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LARGE DEVIATIONS FOR GENERALIZED GIBBS ENSEMBLES OF
THE CLASSICAL TODA CHAIN

ALICE GUIONNET AND RONAN MEMIN

Abstract We derive large deviations principles for the distribution of the empirical
measure of the equilibrium measure for the Generalized Gibbs ensembles of the classical
Toda chain introduced in [11]. We deduce its almost sure convergence and characterize
its limit in terms of the limiting measure of Beta-ensembles. Our results apply to general
smooth potentials.
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1. Introduction

In a breakthrough paper [11], Herbert Spohn introduced the generalized Gibbs ensem-
bles of the classical Toda chain as invariant measures of the dynamics of the classical Toda
lattice and showed how to analyze it thanks to a beautiful comparison with Dumitriu-
Edelman tri-diagonal representations of β-ensembles. Thanks to this comparison, it is
shown in [11] that the empirical measure of the eigenvalues of Toda Lax matrices for
these Generalized Gibbs ensembles converges towards a probability measure related with
the equilibrium measure for β ensembles. One of the key tool of Herbert Spohn analysis

This project has received funding from the European Research Council (ERC) under the European
Union Horizon 2020 research and innovation program (grant agreement No. 884584).

1



2 ALICE GUIONNET AND RONAN MEMIN

is the uses of transfer matrices which restricts him to polynomial potentials. We refer the
interested reader to subsequent developments in [9, 10, 8].

The main goal of this article is to generalize some of the results of Spohn [11] by using
large deviations theory, which will allow us to consider more general potentials. More
precisely, we will show the convergence of the free energy and of the empirical measure of
the eigenvalues of Toda Lax matrices for these Generalized Gibbs towards limits related
to β-ensembles as in [11] but for general continuous potentials instead of polynomial
functions. Moreover, we will derive large deviation principle allowing to study a priori
tri-diagonal matrices with more general parameters.

More precisely, the Hamiltonian of the Toda chain on sites j = 1, . . . , N is given by

H =
N∑
j=1

(1
2p

2
j + e−rj), rj = qj+1 − qj

with the periodic conditions qN+j = qj. The equations of motion are then given by
d

dt
qj = pj,

d

dt
pj = e−rj−1 − e−rj . (1)

Let LN be the Lax matrix given by the tri-diagonal with entries
(LN)j,j = pj and (LN)j,j+1 = (LN)j+1,j = e−rj/2 (2)

with periodic boundary conditions (LN)1,N = (LN)N+1,N and (LN)N,1 = (LN)N,N+1, then
for all integer number n,

Qn
N = Tr(LnN)

is conserved by the dynamics (1) as well as ∑N
i=1 ri. It is therefore natural to consider

that the finite N Toda chain is distributed according to the Gibbs measure with density
e−Tr(W (LN )) with respect to ∏N

i=1 e
−Pridridpi, where P > 0 controls the pressure of the

chain. W is a potential to be chosen later, which can be a polynomial or a general
measurable function from R into R. We will assume it goes to infinity faster than x2:
namely there exists a > 0 and a finite constant C such that for

W (x) ≥ ax2 + C . (3)
This assumption is used to compare our distribution to the case where W (x) = x2 in
which case the entries of the Lax matrix LN are independent. We can without loss of
generality assume a = 1

2 up to rescaling and therefore put W (x) = 1
2x

2 + V . In the
following we will denote

dTV,PN (p, r) = 1
ZV,P
N,T

exp{−Tr(V (LN))− 1
2Tr(L2

N)}
N∏
i=1

e−Pridridpi (4)

We denote in short TPN for T0,P
N . Our goal in this article is to study the empirical measure

of the eigenvalues λ1 ≤ · · · ≤ λN of LN , called hereafter the spectral measure of LN and
denoted by

µ̂LN = 1
N

N∑
i=1

δλi .

Our main result is a large deviation principle for the distribution of µ̂LN under dTV,PN ,
from which we deduce the almost sure convergence of µ̂LN under dTV,PN .
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Theorem 1.1. Let P > 0 and assume that V is continuous. Assume that there exists
k ∈ N, a ≥ 0, such that

lim
|x|→∞

V (x)
x2k = a .

Then,
(1) the law of µ̂LN under TV,PN satisfies a large deviation principle in the scale N with

good rate function T VP ,
(2) T VP achieves its minimal value at a unique probability measure νVP ,
(3) As a consequence µ̂LN converges almost surely and in L1 towards νVP .

Moreover, following [11], we can identify the equilibrium measure νVP using the equi-
librium measure for Coulomb gases in dimension one at temperature of order of the
dimension. More precisely, for a probability measure µ on the real line, define the func-
tion

fVP (µ) = 1
2

∫
(W (x) +W (y)− 2P ln |x− y|)dµ(x)dµ(y) +

∫
ln dµ
dx
dµ(x)

if µ � dx, whereas fVP is infinite otherwise. fVP achieves its minimal value at a unique
probability measure µVP � dx which satisfies the non-linear equation

W (x)− 2P
∫

ln |x− y|dµVP (y) + ln dµ
V
P

dx
= λVP a.s (5)

where λVP is a finite constant. We show in section 3 that µVP is absolutely continuous
with respect to Lebesgue measure with density which is almost surely differentiable with
respect to P . We then show that

Theorem 1.2. For any bounded continuous function f∫
f(x)dνVP (x) = ∂P (P

∫
f(x)dµVP (x))

This result was already shown in [11] when V is a polynomial. Moreover, our result
allows to derive large deviation principle for a general variance profile. Namely let LσN be
a tri-diagonal symmetric matrix with independent Gaussian variables on the diagonal and
independent chi distributed variables above the diagonal with parameter σ( i

N
), 1 ≤ i ≤ N .

Let TV,σN be the distribution with density e−Tr(V (LσN ))/Z with respect to the distribution
of LσN .

Theorem 1.3. Assume that V is continuous and such that there exists k ∈ N, a ≥ 0,
such that

lim
|x|→∞

V (x)
x2k = a .

Then, if σ is bounded continuous,
(1) the law of µ̂LσN under TV,σN satisfies a large deviation principle in the scale N with

good rate function T Vσ ,
(2) T Vσ achieves its minimal value at a unique probability measure νVσ =

∫ 1
0 ν

V
σ(P )dP ,

(3) As a consequence, µ̂LσN converges almost surely and in L1 towards νVσ .
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Our strategy is to prove first a large deviation principles in the case when W is qua-
dratic: LN has then independent entries (modulo the symmetry constraint) under TPN
and then obtain large deviations for more general potentials by using Varadhan’s Lemma
for potentials V which are bounded continuous, see section 2.
Indeed, in the case where V vanishes, the random variables (pj, rj)16j6N are independent,
(LN)j,j are standard GaussianN(0, 1) variables and

√
2(LN)j,j+1 follows a χ2P distribution

with density with respect to Lebesgue measure given by

χ2P (x) = 21−Px2P−1e−x
2/2

Γ(P ) 1x>0. (6)

The central observation is that the eigenvalues of such a matrix, if the parameter P was
replaced by 2Pi/N , would follow a 2P/N Beta ensembles by Dumitriu-Edelman [3]. We
then relate the free energy, the rate function of the equilibrium measure of the Toda chain
with Coulomb gases in section 3. In section 4, we study the case of general potential. The
proof is nearly independent from the quadratic case, but requires additional arguments
in particular because the eigenvalues of the Toda matrix are not simple functions of the
empirical measure of the entries.

2. Large deviation principles for tri-diagonal matrices

In this section, we consider a tri-diagonal matrix MN with entries
(MN)j,j = aj and (MN)j,j+1 = (MN)j+1,j = bj (7)

with periodic boundary conditions, the random variables (ai, bi)1≤i≤N being iid, with
(a1, b1) with law Qa ⊗ Qb on R2. We denote by µ̂MN

the spectral measure of MN and
prove the existence of a large deviation principle for the distribution of µ̂MN

. In [12,
Theorem 4.2], the author proves a large deviation principle for moments µ̂MN

(xk) by
noticing that

µ̂MN
(xk) = 1

N

N∑
i=1

fk(aj, bj, |i− j| ≤ k)

and using the large deviation principle for Markov chains, see e.g [2, Theorem 3.1.2], as
well as the contraction principle. Here fk(aj, bj, |i− j| ≤ k) = (Mk

N)ii is an homogeneous
polynomial of degree k. This could be used to deduce the existence of a large deviation
principle for µ̂MN

(xk), k ≥ p for the weak topology after approximations, but the rate
function would not be particularly explicit. We prefer to develop a more straightforward
sub-additivity argument and prove separately the existence of a weak large deviation
principle and exponential tightness, see e.g [2, Lemma 1.2.18].

