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SPACE-TIME EULER DISCRETIZATION SCHEMES

FOR THE STOCHASTIC 2D NAVIER-STOKES EQUATIONS

HAKIMA BESSAIH AND ANNIE MILLET

Abstract. We prove that the implicit time Euler scheme coupled with finite elements
space discretization for the 2D Navier-Stokes equations on the torus subject to a random
perturbation converges in L2(Ω), and describe the rate of convergence for an H1-valued
initial condition. This refines previous results which only established the convergence
in probability of these numerical approximations. Using exponential moment estimates
of the solution of the stochastic Navier-Stokes equations and convergence of a localized
scheme, we can prove strong convergence of this space-time approximation. The speed of
the L2(Ω)-convergence depends on the diffusion coefficient and on the viscosity parame-
ter. In case of Scott-Vogelius mixed elements and for an additive noise, the convergence
is polynomial.

1. Introduction

Numerical schemes and algorithms have been introduced to best approximate and con-
struct solutions for PDEs. A similar approach has started to emerge for stochastic models
and in particular SPDEs. Many algorithms based on either finite difference, finite el-
ement or spectral Galerkin methods (for the space discretization), and on either Euler
schemes, Crank-Nicolson or Runge-Kutta schemes (for the time discretization) have been
introduced for both the linear and nonlinear cases. Their rates of convergence have been
widely investigated. The literature on numerical analysis for SPDEs is now very exten-
sive. In [1] the models are either linear, have global Lipschitz properties, or more generally
some monotonicity property. In this case the convergence is proven to be in mean square.
When nonlinearities are involved that are not of Lipschitz or monotone type, then a rate
of convergence in mean square is more difficult to obtain. Indeed, because of the stochastic
perturbation, one may not use the Gronwall lemma after taking the expectation of the
error bound since it involves a nonlinear term which is often quadratic. One way to get
around this problem is to localize the nonlinear term in order to get a linear inequality,
and then use the Gronwall lemma. This gives rise to a rate of convergence in probability,
that was first introduced by J. Printems [19].

In this paper, we focus on the stochastic 2D Navier-Stokes equations. Our goal is
to implement a space-time discretization scheme, prove its L2(Ω) convergence, and get
appropriate rates of convergence.

Our model is given by

∂tu− ν∆u+ (u · ∇)u+∇π = G(u)dW in (0, T )×D, (1.1)

div u = 0 in (0, T )×D, (1.2)
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where D = [0, L]2, T > 0. The process u : Ω× (0, T )×D → R2 is the velocity field with
initial condition u0 ∈ W1,2(D), periodic boundary conditions u(t, x + Lvi) = u(t, x) on
(0, T )×∂D, where vi, i = 1, 2 denotes the canonical basis of R2, and π : Ω×(0, T )×D → R
is the pressure. Here G is a diffusion coefficient with global Lipschitz conditions. Let
(Ω,F , (Ft),P) denote a filtered probability space andW be a Wiener process to be precisely
defined later. Unique global weak and strong solutions (in the PDE sense) for (1.1) are
constructed for both additive and multiplicative noise, and without being exhaustive, we
refer to [6, 10].

Various space-time numerical schemes have been studied for the stochastic Navier-
Stokes equations with a multiplicative noise (1.1). We refer to [8, 13, 6, 9, 7], where
convergence in probability is stated with various rates of convergence. As stated previously,
the main tool to get the convergence in probability is the localization of the nonlinear
term over a space of large probability. Our previous paper [3] describes most of the results
contained in these papers. The first result on an strong, that is L2(Ω)-convergence, rate is
proved in [3] for an H1-valued initial condition. The method is based on the fact that the
solution (and the scheme) have finite moments (bounded uniformly on the mesh). When
the noise is additive, the solution has exponential moments; we used this property in [3]
to get an explicit polynomial strong rate of convergence. Let us mention the result by
Duan-Yang [12], where strong convergence results are stated, and proved using semi-group
techniques; in that paper the initial condition u0 ∈ H2(D) is more regular than in our
setting.

In our previous paper [3], only a time discretization scheme for the model (1.1) was
studied. In the current paper, we implement a space-time discretization. More specifically,
we have an implicit time discretization coupled with a finite elements spatial discretization.
A similar algorithm has been studied in [9], where convergence in probability was proven.
Using the tools introduced in our previous paper [3], which are formalized in some general
framework, we improve these results by proving rates of L2(Ω)-convergence for a space-
time scheme.

This paper deals with the fully implicit time Euler scheme with constant time mesh T
N

and the finite elements discretization with space parameter h used in [9]. For general finite
elements, in order to ensure stability, we have to deal with the velocity and the pressure
which satisfy the discrete LBB condition. As in the results on convergence in probability
proved in [9], we compare the space-time discretization Ul and the fully implicit time
discretization ul in L2 := L2(D) uniformly on the time grid {l TN }l=0,··· ,N . The strong
speed of convergence we obtain for the velocity includes a term containing the pressure.

The proof relies first on a L2(Ω) convergence result of max1≤l≤N 1Ωl−1(M)|ul − Ul|2L2

localized by a set Ω̃l(M). On that set, some power of the W1,2-norm of the time dis-
cretization ul is controlled. However, due to the fact that the classical non-linear term
[u.∇]u has to be coupled with 1

2 [div u]u, for general finite elements the localization set is

Ω̃l(M) :=
{

maxj=0,··· ,l ‖uj‖4W1,2 ≤ M
}

. Since we can control moments of the L2-norm of

both discretizations ul and Ul, choosing the bound M(N,h) in an appropriate way, we
can prove a strong speed of convergence. In general, the error contains a term including
the pressure and its discretization. To get more precise results, we have to make some as-
sumptions either on the pressure or on the relation between h and T/N , or to strengthen
the assumptions on the diffusion coefficient. In case of a multiplicative stochastic per-
turbation, for a constant divergence-free W1,2-valued initial condition (or more generally
for a Gaussian W1,2-valued initial random variable), the strong speed of convergence of
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maxl |ul −Ul|2L2 is any negative power of ln(h2 + T/N). If the noise is additive the speed

of convergence is C exp(c
√

ln(h2 + T/N)). The fact that the convergence is much faster

is related to the existence of exponential moments of max0≤l≤N ‖ul‖2W1,2 . However, the
speed is not polynomial due to the fact that the localization involves the fourth power of
the W1,2 norm of the time scheme {ul}l.

In the particular case of divergence-free finite elements, such as the Scott-Vogelius
mixed elements [20, 23] the localization set is Ωl(M) :=

{
maxj=0,··· ,l ‖uj‖2W1,2 ≤ M

}
. If

the speed of convergence is similar to that in the case of general finite elements (with a
higher power of ln(h2 + T/N)), the situation is different for an additive stochastic pertur-
bation. As it was already observed in [3], where the existence of exponential moments for
sups≤T ‖u(s)‖2W1,2 was used, the localization by the square of ‖ul‖W1,2 , and the existence
of exponential moments for the time scheme provide a “polynomial” speed of convergence
of max1≤l≤N |ul −Ul|2L2 in terms of h2 + T/N . The exponent depends on the viscosity
ν and on the “strength” of the noise. If the strength of the noise converges to 0, this
exponent converges to 1.

In all cases, coupling the above results with the strong convergence of max1≤l≤N
∣∣u( lTN )−

ul
∣∣2
L2 from [3], we deduce the strong speed of convergence of our space-time Euler scheme.

Note that due to the parabolic feature of the Navier-Sokes equations, the coupling of h2

and T/N is to be expected.

The paper is organized as follows. In section 2 we define precisely our model, the
stochastic perturbation, and recall classical results for the solution u to the stochastic 2D
Navier-Stokes equations. Section 3 describes the fully implicit time Euler scheme; it recalls
some bounds for moments proved in [8] and [9], as well as the strong speed of convergence
of this time scheme proved in [3] for multiplicative and additive stochastic perturbations.
It also recalls some results about averages of the time discretization of the pressure proved
in [9]. In section 4, we introduce the finite elements, recall the definition of Ul from [8, 9],
as well as various bounds of moments for Ul. Some technical estimates about the non-
linear terms are proved, among which terms using some localization on abstract subsets of
Ω. Choosing these subsets in an appropriate way and using a discrete version of Gronwall’s
lemma, we prove the localized L2(Ω)-convergence of the error between space-time Euler
scheme Ul and the fully implicit time scheme ul in section 5. In section 6 we introduce
a general framework to deduce the strong speed of convergence from localized L2(Ω)
estimates and moment bounds. We then apply the general results to deduce the strong
speed of convergence of max1≤l≤N |Ul − u(lT/N)|2L2 in the case of general finite elements,
and then in that of divergence-free ones in section 7. Finally the existence of exponential
moments for max1≤l≤N ‖ul‖2W1,2 is proven in the Appendix, both for a deterministic and
random initial condition.

As usual, throughout the paper, C will denote a constant which can change from one
line to the next, and we let C(a) denote a constant depending on some parameter a.

2. Notations and preliminary results

In what follows, we will consider velocity fields that have mean zero over [0, L]2. Let

Lp := [Lpper(D)]2 (resp. Wk,p := [W k,p
per(D)]2) denote the usual Lebesgue and Sobolev

spaces of periodic vector-valued functions with mean zero over [0, L]2 endowed with the
norms | · |Lp (resp. ‖ · ‖Wk,p). To ease notations, we will denote by ‖ · ‖k the Wk,p-norm.
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Let

H :={u ∈ L2 : div u = 0 weakly in D}, V := H ∩W1,2;

these are separable Hilbert spaces. The space H inherits its inner product denoted by
(·, ·) and its norm from L2. The norm in V , inherited from W1,2, is denoted by ‖ · ‖V .
Moreover, let V ′ be the dual space of V with respect to the Gelfand triple, 〈·, ·〉 denotes
the duality between V ′ and V . Let A = −∆ with its domain Dom(A) = W2,2 ∩H.

Let b : [W1,2]3 → R denote the trilinear map defined by

b(u1, u2, u3) :=

∫
D

(
u1(x) · ∇u2(x)

)
· u3(x) dx,

which by the incompressibility condition satisfies

b(u1, u2, u3) = −b(u1, u3, u2), b(u1, u2, u2) = 0, ∀u1 ∈ V, ∀u2, u3 ∈W1,2. (2.1)

There exists a continuous bilinear map B : V × V 7→ V ′ such that

〈B(u1, u2), u3〉 = b(u1, u2, u3), for all ui ∈ V, i = 1, 2, 3.

Furthermore, the Gagliardo-Nirenberg inequality implies

‖u‖2L4 ≤ C̄ |u|L2 |∇u|L2 ≤
C̄

2
‖u‖2W1,2 (2.2)

for some positive constant C̄. Recall some well-known properties of b, which easily follow
from the Hölder and Young inequalities: given any β > 0 we have for X := H ∩ L4(D)

|〈B(u1, u2) , u3〉| ≤ β‖u3‖2V +
1

4β
‖u1‖X ‖u2‖X , (2.3)

|〈B(u1, u1)−B(u2, u2) , u1 − u2〉| ≤ β‖u1 − u2‖2V + Cβ|u1 − u2|2L2‖u1‖4X , (2.4)

for ui ∈ V , i = 1, 2, 3, and C̄ is defined by (2.2). Finally, recall that the Poincaré inequality

implies the existence of a constant C̃ > 0 such that if we set ‖|u‖|2 =: |∇u|L2 + |Au|L2 for
u ∈ Dom (A), then

‖u‖2V = |u|2L2 + |∇u|2L2 ≤ C̃‖|u‖|2. (2.5)

Finally, recall that since the domain D is the torus with periodic boundary conditions,
the following identity involving the Stokes operator A and the bilinear term holds (see e.g.
[21] Lemma 3.1):

〈B(u, u), Au〉 = 0, ∀u ∈ Dom(A). (2.6)

Let K be a separable Hilbert space and Q be a symmetric, positive trace-classe operator
on K. Let (W (t), t ∈ [0, T ]) be a K-valued Wiener process with covariance operator Q,
defined on the probability space (Ω,F , (Ft),P). Let {ej}j≥1 denote an orthonormal basis
of K made of eigenfunctions of Q , with eigenvalues {qj}j≥1. Then

W (t) =

∞∑
j=1

√
qj β

j(t) ej , ∀t ∈ [0, T ],

where {βj}j≥1 are independent one-dimensional Brownian motions defined on (Ω,F , (Ft),P).
For technical reasons, we assume that the initial condition u0 belongs to Lp(Ω;V ) for some
p ∈ [2,∞], and only consider strong solutions in the PDE sense. Given two Hilbert spaces
H1 and H2, let L(H1, H2) denote the set of linear operators from H1 to H2. The diffusion
coefficient G satisfies the following assumption:
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Condition (G1) Assume that G : L2 → L(K,W1,2) is Lipschitz-continuous with linear
growth. More precisely, there exist positive constants Ki, i = 0, 1 and L1 such that

‖G(u)‖2L(K,L2) ≤ K0 +K1|u|2L2 , ∀u ∈ L2, (2.7)

‖G(u)‖2L(K,W1,2) ≤ K0 +K1|u|2W1,2 , ∀u ∈W1,2, (2.8)

‖G(u)−G(v)‖2L(K,L2) ≤ L1|u− v|2L2 , ∀u, v ∈ L2. (2.9)

We also consider the following variant of the assumptions on the diffusion coefficient G
in terms of divergence-free fields.
Condition (G2) Assume that G : H → L(K,V ) is Lipschitz-continuous with linear
growth. More precisely, there exist positive constants Ki, i = 0, 1 and L1 such that

‖G(u)‖2L(K,H) ≤ K0 +K1|u|2H , ∀u ∈ H, (2.10)

‖G(u)‖2L(K,V ) ≤ K0 +K1|u|2V , ∀u ∈ V, (2.11)

‖G(u)−G(v)‖2L(K,H) ≤ L1|u− v|2H , ∀u, v ∈ H. (2.12)

Let PH denote the Leray projection. Note that the conditions (2.7) and (2.8) imply a

linear growth of the trace of PHG(u)QG∗(u)PH and A
1
2 PHG(u)QG∗(u)PHA

1
2 . A similar

result holds under condition (G2).
We define a strong solution of (1.1) as follows (see Definition 2.1 in [9]):

Definition 2.1. We say that equation (1.1) has a strong solution if:

• u is an adapted V -valued process,
• P a.s. we have u ∈ C([0, T ];V ) ∩ L2(0, T ; Dom(A)),
• P a.s. (

u(t), φ
)
+ν

∫ t

0

(
∇u(s),∇φ

)
ds+

∫ t

0

〈
[u(s) · ∇]u(s), φ

〉
ds

=
(
u0, φ) +

∫ t

0

(
φ,G(u(s))dW (s)

)
for every t ∈ [0, T ] and every φ ∈ V .

