This413

increase is stronger (1) when the bottom mixture coefficients are constrained to sum to one414

(e.g., for P estimation, the MAEs obtained with LSS21 and LS increase by 70 and 21% resp.),415

and (2) in the cases of MILE-based methods as compared to LS-based methods (e.g., for416

X estimation, the MAEs obtained with LSS21 and MILES21 increase by 26 and 78% resp.).417
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On the other hand, MILEBI-based methods offer more similar results over both data sets,418

MILEBIS21 generally performing better than the other methods for these three parameters419

when using the second data set.420

Using n = 0, 1 or 2% for averaging the best bottom pairs does not significantly change the421

H , P , G and X inversion results for LS- and MILE-based methods. For MILEBIS21 and422

MILEBI, increasing the value of n generally slightly degrades the estimation accuracy at 1 m423

(e.g., for P estimation, the MAE obtained with MILEBIS21 increases by 7% when taking424

n = 2% as compared to n = 0%). However, the performances generally improve for H ≥ 5 m425

when taking either n = 1 or 2%. For example, at 10 m (first data set) and for both n values,426

the MAE obtained with MILEBIS21 decreases by 15% for H and 7% for P .427

428

The bottom estimation results show similar trends for every benthic class, method, data429

set and n value, i.e., the error increases with depth (Fig. 7). For H ≤ 5 m, the easiest430

class to be retrieved is generally sand, followed by brown algae, seagrasses/green algae and431

oyster bags. For deeper waters, it is more difficult to note any clear trend among methods432

and benthic classes. Similarly to depth and water clarity parameters, MILE-based methods433

provide equal or better performances than LS-based methods for H ≤ 5 m (e.g., for the sand434

coefficient, the MAEs obtained with LSS21 and MILES21 at 5 m are 0.13 and 0.09 resp.).435

It is worth noting that, despite the additional bottom intra-class variability present in the436

second data set, the performances of MILEBI-based methods generally remain comparable to437

those of MILE-based methods. Also, it can be seen that applying the sum-to-one constraint438

significantly improves the retrieval for every method, especially for H ≥ 5 m. For example,439

for the oyster bag coefficient, the MAE obtained with MILEBIS21 at 5 m (n = 0%) increases440

by 38% when relaxing the sum-to-one constraint.441

Averaging over several bottom pairs instead of retaining only the best one generally has a442

positive effect for every method and H ≥ 10 m (or even for H ≥ 5 m in the cases of LS443

and MILE). For such optically deep waters, taking n = 2% and, to a lesser extent, n = 1%,444

provides equal or better performances than taking n = 0% in most cases. For example, for445

the sand coefficient, the MAE obtained with LSS21 at 10 m decreases by 13% when taking446

n = 2% as compared to n = 0%. For shallower waters, this averaging does not significantly447
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Figure 7: Bottom estimation results obtained by applying the six methods (columns 1-6, resp.) presented
in Table 1 to the synthetic data simulated using either Eq. (10) (solid lines) or Eq. (12) (dashed lines).
Black, turquoise and orange lines respectively correspond to the use of n = 0, 1 and 2% for averaging the
best bottom pairs. Bsa, Bob, Bse and Bba (rows 1-4, resp.) refer to the coefficients of sand, oyster bag,
seagrass/green alga and brown alga spectra, resp..

change the retrieval accuracy for LS- and MILE-based methods. However, taking n = 2%,448

and, to a lesser extent, n = 1%, slightly degrades the MILEBIS21 and MILEBI bottom449

estimation results. In the following results, n is therefore set to 1% as this value offers a good450

compromise between optically shallow and deep waters for the six methods.451

4.3. Estimation results obtained with the airborne data452

Similarly to simulations, for every method, the H estimation error increases with depth453

as a result of a progressive H underestimation and an increasing estimation variance (Fig. 8).454