2.1. Exponential tightness. In this section we assume that

Assumption 2.1. There exists γ > 0 such that

Dγ :=
∫
eγx

2
dQa(x)×

∫
eγy

2
dQb(y) <∞ .

We equip the set of probability measures on the real line P(R) with the weak topology.
We then show that
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Lemma 2.2. Under Assumption 2.1, the sequence (µ̂NM)N≥0 is exponentially tight, namely
for each L ≥ 0 there exists a compact set KL, KL = {µ ∈ P(R) :

∫
x2dµ(x)≤L}, such that

lim sup
N

1
N

lnP(µ̂MN
∈ Kc

L) < −L. (8)

Proof. For N > 1, notice that∫
x2dµ̂NM(x) = 1

N
Tr(M2

N)

= 1
N

N∑
k=1

((MN)j,j)2 + 2
N

N∑
k=1

((MN)j,j+1)2

= 1
N

N∑
k=1

((MN)j,j)2 + 1
N

N∑
k=1

(√
2(MN)j,j+1

)2
. (9)

As a consequence, Tchebychev’s inequality implies

P
(∫

R
x2dµ̂MN

(x) > L
)
≤ e−

1
2γNLE[e

1
2Nγ

∫
R x

2dµ̂MN (x)]

≤ e−
1
2γNLDN

γ

Since
KL =

{
µ ∈ P(R) |

∫
R
x2dµ(x) 6 2

γ
(L+ lnDγ)

}
is a compact subset of P(R), the conclusion follows.

�

2.2. Weak large deviation principle. We next establish a weak large deviation prin-
ciple, based on the general ideas developed in [2], see Lemma 6.1.7. To this end, we will
use the following distance on P(R):

d(µ, ν) = sup
‖f‖BV61,|f |Lip61

{∣∣∣∣∫
R
fdµ−

∫
R
fdν

∣∣∣∣} , (10)

where ‖f‖BV is the total variation of f given by
‖f‖BV = sup

∑
k∈Z
|f(xk+1)− f(xk)|,

where the supremum holds over all increasing sequences (xk)k∈Z. ‖f‖L is the Lisp-
chitz norm of f . If f is C1 and we put without loss of generality f(0) = 0, ‖f‖BV =∫+∞
−∞ |f ′(y)|dy and ‖f‖L = ‖f ′‖∞. The distance d is smaller than the Wasserstein distance
where one takes the supremum over all functions whose sum of their L∞ and Lipschitz
norm are bounded by one and is easily seen to be as well compatible with the weak
topology. Then, we shall prove that

Lemma 2.3. For any µ in P(R), there exists a limit

lim
δ→0

lim inf
N

1
N

lnP (µ̂MN
∈ Bµ(δ)) = lim

δ→0
lim sup

N

1
N

lnP (µ̂MN
∈ Bµ(δ)) . (11)

We denote this limit by −JM(µ).
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Proof. The advantage of the distance d is the following control: For any symmetric N×N
matrices A and B with spectral measures µ̂A and µ̂B, we have:

d(µ̂A, µ̂B) 6 min

rank(A−B)
N

,
1
N

∑
i,j

|A(i, j)−B(i, j)|

 . (12)

Indeed, for any function f with bounded variation we have thanks to Weyl interlacing
property, see e.g. [7, (1.17)],∣∣∣∣∫ fdµ̂NA −

∫
fdµ̂NB

∣∣∣∣ ≤ 1
N

rank(A−B) . (13)

Moreover, one can check that if f is C1∫
fdµ̂A −

∫
fdµ̂B =

∫ 1

0

1
N

Tr ((A−B)f ′(αA+ (1− α)B)) dα

=
∫ 1

0

 1
N

N∑
i,j=1

(A−B)ijf ′(αA+ (1− α)B)ji

 dα
which implies since for all indices i, j, |f ′(αA+ (1− α)B)ji| ≤ ‖f ′‖∞ that∣∣∣∣∫ fdµ̂A −

∫
fdµ̂B

∣∣∣∣ ≤ ‖f ′‖∞ 1
N

N∑
i,j=1
|(A−B)ij| (14)

Since C1 functions with bounded L∞ norm are dense in Lipschitz functions, we deduce
(12) from (13) and (14). We are now ready to prove Lemma 2.3. To this end we shall
approximate our matrix MN by a diagonal block matrix with independent blocks. Let
q > 1. For N > 1 we decompose N = kNq + rN with rN ∈ {0, . . . , q − 1} and set
MN = M q

N +Rq
N , where M

q
N is the diagonal block matrix

M q
N =


M1

q
. . .

MkN
q

B

 , (15)

where for all i ∈ {1, . . . , kN} M i
q has the same distribution than Mq and B the same

distribution than MrN . The M i
q are independent, and independent from B. Rq

N is the
self-adjoint matrix with null entries except Rq

N(1, N) = Rq
N(N, 1) = bN , Rq

N(kNq+1, N) =
Rq
N(N, kNq+1) = −bN , and those given, for k ∈ {1, . . . , kN}, Rq

N(kq+1, kq) = Rq
N(kq, kq+

1) = bkq, Rq
N((k − 1)q + 1, kq)) = Rq

N(kq, (k − 1)q + 1) = −bkq. Therefore rank(Rq
N) 6

2kN + 2 6 4kN . By (12), we deduce that

d(µ̂MN
, µ̂Mq

N
) 6 4

q
. (16)

Moreover, we can write µ̂Mq
N
as the sum

µ̂Mq
N

=
kN∑
i=1

q

N
µ̂M i

q
+ rN
N
µ̂B .
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Therefore, for any µ ∈ P(R) and δ > 0

P
(
µ̂M1

q
∈ Bµ(δ)

)kN P
(
µ̂MrN

∈ Bµ(δ)
)

= P
(
∀ i ∈ {1, . . . , kN}, µ̂M i

q
∈ Bµ(δ), µ̂B ∈ Bµ(δ)

)
6 P

(
µ̂Mq

N
∈ Bµ(δ)

)
6 P

(
µ̂MN

∈ Bµ(δ + 4
q

)
)
,

where we used the convexity of balls and (16). As a consequence,
uN(δ) = − lnP (µ̂MN

∈ Bµ(δ))
satisfies

uN(δ + 4/q) 6 kNuq(δ) + urN (δ).
It is easy (and classical) to deduce the convergence of uN/N when N and then δ goes to
infinity. Indeed let δ > 0 be given and choose q large enough so that 4

q
< δ. Then, since

δ → uN(δ) is decreasing,
uN(2δ)
N

6
uN(δ + 4/q)

N
6
uq(δ)
q

+ urN (δ)
N

. (17)

Since urN (δ)
N
6 max16i6q−1 ui(δ)

N
goes to zero when N →∞, we conclude that

lim sup
N

uN(2δ)
N

6
uq(δ)
q

.

Since this is true for all q large enough, we get

lim sup
N

uN(2δ)
N

6 lim inf
N

uN(δ)
N

.

Since the left and right hand sides decrease as δ goes to zero, we conclude that

lim
δ→0

lim sup
N→∞

− 1
N

lnP (µ̂MN
∈ Bµ(δ)) ≤ lim

δ→0
lim inf
N→∞

− 1
N

lnP (µ̂MN
∈ Bµ(δ)) ,

and the conclusion follows. �

2.3. Full large deviation principle. As a consequence of Lemmas 2.2 and 2.3, we have
by [2, Theorem 1.2.18] the following large deviation theorem:

Theorem 2.4. Under Assumption 2.1, the law of µ̂M satisfies a large deviation principle
in the scale N with a good rate function JM . Moreover, JM is convex. In other words,

• JM : P(R) → [0,+∞] has compact level sets {µ : JM(µ) ≤ L} for all L ≥ 0.
Moreover, JM is convex.
• For any closed set F ⊂ P(R),

lim sup
N→∞

1
N

lnP(µ̂MN
∈ F ) ≤ − inf

F
JM ,

whereas for any open set O ⊂ P(R)

lim inf
N→∞

1
N

lnP(µ̂MN
∈ O) ≥ − inf

O
JM .
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Proof. JM exists and is defined by Lemma 2.3. The lower semi-continuity of JM follows
from [2, Theorem 4.1.11]. We then deduce that the level sets of JM are compact by the
exponential tightness, see [2, Lemma 1.2.18 (b)].