As usual, by projecting (1.1) on divergence free fields when dealing with the velocity,
the pressure term can be disregarded and the velocity is implicitly in the space V . Lemma
2.1 in [9] (see also [2], Theorem 4.1) shows the following:

Theorem 2.2. Assume that u0 is a V -valued, F0-measurable random variable such that
E
(
‖u0‖2pV

)
< ∞ for some real number p ∈ [2,∞). Assume that the condition (G1) or

(G2) is satisfied. Then there exists a unique solution u to equation (1.1). Furthermore,
for some positive constant C we have

E
(

sup
t∈[0,T ]

‖u(t)‖2pV +

∫ T

0
|Au(s)|2L2

(
1 + ‖u(s)‖2(p−1)

V

)
ds
)
≤ C

[
1 + E(‖u0‖2pV )

]
. (2.13)

3. Time Euler discretization scheme

In this section, we describe the fully implicit time Euler scheme of the stochastic 2D
Navier-Stokes equations introduced by E. Carelli and A. Prohl in [9], and recall the strong
convergence proved in [3]. Fix N ≥ 1, let k = T

N denote the constant time mesh, and let

tl = l TN , l = 0, · · · , N, denote the time grid.
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Fully implicit Euler scheme Let u0 be a V -valued, F0-measurable random variable; set
u0 = u0. Fix N ≥ 1 and for l = 1, · · · , N, find pairs

(
ul, πl

)
∈ V × L2

per such that P a.s.

for all φ ∈W1,2 and ψ ∈ L2
per,(

ul − ul−1, φ
)

+
T

N

[
ν
(
∇ul,∇φ

)
+
〈
(ul · ∇ul), φ

〉]
− T

N

(
πl, div φ) =

(
G(ul−1)) ∆lW,φ

)
,

(3.1)(
div ul, ψ) = 0, (3.2)

where ∆lW = W (tl)−W (tl−1).

In this section, our aim is to recall bounds for the strong error of this Euler time scheme.
Since we are looking for a V -valued process, we define the scheme for the velocity projected
on divergence free fields and reformulate the algorithm as follows (see [9, Section 3]).(

ul − ul−1, φ
)
+
T

N

[
ν
(
∇ul,∇φ

)
+
〈
(ul · ∇ul), φ

〉]
=
(
G(ul−1) ∆lW,φ

)
, ∀φ ∈ V. (3.3)

The following result proves the existence and uniqueness of the solution {ul, l = 0, · · · , N}
of (3.3); it provides moment estimates for this solution. Note that here only dyadic mo-
ments are computed because an the induction argument which relates two consecutive
dyadic numbers (see step 4 of the proof of [8, Lemma 3.1]).

Lemma 3.1. [9, Lemma 3.1] Let u0 ∈ L2q(Ω;V ) for some integer q ∈ [1,∞) be F0-
measurable, such that E

(
‖u0‖2

q

V

)
≤ C. Assume that G satisfies condition (G1). Then

there exists a unique solution {ul}Nl=0 to (3.3) with u0 = u0. The random variables ul are
Ftl-measurable and belong to L2(Ω;V ) a.s. Furthermore,

E
(

max
0≤l≤N

‖ul‖2qV + 2ν
T

N

N∑
l=1

‖ul‖2q−2
V |Aul|2L2

)
≤ C1(T, q), (3.4)

E
( N∑
l=1

‖ul − ul−1‖2V ‖ul‖2V
)
≤ C2(T, 2), (3.5)

E
[( N∑

l=1

‖ul − ul−1‖2V
)2q

+
(
ν
T

N

N∑
l=1

|Aul|2L2

)2q]
≤ C3(T, q), q = 1, 2, (3.6)

where for i = 1, 2, 3, Ci(T, q) := Ci
(
T, q,Tr(Q),K0,K1, L1,E(‖u0‖2

q

V )
)

is a constant which
does not depend on N .

The following result about the pressure term will be used in the study of space-time
discretization.

Lemma 3.2. [9, Lemma 3.2] Let q ∈ [2,∞) and {ul, πl}l=0,··· ,N be the solution to (3.1)
and (3.2).
(i) Suppose that G satisfies the growth and Lipschitz conditions (G1). Then

E
( T
N

N∑
l=1

|∇πl|2L2

)
≤ C(T )N. (3.7)
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(ii) Suppose that G satisfies the growth and Lipschitz conditions (G2). Then

E
( T
N

N∑
l=1

|∇πl|2L2

)
≤ C(T ). (3.8)

The following theorem gives the strong rate of convergence for a multiplicative noise
with linear growth. If u0 is deterministic or Gaussian, then the speed of convergence is
any negative power of ln(N).

Theorem 3.3. [3, Theorem 4.4] Let u0 be such that E(‖u0‖2
q

V ) < ∞ for some q ≥ 3, G

satisfy assumption (G1) or (G2). Then the fully implicit scheme {ul}l solution of (3.3)
converges in L2(Ω) to the solution u of (1.1). More precisely, for N large enough we have

E
(

max
1≤l≤N

|u(tl)− ul|2L2 +
T

N

N∑
l=1

∣∣∇(u(tl)− ul
)∣∣2

L2

)
≤ C

[
ln(N)

]−(2q−1−1)
. (3.9)

The next result proves a better rate of convergence when the noise is additive. This is
due to the existence of finite exponential moments for supt∈[0,T ] ‖u(t)‖V .

Theorem 3.4. [3] [Theorem 4.6] Let u0 ∈ V , G satisfy assumption (G1) with K1 = 0.
Let u denote the solution of (1.1) and {ul}l be the fully implicit scheme solution of (3.3).

Then for N large enough, C̄ (resp. C̃) defined by (2.2) (resp. (2.5)),

E
(

max
1≤l≤N

|u(tl)− ul|2L2 +
T

N

N∑
l=1

∣∣∇[u(tl)− ul
]∣∣2

L2

)
≤ C

( T
N

)β
, (3.10)

where for α̃0 := ν
2K0TrQC̃

we have

β < β0 :=
1

2

(
α̃0

α̃0 + C̄2T
2ν

)
. (3.11)

In reference [3], we had different assumptions for the splitting scheme and the Euler
one. The exponential moments were proven for the splitting scheme setting and when
applying the result for the Euler scheme, we forgot to insert the trace of Q. Furthermore,
using Proposition [3, Proposition 4.3], Theorem 8.2, Theorem 6.1 and Corollary 6.2, we
can change α̃0 given in [3] to the above constant.

4. Space-time discretization

4.1. Description of the finite elements method. When studying a space time dis-
cretization using finite elements, one needs to have a stable pairing of the velocity and
the pressure which satisfy the discrete LBB-condition (see e.g. [9], page 2469 and pages
2487-2489). Stability issues are crucial, and the pressure has to be discretized together
with the velocity.

Let Th be a quasi-uniform triangulation of the domain D ⊂ R2, using triangles of
maximal diameter h > 0, and set D̄ = ∪K∈ThK̄. Let Pi(K) := [Pi(K)]2 denote the space
of polynomial vector fields on K of degree less than or equal to i. We define finite elements
function spaces

Hh := {U ∈ C0(D̄) ∩W1,2
per(D) : U ∈ P1(K), ∀K ∈ Th},

Lh := {Π ∈ L2
per(D) : Π ∈ P1(K), ∀K ∈ Th},
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which satisfy the discrete LBB-condition

sup
Φ∈Hh

(div Φ,Π)

|∇Φ|L2

≥ C |Π|L2 , ∀Π ∈ Lh, (4.1)

with a constant C > 0 independent of the mesh size h > 0. Here C0(D̄) denotes the set
of continuous vector fields on D̄.

Define the subset Vh ⊂ Hh of discrete divergence-free vector fields

Vh := {Φ ∈ Hh : (div Φ,Λ) = 0, ∀Λ ∈ Lh}. (4.2)

Note that in general Vh 6⊂ V .
A way around this problem is to choose a space approximation such that Vh ⊂ V ,

such as the Scott-Vogelius mixed elements (see [20] and [23]). This particular case yields
a better approximation. Indeed, on one hand the pressure will not appear in the upper
estimate, and on the other hand a different localization will provide a polynomial error in
the case of an additive noise.

Let Q0
h : L2 7→ Vh (resp. P 0

h : L2
per(D) 7→ Lh) denote the orthogonal projection defined

by

(z−Q0
hz,Φ) = 0, ∀Φ ∈ Vh, (resp. (z − P 0

hz,Λ) = 0, ∀Λ ∈ Lh). (4.3)

The following estimates are standard (see e.g. [15])

|z−Q0
hz|L2 + h|∇(z−Q0

hz)|L2 ≤ C h2 |Az|L2 , ∀z ∈ V ∩W2,2(D), (4.4)

|z−Q0
hz|L2 ≤ C h |∇z|L2 , ∀z ∈ V, (4.5)

|z − P 0
hz|L2 ≤ C h |∇z|L2 , ∀z ∈W 1,2

per(D). (4.6)

Using the Gagliardo-Nirenberg inequality (2.2), we deduce from (4.4) and (4.5) the
following upper estimates for z ∈ V ∩W2,2(D)

‖z−Q0
hz‖L4 ≤ Ch

3
2 |Az|L2 , and ‖z−Q0

hz‖L4 ≤ Ch |Az|
1
2

L2 |∇z|
1
2

L2 . (4.7)

4.2. Description of the space-time schemes. Unlike the time discretization, we will
need to approximate the initial condition u0 and replace it by an Hh-valued random
variable U0. As in [9], we suppose that

E(|u0 −U0|2L2) ≤ C h2, E(|∇U0|2L2) ≤ C (4.8)

for some positive constant C. As it is usual in this framework, to ease notations we let
k := T

N denote the constant time mesh.
For general finite elements satisfying the discrete LBB condition (4.1), one has to change
the tri-linear term b(U1,U2,U3) = ([U1 · ∇]U2 ,U3) to control the nonlinear effect in the
presence of discretely divergence-free velocity iterates, and thus to allow stability of the
scheme. Thus, we set

b̃(U1,U2,U3) := ([U1 · ∇]U2 , U3) +
1

2

(
[divU1] U2 ,U3

)
, ∀U1,U2,U3 ∈W1,2. (4.9)

Note that this trilinear term is anti-symmetric with respect to the last two variables, i.e.,

b̃(U1,U2,U3) = −b̃(U1,U3,U2), ∀U1,U2,U3 ∈W1,2. (4.10)

Therefore,

b̃(U,Φ,Φ) = 0, ∀U,Φ ∈W1,2.
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Algorithm 1. Let U0 be an F0-measurable, Hh-valued random variable. For every l =
1, · · · , N , we consider a pair of Hh×Lh random variables (Ul,Πl) such that for every pair
(Φ,Λ) ∈ Hh × Lh, we have a.s.

(Ul −Ul−1,Φ) + k ν (∇Ul,∇Φ) + k
(
[Ul−1 · ∇]Ul,Φ

)
+
k

2

(
[div Ul−1] Ul,Φ

)
−k(Πl, div Φ) = (G(Ul−1)∆lW,Φ), (4.11)

(div Ul,Λ) = 0. (4.12)

The following result, which states the existence and uniqueness of the pairs (Ul,Πl)l=1,··· ,N
and provides moments of the solution, has been proven in [8, Lemma 3.1] when U0 is
deterministic (see also [9, Lemma 4.1] for a random initial condition). Once more the
exponents are dyadic numbers because of an induction argument which enables to deduce
results when doubling the exponent.

Lemma 4.1. Let q ∈ [1,∞) and U0 be an F0-measurable, Hh-valued random variable
which satisfies (4.8), and such that E

(
|U0|2qL2

)
≤ C for some positive constant C indepen-

dent of h > 0. Suppose that the coefficient G satisfies condition (G1). Then for every
l = 1, · · · , N , there exists a unique pair (Ul,Πl) of Flk-measurable, Vh×Lh-valued random
variables which satisfy (4.11)-(4.12). Furthermore,

E
(

max
0≤l≤N

|Ul|2qL2 + ν k

N∑
l=1

|Ul|2q−1

L2 |∇Ul|2L2

)
≤ C1(T, q), (4.13)

E
[(
k

N∑
l=1

|∇Ul|2L2

)2q−1]
≤ C2(T, q), (4.14)

E
( N∑
l=1

|Ul −Ul−1|2L2

)
≤ C3(T, 1), (4.15)

where the constants Ci(T, q) := Ci

(
T, q,TrQ,K0,K1, L1,E(|U0|2qL2)

)
, i = 1, 2, 3 do not

depend on N and h > 0.