This underestimation occurs for shallower waters in the cases of LS-based methods as com-455

pared to MILE- and MILEBI-based methods. Unlike for simulations, the sum-to-one con-456

straint leads to poorer performances for every method. MILEBI provides the highest overall457
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Figure 8: Depth estimation results obtained from airborne data (n = 1%): (a) LSS21, (b) MILES21, (c)
MILEBIS21, (d) LS, (e) MILE and (f) MILEBI.

accuracy (MAE = 1.17 m), followed by MILE (MAE = 1.23 m), MILEBIS21 (MAE = 1.35 m)458

and MILES21 (MAE = 1.39 m). On the other hand, LSS21 and LS obtain significantly higher459

errors, with MAEs of 1.97 and 1.86 m respectively.460

461

Similar observations are made from the P inversion results (Fig. 9), i.e., (1) MILE- and462

MILEBI-based methods perform better than LS-methods, and (2) relaxing the sum-to-one463

constraint improves the estimation accuracy. MILEBI and MILE still provide the best per-464

formances with MAE ≈ 0.016 m−1, while LSS21 and LS lead to MAE ≈ 0.027 m−1.465

466

The bottom estimation results obtained from the 14 areas of known depth (Fig. 10) show467

the same pattern for every method, i.e., (1) the sandy-bottom cover is accurately retrieved468

in shallow waters, and (2) the estimated sand coefficient decreases as depth increases, which469

is compensated for by increasing coefficients of darker substrates. This decrease occurs for470

shallower waters (i.e., for H ≥ 4.70 m) for the three methods that do not constrain the sum471
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Figure 9: P estimation results obtained from airborne data (n = 1%): (a) LSS21, (b) MILES21, (c) MILEBIS21,
(d) LS, (e) MILE and (f) MILEBI.

to one, i.e., LS, MILE and MILEBI. For example, for these methods and H ≥ 4.70 m, the472

estimated sand coefficient generally does not exceed 0.5, while the estimated brown alga co-473

efficient is mostly close to 1.5. On the other hand, LSS21, MILES21 and MILEBIS21 generally474

lead to reasonable estimates of bottom cover until around 9.00 m, the best performances475

being obtained using MILES21 with a minimum estimated sand coefficient of 0.6.476

477

In Fig. 11, the same concise and qualitative RGB representation as Petit et al. (2017) is478

adopted to show the estimated spatial distributions of the four investigated substrates based479

on the image presented in Fig. 3. Beforehand, for each pixel, the four estimated bottom480

coefficients were normalized by their sum (that obviously equals one for LSS21, MILES21 and481

MILEBIS21) so that the obtained normalized coefficients were closer to the actual fractional482

covers (if we assume that the effect of intra-class variability is lower than that of fractional483

cover), which facilitates the comparison of the six methods. This allows representing (1) the484

distributions of oyster bags, seagrasses/green algae and brown algae through the blue, green485
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Figure 10: Mean estimated coefficients for (a) sand (Bsa), (b) oyster bags (Bob), (c) seagrasses/green algae
(Bse) and (d) brown algae (Bba) for the 14 sandy-bottom areas (n = 1%).

and red channels of the color composite image, resp., and (2) the distribution of sand through486

the absence of blue, green and red, i.e., through the pixel darkness.487

The large sandy-bottom area is accurately retrieved by LSS21, MILES21 and MILEBIS21, the488

LSS21 map being slightly noisier than the other two, e.g., in the deeper (upper right) part489

of the image. Except in the shallower (left-hand) part of the image for MILEBI, relaxing490

the sum-to-one constraint leads to poorer results in the main sandy area. Indeed, even491

if LS, MILE and MILEBI retrieve some sand, they greatly overestimate the presence of492

seagrasses/green algae, brown algae and oyster bags respectively.493

Overall, the six methods accurately retrieve the seagrass meadow. Some confusions with494

brown algae however occur in the lower and shallower part of the meadow when using MILE,495