In the spirit of [2, Lemma 4.1.21], we show that JM is convex. Let µ1, µ2 ∈ P(R).
Since µ̂M2N can be decomposed as the independent sum of µ̂MN

divided by 2 plus an error
term of order 2/N by (13), we have for all δ1, δ2 > 0

1
2

( 1
N

lnP (d(µ̂MN
, µ1) < δ1) + 1

N
lnP (d(µ̂MN

, µ2) < δ2)
)
6

1
2N lnP (d(µ̂M2N , δ3) . (18)

for any δ3 ≥ 1
2(δ1 + δ2) + 2

N
. We then let N going to infinity, δ1, δ2 and then δ3 to zero to

conclude that

JM

(
µ1 + µ2

2

)
6

1
2

(
JM(µ1) + JM(µ2)

)
, (19)

The second point, namely that a weak large deviation principle and exponential tightness
implies a full large deviation principle, is classical, see [2, Lemma 1.2.18]. �

2.4. Large deviation principle for the Toda-Chain with quadratic potential. In
the case of the Toda chain with Gaussian potential W (x) = 1

2x
2, that is V = 0, with

entries following TPN , we take Qa to be the standard Gaussian law and Qb to be the
chi distribution

√
2−1

χ2P given in (6). These entries clearly satisfy Assumption 2.1 and
therefore we have

Corollary 2.5. For any P > 0, the law of µ̂LN (P ) with LN(P ) the tridiagonal matrix
whose entries follow TPN satisfies a large deviation principle in the scale N with convex
good rate function TP .

For further use, we show that

Lemma 2.6. For each µ ∈ P (R), the map s ∈ (0,+∞) 7→ Ts(µ) is lower semi-continuous.

Proof. We first show that we can couple the matrices (LN(s), LN(s+ h))N , where LN(s)
follows TsN so that there exists a finite constant c and a function A(h) going to infinity as
h goes to zero so that

P
(
d(µ̂LN (s), µ̂LN (s+h)) > δ

)
6 eN(c−A(h)δ/2), (20)

This coupling is done as follows
• The diagonal coefficients are the same set of standard independent Gaussian variables
• The coefficient below and above the diagonal X i

u, follow a
√

2−1
χ2u for u = s , u = h

and s+ h. By definition of the χ distribution we can construct it so that almost surely

X i
s+h =

√
(X i

s)2 + (X i
h)2 .

This coupling allows by (12) to write

d(µ̂LN (s), µ̂LN (s+h))(s)) 6
2
N

N∑
i=1
|X i

s+h −X i
s| =

2
N

N∑
i=1

(X i
s+h −X i

s) ≤
2
N

N∑
i=1

X i
h.
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Equation (20) follows by Tchebychev inequality withA(h) =
√
− ln(h) since E[exp{A(h)X i

h}]
is finite, see (35). (20) implies that (µ̂LN (s+h))N≥0 is an exponential approximation of
(µ̂LN (s))N≥0 when h goes to zero. By [2, Theorem 4.2.16 ] we deduce that µ ∈ P(R),

Ts(µ) = lim
δ→0

lim inf
h→0

inf
Bµ(δ)

Ts+h.

By monotonicity of the right hand side and the lower semi-continuity of Ts we deduce
(see [2, (4.1.2)]),

lim
δ→0

inf
Bµ(δ)

Ts+h = Ts+h(µ),

and therefore
Ts(µ) = lim

δ→0
lim inf
h→0

inf
Bµ(δ)

Ts+h 6 lim inf
h→0

Ts+h(µ),

and so s 7→ Ts(µ) is lower semi-continuous.
�

We shall also use later that Corollary 2.5 gives large deviation principle for the empirical
measure of the Toda chain with general bounded continuous potential.

Corollary 2.7. Let V be a bounded continuous function and P > 0. Let LN be the
tridiagonal matrix whose entries follow TV,PN

• The law of µ̂LN satisfies a large deviation principle in the scale N with convex good
rate function

T VP (µ) = TP (µ) +
∫
V dµ− inf

ν
{TP (ν) +

∫
V dν} .

• The set MV
P where T VP achieves its minimum value is a compact convex subset of

P(R). It is continuous in the sense that for any ε > 0, there exists δε > 0 such
that for all δ < δε, any (t, s) ∈ R+∗ such that for |t− s| ≤ δ

MV
s ⊂ (MV

t )ε

where Aε = {µ : d(µ,A) ≤ ε}.

Proof. The first point is a direct consequence of Varadhan’s lemma. We hence prove the
second point, that is the continuity of s 7→MV

s . We let TN be the coupling of LN(s) and
LN(t) introduced in the previous section. By definition for P = s and t

TV,PN (µ̂LN ∈ . . . ) = 1
ZV,P
N,T

∫
1{µ̂LN (P )∈... }e

−N
∫
V (x)dµ̂LN (P )(x)dTN

Therefore, since ((MV
t )ε)c is open, we can use the previous large deviation principle to

state that for any κ > 0

− inf
((MV

t )ε)c
T Vs ≤ lim sup

N→∞

1
N

ln 1
ZV,s
N,T

∫
{d(µ̂LN (s),M

V
t )>ε}

e−N
∫
V (x)dµ̂LN (s)(x)dTN

= max{lim sup
N→∞

1
N

ln 1
ZV,s
N,T

∫
{d(µ̂LN (s),M

V
t )>ε}∩{d(µ̂LN (s),µ̂LN (t))≤κ}

e−N
∫
V (x)dµ̂LN (s)(x)dTN ,

2‖V ‖∞ + c−
√
− ln |s− t|κ}
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where we used (20). For the first term we notice that
∫
V (dµ− dν) is bounded by εV (κ)

going to zero as κ does uniformly on d(µ, ν) ≤ κ, since V is bounded continuous. Hence
1

ZV,s
N,T

∫
1{d(µ̂LN (s),M

V
t )>ε}1{d(µ̂LN (s),µ̂LN (t))≤κ}e

−N
∫
V (x)dµ̂LN (s)(x)dTN

≤ eNε(κ)Z
V,t
N,T

ZV,s
N,T

1
ZV,t
N,T

∫
1{d(µ̂LN (t),M

V
t )≥ε−κ}1{d(µ̂LN (s),µ̂LN (t))≤κ}e

−N
∫
V (x)dµ̂LN (t)(x)dTN .

Similarly

ZV,t
N,T =

∫
e−N

∫
V dLN (t)1{d((µ̂LN (s),µ̂LN (t))≤κ}dP +

∫
e−N

∫
V dLN (t)1{d((µ̂LN (s),µ̂LN (t))>κ}dTN

≤ ZV,s
N,Te

Nε(κ) + e(2‖V ‖∞+c−
√
− ln |s−t|κ)N ≤ ZV,s

N,T(eNε(κ) + e(3‖V ‖∞+c−
√
− ln |s−t|κ)N)

where we used that the partition function is lower bounded by e−‖V ‖∞N . Moreover the
previous large deviation principle implies if κ ≤ ε/2

lim sup
N→∞

1
N

ln 1
ZV,t
N,T

∫
{d(µ̂LN (s),M

V
t )≥ε/2}∩{d(µ̂LN (s),µ̂LN (t))≤κ}

e−N
∫
V (x)dµ̂LN (t)(x)dTPN ≤ − inf

d(µ,MV
t )≥ε/2

{T Vt } .