We can reformulate the algorithm (4.11)-(4.12) as follows, using divergence-free test
functions (see [9, (4.4)]).
Algorithm 2. We have a.s. for l = 1, · · · , N

(Ul −Ul−1,Φ) + ν k (∇Ul,∇Φ)+k
(
[Ul−1 · ∇]Ul,Φ

)
+
k

2

(
[divUl−1] Ul,Φ

)
= (G(Ul−1)∆lW,Φ), ∀Φ ∈ Vh. (4.16)

As in [9], we will compare the space-time scheme Ul and the fully implicit time scheme
ul. For l = 0, · · · , N , let El := ul −Ul. For every l = 1, · · · , N and Φ ∈ Hh,

(El −El−1 , Φ) + νk(∇El , ∇Φ) + kb̃(ul,ul,Φ)− kb̃(Ul−1,Ul,Φ)

− k
(
πl −Πl , div Φ

)
=
([
G(ul−1)−G(Ul−1)

]
∆lW , Φ

)
.

Since Ul ∈ Vh for l = 1, · · · , N , we have Q0
hU

l = Ul; in the above identity, choose

Φ := Q0
hE

l = El −
(
ul −Q0

hu
l
)
.
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Then, since Q0
hE

l ∈ Vh and Πl ∈ Lh, using (4.2) we deduce that
(
Πl, div Q0

hE
l
)

= 0 for

l = 1, · · · , N . Since (a, a− b) = 1
2

(
|a|2L2 − |b|2L2 + |a− b|2L2

)
, we deduce

1

2

[
|Q0

hE
l|2L2 − |Q0

hE
l−1|2L2 + |Q0

h(El −El−1|2L2

]
+ νk|∇El|2L2

+ kb̃
(
ul − ul−1,ul,Q0

hE
l
)

+ kb̃
(
ul−1,ul,Q0

hE
l
)
− kb̃

(
Ul−1,Ul,Q0

hE
l
)

= νk
(
∇El,∇(ul −Q0

hu
l)
)

+ k(πl, div Q0
hE

l) +
([
G(ul−1))−G(Ul−1)

]
∆lW , Q0

hE
l
)
.

(4.17)

4.3. Intermediate results. In this section, we will prove a series of estimates that will
be crucial for the convergence results later on.

For l = 0, · · · , N , let Ωl ⊂ Ω be a decreasing family of Ftl-adapted sets, that is

Ωl+1 ⊂ Ωl, l = 0, · · · , N − 1, and Ωl ∈ Ftl , l = 0, · · · , N. (4.18)

Part 1: Estimate of the error term
∣∣(∇El , ∇[ul −Q0

hu
l]
)∣∣

Using the Cauchy-Schwarz and Young inequalities, and then (4.4), we obtain for ε > 0∣∣(∇El , ∇(ul −Q0
hu

l)
)∣∣ ≤ ∣∣∇El

∣∣
L2

∣∣∇(ul −Q0
hu

l)
∣∣
L2

≤ ε
∣∣∇El

∣∣2
L2 + C(ε)

∣∣∇(ul −Q0
hu

l)
∣∣2
L2

≤ ε
∣∣∇El

∣∣2
L2 + C(ε)h2 |Aul|2L2 .

This implies for ε > 0 and m = 1, . . . , N

E
(

max
1≤n≤m

ν k
n∑
l=1

∣∣1Ωl−1

(
∇El , ∇(ul −Q0

hu
l)
)∣∣

≤ ενE
(
k

m∑
l=1

1Ωl−1
|∇El|2L2

)
+ C(ε) ν k h2 E

( N∑
l=1

ν |Aul|2L2

)
≤ ενE

(
k

m∑
l=1

1Ωl−1
|∇El|2L2

)
+ C(ν, ε) h2 C1(T, 1), (4.19)

where in the last upper estimate we have used (3.4) in Lemma 3.1 with q = 1.

Part 2: Estimate of the term b̃(ul − ul−1, ul, Q0
hE

l)
Using the antisymmetry properties (2.1) and (4.10), the Hölder inequality and the inequal-
ity ‖u‖L4 ≤ C |∇u|L2 coming from the Sobolev embedding theorem, we deduce∣∣b(ul − ul−1,ul, Q0

hE
l)
∣∣+
∣∣b̃(ul − ul−1, ul, Q0

hE
l)
∣∣

≤ 2
∣∣b(ul − ul−1,Q0

hE
l, ul)

∣∣+
1

2

∣∣([div (ul − ul−1)] Q0
hE

l , ul
)∣∣

≤ 2 ‖ul − ul−1‖L4 |∇Q0
hE

l|L2 ‖ul‖L4 +
1

2
|∇(ul − ul−1|L2‖Q0

hE
l‖L4 ‖ul‖L4

≤ ε ν |∇El|2L2 + C(ν, ε)‖ul − ul−1‖2V ‖ul‖2V .

Therefore, the upper estimate (3.5) in Lemma 3.1 imply

E
(

max
1≤n≤m

k

n∑
l=1

1Ωl−1

[∣∣b(ul − ul−1, ul, Q0
hE

l)
∣∣+
∣∣b̃(ul − ul−1, ul, Q0

hE
l)
∣∣])
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≤ ε ν E
(
k

m∑
l=1

1Ωl−1
|∇El|2L2

)
+ C(ν, ε)C2(T, 2) k. (4.20)

Part 3: Estimate of the term −b̃(ul−1, ul, Q0
hE

l) + b̃(Ul−1, Ul, Q0
hE

l)
For every l = 1, · · · , N , we have

−b̃(ul−1, ul, Q0
hE

l) + b̃(Ul−1, Ul, Q0
hE

l)

= −b̃(ul−1, ul −Ul, Q0
hE

l)− b̃(ul−1 −Ul−1, Ul,Q0
hE

l).

The antisymmetry properties of b (resp. b̃) in (2.1) (resp. (4.10)) implies for l = 1, · · · , N

−b̃(ul−1, ul, Q0
hE

l) + b̃(Ul−1, Ul, Q0
hE

l) =
4∑
i=1

T̃i(l), (4.21)

−b(ul−1, ul, Q0
hE

l) + b(Ul−1, Ul, Q0
hE

l) =
4∑
i=1

Ti(l), (4.22)

where

T̃1(l) = b̃(ul−1, El, El −Q0
hE

l), T̃2(l) = b̃(El−1, El, Q0
hE

l −El),

T̃3(l) = − b̃(El−1, ul−1, Q0
hE

l), T̃4(l) = b̃(El−1, Q0
hE

l, ul − ul−1),

and the terms Ti(l), i = 1, · · · , 4 are similar to the corresponding terms T̃i(l) replacing b̃
by b.

Terms T̃1(l) and T1(l). The antisymmetry of b̃ and the identity

El −Q0
hE

l = ul −Q0
hu

l (4.23)

imply that T̃1(l) = −b̃(ul−1, ul −Q0
hu

l, El). Using the Hölder and Gagliardo-Nirenberg
inequalities, (2.2) and (4.4), we deduce∣∣b(ul−1, ul −Q0

hu
l,El)

∣∣ ≤ ‖ul−1‖L4 |∇(ul −Q0
hu

l)|L2‖El‖L4

≤
√
C̄ |∇El|

1
2

L2 |El|
1
2

L2‖ul−1‖V h |Aul|L2

≤ εν|∇El|2L2 + |El|2L2 + C(ν, ε)h2 ‖ul−1‖2V |Aul|2L2 ,

where the last upper estimate is deduced using Young’s inequality. Furthermore, using
once more the Gagliardo-Nirenberg inequality, (4.7) and then Young’s inequality, we obtain∣∣([div ul−1](ul −Q0

hu
l), El

)∣∣ ≤ |∇ul−1|L2 ‖ul −Q0
hu

l‖L4‖El‖L4

≤
√
C̄ |∇El|

1
2

L2 |El|
1
2

L2‖ul−1‖V h
3
2 |Aul|L2

≤ εν|∇El|2L2 + |El|2L2 + C(ν, ε)h3 ‖ul−1‖2V |Aul|2L2 .

Therefore, the Cauchy-Schwarz inequality, the upper estimates (3.4) with q = 2 and (3.6)
with q = 1 imply for m = 1, · · · , N

E
(

max
1≤n≤m

k

n∑
l=1

1Ωl−1
|T̃1(l)|

)
≤ 2ενE

(
k

m∑
l=1

1Ωl−1
|∇El|2L2

)
+ 2E

(
k

m∑
l=1

1Ωl−1
|El|2L2

)

+ C(ν, ε)h2
{
E
(

max
0≤l≤N

‖ul‖4V
)} 1

2
{
E
(
νk

N∑
l=1

|Aul|2L2

)2} 1
2
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≤ 2ενE
(
k

m∑
l=1

1Ωl−1
|∇El|2L2

)
+ 2E

(
k

m∑
l=1

1Ωl−1
|El|2L2

)
+ C(ν, ε)h2. (4.24)

A similar computation implies

E
(

max
1≤n≤m

k
n∑
l=1

1Ωl−1
|T1(l)|

)
≤ ενE

(
k

m∑
l=1

1Ωl−1
|∇El|2L2

)
+ E

(
k

m∑
l=1

1Ωl−1
|El|2L2

)
+ C(ν, ε)h2. (4.25)

Terms T̃2(l) and T2(l). Using once more (4.23), we can replace the difference El−Q0
hE

l

by ul −Q0
hu

l. The Gagliardo-Nirenberg inequality, (4.7) and Young’s inequality imply∣∣b(El−1,El, ul −Q0
hu

l)
∣∣ ≤ √

C̄|∇El−1|
1
2

L2 |El−1|
1
2

L2 |∇El|L2‖ul −Q0
hu

l‖L4

≤ εν|∇El−1|2L2 + εν|∇El|2L2 + C(ν, ε)h4 |El−1|2L2 |Aul|2L2 |∇ul|2L2

≤ εν|∇El−1|2L2 + εν|∇El|2L2 + C(ν, ε)h4
(
|ul−1|2L2 + |Ul−1|2L2

)
|Aul|2L2 |∇ul|2L2 .

Furthermore, the Hölder and Gagliardo-Nirenberg inequalities together with (4.7) and
Young’s inequality yield∣∣([div El−1] El, ul −Q0

hu
l
)∣∣ ≤ √

C̄|∇El−1|L2 |∇El|
1
2

L2 |El|
1
2

L2‖ul −Q0
hu

l‖L4

≤ εν|∇El−1|2L2 + εν|∇El|2L2 + C(ν, ε)h4 |El|2L2 |Aul|2L2 |∇ul|2L2

≤ εν|∇El−1|2L2 + εν|∇El|2L2 + C(ν, ε)h4
(
|ul|2L2 + |Ul|2L2

)
|Aul|2L2 |∇ul|2L2 .

Since the family of sets Ωl is decreasing, we have 1Ωl−1
|∇El−1|2L2 ≤ 1Ωl−2

|∇El−1|2L2 for
l = 2, · · · , N . Therefore, using (4.8), the Cauchy-Schwarz and Young inequalities, (3.4)
and (4.13) with q = 3, and (3.6) with q = 1, we deduce

E
(

max
1≤n≤m

k
n∑
l=1

1Ωl−1
|T̃2(l)|

)
≤ 2νεkE(|∇E0|2L2) + 4νεE

(
k

m∑
l=1

1Ωl−1
|∇El|2L2

)

+ C(ν, ε)h4 E
[(

max
0≤l≤N

{
|ul|2L2 + |Ul|2L2

})(
max

1≤l≤N
‖ul‖2V

)(
νk

N∑
l=1

|Aul|2L2

)]
≤ 2νεCk + 4νεE

(
k

m∑
l=1

1Ωl−1
|∇El|2L2

)

+ C(ν, ε)h4
[{

E
(

max
0≤l≤N

‖ul‖8V
)} 1

2
+
{
E
(

max
0≤l≤N

|Ul|8L2

)} 1
2
]{

E
[(
νk

N∑
l=1

|Aul|L2

)2]} 1
2

≤ 4νεE
(
k

m∑
l=1

1Ωl−1
|∇El|2L2

)
+ C(ν, ε)

[
k + h4

]
. (4.26)

A similar computation yields

E
(

max
1≤n≤m

k

n∑
l=1

1Ωl−1
|T2(l)|

)
≤ 2νεE

(
k

m∑
l=1

1Ωl−1
|∇El|2L2

)
+ C(ν, ε)

(
k + h4

)
. (4.27)
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Terms T̃3(l) and T3(l). The Gagliardo-Nirenberg inequality (2.2) implies∣∣b(El−1, ul−1, Q0
hE

l)
∣∣ ≤ C̄|∇El−1|

1
2

L2 |El−1|
1
2

L2 |∇ul−1|L2 |∇El|
1
2

L2 |El|
1
2

L2 .

If l = 1, Young’s inequality implies∣∣b(E0, u0,Q0
hE

1)
∣∣ ≤ C̄

(
|∇E0|

1
2

L2‖u0‖
1
2
V |E

0|
1
2

L2

) (
‖u0‖

1
2
V |E

1|
1
2

L2

)
|∇E1|

1
2

L2

≤ εν |∇E1|2L2 + ‖u0‖2V |E1|2L2 + C(ν, ε) ‖u0‖V
[
|∇u0|L2 + |∇U0|L2

]
|E0|L2 .