MILEBI, and to a lesser extent, MILEBIS21, MILES21 and LSS21.496

Similarly to what is observed with simulations, the retrieval of oyster bag distribution is497

generally less accurate. The results are seemingly more consistent with MILEBIS21 and498
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Figure 11: Color composite images showing the estimated spatial distributions of the four investigated
substrates based on the image presented in Fig. 3: (a) LSS21, (b) LS, (c) MILES21, (d) MILE, (e) MILEBIS21,
and (f) MILEBI (n = 1%). The normalized estimated coefficients of oyster bags, seagrasses/green algae and
brown algae are respectively coded by the blue, green and red channels. The normalized estimated sand
coefficient is coded by the pixel darkness (i.e., the absence of red, green and blue).
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MILEBI, as both methods obtain higher and more homogeneously-distributed oyster bag499

coefficients over oyster racks as compared to the other methods. Note that only the MILES21500

and MILEBI-based methods can reliably detect the deepest oyster racks located within the501

seagrass meadow. On the other hand, LSS21 obtains a spatially-inconsistent mixture of oyster502

bags and seagrasses, while LS and MILE retrieve a sand-dominated bottom.503

It is worth noting that the brown algae retrieved by MILEBIS21 over some oyster racks in the504

lower left part of the image are more sparsely detected by MILES21 and almost not detected505

by LSS21. These brown algae are, however, consistently retrieved by the three methods with506

relaxed sum-to-one constraint.507

4.4. Discussion of estimation performances508

4.4.1. General considerations509

By definition, a bio-optical model is only a model, which means that various sources of510

error may make it deviate from the observation. Given the number of potential sources (e.g.,511

environmental noise or bottom intra-class variability), the difficulty to properly take them512

into account (e.g., skyglint) and the low water-leaving radiance, it seems quite challenging513

to include them explicitly within the modeling and to estimate the corresponding additional514

parameters during the inversion process. Yet, the results presented in Fig. 5 show that515

such variability may make the shallow water reflectance strongly differ from the bio-optical516

model. As a result, it may significantly decrease the estimation accuracy as obtained using the517

classical LS method, since the latter tries to perfectly match the model with the observation.518

Alternatively, we propose to include these deviations within a probabilistic forward model of519

shallow water reflectance variability, thus assuming that they all can be described through520

an additive zero-mean multivariate Gaussian noise that is fully determined by its spectral521

covariance matrix. The MILE- and MILEBI-based inversion methods are derived from such522

probabilistic modeling, and the results derived from simulated and airborne data show that523

they all succeed in decreasing the detrimental influence of environmental noise as compared to524

LS-based methods, especially in optically deep waters. In addition, MILEBI-based methods525

decrease the influence of bottom intra-class variability, especially in very optically shallow526

waters.527

30



4.4.2. Common trends in method performances528

Overall, the results obtained with simulated and airborne data show similar trends and529

are consistent with expectations for every method. For example, depth and benthic cover530

estimations become less accurate as depth increases due to the decreasing bottom influence531

on subsurface reflectance (Fig. 6, Fig. 7, Fig. 8 and Fig. 10). The retrievals of water clarity532

parameters differ between absorbing (P and G) and scattering (X) components that respec-533

tively decrease and increase the subsurface reflectance (Fig. 6). For P and G, the depth534

of minimum error is the one that offers the best compromise between (1) maximizing the535

subsurface reflectance so that there is more contrast between absorbing and non-absorbing536

regions (which facilitates the retrieval), and (2) minimizing the influence of bottom variabil-537

ity on subsurface reflectance. For X , the error is minimum in optically deep waters, where538

the bottom does not affect the subsurface reflectance.539

4.4.3. Influence of averaging the best bottom pairs540

Due to the ill-posedness of the inversion problem (resulting in compensations between541

model parameters) or to potential deviations between the measured reflectance and the542

model, the actual bottom pair may not be the one that leads to the lowest cost function543