Hence, we conclude that if we choose
√
− ln |s− t|κ > 3‖V ‖∞ + c,

− inf
((MV

t )ε)c
T Vs ≤ 2ε(κ)− inf

d(µ,MV
t )≥ε/2

{T Vt }

We finally choose κ = (− ln |s − t|)−1/4 with s − t small enough so that 2ε(κ) −
infd(µ,MV

t )≥ε/2{T Vt } < 0 and κ ≤ ε/2. We then conclude that inf((MV
t )ε)c T

V
s > 0 so

that ((MV
t )ε)c ⊂ (MV

s )c and hence the conclusion.
�

3. β-ensembles

3.1. Large deviation principles for β-ensembles. In this section we consider the β
ensembles and collect already known results about their large deviations theorems. We
then relate these large deviation principles with the previous ones thanks to Dumitriu-
Edelman tri-diagonal representation, as pioneered in [11]. Coulomb gases on the real line
are given by

dPV,βN (x1, · · · , xN) = 1
ZV,β
N,C

∏
i<j

|xi − xj|βe−
∑N

i=1( 1
2x

2
i+V (xi))dx1 · · · dxN . (21)

V will be a continuous potential. When V = 0 and β = 1, it is well known [1, Section 2.5.2]
that dP0,1

N is the law of the eigenvalues of the Gaussian orthogonal ensemble of random
matrices with standard Gaussian entries. In this article we keep the potential to be under
the form of a quadratic potential plus a general potential only to have simpler notations
later on. In this article we are however interested in the scaling where β = 2P

N
. The large

deviation principles for the empirical measure µ̂N = 1
N

∑N
i=1 δxi have been derived in [5]

and yields the following result.
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Theorem 3.1. [5] Let W (x) = 1
2x

2 + V (x) be a continuous function such that for some
P ′ > P there exists a finite constant CV such that for all x

W (x) ≥ P ′ ln(|x|2 + 1) + CV (22)

Then the law of µ̂N under PV,
2P
N

N satisfies a large deviation principle in the scale N and
with good rate function IVP (µ) = fVP (µ)− inf fVP where

fVP (µ) = 1
2

∫
(W (x) +W (y)− 2P ln |x− y|)dµ(x)dµ(y) +

∫
ln dµ
dx
dµ(x)

if µ� dx, whereas fVP is infinite otherwise.

This result can be seen as a consequence of [5], as detailed by his author in a private
communication [6], see also [4] for similar idea. In fact, neglecting the singularity of the
logarithm, this result would be a direct consequence of Sanov’s theorem and Varadhan’s
lemma. It is not hard to see that

Lemma 3.2. For any C1 functionW such that (22) holds, any P > 0 such that (P ′−P ) >
1

• µ 7→ IVP (µ) is strictly convex,
• IVP achieves its minimal value at a unique probability measure µVP � dx which
satisfies the non-linear equation

W (x)− 2P
∫

ln |x− y|dµVP (y) + ln dµ
V
P

dx
= λVP a.s (23)

where λVP is a finite constant. Furthermore the support of µVP is the whole real
line and the density of dµV

dx
is bounded by CP (|x|+ 1)2(P−P ′) where CP is uniformly

bounded on compacts contained in (0, P ′ − 1). As a consequence, P 7→ inf fVP is
Lipschitz.
• Let D be the distance on P(R) given by

D(µ, µ′) =
(
−
∫

ln |x− y|d(µ− µ′)(x)d(µ− µ′)(y)
)1/2

=
(∫ ∞

0

1
t

∣∣∣∣∫ eitxd(µ− µ′)(x)
∣∣∣∣2 dt

)1/2

(24)

Then for any R there exists a finite constant CR such that for all P, P ′ ≤ R

D(µVP , µVP ′) ≤
CR

min{P, P ′}|P − P
′|

Observe that if f is in L2 with derivative in L2, we can set ‖f‖ 1
2

= (
∫∞

0 t|f̂t|2dt)1/2.
Then, for any measure ν with zero mass,∫

f(x)dν(x) =
∫ ∞
−∞

f̂tν̂tdt =
∫ ∞
−∞

√
tf̂t

1√
t
ν̂tdt

so that by Cauchy-Schwartz inequality∣∣∣∣∫ f(x)dν(x)
∣∣∣∣2 ≤ ∫ ∞

−∞
|tf̂t|2dt

∫ ∞
−∞

1
|t|
|ν̂t|2dt = 4‖f‖2

1/2D(ν, 0) (25)
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In particular, the last point in the theorem shows that for any f with finite ‖f‖1/2,
P →

∫
fdµVP is Lipschitz with uniform Lipschitz norm on P ≥ ε > 0.

Proof. For P ′′ > 1, we rewrite fVP (up to a constant lnZP ′′) as

fVP (µ) = 1
2

∫
(W̄ (x) + W̄ (y)− 2P ln |x− y|)dµ(x)dµ(y) +

∫
ln dµ

Z−1
P ′′(|x2|+ 1)−P

′′
2
dµ(x)

where W̄ (y) := W (y)− 1
2P
′′ ln(|y|2 + 1) and P ′′ is fixed so that ZP ′′ =

∫
(|x2|+ 1)−P ′′/2dx

is finite. The advantage is that λP ′′(dx) := Z−1
P ′′(|x2|+ 1)−P ′′/2dx is a probability measure

so that for all probability measure µ∫
ln dµ

dλP ′′
(x)dµ(x) ≥ 0 .

Note that this amounts to change V (x) into V̄ (x) = V (x)− 1
2P
′′ ln(|x|2 +1), and therefore

to change P ′ into P ′ − 1
2P
′′ in the hypothesis.

The first point of the lemma is clear as µ 7→ NP
V (µ) =

∫
(W (x) + W (y) − 2P ln |x −

y|)dµ(x)dµ(y) is strictly convex [1, Lemma 2.6.2] whereas the relative entropy µ 7→∫
ln dµ

dλP ′′
(y)dµ(y) is well known to be convex. Since it is a good rate function it achieves its

minimal value at a unique probability measure µVP . Writing that for any measure ν with
mass zero such that µVP + εν is a probability measure for small enough ε, IVP (µVP + εν) ≥
IVP (µVP ), we get that (23) holds µVP almost surely and that the left hand side in (23) is
greater or equal than the right hand side outside of the support of µVP . Since the left hand
side equals −∞ when the density vanishes, we conclude that the support is the whole real
line. We finally show the boundedness of the density. Note that (23) implies that

dµVP
dx

(x) = eλ
V
P e−W (x)+2P

∫
ln |x−y|dµVP (y) (26)

We get from (22), and the fact that ln |x− y| ≤ 1
2 ln(|x|2 + 1) + 1

2 ln(|y|2 + 1) the bound

−W (x) + 2P
∫

ln |x− y|dµVP (y) ≤ −(P ′ − P ) ln(|x|2 + 1) + CV + P
∫

ln(|x|2 + 1)dµVP .

We thus only need to bound
∫

ln(|x|2 + 1)dµVP and λVP from above. We first notice that
P 7→ inf fVP is convex since it is the limit of the free energy N−1 lnZV, 2P

N
N . This is enough

to guarantee that this quantity is uniformly bounded on compact sets (as it is at any
given point) :we denote by C such a bound for a fixed compact set. As in [1, Lemma
2.6.2 (b)], since the relative entropy is non-negative we find that∫

(W̄ (x)− P ln(|x|2 + 1))dµVP (x) ≤ fVP (µVP ) ≤ C .

This implies by our hypothesis (22) that

(P ′ − P ′′ − P )
∫

ln(|x|2 + 1)dµVP (x) ≤ C − CV
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and therefore plugging this estimate in the infimum of fVP gives if P ′−P −P ′′ > 0 (which
is always possible as we assumed P ′ − P > 1)∫

W (x)dµVP (x) ≥ C + C − CV
2(P ′ − P − P”)

Moreover, again because the relative entropy is non-negative,

−PΣ(µVP ) := −P
∫

ln |x− y|dµVP (x)dµVP (y)

≤ C −
∫
W̄ (x)dµVP (x) ≤ C − 2(P ′ − P ′′)

∫
ln(|x|2 + 1)dµVP (x)− CV

is as well uniformly bounded. Finally, from (23) we have after integration under µVP

λVP = inf fVP − P
∫

ln |x− y|dµVP (x)dµVP (y) (27)

is thus uniformly bounded from above. This completes the proof of the upper bound of
the density: dµV

dx
is bounded by CP (|x| + 1)2(P−P ′) where CP is uniformly bounded on

compacts so that P ′ − P − 1 ≥ ε > 0 for some fixed ε.
We next study the regularity of the equilibrium measure µVP in the parameter P and

let R be a real number in a neighborhood of P . If ∆µ = µVP − µVR, since µVP minimizes
fVP , we have

0 ≥ fVP (µVP )− fVP (µVR)

=
∫
W (x)d∆µ(x)− 2P

∫
ln |x− y|dµVR(x)d∆µ(y)− P

∫
ln |x− y|d∆µ(x)d∆µ(y)

+
∫

ln dµ
V
P

dx
dµVP −

∫
ln dµ

V
R

dx
dµVR

=
∫

(2R
∫

ln |x− y|dµVR(y)− ln dµ
V
R

dx
)(x)d∆µ(x)− 2P

∫
ln |x− y|dµVR(x)d∆µ(y)