Hence Hölder’s inequality, the upper estimates (4.8), (3.4) for q = 2 and (4.13) for q = 2
and imply

kE
(
1Ω0

∣∣T3(1)
∣∣) ≤ kεν E(1Ω0 |∇E1|2L2

)
+ Ck

{
E
(
‖u0‖4V

)} 1
2
{
E
(
|u1|2L2 + |U1|2L2

)} 1
2

+ k C(ν, ε)
{
E(|E0|2L2

)} 1
2
{
E
(
‖u0‖4V

)} 1
4
{

23E
(
|u0|4L2

)
+ 23E

(
|U0|4L2

)} 1
4

≤ kεν E
(
1Ω0 |∇E1|2L2

)
+ C(ν, ε)k(1 + h), (4.28)

for some constant C(ν, ε) depending on C̄, ε, ν, C1(T, 2) and C1(T, 2).
For l = 2, · · · , N , using (2.2), the Hölder and Young inequalities we obtain for ε, ε1 > 0∣∣b(El−1, ul−1, Q0

hE
l)
∣∣ ≤ C̄|∇El−1|

1
2

L2 |∇El|
1
2

L2

(
‖ul−1‖

1
2
V |E

l|
1
2

L2

)(
‖ul−2‖

1
2
V |E

l−1|
1
2

L2

)
+ C̄ |∇El−1|

1
2

L2 |∇El|
1
2

L2

(
‖ul−1‖

1
2
V |E

l|
1
2

L2

)(
‖ul−1 − ul−2‖

1
2
V |E

l−1|
1
2

L2

)
≤ ε1ν|∇El−1|2L2 + ε1ν|∇El|2L2 +

C̄2

24ε1ν
‖ul−1‖2V |El|2L2 +

C̄2

24ε1ν
‖ul−2‖2V |El−1|2L2

+ εν|∇El−1|2L2 + εν|∇El|2L2 + ‖ul−1‖2V |El|2L2 +
C̄4

28ε2ν2
‖ul−1 − ul−2‖2V |El−1|2L2 .

We next use the upper estimates (3.4) and (4.13) with q = 2, and (3.6) with q = 1 and
the inequality 1Ωl−1

≤ 1Ωl−2
. This yields for m = 2, · · · , N

E
(

max
2≤n≤m

k
n∑
l=2

1Ωl−1
|T3(l)|

)
≤ 2(ε1 + ε) νE

(
k

m∑
l=1

1Ωl−1
|∇El|2L2

)
+
[
1 +

2 C̄2

24ε1ν

]
E
(
k

m∑
l=1

1Ωl−1
‖ul−1‖2V |El|2L2

)

+ C(ε, ν)k
{
E
(

max
1≤l≤N

|ul|4L2 + max
1≤l≤N

|Ul|4L2

)} 1
2
{
E
[( N∑

l=1

‖ul − ul−1‖2V
)2]} 1

2

≤ 2(ε1 + ε) νE
(
k

m∑
l=1

1Ωl−1
|∇El|2L2

)
+
[
1 +

C̄2

23ε1ν

]
E
(
k

m∑
l=1

1Ωl−1
‖ul−1‖2V |El|2L2

)
+ C(ν, ε) k. (4.29)

The upper estimates (4.28) and (4.29) imply for ε, ε1 > 0 and h ∈ (0, 1]

E
(
k max

1≤n≤m

n∑
l=1

1Ωl−1
|T3(l)|

)
≤ (2ε1 + 3ε) ν E

(
k

m∑
l=1

1Ωl−1
|∇El|2L2

)
+
[
1 +

C̄2

23ε1ν

]
E
(
k

m∑
l=1

1Ωl−1
‖ul−1‖2V |El|2L2

)
+ C(ν, ε) k. (4.30)
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Furthermore, the Gagliardo-Nirenberg (2.2) and Young inequalities imply for ε2 > 0∣∣([div El−1] ul−1, Q0
hE

l
)∣∣ ≤ C̄√

2
|∇El−1|L2‖ul−1‖V |∇El|

1
2

L2 |El|
1
2

L2

≤ ε2ν|∇El−1|2L2 + ε2ν|∇El|2L2 +
C̄4

28(ε2ν)3
‖ul−1‖4V |El|2L2 .

Using once more the inequality 1Ωl−1
|∇El−1|2L2 ≤ 1Ωl−2

|∇El−1|2L2 , we deduce for any
m = 1, · · · , N

E
(

max
1≤n≤m

k
n∑
l=1

1Ωl−1

∣∣([div El−1] ul−1, Q0
hE

l
)∣∣) ≤ 2ε2νE

(
k

m∑
l=1

1Ωl−1
|∇El|2L2

)
+

C̄4

28(ε2ν)3
kE
( m∑
l=1

1Ωl−1
‖uk−1‖4V |El|2L2

)
. (4.31)

The upper estimates (4.30) and (4.31) imply for h ∈ (0, 1], ε, ε1, ε2 > 0,

E
(

max
1≤n≤m

k
n∑
l=1

1Ωl−1
|T̃3(l)|

)
≤ (2ε1 + 2ε2 + 3ε) ν E

(
k

m∑
l=1

1Ωl−1
|∇El|2L2

)
+ Ck

+ E
{
k

m∑
l=1

1Ωl−1

[(
1 +

C̄2

23ε1ν

)
‖ul−1‖2V +

C̄4

28(ε2ν)3
‖ul−1‖4V

]
|El|2L2

}
. (4.32)

Terms T̃4(l) and T4(l). The Gagliardo-Nirenberg and Young inequalities imply∣∣b(El−1, Q0
hE

l, ul − ul−1
)∣∣ ≤ C̄√

2
‖∇El−1‖

1
2

L2 |El−1||
1
2

L2 |∇Q0
hE

l|L2‖ul − ul−1‖V

≤ εν|∇El−1|2L2 + εν|∇El|2L2 + C(ε, ν)|El−1|2L2‖ul − ul−1‖4V
≤ εν

(
|∇El−1|2L2 + |∇El|2L2

)
+ C(ε, ν)

(
|ul−1|2L2 + |Ul−1|2L2

)(
‖ul‖2V + ‖ul−1‖2V

)
‖ul − ul−1‖2V .

For l = 1 the inequality (4.8) imples

kενE
(
|∇E0|2L2

)
≤ Ckνε.

Furthermore, the Cauchy-Schwarz inequality together with the upper estimates (3.4),
(4.13) for q = 3, (3.6) for q = 1, and the inequality 1Ωl−1

≤ 1Ωl−2
imply

E
(
k max

1≤n≤m

n∑
l=1

1Ωl−1
|T4(l)|

)
≤ 2ενE

(
k

m∑
l=1

1Ωl−1
|∇El|2L2

)
+ C(ν, ε)k

+ C(ε, ν)k
{
E
(∣∣∣ N∑

l=1

‖ul − ul−1‖2V
∣∣∣2)} 1

2
{
E
(

max
1≤l≤N

‖ul‖8V + max
1≤l≤m

|Ul|8L2

} 1
2

≤ 2ενE
(
k

m∑
l=1

1Ωl−1
|∇El|2L2

)
+ C(ν, ε)k. (4.33)

On the other hand, the Hölder, Gagliardo-Nirenberg and Young inequalities imply∣∣([div El−1] Q0
hE

l, ul − ul−1
)∣∣ ≤ |∇El−1|L2‖El‖L4‖ul − ul−1‖L4

≤ C̄ |∇El−1|L2 |∇El|
1
2

L2

(
|El|

1
2

L2 |∇(ul − ul−1)|
1
2

L2 max
0≤l≤N

‖ul‖
1
2
V

)
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≤ εν|∇El−1|2L2 + εν|∇El|2L2 + C(ν, ε)
[

max
0≤l≤N

‖ul‖4V + max
0≤l≤N

|Ul|4L2

]
‖ul − ul−1‖2V .

A similar argument as for the upper estimate of T4(l), based on (4.8), (3.4) and (4.13)
with q = 3, (3.6) with q = 1, and 1Ωl−1

≤ 1Ωl yield

E
(

max
1≤n≤m

k
n∑
l=1

1Ωl−1

∣∣([div El−1] Q0
hE

l, ul − ul−1
)∣∣)

≤ 2ενE
(
k

m∑
l=1

1Ωl−1
|∇El|2L2

)
+ ενCkE

(
|∇E0|2L2

)
+ C(ν, ε)k

[{
E
(

max
1≤l≤N

‖ul‖8V
)} 1

2
+
{
E
(

max
1≤l≤N

|Ul|8L2

)} 1
2
]{∣∣∣E( N∑

l=1

|ul − ul−1‖2V
)∣∣∣2} 1

2

≤ 2ενE
(
k

m∑
l=1

1Ωl−1
|∇El|2L2

)
+ C(ν, ε)k. (4.34)

The upper estimates (4.33) and (4.34) imply

E
(

max
1≤n≤m

m∑
l=1

1Ωl−1
|T̃4(l)|

)
≤ 4ενE

(
k

m∑
l=1

1Ωl−1
|∇El|2L2

)
+ C(ν, ε)k. (4.35)

The upper estimates (4.24), (4.26), (4.32) and (4.35) imply that for any m = 1, · · · , N ,

E
(

max
1≤n≤m

k
n∑
l=1

1Ωl−1

∣∣b̃(ul−1, ul, Q0
hE

l)− b̃(Ul−1, Ul, Q0
hE

l)
∣∣)

≤ C(ν, ε)
(
k + h2 + h4

)
+ (2ε1 + 2ε2 + 13ε) ν E

(
k

m∑
l=1

1Ωl−1
|∇El|2L2

)
+ E

[
k

m∑
l=1

1Ωl−1

{
2 +

(
1 +

C̄2

23ε1ν

)
‖ul−1‖2V +

C̄4

28ε32ν
3
‖ul−1‖4V

}
|El|2L2

]
. (4.36)

Similarly, the upper estimates (4.25), (4.27) and (4.33) imply that for m = 1, · · · , N ,

E
(

max
1≤n≤m

k

n∑
l=1

1Ωl−1

∣∣b(ul−1, ul, Q0
hE

l)− b(Ul−1, Ul, Q0
hE

l)|
)

≤ C(ν, ε)
(
k + h2 + h4

)
+ (2ε1 + 8ε) ν E

(
k

m∑
l=1

1Ωl−1
|∇El|2L2

)
+ E

[
k

m∑
l=1

1Ωl−1

{
1 +

(
1 +

C̃2

23ε1ν

)
‖ul−1‖2V

}
|El|2L2

]
. (4.37)

Part 4: Estimate of (πl, div Q0
hE

l)

Since Q0
hE

l ∈ Vh and P 0
hπ

l ∈ Lh, using (4.2) we deduce (πl,div Q0
hE

l) = (πl−P 0
l π

l, div Q0
hE

l).
Therefore, the Cauchy-Schwarz and Young inequalities coupled with (4.6) imply

E
(
k

m∑
l=1

1Ωl−1

∣∣(πl, div Q0
hE

l
)∣∣) ≤ E

(
k

m∑
l=1

1Ωl−1

[
ε ν |∇El|2L2 +

1

4εν
|πl − P 0

hπ
l|2L2

])
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≤ ε ν E
(
k

m∑
l=1

1Ωl−1
|∇El|2L2

)
+ C(ν, ε)h2E

(
k

m∑
l=1

1Ωl−1
|∇πl|2L2

)
. (4.38)

5. Convergence in probability

This section contains results on strong convergence localized on a subset of Ω due to
the non linear term for both algorithms 1 and 2. This is classical when dealing with a
non linear term. However, unlike [9], our bound in the localization only involves the time
discretization {ul}l. In the general case, it will require an upper bound of the fourth power
of its V norm. Arguments similar to that used in [9] or [2], we could deduce a rate of
convergence in probability. We do not provide this rate since our paper focuses on L2(Ω)
rates of convergence.

The following proposition is one of the main results of this section.

Proposition 5.1. Let G satisfy the growth and Lipschitz conditions (G1). Let u0 ∈
L8(Ω;V ) and U0 ∈ L8(Ω;Hh) be F0-measurable random variables such that (4.8) holds.
For every M > 0 and l = 0, · · · , N , set

Ω̃l(M) :=
{
ω ∈ Ω : max

0≤j≤l
‖uj‖4V ≤M

}
. (5.1)

There exists C0 > 0 such that for k = T
N > 0 small enough to have kM ≤ C0, we have for

any δ > 0 and m = 1, · · · , N

E
(

1Ω̃m−1(M) max
1≤n≤m

|En|2L2

)
≤ C(ν) eC̃1(M)T

[
k + h2 + h2 E

(
k

m∑
l=1

∣∣∇πl∣∣2
L2

)]
, (5.2)

for some constant

C̃1(M) = (1 + δ)
C̄4

24ν3
M + C(ν, L1TrQ, δ)

≡ (1 + δ)
C̄4

24ν3
M for “large” M. (5.3)

Furthermore,

E
(
k
m∑
l=1

1Ω̃l−1(M)|∇El|2L2

)
≤ C(ν)C̃1(M)TeC̃1(M)T

[
k + h2 + h2E

(
k

m∑
l=1

∣∣∇πl∣∣2
L2

)]
. (5.4)

Proof. Note that the definition of Ω̃l(M) clearly implies that for fixed M > 0, l =

0, · · · , N − 1, Ω̃l+1(M) ⊂ Ω̃l(M). Hence, as proved in [9] (see also [3]), we have

n∑
l=1

1Ω̃l−1(M)

(
|Q0

hE
l|2L2 − |Q0

hE
l−1|2L2

)
=
(

1Ω̃n−1(M)|Q
0
hE

n|2L2

+

n∑
l=2

(
1Ω̃l−2(M) − 1Ω̃l−1(M)

)
|Q0

hE
l−1|2L2

)
− 1Ω̃0(M)|Q

0
hE

0|2L2

≥1Ω̃n−1(M)|Q
0
hE

n|2L2 − 1Ω̃0(M)|Q
0
hE

0|2L2 , ∀n = 1, · · · , N. (5.5)

This inequality and (4.17) imply for n = 1, · · · , N

1

2
1Ω̃n−1(M)|Q

0
hE

n|2L2 +
1

2

n∑
l=1

1Ω̃l−1(M)