value. In simulations, the inversion is particularly ill-posed for quasi-optically deep waters,544

where (1) H and coefficients of dark bottoms often tend to compensate, and (2) all the dark545

benthic classes (e.g., seagrasses/green algae and brown algae) nearly have the same effect on546

subsurface reflectance (Fig. 6 and Fig. 7). In this case, selecting a particular dark substrate547

in the bottom spectral library instead of another dark substrate is not strongly justified,548

given the different sources of error between the observed and modeled reflectances that ac-549

tually make both substrates equally likely. The results (Fig. 6 and Fig. 7) demonstrate that,550

alternatively, taking the average of multiple best bottom pairs (if sufficiently close to the551

best pair) can decrease the ill-posedness influence and increase the overall retrieval accuracy,552

acting as a regularization step. Testing the effect of the n value (that directly controls the553

number of best pairs to be averaged), we show that a high n value (even greater than 2%) can554

be chosen for optically deep waters, where a reasonable aim is only to discriminate among555

bright and dark substrates. In very shallow waters, a too large n value may, however, increase556
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the confusion between classes, therefore making the value of 1% a good compromise for our557

data. Of course, this value should be reassessed for each data set, as it is expected to depend558

on, e.g., the environmental noise and/or the benthic classes encountered on the study site.559

4.4.4. Influence of sum-to-one constraint560

The results show that the sum-to-one constraint always leads to better inversion results561

if the shallow water reflectance model is perfect (e.g., when applying LS- and MILE-based562

methods to the first data set, or MILEBI-based methods to the second data set), because563

reducing the number of parameters to be retrieved reduces the estimation uncertainty. In564

practice, the observation may, however, deviate from the model. These deviations may be565

caused either by the observation, e.g., in the case of imperfect preprocessing of at-sensor566

radiance (e.g., atmospheric and sea surface corrections), or by the model, e.g., in the case of567

imperfect bio-optical modeling. In this study, such deviations are present when considering568

airborne remote-sensing data or when applying LS- and MILE-based (resp., MILEBI-based)569

methods to the second (resp., first) synthetic data set. In these cases, relaxing the sum-to-one570

constraint adds a degree of freedom, which enables unmodeled (or mismodeled) variability571

to be compensated for by misestimation of bottom cover rather than by misestimation of572

depth and/or water clarity parameters. This is demonstrated by the results obtained with573

airborne data, since (1) Fig. 8 and Fig. 9 show that LS, MILE and MILEBI better retrieve574

H and P as compared to LSS21, MILES21 and MILEBIS21 resp. (note that this is consistent575

with the results of Petit et al. (2017) in the case of LS), and (2) Fig. 10 shows that LSS21,576

MILES21 and MILEBIS21 provide better bottom retrievals than LS, MILE and MILEBI resp..577

However, relaxing the sum-to-one constraint does not always degrade the bottom retrieval:578

indeed, if the bottom intra-class variabilities affect the subsurface reflectance (i.e., mostly579

for low optical depths, see Fig. 5), allowing both benthic reflectances in Eq. (8) to vary in580

a multiplicative way enables LS and MILE to better capture this intra-class variability and581

improve the overall performances.582

MILEBIS21 thus appears as an interesting alternative to LS- and MILE-based methods, be-583

cause (1) it takes into account potentially complex (i.e., not only multiplicative) bottom584

intra-class variabilities through their associated covariance matrix, and (2) it limits the prob-585
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lem ill-posedness as it does not require any additional parameter to be estimated. The benthic586

covers derived from airborne data (Fig. 11) illustrate this dual improvement, as MILEBIS21587

not only provides accurate performances in the deepest sandy-bottom areas similarly to LSS21588

and MILES21, but also retrieves the presence of brown algae over oyster racks in shallower589

waters, similarly to LS, MILE and MILEBI.590

4.4.5. Robustness of inversion methods591

All LS-, MILE- and MILEBI-based methods require some prior knowledge on the con-592