−P
∫

ln |x− y|d∆µ(x)d∆µ(y) +
∫

ln dµ
V
P

dx
dµVP −

∫
ln dµ

V
R

dx
dµVR

= 2(R− P )
∫

ln |x− y|dµVR(x)d∆µ(y)− P
∫ ∫

ln |x− y|d∆µ(x)d∆µ(y) +
∫

ln dµ
V
P

dµVR
dµVP

where in the second line we used (23) and the fact that ∆µ(1) = 0. By using the Fourier
transform of the logarithm, the centering of ∆µ and the definition (24) we deduce∫ ∫

ln dµ
V
P

dµVR
dµVP + PD(µVP , µVR)2 ≤ 2(P −R)

∫ ∫
ln |x− y|dµVR(x)d∆µ(y) (28)

where the right hand side is uniformly bounded by boundedness of the density of µVP
and µRV . Since

∫
ln dµVP

dµVR
dµVP ≥ 0 by Jensen’s inequality, and

∫
ln |x− y|dµVR(x) is bounded

uniformly by the previous estimate, this already gives the existence of a finite constant
such that

D(µVP , µVR) ≤ D
√
|P −R| .



14 ALICE GUIONNET AND RONAN MEMIN

We next improve this bound to show the Lipschitz property. If y 7→
∫

ln |x − y|dµVR(x)
has finite ‖.‖1/2 norm, we are done by using (25). Because this is unclear, we introduce
another probability measure ν in (28) so that

PD(µVP , µVR)2 ≤ 2(P −R)
∫ ∫

ln |x− y|d(µVR − ν)(x)d∆µ(y)

+2(P −R)
∫ ∫

ln |x− y|dν(x)d∆µ(y) (29)

We choose ν such that φν(x) =
∫

ln |x−y|dν(y) is bounded and differentiable with bounded
derivative, for instance the Cauchy transform with coefficient 1 for which

φ′ν(x) = PV
∫ 1
x− y

1
π(y2 + 1)dy = 1

x2 + 1
Because

‖f‖2
1/2 =

∫
t|f̂t|2dt ≤

1
2

(∫
t2|f̂t|2dt+

∫
|f̂t|2dt

)
= 1

2(‖f‖2
∞ + ‖f ′‖2

∞)

we deduce that ‖φν‖1/2 is bounded and hence there exists a finite constant C such that∣∣∣∣∫ ∫
ln |x− y|dν(x)d∆µ(y)

∣∣∣∣ ≤ CD(µVP , µVR) .

Moreover we notice that by taking the Fourier transform of the logarithm and using
Cauchy-Schwartz inequality∣∣∣∣∫ ∫

ln |x− y|d(µVR − ν)(x)d∆µ(y)
∣∣∣∣ =

∣∣∣∣∫ 1
t

̂(µVR − ν)t∆̂µtdt
∣∣∣∣ ≤ D(µVR, ν)D(µVR, µVν ) .

Now
D(µVR, ν)2 = −

∫
ln |x− y|d(µVR − ν)(x)d(µVR − ν)(y)

is bounded uniformly because µVR and ν have bounded density going to zero sufficiently
fast at infinity. Hence, we conclude from (29) that there exists a finite constant C such
that

PD(µVP , µVR)2 ≤ C(P −R)D(µVP , µVR)
from which the conclusion follows.

�

3.2. Relation with the large deviation principle for Toda matrices with qua-
dratic potential. When V = 0, for any β > 0, Dumitriu and Edelman [3, Theorem
2.12] have shown that P0,β

N is the law of the eigenvalues of a N × N tri-diagonal matrix
Cβ
N such that

(
(Cβ

N)j,j
)

16j6N
are independent standard normal variables, independent

from the off diagonal entries (Cβ
N)j,j+1 = (Cβ

N)j+1,j which are independent and such that√
2Cβ

N(j, j+1) follows a χ(N−j)β distribution. As in the case of Toda measure we hereafter
identify P0,β

N with PβN . We are now going to give an alternate large deviation principle
for the empirical measure under P2P/N

N based on this representation, this will allow to
relate the rate function IP = I0

P of the Coulomb Gas in terms of the large deviation rate
function Ts, s ≤ P for Toda matrices.
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Lemma 3.3. The law of the empirical measure µ̂N under P2P/N
N satisfies a large deviation

principle in the scale N and with good rate function

IP (µ) = lim
δ→0

lim inf
M→∞

inf
νP/M ,··· ,νP s.t.

1
M

∑
i
νiP/M∈Bµ(δ)

{
1
M

M∑
i=1

TiP/M(νiP/M)
}
. (30)

Proof. We shall proceed by exponential approximation. We write N = kNM + rN , 0 6
rN 6M − 1, and consider the matrices

SMN =


L1
kN . . .

LMkN
0

 ,
with (LikN )16i6M a family of independent matrices with size kN distributed according to

T

(
P
N−ikN
N

)
kN

, and a block with null entries of size rN×rN . We shall prove that they provide
good exponential approximation for C

2P
N
N ∼ P2P/N

N , see [2, Definition 4.2.14] and show
that for any positive real number δ :

lim
M→+∞

lim sup
N

1
N

lnP(d(µ̂
C

2P
N
N

, µ̂SMN ) > δ) = −∞ . (31)

The lemma is then a direct application of [2, Theorem 4.2.16 and Exercise 4.2.7]. We first
approximate SMN by the following matrix

UM
N =



C1
∗

∗
. . .

∗
∗

CM
∗

∗
RM
N



,

where the symbols ∗ denote entries following the law of a matrix distributed according to
P2P/N
N :

UN(ikN , ikN + 1) = UN(ikN + 1, ikN) ∼ 1√
2
χ2P N−ikN

N

, 1 6 i 6M ;

RM
N has same distribution as the rN × rN -bottom-right corner of a P2P/N

N - distributed
matrix ; and Ci has the same coefficients as LikN except for the top-right and bottom-left
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corner entries, put to zero :

Ci =



g(i−1)kN+1
. . . 0

. . . . . . 1√
2c
i
j

1√
2c
i
j

. . . . . .

0 . . . gikN

 .

The (cij)16j6kN−1 are distributed according to χ2P N−ikN
N

.

For 1 ≤ i ≤M and 1 ≤ j ≤ kN − 1, let bij =
√

(cij)2 + χ2
i,j, where (χi,j)1≤i≤M,1≤j≤kN is an

independent family of χ variables with parameter 2P kN−j
N

, independent from UN
M .

We set, for 1 ≤ i ≤M , Bi to be the matrix

Bi =



g(i−1)kN+1
. . . 0

. . . . . . 1√
2b
i
j

1√
2b
i
j

. . . . . .

0 . . . gikN

 .

The matrix

C
2P/N
N =



B1
∗

∗
. . .

∗
∗

BM

∗
∗

RM
N


is distributed according to P2P/N

N , where the symbols ∗ denote the same coefficients as
those of UM

N . Because the rank of SMN − UM
N is bounded by 2M + rN 6 3M , by (12) we

have
d(µ̂UMN , µ̂SMN ) 6 3M

N
= 3
kN

. (32)

Let δ > 0. Then for N lage enough so that kN verifies 3
kN
6 δ/2,

P
(
d(µ̂

C
2P/N
N

, µ̂SMN ) > δ
)
6 P

(
d(µ̂

C
2P/N
N

, µ̂UMN ) + d(µ̂UMN , µ̂SMN ) > δ
)

6 P
(
d(µ̂

C
2P/N
N

, µ̂UMN ) > δ/2
)
.
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Moreover (12) yields

d(µ̂UMN , µ̂C2P/N
N

) 6 2
N

N∑
i=1
|Yi|, (33)

where |Yi| is the ith coefficient above or below the (i, i) the coefficient of C2P/N
N − UM

N .
Applying the inequality

√
a+ b 6

√
a+
√
b for a, b > 0 and a = cij and b = χi,j, we deduce

d(µ̂UMN , µ̂C2P/N
N

) 6
√

2
kNM

kNM∑
i=1

χi2P/M , (34)

where the last sum denotes the sum of iid variables with law χ2P/M (and we used that
there exists a coupling between a χ2P kN−j

N

and a χ2P/M variable such that the first is
always bounded above by the second.)

.