∣∣Q0
h(El −El−1)

∣∣2
L2 + νk

m∑
l=1

1Ω̃l−1(M)|∇El|2L2
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≤
3∑
i=1

R̃i(n, k, h,M), (5.6)

where

R̃1(n, k, h,M) = 1Ω̃0(M)|Q
0
hE

0|2L2 + k

n∑
l=1

1Ω̃l−1(M)

∣∣b̃(ul − ul−1, ul, Q0
hE

l)
∣∣

+ k

n∑
l=1

1Ω̃l−1(M)

∣∣b̃(ul−1, ul, Q0
hE

l)− b̃(Ul−1, Ul, Q0
hE

l)
∣∣

+ k

n∑
l=1

1Ω̃l−1(M)

∣∣(∇El, ∇[ul −Q0
hu

l]
)∣∣+ k

n∑
l=1

1Ω̃l−1(M)|(π
l, div Q0

hE
l)|,

R̃2(n, k, h,M) =

n∑
l=1

1Ω̃l−1(M)

([
G(ul−1)−G(Ul−1)

]
∆lW, Q0

hE
l−1
)
,

R̃3(n, k, h,M) =
n∑
l=1

1Ω̃l−1(M)

([
G(ul−1)−G(Ul−1)

]
∆lW, Q0

h(El −El−1)
)
. (5.7)

The upper estimates (4.8), (4.20), (4.36), (4.19) and (4.38) imply for any ε1, ε2, ε > 0 and
small h > 0

E
(
R̃1(n, k, h,M

)
) ≤ C(ν, ε)

(
k + h2

)
+ C(ν, ε)h2 E

(
k

n∑
l=1

1Ω̃l−1(M)|∇π
l|2L2

)
+ (2ε1 + 2ε2 + 16ε) ν E

(
k

n∑
l=1

1Ω̃l−1(M)|∇El|2L2

)
+ E

(
k

n∑
l=1

1Ω̃l−1(M)

[
2 +

(
1 +

C̄2

23ε1ν

)√
M +

C̄4

28ε32ν
3
M
]
|El|2L2

)
. (5.8)

Since 1Ω̃l−1(M), ul−1, Ul−1 and El−1 are independent of ∆lW , we have E
(
R̃2(n, k, h,M)

)
=

0.
Using the Lipschitz property of G (2.9), the Cauchy-Schwarz and Young inequalities,

we obtain

E
(
R̃3(n, k, h,M)

)
≤ E

[ n∑
l=1

1Ω̃l−1(M)

∣∣(G(ul−1)−G(Ul−1)
)
∆lW

∣∣
L2 |Q0

h(El −El−1)|L2

]
≤

n∑
l=1

{
E
(

1Ω̃l−1(M)|Q
0
h(El −El−1)|2L2

)} 1
2

×
{
E
(

1Ω̃l−1(M)‖G(ul−1)−G(Ul−1)‖2L(K,W1,2)kTrQ
)} 1

2

≤1

2
E
( n∑
l=1

1Ω̃l−1(M)|Q
0
h(El −El−1)|2L2

)
+
L1 TrQ

2
E
(
k
n−1∑
l=1

1Ω̃l−1(M)|E
l|2L2

)
+ Ch2k, (5.9)

where in the last upper estimate we have used the inequalities 1Ω̃l−1(M) ≤ 1Ω̃l−2(M) for

l = 2, · · · , N , and (4.8) for l = 0.



18 H. BESSAIH AND A. MILLET

Fix λ ∈ (0, 1
2), let ε1 = λ

2 , ε2 = 1
2(1 − 2λ) and ε = λ

25
. Then 2ε1 + 2ε2 + 16ε = 1 − λ

2 .
The upper estimates (5.6) – (5.9) yield

E
(

1Ω̃n−1(M)|Q
0
hE

n|2L2

)
+ λνE

(
k

n∑
l=1

1Ω̃l−1(M)|∇El|2L2

)
≤ C(ν)

(
k + h2

)
+ 2h2E

(
k

n∑
l=1

1Ω̃l−1(M)|∇π
l|2L2

)
+ L1TrQ E

(
k
n−1∑
l=1

1Ω̃l−1(M)|E
l|2L2

)
+ 2E

(
k

n∑
l=1

1Ω̃l−1(M)

[
2 + C(ν, C̄, λ)

√
M + α̃(ν, C̄, λ)M

]
|El|2L2

)
, (5.10)

where α̃(ν, C̄, λ) := C̄4

25 (1−2λ)3 ν3
. Using (4.5), we deduce that

|Q0
hE

n −En|2L2 = |Q0
hu

n − un|2L2 ≤ C h2 |∇un|2L2 .

Hence, (3.4) with q = 1 yields for λ > 0

E
(

1Ω̃n−1(M)|E
n|2L2

)
≤ (1 + λ) E

(
1Ω̃n−1(M)|Q

0
hE

n|2L2

)
+ C(λ)h2. (5.11)

Plugging this upper estimate in (5.10), we deduce that for N large enough (that is k small
enough) to ensure

2 (1 + λ) k
[
2 + C(ν, C̄, λ)

√
M + α̃(ν, C̄, λ)M

]
≤ λ, (5.12)

we have

E
(

1Ω̃n−1(M)|E
n|2L2

)
+ λ E

(
k

n∑
l=1

1Ω̃l−1(M)|∇El|2L2

)
≤ C(ν, λ)

(
k + h2

)
+ C(λ)h2 E

(
k

n∑
l=1

∣∣∇πl∣∣2
L2

)
+ E

(
k
n−1∑
l=1

1Ω̃l−1(M) C̃2(M,λ)|El|2L2

)
, (5.13)

where using the Young inequality, we set

C̃2(M,λ) =
(1 + λ)C̄4

24 (1− λ) (1− 2λ)3 ν3
M + C(ν, C̄, λ)

√
M + C(L1 TrQ,λ)

≤ (1 + 2λ)C̄4

24 (1− λ) (1− 2λ)3 ν3
M + C(L1 TrQ, ν, C̄, λ).

Neglecting the gradient term and using the discrete version of Gronwall’s lemma, we
deduce for λ ∈ (0, 1

2)

max
0≤n≤N

E
(

1Ω̃n−1(M)|E
n|2L2

)
≤ exp

(
TC̃2(M,λ)

) [
C(ν)

(
k + h2

)
+ C h2 E

(
k

N∑
l=1

∣∣∇πl∣∣2
L2

)]
.

Plugging this upper estimate in (5.13), we obtain for n ≤ N

E
(
k

n∑
l=1

1Ω̃l−1(M)|∇El|2L2

)
≤ C(ν)

[
1 + C̃2(M,λ)TeC̃2(M,λ)T

]

×
[
k + h2 + h2E

(
k

N∑
l=1

∣∣∇πl∣∣2
L2

)]
. (5.14)
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We next study E
(

max1≤n≤m 1Ω̃n−1(M)|E
n|2L2

)
. Using (5.6), we deduce

1

2
E
(

max
1≤n≤m

1Ω̃n−1(M)|Q
0
hE

n|2L2

)
+ E

( m∑
l=1

1Ω̃l−1(M)

[1

2

∣∣Q0
h(El −El−1)

∣∣2
L2 + νk|∇El|2L2

])
≤ 2

∑
i∈{1,3}

E
(
R̃i(m, k, h,M)

)
+ 2E

(
max

1≤n≤m
R̃2(n, k, h,M)

)
, ∀m = 1, · · · , N. (5.15)

We rewrite R̃2(n, k, h,M) as a stochastic integral. For every s ∈ [tl−1, tl) with l =
1, · · · , N , set s = tl−1, and write accordingly u(s) = ul−1, U(s) = Ul−1, E(s) = El−1 and

Ω̃s(M) = Ω̃l−1(M). Then

R̃2(n, k, h,M) =

∫ tn

0
1Ω̃s(M)

(
[G(u(s))−G(U(s))]dW (s), Q0

hE(s)
)

The Davis inequality implies for m = 2, · · · , N

E
(

max
1≤n≤m

R̃2(n, k, h,M)
)

≤ 3E
({∫ tm

0
1Ω̃s(M)‖G(u(s))−G(U(s))‖2L(K,W1,2)TrQ |Q0

hE(s)|2L2ds
} 1

2
)

(see e.g. [11, Theorem 3.14]). Using the Young inequality together with the upper esti-
mates 1Ω̃l−1(M) ≤ 1Ω̃l−1(M) for l = 2, · · · , N , and (4.8), we deduce for any λ > 0,

E
(

max
1≤n≤m

R̃2(n, k, h,M)
)

≤ 3E
(

max
2≤n<m

1Ω̃l−1(M)|Q
0
hE

l−1|L2

{ m∑
l=2

L11Ω̃l−1(M)|E
l−1|2L2kTrQ

} 1
2
)

+ 3
√
L1TrQ

√
kE(|E0|2L2)

≤λE
(

max
1≤n≤m−1

1Ω̃l−1(M)|Q
0
hE

l|2L2

)
+

9L1TrQ

4λ
E
(
k
m−1∑
l=1

1Ω̃l−1(M)|E
l|2L2

)
+Ch2

√
k. (5.16)

Using the above upper estimates of E(max1≤n≤m R̃i(n, k, h,M)), i = 1, 2, 3, an argument
similar to the previous ones yields for λ ∈ (0, 1

2) and N large enough

E
(

max
1≤n≤m

1Ω̃n−1(M)|E
n|2L2

)
≤ E

(
k
m−1∑
l=1

1Ω̃l−1(M)C̃1(M,λ)|El|2L2

)
+ C(ν, λ)

[
k + h2 + h2E

(
k

m∑
l=1

1Ω̃l−1(M)|∇π
l|2L2

)]
,

where

C̃1(M,λ) =
(1 + 2λ)C̄4

24 (1− 2λ)4ν3
M + C(L1 TrQ,λ, ν, λ).

Using once more the discrete Gronwall lemma, we obtain

E
(

max
1≤n≤m

1Ω̃n−1(M)|E
n|2L2

)
≤ C(ν, λ)

[
k + h2 + h2 E

(
k

m∑
l=1

|∇πl|2L2

)]
eTC̃1(M,λ).
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Let δ ∈ (0, 1); one may choose λ ∈ (0, 1
2) small enough to have 1+2λ

(1−2λ)4
≤ (1 + δ). Since

the sets {Ω̃l(M)}l decrease, (5.2) holds with C̃1(M) defined by (5.3).
The upper estimate (5.4) is a straightforward consequence of (5.14) for λ ∈ (0, 1

2) small
enough.

Finally, observe that for “large M”, we may replace C̃1(M) by (1 + δ) C̄4

24ν3
M , provided

that the constraint (5.12), which enables us to use the discrete Gronwall lemma, is satisfied
for some constant λ defined in terms of δ. This completes the proof. �

A similar argument proves the following localized convergence result for Algorithm 2.

Proposition 5.2. Let (Ul)l be solution of Algorithm 2, that is Vh ⊂ V , and G satisfy
the growth and Lipschitz conditions (G2). Let u0 ∈ L8(Ω;V ) and U0 ∈ L8(Ω;Hh) be F0-
measurable random variables such that (4.8) holds. For every M > 0 and l = 0, · · · , N ,
set

Ωl(M) :=
{
ω ∈ Ω : max

0≤j≤l
‖uj‖2V ≤M

}
. (5.17)

There exists C0 > 0 such that for k = T
N > 0 small enough to have kM ≤ C0, we have for

every δ > 0 and for every m = 1, · · · , N

E
(

1Ωm−1(M) max
1≤n≤m

|En|2L2

)
≤ C(ν, δ)

(
k + h2

)
eC̃3(M)T , (5.18)

where

C̃3(M) := (1 + δ)
[ C̄2

4ν
+ 1
]
M + C(L1 TrQ, δ)

≡ (1 + δ)
[ C̄2

4ν
+ 1
]
M for “large” M, (5.19)

and C̄ is the constant appearing in the Gagliardo-Nirenberg inequality (2.2). Furthermore,

E
(
k

m∑
l=1

1Ωl−1(M)|∇El|2L2

)
≤ C(ν, δ)

(
k + h2

)
TC̃3(M) eC̃3(M)T . (5.20)

Proof. We briefly sketch the argument. The identities (4.17) with b instead of b̃ and
div Q0

hE
l = 0, the estimates (5.5) and (5.11) imply for n,m = 1, · · · , N

E
(

1Ωn−1(M)|Q0
hE

n|2L2

)
+ 2νE

( n∑
l=1

k1Ωl−1(M)|∇El|2L2

)
≤ 2E

[
R1(n, k, h,M) +R3(n, k, h,M)

]
,

E
(

max
1≤n≤m

1Ωn−1(M)|Q0
hE

n|2L2

)
≤ 2E

[
R1(n, k, h,M) +R3(n, k, h,M) + max

1≤n≤m
R2(n, k, h,M)

]
,

where Rj(n, k, h,M) is deduced from R̃j(n, k, h,M) replacing Ω̃l−1(M) by Ωl−1(M) for
j = 1, 2, 3 (and where in R2(n, k, h,M) the term containing the pressure is omitted).

The upper estimates (4.8), (4.19), (4.20), (4.37) and (5.9) with Ωl−1(M) instead of

Ω̃l−1(M) imply for ε1 ∈ (0, 1
2) and ε > 0

E
(

1Ωn−1(M)|Q0
hE

n|2L2

)
+ 2νE

(
k

n∑
l=1

1Ωl−1(M)|∇El|2L2

)
≤ C(ν, ε, ε1)(k + h2)

+ C(ν, ε1,M)E
(
k 1Ωn−1(M)|En|2L2

)
+ 2(10ε+ 2ε1)νE

(
k

n∑
l=1

1Ωl−1(M)|∇El|2L2

)



STRONG CONVERGENCE FOR 2D NS SPACE-TIME EULER SCHEMES 21

+ E
(
k
n−1∑
l=1

1Ωl−1(M)|
[
C(L1 TrQ) +

(
1 +

C̃2

23ε1ν

)
M
]
El|2L2

)
.