sidered scene, this knowledge concerning either the mean endmember reflectances or the593

covariance matrices. However, obtaining an accurate prior knowledge may be difficult, which594

requires investigating how such errors can affect the method performances.595

It should first be noted that obtaining an accurate estimate of the environmental noise ma-596

trix (as necessary for MILE- and MILEBI-based methods) is usually not problematic, since597

it only necessitates finding a homogeneous area in the image. This may easily be done using598

the methodology proposed by Wettle et al. (2004), and areas of optically deep water are ideal599

to perform this estimation. Using this matrix for inversion allows MILE-based methods to600

greatly improve the retrieval of depth and water clarity parameters in sufficiently deep waters601

as compared to LS-based methods (Fig. 6, Fig. 8 and Fig. 9). It also improves the remote602

sensing of shallow waters if Eq. (8) accurately models the actual bottom reflectance. How-603

ever, if the latter cannot accurately be modeled by Eq. (8) (e.g., due to complex intra-class604

variabilities or poorly-known mean endmember reflectances) while having a strong effect on605

subsurface reflectance (i.e., in very optically shallow waters), the performances of MILE-606

based methods may decrease more strongly than those of LS-based methods (Fig. 6). In607

such cases, MILE is shown to better estimate depth and water clarity parameters than LS,608

LSS21 and MILES21 (Fig. 6, Fig. 8 and Fig. 9), especially because relaxing the sum-to-one609

constraint reduces the detrimental influence of bottom intra-class variability.610

Alternatively, MILEBI and MILEBIS21 allow the modeled endmember spectra to vary around611

their mean through the use of bottom intra-class covariance matrices. Both methods are thus612

less affected by an imperfect knowledge of endmember reflectances. This aspect is one of the613

primary advantages of these methods as compared to LS- and MILE-based methods, and614
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may be of tremendous importance when mapping poorly-known shallow water environments,615

for which the use of a single mean reflectance spectrum for each benthic class may seem616

unrealistic.617

However, obtaining accurate estimates of bottom covariance matrices may sometimes be diffi-618

cult since, similarly to the mean endmember reflectances used by the six tested methods, and619

as emphasized in Section 2.4, these matrices are estimated from a limited number of spectra620

that may not be fully representative of the variability encountered in the whole study area.621

That said, the results obtained with simulated data (Fig. 6) suggest that accurate knowl-622

edge of these matrices may only be necessary for very optically shallow waters, as MILE- and623

MILEBI-based obtain nearly the same results over both data sets beyond 5 m. As the optical624

depth increases, the water attenuation and environmental noise smooths the spectral details625

present in bottom covariance matrices (Fig. 5), so rough estimates become sufficient to take626

this variability into account. For very optically shallow waters, unlike LS- and MILE-based627

methods, MILEBI-based methods show similar performances for both synthetic data sets628

(Fig. 6), although the first data set is generated using zero covariance matrices that strongly629

differ from those used in MILEBIS21 and MILEBI. This important result demonstrates the630

robustness of these two methods against imperfect knowledge of bottom covariance matrices,631

which may have important implications for their implementation at larger scales (e.g., global632

scale).633

5. Conclusions and perspectives634

In this study, we propose a realistic probabilistic model of shallow water reflectance vari-635

ability as well as two associated inversion methods, denoted MILE and MILEBI. As compared636

to classical least-squares fitting, these methods improve the remote sensing of shallow waters637

by utilizing specific parameterizations of the spectral covariance matrix. MILE and MILEBI638

not only constrain model inversion based on the off-diagonal terms of covariance matrices, but639

also allow the measured data to differ from the model by giving the less reliable wavebands640

lower weights in the cost function. For MILE, these wavebands correspond to the domains641

where the environmental noise is the strongest. For MILEBI, the less reliable wavebands642