Thus for all δ > 0, for any integer numbers N such that 3
kN
6 δ/2 (i.e for N larger than

some N0 depending on M) and for any non-negative function A : M 7→ A(M)

P
(
d(µ̂SMN , µ̂C2P/N

N

) > δ
)
6 P

kNM∑
i=1

χ2P/M >
kNMδ

2
√

2


6 e−A(M)kNMδ/(2

√
2)E

[
eA(M)χ2P/M

]kNM
.

It is not hard to see that with A(M) =
√

ln(M), there exists a finite constant K such
that

sup
M≥0

E
∫
eA(M)xdχ1/M(x) ≤ K (35)

insuring that
1
N

lnP(d(µ̂
C

2P/N
N

, µ̂SMN > δ) 6 −A(M) δ

2
√

2
+K,

which yields the result.
�

We shall use the previous lemma to study the case with a non trivial potential. Indeed,
as a direct consequence, Varadhan’s lemma yields

Theorem 3.4. For any continuous function V such that

lim sup
|x|→∞

|V (x)|
x2 = 0, (36)

the law of the empirical measure µ̂N under PV,2P/NN satisfies a large deviation principle in
the scale N and with good rate function IVP (µ) = fVP (µ)− inf fVP where

fVP (µ) = lim
δ→0

lim inf
M

inf
νP/M ,··· ,νP s.t.

1
M

∑
i
νiP/M∈Bµ(δ)

{
1
M

M∑
i=1

(TiP/M(νiP/M) +
∫
V dνiP/M)

}
. (37)
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Remark 3.5. Varadhan’s lemma gives the result for bounded continuous function V .
However, we can approximate V by V (x)(1 + εx2)−1 with overwhelming probability thanks
to Lemma 2.2, which allows to conclude for any potential V satisfying (36)

We shall use this relation to give a better description of the rate function Ts. In fact
we first consider the free energy

F V,P
T = lim

N→∞

1
N

lnZV,P
N,T, F

V,P
C = lim

N→∞

1
N

lnZV,P
N,C = inf fVP

Recall from Lemma 3.2 that P 7→ inf fVP = F V,P
C is Lipschitz on R+∗ and hence almost

surely differentiable. Similarly P 7→ µVP is almost surely differentiable in the sense that
for f with finite 1/2-norm,

∫
fdµVP is differentiable. Then, we claim

Lemma 3.6. For any continuous function V satisfying (36),

• P 7→ F V,P
C = inf fVP is continuously differentiable on R+∗. Moreover, for any

P > 0

F V,P
T = ∂P (PF V,P

C )

• Moreover, for almost all P there exists a unique minimizer νVP of µ 7→ TP (µ) +∫
V dµ(x) and it is given by

νVP = ∂P (PµVP ) . (38)

• For any probability measure µ,

TP (µ) = − inf
V ∈C0

b

{∫
R
V dµ+ F V,P

T

}
. (39)

Proof. First notice that for any probability measure µ, Lemma 3.3 implies

fVP (µ) = IP (µ) +
∫
R
V dµ ≥ lim inf

M

1
M

M∑
i=1

inf
ν

{
TiP/M(ν) +

∫
R
V dν

}

=
∫ 1

0
inf
ν

{
TsP (ν) +

∫
R
V dν

}
ds =

∫ 1

0
F V,Ps
T ds .

We claim that this lower bound is achieved. For s ∈ [0, 1], let ν∗sP be a minimizer
of µ 7→ TsP (µ) +

∫
V dµ. By Corollary 2.7 we can choose ν∗sP such that s 7→ ν∗sP is

continuous. Hence, µ∗P =
∫ 1

0 ν
∗
sPds makes sense and is a probability measure on R. We
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claim it minimizes fVP . Indeed, by Lemma 3.3, we have

IP (µ∗P ) +
∫
R
V dµ∗P = lim

δ→0
lim inf

M
inf

1
M

∑M

i=1 νiP/M∈Bµ∗P
(δ)

{
1
M

M∑
i=1

TiP/M(νiP/M) +
∫
R
V dνiP/M

}
(40)

= lim inf
M

1
M

M∑
i=1

{
TiP/M(ν∗iP/M) +

∫
R
V dν∗iP/M

}
(41)

= lim inf
M

1
M

M∑
i=1

inf
ν

{
TiP/M(ν) +

∫
R
V dν

}

=
∫ 1

0
inf
ν

{
TsP (ν) +

∫
R
V dν

}
ds.

Hence µ∗P achieves the minimal value of fVP and therefore

−F V,P
C = inf fVP = IP (µVP ) +

∫
R
V dµVP = −

∫ 1

0
F V,Ps
T ds .

By a change of variable we deduce

PF V,P
C =

∫ P

0
F V,s
T ds .

Moreover, P 7→ F V,P
C is convex and hence almost surely differentiable. As a consequence,

for almost all P > 0,
F V,P
T = ∂P (PF V,P

C ) .
As F V,.

T is convex, this defines F V,.
T everywhere. Moreover we have seen that IVP achieves its

minimal value at a unique probability measure µVP and µVP =
∫ 1

0 ν
V
sPds for any continuous

minimizing path νV. . This implies that νVP is unique and given by ∂P (PµVP ). The last
point is a direct consequence of [2, Theorem 4.5.10] since T VP is convex for all bounded
continuous function V .

�

By Lemma 3.2, νVP is a probability measure which satisfies almost surely

dνVP (x) = (CV
P + 2P

∫
ln |x− y|dνVP (y))dµVP (x)

with CV
P a constant such that

CV
P + 2P

∫
ln |x− y|dνVP (y)dµVP (x) = 1

Furthermore we must have CV
P + 2P

∫
ln |x− y|dνVP (y) ≥ 0 for all x.

4. Large deviations for Toda Gibbs measure with general potentials

We now consider the measures TV,PN given by (4), with polynomial of even degree
potential V : x ∈ R 7→ ax2k + W (x), k > 2, with W (x)/x2k going to zero at infinity. We
show that under these laws, the empirical measures (µ̂LN )N>1 still fulfills a large deviations
principle, by extending the subadditivity argument previously used. We then identify the
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rate function as before. By Varadhan’s Lemma, it is enough to consider the case where
W = 0.

4.1. Exponential tightness. We use the notations of equation (4). In this section we
prove that if V (x) = ax2k with k > 2 and a > 0, then we the law of the empirical
measure of the eigenvalues is exponentially tight under TV,PN . More precisely, we let
KL = {µ ∈ P(R) |

∫
R V dµ 6 L} which is a compact of P(R). Then we shall prove

Lemma 4.1. There exists a finicte constant cV such that

TV,PN (KcL) ≤ e−(M−cV )N .

Proof. We first bound from below the free energy by Jensen’s inequality

ZV,P
N,T =

∫
R2N

e−N
∫
R V dµ̂NdTPN > exp{−N

∫
R2N

V dµ̂NdTPN} ≥ e−cV N . (42)

From here we deduce exponential tightness for (µ̂N)N under TV,PN : for M > 0,

TV,PN
(∫

R
V dµ̂N >M

)
= 1
ZV,P
N,T

∫
R2N

1{∫R V dµ̂N>M}e−N
∫
R V dµ̂NdTPN

6 eN(cV −M). (43)

�

For later purpose we prove the following result showing that the off diagonal terms do
not become to small :

Lemma 4.2. For any P > 0

lim sup
L

lim sup
N

1
N

lnTV,PN ( 1
N

N∑
i=1

ln bi ≤ −L) = −∞.

Proof. Since V is bounded from below and we have bounded from below the partition
function (42), it enough to prove this estimate when V = 0. But, in this case the entries
are independent and so we only need to prove it for independent chi distributed variables.
But then, for any δ > 0

TPN,1

(
1
N

N∑
i=1

ln bi ≤ −L
)
≤ e−δLN

Z
P−δ/2
N,T

ZP
N,T

= e−δLN
(

Γ(P − δ/2)
2δ/2Γ(P )

)N
from which the result follows by taking δ = P/2 and P > 0.

�

4.2. Weak LDP. In this section, we prove that µ̂N satisfies a weak large deviation prin-
ciple, namely Lemma 2.3 in this more general setup, following again a subadditivity
argument. We will restrict ourselves to the case where V (x) = ax2k, a > 0. We first show
that the large deviations principles is the same if we remove the entries in the corners
(N, 1) and (1, N) in the Toda matrix. Namely, let L̃N be the tridiagonal matrix with
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entries equal to those of LN except for the entries (1, N) and (N, 1) which vanish and
consider the following modification of TV,PN given by

dT̃V,PN = 1
Z̃V,P
N

e−TrV (L̃N )dTPN .