Let λ ∈
(
0, 1); set ε1 = 1

2(1 − λ) and ε = λ
20 ; then 2ε1 + 10ε = 1 − λ

2 . Using (4.23), we
deduce for λ ∈ (0, 1) and N large enough (that is k small enough)

E
(

1Ωn−1(M)|En|2L2

)
+ λ E

(
k

n∑
l=1

1Ωl−1(M)|∇El|2L2

)
≤ C(ν, λ)

(
k + h2

)
+ E

(
k

n−1∑
l=1

1Ω̃l−1(M) C̃4(M,ν, λ)|El|2L2

)
, (5.21)

where

C̃4(M,ν, λ)) := (1 + λ)
( C̄2

22(1− λ)2 ν
+ 1
)
M + C(L1 TrQ,λ).

Using the discrete version of Gronwall’s lemma, we obtain an upper estimate of E
(
1Ωn−1(M)|El|2L2

)
.

Plugging this result in the above upper estimate (5.21), we deduce

E
(
k

N∑
l=1

1Ωl−1(M)|∇El|2L2

)
≤ C(ν, λ)(k + h2)TC̃4(M,ν, λ) exp

(
TC̃4(M,ν, λ)

)
. (5.22)

On easily sees that the upper estimate (5.16) holds for R2(n, k, h,M) and Ωl−1(M) instead

of R̃2(n, k, h,M) and Ω̃l−1(M) respectively. Hence, we deduce that for λ ∈
(
0, 1

2

)
and k

small enough, we have

E
(

max
1≤n≤m

1Ωn−1(M)|En|2L2

)
≤ C(ν, λ)(k + h2) + E

(
C̃3(M,λ) k

m−1∑
l=1

1Ωl−1(M)|El|2L2

)
,

where

C̃3(M,λ) := (1 + λ)
[ C̄2

22 (1− 2λ)(1− λ)ν
+ 1
]
M + C(L1TrQ,λ).

The discrete Gronwall lemma implies for m = 1, · · · , N

E
(

max
1≤n≤m

1Ωn−1(M)|En|2L2

)
≤ C(ν, λ)(k + h2) exp

(
TC̃3(M,λ)

)
.

Fix δ > 0; one can choose λ ∈
(
0, 1

2

)
small enough to ensure 1+λ

(1−λ)(1−2λ) ≤ 1 + δ. Since

the sets {Ωl(M)}l are decreasing,, this concludes the proof of (5.18). The proof of (5.20),
which is similar to that in the proof of (5.4), is omitted. �

6. A general framework for strong convergence

This section is devoted to a very general setting to prove L2(Ω)-convergence for a real-
valued family {X(η)}η of random variables with a specific rate of convergence. These
results will be applied in the next section to obtain rates of convergence of |En|L2 .

We first prove that the speed of convergence of {X(η)}η can be deduced from localized
L2(Ω) estimates ofX(η) in terms of another family {Y (η)}η, and from a control of moments
of X(η) and Y (η) uniformly in η.

Theorem 6.1. Let {X(η)}η and {Y (η)}η be families of non-negative random variables
indexed by some parameter η ∈ (0, η0], and let ϕ : (0, η0] → R be a function such that
ϕ(η)→ 0 as η → 0. Suppose that for some exponents a ≥ 1 and p ∈ (1,∞), we have
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• Given positive constants M0, C0 there exist positive constant C1 and η1 ∈ (0, η0]
such that if M(η) ≥M0 and ϕ(η)M(η) ≤ C0 for η ∈ (0, η1] , we have

E
(
X(η)1{Y (η)a≤M(η)}

)
≤ ϕ(η) exp

[
C1M(η)

]
, η ∈ (0, η1]; (6.1)

•
sup

η∈(0,η0]
E
(
X(η)p

)
= C(p) <∞. (6.2)

(i) Suppose that

sup
η∈(0,η0]

E
(
Y (η)q

)
= C̃(q) <∞ (6.3)

for some exponent q > 0. Then for η small enough

E
(
X(η)

)
≤ C

∣∣ ln (ϕ(η)
)∣∣− q(p−1)

ap . (6.4)

If condition (6.2) holds for any p ∈ (1,∞), the upper bound of (6.4) can be replaced by

C
∣∣ ln (ϕ(η)

)∣∣−γ1 for any γ1 <
q
a .

(ii) Suppose that a > 1 and that for some positive constant α̃0

E
[

exp
(
αY (η)

)]
= C̄(α) <∞, for α ∈ (0, α̃0) (6.5)

Then for η small enough

E
(
X(η)

)
≤ C exp

(
− γ2

∣∣ ln (ϕ(η)
)∣∣ 1a ) for γ2 <

p− 1

p
α̃0C

− 1
a

1 . (6.6)

Furthermore, if (6.2) holds for every p ∈ (1,∞), then the upper estimate (6.6) holds for

γ2 < α̃0C
− 1
a

1 .

(iii) Suppose that a = 1 and that (6.5) holds. Then for η small enough we have

E
(
X(η)

)
≤ ϕ(η)γ for γ3 <

α̃0(p− 1)

α̃0(p− 1) + C1p
. (6.7)

Furthermore, if (6.2) holds for every p ∈ (1,∞), then the upper estimate (6.7) holds for
γ3 <

α̃0
α̃0+C1

.

Proof. For η > 0 and M(η) > 0, let Ω(η) := {Y (η)a ≤M(η)}.
(i) Using (6.3) we deduce

P
(
Ω(η)c

)
= P

(
Y (η)q > M(η)

q
a
)
≤ C̃(q)M(η)−

q
a .

Furthermore, (6.2) and Hölder’s inequality with conjugate exponents p and p
p−1 imply

E
(
1Ω(η)c X(η)

)
≤
{
E
(
X(η)p

)} 1
p
{
P
(
Ω(η)c

)} p−1
p ≤ C(p, q)M(η)

− q(p−1)
ap . (6.8)

Let η1 be small enough to have η1M0 < C0, M(η) ≥M0 and ϕ(η)M(η) ≤ C0 for η ∈ (0, η1].
Using (6.1) we deduce

E
(
1Ω(η)X(η)

)
≤ ϕ(η) exp

[
C1M(η)

]
. (6.9)

Choose M(η) such that, up to some bounded multiplicative term, the right hand sides of
(6.8) and (6.9) agree. Taking logarithms, this comes down to

C1M(η)−
∣∣ ln (ϕ(η)

)∣∣ = −c ln
(
M(η)

)
+ c̄(η)
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where c = q(p−1)
ap , and c̄1 ≤ c̄(η) ≤ c̄2 holds for some constants c̄1, c̄2 and any η ∈ (0, η1].

Set

M(η) :=
1

C1

[∣∣ ln (ϕ(η)
)∣∣− c ln

(∣∣ ln (ϕ(η)
)∣∣)] ∼ C∣∣ ln (ϕ(η)

)∣∣
for some positive constant C as η → 0. Then ϕ(η)M(η) → 0 as η → 0; furthermore, for
some constant C̄ we have

C1M(η)−
∣∣ ln (ϕ(η)

)∣∣+ c ln
(
M(η)

)
= c ln

( M(η)∣∣ ln (ϕ(η)
)∣∣)→ C̄ as η → 0.

Hence, for η small enough, both upper estimates (6.8) and (6.9) agree - up to some

(bounded) multiplicative term - with
∣∣ ln (ϕ(η)

)∣∣− q(p−1)
ap ; this concludes the proof of (6.4).

If (6.2) holds for any p ∈ (1,∞), the bound on γ1 is a straightforward consequence of
(6.4).

(ii) Using (6.5) and the Markov inequality, we deduce for α ∈ (0, α̃0)

P
(
Ω(η)c

)
= P

[
exp

(
αY (η)

)
> exp

(
αM(η)

1
a
)]
≤ C̄(α) exp

(
− αM(η)

1
a
)
.

Using again (6.2) and Hölder’s inequality, we deduce

E
(
1Ω(η)c X(η)

)
≤ C(p, α) exp

(
− α p− 1

p
M(η)

1
a

)
. (6.10)

We next choose M(η) = 1
C

∣∣ ln (ϕ(η)
)∣∣ for some constant C > C1. Then ϕ(η)M(η)→ 0 as

η → 0; thus for η > 0 small enough, we have M(η) ≥ M0 and ϕ(η)M(η) ≤ C0. For this
choice of η the inequality (6.1) implies

E
(
1Ω(η)X(η)

)
≤ exp

[
−
(

1− C1

C

)∣∣ ln (ϕ(η)
)∣∣].

Since a > 1 and M(η)→∞ as η → 0, the right hand side of (6.10) converges to 0 slower
than the above one. Splitting E

(
X(η)

)
on Ω(η) and Ω(η)c, we deduce that the largest

term in this sum is the expected value on Ω(η)c. Hence, using (6.10) for this choice of
M(η), we deduce that for η small enough,

E
(
X(η)

)
≤ C exp

(
− αp− 1

p
C−

1
a

∣∣ ln (ϕ(η)
)∣∣ 1a) for C > C1.

Fix γ2 < α̃0
p−1
p C

− 1
a

1 ; then choose α < α̃0 close to α̃0 and C > C1 very close to C1 to have

γ2 < α
p− 1

p
C
− 1
a

1 < α̃0
p− 1

p
C−

1
a .

This inequality clearly yields (6.6).

Note that if (6.2) holds for all p ∈ (0, 1), given γ2 < α̃0 C
− 1
a

1 we can choose p large

enough to have γ2 < α p−1
p C

− 1
a

1 .

(iii) Using the upper estimates (6.1) with a = 1, and M := M(η) and (6.10), we choose
M(η) such that the right hand sides of both inequalities agree up to some multiplicative
constant. Taking logarithms, we deduce that M(η) should be such that

C1M(η)−
∣∣ ln (ϕ(η)

)∣∣ = −αp− 1

p
M(η) for some α ∈ (0, α̃0).
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Thus, if we set β := α p−1
p and M(η) :=

∣∣ ln(ϕ(η)
)∣∣

C1+β , we have M(η) → ∞, ϕ(η)M(η) → 0

as η → 0, and for η small enough, ϕ(η) < 1; thus for η small enough,

E
(
X(η)

)
= C exp

(
−
β
∣∣ ln (ϕ(η)

)∣∣
β + C1

)
= Cϕ(η)

β
C1+β for α ∈ (0, α̃0).

Set β0 := α̃0
p−1
p and let γ3 <

β0
β0+C1

; choose α < α̃0 close enough to α̃0 to have γ3 <
β

β+C1
< β0

β0+C1
. We deduce (6.7).

If (6.2) is satisfied for any p ∈ (0, 1), given γ3 <
α̃0

α̃0+C1
we can choose p large enough to

have γ3 <
β0

β0+C1
< α̃0

α̃0+C1
; therefore, we conclude that (6.7) holds with the exponent γ3

in the right hand side. �

We next deduce similar results if the assumption (6.1) is slightly weakened as follows.

Corollary 6.2. Let {Z(η)}η and {Y (η)}η be families of non-negative random variables
indexed by some parameter η ∈ (0, η0], and let ϕ : (0, η0] → R be a function such that
ϕ(η)→ 0 as η → 0. Suppose that for some exponents a ≥ 1 and p ∈ (1,∞)

• Given positive constants M0, C0 there exists positive constants C1 and η1 ∈ (0, η0]
such that if M(η) ≥M0 satisfies ϕ(η)M(η) ≤ C0 for any η ∈ (0, η1], we have

E
(
Z(η)1{Y (η)a≤M(η)}

)
≤ ϕ(η)C1M(η) exp

[
C1M(η)

]
, η ∈ (0, η1]; (6.11)

•
sup

η∈(0,η0]
E
(
Z(η)p

)
= C(p) <∞. (6.12)

(i) Let {Y (η)}η satisfy the assumption (6.3). Then for η small enough, (6.4) holds for
Z(η) instead of X(η).

(ii) Let {Y (η)}η satisfy the assumption (6.5) and a > 1. Then for η small enough, (6.5)
holds with Z(η) instead of X(η).

(iii) {Y (η)}η satisfy the assumption (6.5) and a = 1. Then for η small enough, (6.6)
holds with Z(η) instead of X(η).

Proof. The proof is a straightforward consequence of the arguments used in the proof
of Theorem 6.1, and, given any δ > 0 arbitrary small, of the inequality x exp

(
x) ≤

exp
[
(1 + δ)x

]
valid for large enough x > 0. �

7. Convergence in L2(Ω)

In this section, we prove a speed of convergence in L2(Ω)-norm of the difference El

between the time and space-time discretizations. Coupled with the results of Theorems
3.3 and 3.4, this will provide a strong (that is L2(Ω)) speed of convergence of the space-time
Euler scheme Ul to u(tl) in L2(D) uniformly on the time grid tl = l TN .

7.1. Strong convergence of Algorithm 1. In this subsection, we focus on the solution
defined in Algorithm 1, that is (4.11) and (4.12). We will give results in the case of a
multiplicative and of an additive stochastic perturbation.
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7.1.1. Multiplicative noise. We suppose that the diffusion coefficient G satisfies the growth
and Lipschitz conditions (G1) or (G2). The following theorem is the main result of this
section for general finite elements and diffusion coefficients. As in [9], for general coeffi-
cients we have either to keep the gradient of the pressure (with some growth conditon),
or to impose some relation between the space mesh h and the time mesh k = T

N .