not only correspond to the domains of strong environmental noise, but also to the domains643
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where the bottom intra-class variability is the highest. To our knowledge, MILEBI is one of644

the first shallow water remote-sensing methods that explicitly take into account the inherent645

variability of each benthic class without adding any multiplicative parameter to be estimated646

during the inversion process (the bottom covariance matrices, however, need to be estimated647

beforehand, similarly to the mean endmember reflectances).648

Based on simulated and airborne data, we show that these specific covariance parameteriza-649

tions enable MILE and MILEBI to generally perform better than LS. Further, studying the650

influence of constraining bottom mixture coefficients to sum to one shows that this constraint651

provides better inversion results if the reflectance model reliably describes the observation. In652

the presence of unmodeled (or mismodeled) variability in the remote-sensing data (e.g., due to653

bottom intra-class variability, imperfect atmospheric correction or bio-optical modeling, etc),654

relaxing this constraint may decrease the detrimental influences of these deviations, however655

at the cost of an increasingly noisy bottom retrieval as the optical depth increases. In prac-656

tice, as there are always some slight deviations between measured and simulated data, these657

results thus suggest that most inversion methods cannot accurately retrieve all the targeted658

parameters at the same time, and that applying different constraints during the inversion659

will lead these deviations to affect the estimation of other unconstrained parameters. That660

said, the sum-to-one constrained version of MILEBI combines the advantage of limiting the661

number of parameters to be estimated (thus reducing the problem ill-posedness) with that662

of allowing the observation to differ from the model. This dual aspect makes this method663

promising to remotely sense complex shallow water environments.664

665

Future studies would certainly benefit from the probabilistic forward model of shallow666

water reflectance variability presented in Eq. (12) so as to generate more realistic data sets667

than those usually generated using Eq. (10). This model could also be combined with other668

mixing models (e.g., linear models including more than two substrates or non-linear mixing669

models) in order to further refine the modeling of bottom reflectance. This may be important670

for more accurately simulating the response of very shallow waters, for which an increase in671

bottom modeling complexity significantly affects the measured subsurface reflectance.672

As far as the inversion is concerned, perspectives include refining the initialization part, that673
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may be critical for MILE methods in very shallow waters (results not shown). Optimizing the674

construction of the LUT used for initialization (size, parameter distributions, etc) is likely675

to speed up the inversion while keeping similar estimation performances. Alternatively, the676

Mahalanobis distance used in MILE could easily be used as a metric within a LUT-based677

inversion approach such as ALLUT (Hedley et al., 2009) in order to further speed up the678

inversion process or to avoid local minima. Note that the approach recently proposed by Jay679

& Guillaume (2016) could also be implemented to regularize the inversion by introducing680

prior knowledge on targeted parameters.681

Ultimately, an important perspective is the assessment of MILE and MILEBI performances682

for shallow water remote sensing at the global scale, e.g., in the context of the forthcoming683

“Environmental Mapping and Analysis Program” mission (Guanter et al., 2015). For this684

purpose, besides properly estimating the environmental noise on the image itself, a generic685

library of bottom mean reflectance spectra will be necessary to parameterize the total benthic686

reflectance. This library may be built from a comprehensive spectral database gathering all687

the expected bottom classes in the considered study site. For example, the 12-class database688

presented by Hochberg et al. (2003) could be of great help for coral reef remote sensing. This689

database could also be used to build an associated generic library of intra-class covariance690

matrices to implement MILEBI. As shown by Hochberg et al. (2003) in Fig. 3, the intra-691

class variability at the global scale is such that using a single mean reflectance spectrum692

for each bottom class to map this class across different areas worldwide seems to be highly693

unrealistic. MILEBI thus offers an interesting alternative to LS and MILE to take such694

variability into account in a more accurate manner. In particular, given the high intra-class695

variabilities presented by Hochberg et al. (2003) and the significant overlaps between these696

classes, MILEBI may greatly improve the remote sensing of coral reefs.697
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