Lemma 4.3. Let µ be a probability measure. Then

lim
δ→0

lim inf
N→∞

1
N

ln
∫

1d(µ̂LN ,µ)<δe
−TrV (LN )dTPN = lim

δ→0
lim inf
N→∞

1
N

ln
∫

1d(µ̂L̃N ,µ)<δe
−TrV (L̃N )dTPN

Moreover,

lim inf
N→∞

1
N

ln
∫
e−TrV (LN )dTPN = lim inf

N→∞

1
N

ln
∫
e−TrV (L̃N )dTPN .

The same results hold if we replace all the liminf by limsup.

Proof. First notice that V (LN) − V (L̃N) is an homogeneous polynomial of degree 2k
in LN and ∆LN = LN − L̃N , with degree at least one in the latter. Therefore, there
exists a finite constant Ck such that on BK,M

N := {bN ≤ K} ∩ { 1
N

Tr(LN)2k ≤ M} ( or
B̃M,K
N := {bN ≤ K} ∩ { 1

N
Tr(L̃N)2k ≤M}), Hölder’s inequality implies∣∣∣∣ 1

N
Tr
(
V (LN)− V (L̃N)

)∣∣∣∣ ≤ Ck

(
1
N

Tr
(
(∆LN)2k

)
+
( 1
N

Tr
(
(∆LN)2k

))1/2k
( 1
N

Tr(L2k
N ))

2k−1
2k

)
≤ C(M,K)N− 1

2k

where C(M,K) ≤ 2Ck(K2k+M 2k−1
2k ) is a finite constant depending only onM,K, k. Note

above that Tr(L2k
N ) can be replaced by Tr(L̃2k

N ). Moreover, by (13), d(µ̂LN , µ̂L̃N ) ≤ 2/N .
Hence for a given probability measure µ∫

1d(µ̂LN ,µ)<δe
−TrV (LN )dTPN ≥ e−C(M,K)N

2k−1
2k

∫
1B̃M,KN ∩{d(µ̂L̃N ,µ)<δ− 2

N
}e
−TrV (L̃N )dTPN

≥ C ′e−C(M,K)N
2k−1

2k
∫

1{TrV (L̃N )≤NM}∩{d(µ̂L̃N ,µ)<δ− 2
N
}e
−TrV (L̃N )dTPN

≥ C ′′e−C(M,K)N
2k−1

2k
∫

1{d(µ̂L̃N ,µ)<δ− 2
N
}e
−TrV (L̃N )dTPN

where in the second line we integrated over bN ≤ K and in the last line we used that under
T̃P,VN , for M large enough, TrV (L̃N) ≤ NM with overwhelming probability following the
same arguments than in the proof of Lemma 4.1. We deduce that

lim
δ→0

lim inf
N→∞

1
N

ln
∫

1d(µ̂LN ,µ)<δe
−TrV (LN )dTPN ≥ lim

δ→0
lim inf
N→∞

1
N

ln
∫

1d(µ̂L̃N ,µ)<δe
−TrV (L̃N )dTPN .

To prove the converse inequality, we notice that there exists one bi bounded by K with
probability greater than 1 − e−a(K)N under TPN , with a(K) = − lnP (b ≤ K) > 0 which
goes to + infinity when K does. By symmetry with respect to the order of the indices,
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we may assume it is bN . Therefore, using that V ≥ 0 and Lemma 4.1,∫
1d(µ̂LN ,µ)<δe

−TrV (LN )dTPN ≤ e−Na(K) +N
∫

1{bN≤K}∩{d(µ̂LN ,µ)<δ}e
−TrV (LN )dTPN

≤ Ne−Na(K) +Ne−N(M−cV ) +NeC(M,K)N
2k−1

2k
∫

1BM,KN ∩{d(µ̂L̃N ,µ)<δ+ 2
N
}e
−TrV (L̃N )dTPN

≤ e−Na(K) + 2e−N(M−cV ) +NeC(M,K)N
2k−1

2k
∫

1{d(µ̂L̃N ,µ)<δ+ 2
N
}e
−TrV (L̃N )dTPN

which gives the converse bound, letting N going to infinity, provided K and M are large
enough. The same arguments also hold when there is no indicator function, providing the
same estimates for the free energy. �

Lemma 4.4. Let V (x) = ax2k and P > 0. For any µ in P(R), there exists a limit

lim
δ→0

lim inf
N

1
N

lnTV,PN (µ̂LN ∈ Bµ(δ)) = lim
δ→0

lim sup
N

1
N

lnTV,PN (µ̂LN ∈ Bµ(δ)) . (44)

We denote this limit by −T VP (µ).

Proof. We use the notations of Lemma 2.3. Let q > 1 be fixed. For N > 1 we write
N = kNq + rN , 0 6 rN 6 q − 1, and define LqN by removing the off diagonal terms b`q =
L`q,`q+1, L`q+1,`q, 1 ≤ ` ≤ kN as well as the entries L1,N , LN,1 of LN . We set Rq

N = LN−LqN .
Let ZV

N = ZV,P
N,T denote in short the partition function for the Toda Gibbs measure with

potential V and set

ZV
N,q = ETPN

[
e−TrV (LqN )

]
=
∫
e−TrV (LqN )dTPN .

We first show that there is some constant Ck (independent of N) such that for all
N > 1,

1
N

ln
ZV
N,q

ZV
N

>
Ck
q1/2k . (45)

By Jensen’s inequality we have

1
N

ln
ZV
N,q

ZV
N

= 1
N

lnETV,PN

[
eTr(V (LN )−V (LqN ))

]
>

1
N
ETV,PN

[
Tr(V (LN)− V (LqN))

]
. (46)

To bound the right hand side we first notice that V (LN) − V (LqN) is an homogeneous
polynomial of degree 2k in LN and LN − LqN , with degree at least one in the later.
Therefore, Hölder’s inequality implies that there exists a finite constant C depending
only on k such that∣∣∣∣∣ 1

N
ETV,PN

[
Tr(V (LN)− V (LqN))

]∣∣∣∣∣ ≤ CETV,PN

[
1
N

Tr
(
(LN − LqN)2k

) ]

+CETV,PN

[
1
N

Tr
(
(LN − LqN)2k

) ]1/2k

ETV,PN

[
1
N

Tr(L2k
N )
] 2k−1

2k
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Now, Rq
N = LN − LqN has non zero entries only at the sites (i, i + 1) and (i + 1, i),

i ∈ J = {`q, 1 ≤ ` ≤ kN}, as well as (N, 1) and (1, N). We take 2k ≤ q so that there
exists a finite constant Ck which only depends on k such that

Tr
(
(Rq

N)2k
)
≤ Ck

∑
i∈J

(Li,i+1)2k + Ck(LN,1)2k .

We next remark that since the application A → Aii = 〈ei, Aei〉 is non negative, we can
apply Hölder’s inequality so that

L2k
i,i+1 ≤ ((L2

N)i,i)k ≤ (L2k
N )i,i .

Because LN has periodic boundary conditions, the distribution of the entries of LN are
invariant under the shift θ : i → i + 1, so that under TV,PN , Li,i+1 has the same law than
Li+1,i+2. Moreover, b̃i = Lqi+1,i+q = Lqi+q,i+1 is independent of L

ETV,PN

[
1
N

Tr
(
(LN − LqN)2k

) ]
≤ 1
N
Ck
∑
i∈J

ETV,PN

[
(L)2k

i,i

]
= Ck

kN
N

ETV,PN

[
1
N

Tr(LN)2k
]
.

But (43) implies that ETV,PN

[
1
N

Tr(L2k
N )
]
is bounded by some finite constant independent

of N . We therefore deduce (45) from (46).
We next prove the subadditivity property. Let δ > 0 and L > 0 be given. Let
KL = {µ̂LN (V ) ≤ L}. As in equation (16), we have for q big enough,

TV,PN ({µ̂LN ∈ Bµ(δ)} ∩ KL) >
ZV
N,q

ZV
N

1
ZV
N,q

∫
KL∩KA

1µ̂
L
q
N
∈Bµ(δ−4/q)e

−Tr(V (LN ))dTPN , (47)

where we set KA = KA,N = ∩i∈J{ b2k
i 6 A} ∩ {bN ≤ A}. As before, noticing that

V (L̃N) − V (LqN) is a polynomial in LqN and LN − LqN , we find a finite constant C such
that, on KL ∩KA,

1
N
|Tr(V (LN)− V (LqN))| ≤ C

((
kN
N
CkA

)1/2k

L
2k−1

2k + kN
N
CkA

)
.