Theorem 7.1. Fix an integer q0 ≥ 3; suppose that u0 ∈ L2q0 (Ω;V ) and U0 ∈ L2q0 (Ω;L2
per).

(i) Let G satisfy condition (G1) and suppose that h2E
(
k
∑N

l=1 |∇πl|2L2

)
→ 0 as k, h→

0; then for k + h2 + h2E
(
k
∑N

l=1 |∇πl|2L2

)
small enough,

E
(

max
0≤l≤N

|u(tl)−Ul|2L2 + k
N∑
l=1

|∇u(tl)−∇Ul|2L2

)

≤ C
∣∣∣ ln [k + h2 + h2E

(
k

N∑
l=1

|∇πl|2L2

)] ∣∣∣−(2q0−2− 1
2

)
. (7.1)

(ii) Let G satisfy condition (G1) and suppose that as h, k → 0 we have h2k−1 → 0;
then for k and h2 k−1 small enough,

E
(

max
0≤l≤N

|u(tl)−Ul|2L2 + k
N∑
l=1

|∇u(tl)−∇Ul|2L2

)
≤ C

∣∣ ln [k + h2k−1
] ∣∣−(2q0−2− 1

2
)
. (7.2)

(iii) Suppose that G satisfies condition (G2). Then for k and h small enough (without
any restriction), we have

E
(

max
0≤l≤N

|u(tl)−Ul|2L2 + k

N∑
l=1

|∇u(tl)−∇Ul|2L2

)
≤ C

∣∣ ln (k + h2
)∣∣−(2q0−2− 1

2
)
. (7.3)

Remark 7.2. If u0 and U0 are deterministic or have moments of all orders (such as
Gaussian random variables), in all cases the exponent of the logarithm is arbitrary large.

Proof. (i) Let η = k + h2 and ϕ(η) = k + h2 + h2E
(
k
∑N

l=1 |∇πl|2L2

)
; by assumption,

ϕ(η)→ 0 as η → 0. Set

X(η) = max
0≤l≤N

|ul−Ul|2L2 , Y (η) = max
0≤l≤N−1

‖ul‖2V and Z(η) = k
N∑
l=1

|∇ul−∇Ul|2L2 . (7.4)

Using (5.2) – (5.4) in Proposition 5.1, we deduce that (6.1) and (6.11) hold for a = 2 and

C1 := (1 + δ) C̄
4 T

24ν3
for some δ > 0. Furthermore, the upper estimates (3.4), (4.13) and

(4.14) imply that (6.2) and (6.12) are true for p = 2q0−1, while (3.4) implies that (6.3)

holds for q = 2q0−1. Since q(p−1)
ap = 2q0−2− 1

2 , using part (i) in Theorem 6.1 and Corollary

6.2, we deduce

E
(

max
0≤l≤N

|ul−Ul|2L2

)
+k

N∑
l=1

|∇ul−∇Ul|2L2

)
≤ C

∣∣∣ ln [k+h2+h2E
(
k

N∑
l=1

|∇πl|2L2

)] ∣∣∣−(2q0−2− 1
2

)
.

We next use the upper estimate of E
(

max0≤l≤N |u(tl)−ul|2L2

)
proved in (3.9) and compare

the right hand sides of the above inequality and of (3.9).
Let η > 0 be small enough to ensure ϕ(η) < e−1. Since k ≤ ϕ(η) and ln

(
ϕ(η)

)
< −1,

| ln(k)|2 > | ln(k)| > | ln
(
ϕ(η)

)
| > 1. Furthermore, ln(N) = | ln(k)| − ln(T ) ≥ | ln(k)| if
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T ∈ (0, 1), while ln(N) ≥ 1
2 | ln(k)| if T > 1 for small enough k. Therefore, ln(N)|−2A ≤

C
∣∣ ln (ϕ(η)

)∣∣−A for A := 2q0−2 − 1
2 . This concludes the proof of (7.1).

(ii) Using the upper estimate (3.7) we deduce

k + h2 + h2E
(
k

N∑
l=1

|∇πl|2L2

)
≤ k + h2 + C(T )

h2

k
≤ C(T )

(
k +

h2

k

)
,

where k + h2/k ≡ 0. Hence, (7.1) implies (7.2).
(iii) Recall that if G satisfies condition (G2), (3.8) implies

k + h2 + h2E
(
k

N∑
l=1

|∇πl|2L2

)
≤ k + h2

(
1 + C(T )

)
≤ C(T )(k + h2).

Thus (7.1) implies (7.3). �

7.1.2. Additive noise. As in [3], we replace the Hölder inequality for a power of maxl ‖ul‖2V
by an exponential Markov inequality for maxl ‖ul‖2V ; recall that the maximal exponent of
the exponential moments proved in Theorem 8.1 is α̃0. This yields the following

Theorem 7.3. Let G satisfy condition (G1) with K1 = 0, i.e., ‖G(u)‖2L(K,W1,2) ≤ K0.

Let u0 ∈ V and U0 ∈ L2q0 (Ω;L2
per) for some q0 ∈ [3,∞). Set α̃0 := ν

2 C̃ K0 TrQ
, where C̃ is

defined by |∇u|2L2 ≤ C̃|Au|2L2. Let κ0 := 2q0−1−1
2q0−1 α̃0

4
C̄2

√
ν3

T .

(i) Suppose that k + h2 + h2E
(
k
∑N

l=1 |∇πl|2L2

)
is “small”. Then for γ < κ0

E
(

max
0≤l≤N

|u(tl)−Ul|2L2 +k
N∑
l=1

|∇u(tl)−∇Ul|2L2

)

≤ C exp
(
− γ

∣∣∣ ln [k + h2 + h2E
(
k

N∑
j=1

|∇πj |2L2

)]∣∣∣ 12). (7.5)

(ii) Suppose that G satisfies condition (G1) and that h2 k−1 → 0 as h, k → 0; then for
“small” k + h2k−1 we have for γ < κ0

E
(

max
0≤l≤N

|u(tl)−Ul|2L2 +k

N∑
l=1

|∇u(tl)−∇Ul|2L2

)
≤ C exp

(
− γ

∣∣ ln [k + h2k−1
]∣∣ 12). (7.6)

(iii) Suppose that G satisfies condition (G2).Then, when k → 0 and h → 0 (without
any restriction), we have for γ < κ0

E
(

max
0≤l≤N

|u(tl)−Ul|2L2 +k
N∑
l=1

|∇u(tl)−∇Ul|2L2

)
≤ C exp

(
− γ

∣∣ ln [k + h2
]∣∣ 12). (7.7)

Remark 7.4. (i) The speed of convergence is an increasing function of the viscosity ν,
and a decreasing function of the “strenght” of the noise K0 TrQ, and of the length of the
time interval.

(ii) If U0 is deterministic such that |u0−u0|L2 ≤ Ch2 for “small” h, the upper estimates

(7.5)–(7.7) hold for γ < α̃0
4
C̄2

√
ν3

T .
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Proof. (i) Let η = k+h2, ϕ(η) = k+h2+h2E
(
k
∑N

l=1 |∇πl|2L2

)
, and suppose that ϕ(η)→ 0

as η → 0. Let X(η), Y (η) and Z(η) be defined by (7.4). Then, as in the proof of Theorem

7.1, (6.1) and (6.11) are satisfied with C1 := (1 + δ) C̄
4 T

24ν3
for δ > 0 arbitrary small and

a = 2, while (6.2) and (6.12) hold with p = 2q0−1. Furthermore, Theorem 8.1 implies that
(6.5) holds for α̃0 defined above.

Therefore, using part (ii) if Theorem 6.1 and Corollary 6.2, we deduce that

E
(

max
0≤l≤N

|ul −Ul|2L2 +k
N∑
l=1

|∇ul −∇Ul|2L2

)

≤ C exp
(
− γ

∣∣∣ ln [k + h2 + h2E
(
k

N∑
j=1

|∇πj |2L2

)]∣∣∣ 12) (7.8)

holds for γ < 2q0−1−1
2q0−1 α̃0C

− 1
2

1 . Furthermore, (3.10) implies E
(

max0≤l≤N |u(tl) − ul|2L2

)
≤

Ck−β. For k small enough we have β | ln(k)| ≥ γ | ln(k)|
1
2 ≥ γ

∣∣ ln (ϕ(η)
)∣∣ 12 for any β, γ > 0.

Therefore, (3.10) and (7.8) imply (7.5).
Note that unlike the convergence for the time discretization ul to the true solution u(tl)

described in Theorem 3.4, the final result does not provide a polynomial speed. This is
due to the fact that in Proposition 5.1, the localization involves the fourth power of ‖u‖V .

(ii) As in the proof of Theorem 7.1, the inequality (3.7) implies h2E
(∑N

j=1 |∇πj |2L2

)
≤

C(T )h2/k Therefore, given k and h2k−1 small enough, (7.5) implies (7.6)

(ii) If G satisfies (G2), the inequality (3.8) implies k + h2 + h2E
(∑N

j=1 |∇πj |2L2

)
≤

C(T )(k + h2). Thus, (7.5) implies (7.7). �

Corollary 7.5. If u0 is random, independent of W and such that E
[

exp
(
γ0‖u0‖2V

)]
<∞,

then the statement of Theorem 7.6 is valid with α̃0 replaced by β̃0 := α̃0
γ0

γ0+α̃0
. Indeed, it

suffices to use (8.12) in the proof of Theorem 7.3.

7.2. Strong convergence of Algorithm 2. In this subsection, we focus on Algorithm
2, that is divergence-free finite elements, and suppose that Vh ⊂ V . We will state the
convergence results for both multiplicative and additive stochastic perturbations.

7.2.1. Multiplicative noise. In this case, the localized convergence result from section 5
only involves the square of the V norm of the time discretization. The following result is
similar to Theorem 7.1.

Theorem 7.6. Suppose that the finite elements are divergence free, so that Vh ⊂ V . Fix
an integer q0 ≥ 3; suppose that u0 ∈ L2q0 (Ω;V ) and U0 ∈ L2q0 (Ω;L2

per). Let the coefficient

G satisfy the assumptions (G1). Let C̄ be the constant defined in (2.2). Then if k, l are
“small”

E
(

max
0≤l≤N

|u(tl)−Ul|2L2 + k
N∑
l=1

|∇u(tl)−∇Ul|2L2

)
≤ C(ν, T )

∣∣ ln (k + h2
)∣∣−(2q0−1−1)

.

(7.9)

Remark 7.7. Once more, if u0 and U0 are deterministic or have moments of all order,
for example are Gaussians, the exponent of the logarithm in the right hand side of (7.9)
is arbitrary large.
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Proof. Let η = k+h2, ϕ(η) = η, X(η), Y (η) and Z(η) be defined by (7.4); then Proposition

5.2 implies that the upper estimate (6.1) is satisfied with a = 1 and C1 := (1+δ)
[
C̄2

4ν +1
]
T

for δ > 0 arbitrary small. Using the upper estimates (3.4), (4.13) and (4.14), we deduce
that (6.2) and (6.12) are true for p = 2q0−1, while (3.4) implies that (6.3) holds for
q = 2q0−1. Therefore, parts (i) of Theorem 6.1 and Corollary 6.2 imply

E
(

max
0≤l≤N

|ul −Ul|2L2 + k
N∑
l=1

|∇ul −∇Ul|2L2

)
≤ C(ν, T )

∣∣ ln (k + h2
)∣∣−(2q0−1−1)

.

Since k ≤ k+h2 << e−1, we have
{

lnN
}−(2q−1−1) ≤ C

∣∣ ln (k+h2
)∣∣−(2q−1−1)

; the upper
estimate (3.9) completes the proof of (7.9). �

7.2.2. Additive noise. Assume condition (G1) holds with K1 = 0; then the strong speed
of convergence is polynomial.

Theorem 7.8. Let G satisfy condition (G1) with K1 = 0, i.e., ‖G(u)‖2L(K,W1,2) ≤ K0.

Let u0 ∈ V be deterministic, and U0 ∈ L2q0 (Ω;L2
per) for some q0 ∈ [3,∞). Set

α̃0 :=
ν

2 C̃K0TrQ
, C0 :=

C̄2T

2ν
tand C1 =:

[ C̄2

4ν
+ 1
]
T, (7.10)

where C̄ is defined by (2.2) and C̃ is defined by |∇u|2L2 ≤ C̃|Au|2L2.
Define the critical exponents as follows:

β0 :=
1

2

( α̃0

α̃0 + C0

)
and κ0 :=

α̃0

(
2q0−1 − 1)

α̃0

(
2q0−1 − 1) + C12q0−1

. (7.11)

Then for γ1 < κ0 and γ < β0, setting k := T
N , we have for k and h small enough

E
(

max
0≤l≤N

|u(tl)−Ul|2L2 + k
N∑
l=1

|∇u(tl)−∇Ul|2L2

)
≤ C

[(
k + h2

)γ1 + kγ
]
. (7.12)

Remark 7.9. The exponent β0 (resp. κ0), which reflects the speed for the time (resp.
the finite elements) approximation, is an increasing function of the viscosity ν > 0 and
decreasing functions of K0TrQ . For a given viscosity, as K0TrQ → 0, κ0 converges to
1. This limit is twice the corresponding one 1

2 of β0; this is consistent with the scaling
between the space and time regularity for the heat kernel, which is behind this model. Note
that these upper bounds are also approached for a given noise if the viscosity is “large”.
The exponent β0 cannot be better than the time regularity. The maximal exponents cannot
be improved.

Proof. Let η = k + h2 and ϕ(η) = η . As in the proof of Theorem 7.6, (6.1) and (6.11)
are satisfied for a = 1 and (1 + δ)C1 where C1 is defined in (7.10) and δ > 0 is arbitrary
small. Furthermore, (6.2) and (6.12) hold for p = 2q0−1. Since the noise is additive, (6.5)
is satisfied for the parameter α̃0 defined in (7.10). Using parts (iii) of Theorem 6.1 and
Corollary 6.2, we deduce

E
(

max
0≤l≤N

|ul −Ul|2L2 + k
N∑
l=1

|∇ul −∇Ul|2L2

)
≤ C

(
k + h2

)γ1 ,
for γ1 < κ0, where κ0 is defined in (7.11). Coupling this upper estimate with (3.10) and
choosing δ > 0 small enough we deduce (7.12); this completes the proof. �
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Corollary 7.10. If u0 is random, independent of W and such that E
[

exp
(
γ0‖u0‖2V

)]
<

∞, then the statement of Theorem 7.8 is valid with α̃0 replaced by β̃0 := α̃0
γ0

γ0+α̃0
. Indeed,

it suffices to use (8.12) in the proof of Theorem 7.8.

8. Appendix

In this section, for an additive noise, we prove the existence of exponential moments of
the V norm for the time discretization uN (tl) uniformly on the time grid {tl = lT

N , l =
0, · · · , N} and with a bound independent of N . This is similar to a similar result proved
in [14] for the solution u to the stochastic 2D Navier-Stokes equation (see also [3]).

8.1. Deterministic initial condition. We first suppose that u0 ∈ V is deterministic.

Theorem 8.1. Let G satisfy condition (G1) with K1 = 0, that is ‖G(u)‖2L(K,W1,2) ≤ K0

and set α̃0 := ν
2 C̃ K0 TrQ

, where the constant C̃ is defined by |∇u|2L2 ≤ C̃|Au|2L2.

Let u0 ∈ V ; then for 0 < α < α̃0, there exists a positive constant C(α) such that for N
large enough,

E
[

exp
(
α max

0≤l≤N
‖ul‖2V

)]
= C(α) <∞. (8.1)

Proof. Since Lemma 3.1 implies that E
(
T
N

∑N
l=1 |Aul|2L2

)
<∞, using integration by parts

we may write (3.1) with φ = −∆ ul; this yields a.s.

−(ul − ul−1,∆ ul) +
T

N

[
ν(∆ ul,∆ ul)− 〈(ul · ∇ul), ∆ ul〉+ (πl,div∆ul)

]
= −

(
G(ul−1)∆lW, ∆ ul

)
.

Using (2.6), div ul = 0, and integration by parts in the stochastic term, we deduce(
∇ul −∇ul−1, ∇ul

)
+ ν

T

N
|Aul|2L2 =

(
∇[G(ul−1)∆lW ] , ∇ul

)
.

The identity (a− b, a) = 1
2

(
|a|2 − |b|2 + |a− b|2

)
implies

|∇ul|2L2 − |∇ul−1|2L2 + |∇(ul − ul−1)|2L2

= 2
(
∇[G(ul−1)∆lW ] , ∇ul

)
− 2 ν

T

N
|Aul]2L2 (8.2)

= 2
(
∇[G(ul−1)∆lW ] , ∇ul−1

)
− 2

T

N
ν|Aul]2L2 + 2

(
∇[G(ul−1)∆lW ] , ∇[ul − ul−1]

)
.

(8.3)

A similar computation, based on (3.1) with φ = ul implies a.s.

|ul|2L2 − |ul−1|2L2 + |(ul − ul−1)|2L2 = 2
(
G(ul−1)∆lW , ul

)
− 2 ν

T

N
|∇ul]2L2 (8.4)

= 2
(
G(ul−1)∆lW , ul−1

)
− 2

T

N
ν|∇ul]2L2 + 2

(
G(ul−1)∆lW , ul − ul−1

)
. (8.5)

For l = 1, condition (G1) with K1 = 0, the Cauchy-Schwarz and Young inequalities imply
for λ ∈ (0, 1)

2
∣∣(∇[G(u0)∆lW ] , ∇u1

)∣∣ ≤ 1

λ
‖G(u0)‖2L(K,W1,2)‖∆1W‖2K + λ|∇u1|2L2 .
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Hence (8.2) implies

|∇u1|2L2 ≤
1

1− λ
|∇u0|2L2 +

1

λ(1− λ)
K0‖∆1W‖2K − 2

T

N
ν|Au1|2L2 .

For l ≥ 2, a similar argument using the Cauchy-Schwarz and Young inequalities implies

2
(
∇[G(ul−1)∆lW ],∇[ul − ul−1]

)
≤ 2|∇(G(ul−1)∆lW )|L2 |∇(ul − ul−1)|L2

≤ ‖G(ul−1)‖2L(K,W1,2)‖∆lW‖2K + |∇(ul − ul−1)|2L2 .

Therefore, (8.3) and condition (2.8) in (G1) with K1 = 0 imply

|∇ul|2L2 − |∇ul−1|2L2 ≤ 2
(
∇[G(ul−1)∆lW ],∇ul−1

)
− 2

T

N
ν|Aul|2L2 +K0‖∆lW‖2K .

A similar argument, based on (2.7) in Condition (G1) with K1 = 0, implies

|u1|2L2 ≤
1

1− λ
|u0|2L2 +

1

λ(1− λ)
K0‖∆1W‖2K − 2

T

N
ν|∇u1|2L2 ,

|ul|2L2 − |ul−1|2L2 ≤ 2
(
G(ul−1)∆lW,u

l−1
)
− 2

T

N
ν|∇ul|2L2 +K0‖∆lW‖2K , l = 2, ...N.

Adding these inequalities for l = 1, · · · , n, we deduce for n = 2, · · · , N

‖un‖2V ≤
1

1− λ
‖u0‖2V +

2

λ(1− λ)
K0

n∑
l=1

‖∆lW‖2K − 2ν
T

N

n∑
l=1

(
|∇ul|2L2 + |Aul|2L2

)
+

n∑
l=2

2
[(
G(ul−1)∆lW , ul−1

)
+
(
∇[G(ul−1)∆lW ] , ∇ul−1

)]
. (8.6)

Let Y be a K-valued centered Gaussian random variable with covariance operator Q.
Using the independence of the time increments ∆lW we deduce that for any β > 0,

E
[

exp
(
β

N∑
l=1

‖∆lW‖2K
)]

=
{
E
[
eβ

T
N
‖Y ‖2K

]}N
.

Proposition 2.16 in [11] implies that if γ̃ ∈
(
0, 1

2TrQ

)
and γ ∈ (0, γ̃), we have

E
(
eγ‖Y ‖

2
K
)
≤ exp

(1

2

∞∑
i=1

(2γ)i

i
Tr (Qi)

)
≤ exp

(1

2
ln
(
1 + 2γ̃TrQ

))
<∞.

Hence, if 2βK0T
λ(1−λ)N < 1

2TrQ (which is satisfied for any β > 0 provided that N is large

enough), we obtain {
E
(

exp
( 2βK0T

λ(1− λ)N
‖Y ‖2K

)}N
≤
√

2. (8.7)

Given α > 0 and n = 2, · · · , N , set

Mn = 2α
n∑
l=2

[(
G(ul−1)∆lW, ul−1

)
+
(
∇[G(ul−1)∆lW ], ∇ul−1

)]
.

Then (Mn,Ftn , n = 1, ..., N) is a discrete martingale. For s ∈ [tl, tl+1), l = 1, · · · , N − 1,

set s = tl and us = ul. With these notations, Mn = M̃tn , where

M̃t = 2α

∫ t

t1

[(
G(us) dW (s), us

)
+
(
∇G(us) dW (s), ∇us

)]
, t ∈ [t1, T ].
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The processes G(us), ∇G(us), us and ∇us are Fs-adapted, and (M̃t,Ft, t ∈ [t1, T ]) is a
square integrable martingale, such that

〈M̃〉tn ≤ 4α2

∫ tn

t1

2
[
‖G(us)‖2L(K,L2 TrQ |us|2L2 + ‖G(us)‖2L(K,W1,2) TrQ |∇us|2L2

]
ds

≤ 8α2K0TrQC̃
T

N

n−1∑
l=1

[
|∇ul|2L2 + |Aul|2L2

]
. (8.8)

Using (8.6) we deduce that for λ ∈ (0, 1), α > 0 and µ > 1,

exp
(
α max

1≤n≤N
‖ul‖2V

)
≤ exp

( α

1− λ
‖u0‖2V

)
exp

( 2K0α

λ(1− λ)

N∑
l=1

‖∆lW‖2K
)

(8.9)

× exp
(

max
2≤n≤N

[
Mn −

µ

2
〈M̃〉tn

])
exp

(
max

2≤n≤N

[µ
2
〈M̃〉tn − 2kν

n∑
l=1

(
|∇ul|2L2 + |Aul|2L2

)])
.

Let α̃0 = ν
2 C̃ K0TrQ

; for α ∈ (0, α̃0), we may choose µ > 1 such that µα < α̃0; using (8.8)

we deduce that for such a choice of α and µ we have a.s.

max
2≤n≤N

[
µ〈M̃〉tn − 2kν

n∑
l=1

[
|∇ul|2L2 + |Aul|2L2

]

≤
(µ

2
8αK0TrQ C̃ − 2ν

)
α
T

N

N−1∑
l=2

[
|∇ul|2L2 + |Aul|2L2

]
≤ 0.

Thus, Hölder’s inequality with conjugate exponents µ and µ
µ−1 implies for λ = 1

2

E
[

exp
(
α max

0≤l≤N
‖ul‖2V

)]
≤ exp

(
2α‖u0‖2V

){
E
[

exp
(8µK0α

µ− 1

N∑
l=1

‖∆lW‖2K
)]}µ−1

µ

×
{
E
[

max
2≤n≤N

exp
(
µM̃tn −

µ2

2
〈M̃〉tn

)]} 1
µ
. (8.10)

Since {exp
(
µM̃t− µ2

2 〈M̃〉t
)
}t∈[t1,T ] is an exponential martingale, choosing N large enough

to ensure 8µα̃0K0T
(µ−1)N < 1

2TrQ , (8.7) implies (8.1). This completes the proof. �

The following theorem proves a similar result about the existence of exponential mo-
ments for the solution u to the stochastic Navier-Stokes equations. Its proof, which is
similar to the above one, with a slight modification of that of [3, Lemma 3.8], is omitted.

Theorem 8.2. Let G satisfy condition (G1) with K1 = 0, that is ‖G(u)‖2L(K,W1,2) ≤ K0

and set α̃0 := ν
2 C̃ K0 TrQ

, where the constant C̃ is defined by |∇u|2L2 ≤ C̃|Au|2L2.

Let u0 ∈ V ; then for 0 < α < α̃0, there exists a positive constant C(α) such that

E
[

exp
(
α sup
t∈[0,T ]

‖u(t)‖2V
)]

= C(α) <∞. (8.11)

8.2. Random initial condition. In this section, we extend Theorems 8.1 and 8.2 to a
random initial condition u0 such that its V norm has exponential moments.
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Theorem 8.3. Let G satisfy condition (G1) with K1 = 0, that is ‖G(u)‖2L(K,W1,2) ≤
K0 and suppose that u0 is a v-valued random variable independent of W and such that
E
[

exp(γ0‖u0‖2V )
]
< ∞ for some γ0 > 0. Set α̃0 := ν

2 C̃ K0 TrQ
, where the constant C̃ is

defined by |∇u|2L2 ≤ C̃|Au|2L2 and β̃0 := α̃0
γ0

γ0+α̃0
. Then for 0 < α < β̃0, there exists a

positive constant C(β) such that for N large enough,

E
[

exp
(
α max

0≤l≤N
‖uN (tl)‖2V

)]
+ E

[
exp

(
α sup
t∈.[0,T ]

‖u(t)‖2V
)]

= C(β) <∞. (8.12)

Remark 8.4. Note that when u0 is deterministic, the exponential moment estimate of
‖u0‖2V holds for every γ0 > 0. As γ0 →∞, we have β̃0 → α̃0.

Proof. We only prove the exponential moment estimate for max0≤l≤N ‖uN (tl)‖2V ; the cor-
responding one for sup0≤t≤T ‖u(t‖2V is proven in a similar (simpler) way.

We want to use Hölder’s inequality in (8.9) with exponents p1 ∈ (1,∞), p2 = µ ∈ (1,∞)
and p3 ∈ (1,∞) such that 1

p1
+ 1

µ + 1
p3

= 1; this requires αµ < α̃0. Suppose that for some

λ ∈ (0, 1), p1α
1−λ ≤ γ0 and αµ < α̃0, that is 1

p1
> α

γ0
and 1

µ > α
α̃0

. Since 1
p1

+ 1
µ < 1, we

deduce that α < α̃0
γ0

γ0+α̃0
:= β̃0. For α < β̃0, set p̄1 = γ0

α and µ = α̃0
α . Then choose

λ ∈ (0, 1) small enough to have p1 := (1−λ)p̄1 = γ0(1−λ)
α such that 1

p1
+ 1

µ < 1, and define

p3 ∈ (1,∞) by 1
p3

= 1− 1
p1
− 1

µ . This yields

E
[

exp
(
α max

0≤l≤N
‖ul|2V

)]
≤
{
E
(

exp
(p1α‖u0‖2V

1− λ

)} 1
p1

{
E
[

max
2≤n≤N

exp
(
µM̃tn −

µ2

2
〈M̃〉tn

)]} 1
µ

×
{
E
[

exp
( p32K0α

λ(1− λ)

N∑
l=1

‖∆lW‖2K
)]} 1

p3 . (8.13)

LetN be large enough to ensure p32β̃0K0T
Nλ(1−λ) < 1

2TrQ . Then (8.7) implies (8.12); this concludes

the proof. �
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