Therefore if we set KqL = {µ̂LqN (V ) ≤ L}, we deduce that KA ∩KL contains KA ∩KqL−ε(q)
for some ε(q) going to zero as q goes to infinity. We deduce from (45) and (47) that

TV,PN ({µ̂LN ∈ Bµ(δ)} ∩ KL) > e−ε(q)N

ZV
N,q

∫
KA∩KqL−ε(q)

1µ̂
L
q
N
∈Bµ(δ−4/q)e

−Tr(V (LqN ))dTPN , (48)

Since LqN is independent of the entries bi, i ∈ J and therefore of KA, we see that we
can integrate the indicator function of KA yielding a contribution CkN

A for some positive
constant CA depending only on A. We observe as well that LqN is a block diagonal matrix
diag(L1

q, . . . , L
kN
q , B) where Liq are independent T̃Pq independent from B with law T̃PrN .

Finally, we notice that KqL−ε(q) contains ∩i∈J{1
q
Tr((Liq)2k) ≤ L−ε(q)}∩{ 1

N−kN q
Tr(B2k) ≤

L − ε(q)} since the trace of (LqN)2k is a linear combination of the latter traces. Thus
by independence of the matrices L1

q, . . . , L
kN
q under 1

ZVN,q
e−TrV (LqN )dTPN and convexity of

balls, we deduce by taking the logarithm that if we set uN(δ, L) = − lnTV,PN ({µ̂MN
∈
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Bµ(δ)} ∩ KL) and vN(δ, L) = − ln T̃V,PN ({µ̂L̃N ∈ Bµ(δ)} ∩ {Tr(L̃N)2k) ≤ LN}), then we
have

uN(δ + 4/q, L+ ε(q)) 6 Nε(q) + kNvq(δ, L) + vrN (δ, L). (49)
We conclude as in Lemma 2.3 that

lim sup
N

uN(δ + 4/q, L+ ε(q))
N

6
vq(δ, L)

q
+ ε(q) (50)

We then notice that for all N, δ, uN(δ, L) ≥ uN(δ,∞) and vN(δ, L) ≤ vN(δ,∞) + ln 2 for
L large enough by Lemma 2.2 (for L̃N). If therefore we choose a subsequence q going to
infinity along which the liminf is taken, we deduce by Lemma 4.3 that

lim sup
N

uN(2δ,∞)
N

6 lim inf
q→∞

vq(δ,∞)
q

= lim inf
q→∞

uq(δ,∞)
q

If there is no such subsequence then both sides go to infinity and there is nothing to say.
Otherwise we conclude as in Lemma 2.3. �

4.3. Convergence of the free energy and large deviation principle. In the case
still where V (x) = ax2k, a > 0, the previous two sections showed that a large deviation
principle holds for the empirical measure of the eigenvalues of LN under TV,PN with good
rate function

T VP (µ) = − inf
W∈Co

b

{
∫
Wdµ+ F V+W,P

T − F V,P
T } (51)

where
F V,P
T = lim

N→∞

1
N

ln
∫
e−TrV (LN )dTPN .

To identify T VP and its minimal value our goal is to show that

Lemma 4.5. For V (x) = x2k +W (x) with W ∈ Cb
0(R), for all P > 0∫ 1

0
F V,sP
T ds = F V,P

C . (52)

As a consequence, the unique minimizer of T VP is given by νVP = ∂P (PµVP ) with µVP the
equilibrium measure for the Coulomb gas.

Proof. We first prove (52). Clearly, for all bounded continuous functionsW,W ′, uniformly
in P ,

|F V,x2k+W
T − F V,x2k+W ′

T | ≤ ‖W −W ′‖∞ and |F V,x2k+W
C − F V,x2k+W ′

C | ≤ ‖W −W ′‖∞ .
Therefore it is enough to prove (52) for W ∈ C1

b (R). We prove that for W ∈ C1
b (R),

F V,P
T = ∂P (PF V,P

C ) . (53)

Let us consider the tridiagonal matrix CN
P of the Coulomb model with distribution P

2P
N
N

we decompose, for ε > 0 this matrix as

CN
P =

 M
bεNc
P RN

RT
N C

(1−ε)N
(1−ε)P


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where M bεNc
P is a bNεc×bNεc tri-diagonal symmetric matrix with standard independent

Gaussian on the diagonal and chi-square distributed variables above the diagonal with
parameters 2 i

N
P,N − bεNc ≤ i ≤ N − 1, C(1−ε)N

(1−ε)P is a N − bεNc square tridiagonal
Coulomb matrix with parameter 2P (1− bεNc/N − 1/N) and RN has only one non-zero
entry r at position (bεNc, bεNc+ 1). Our first goal is to show that

lim
N→∞

1
εN

lnE[e−TrV (MbεNcP )] = 1
ε

(F V,P
C − F V,P−ε

C ) + F V,P−ε
C . (54)

We will then complete the argument by showing that

lim
ε↓0

lim
N→∞

1
εN

lnE[e−TrV (MbεNcP )] = F V,P
T (55)

We next turn to the proof of (54). Let us denote

C̃N
P =

 M
bεNc
P 0
0 C

(1−ε)N
(1−ε)P

 .

We next show that
Tr((CN

P )2k) ≥ Tr((C̃N
P )2k) . (56)

Indeed, by Klein’s lemma [1], B 7→ Tr(B)2k is convex on the set of symmetric matrices.
Moreover ∇Tr(B)2k = (2k(B)2k−1)ij. As a consequence, for any symmetric matrices A,B

Tr((A+B)2k)− Tr((B)2k) ≥ Tr(2k(A)2k−1B) .
We apply the above inequality with A = C̃N

P and B = CN
P − C̃N

P and notice that the entry
bεNc, bεNc + 1 of any polynomial in C̃N

P vanishes so that Tr((C̃N
P )2k−1(CN

P − C̃N
P )) = 0.

Moreover, if W is C1
b ,

|Tr(W (CN
P ))−Tr(W (C̃N

P ))| ≤
∫ 1

0
|Tr(W ′(αCN

P + (1− α)C̃N
P )(CP

N − C̃P
N))|dα ≤ ‖W ′‖∞|r|

Consequently, using the independence of r and C̃N
P and the fact that CW = E[e+‖W ′‖∞|r|]

is finite since r has sub-Gaussian distribution. We deduce from (56) that

E[e−Tr(V (CNP ))] ≤ E[e−Tr(V (C̃NP ))+‖W ′‖∞|r|] ≤ CWE[e−Tr(V (C̃NP ))] . (57)
As a consequence

E[e−Tr(V (CNP ))] ≤ CWE[e−TrV (MbεNcP )]E[e−Tr(V (C(1−ε)N
(1−ε)P ))]

which gives the desired lower bound:

lim inf
N→∞

1
N

lnE[e−TrV (MbεNcP )] ≥ F P,V
C − (1− ε)F P (1−ε),V

C (58)

To get the complementary lower bound we restrict ourselves to

{|r| ≤ 1
N
} ∩ {‖C̃N

P ‖∞ ≤ (NM)1/2k}

On this set Tr(V (CN
P ))−Tr(V (C̃N

P )) goes to zero uniformly for all M . On the other hand
the probability of the set {|r| ≤ 1

N
} is of order 1/N . Again by independence we deduce
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that there exists a function o(N) such that o(N)/N goes to zero (and eventually changing
from line to line) such that

E[e−Tr(V (CNP ))] ≥ eo(N)E[1{‖C̃NP ‖∞≤(NM)1/2k}∩{|r|≤ 1
N
}e
−Tr(V (C̃NP ))]

≥ eo(N)
(
E[e−Tr(V (C̃NP ))]− E[1{‖C̃NP ‖∞≥(NM)1/2k}e

−Tr(V (C̃NP ))]
)

≥ eo(N)
(
E[e−Tr(V (C̃NP ))]− E[1{Tr((C̃NP )2k)≥MN}e

−Tr(V (C̃NP ))]
)
. (59)

But we can prove exactly as in the proof of Lemma 4.1 that for M large enough

lim sup
N→∞

E[1{Tr((C̃NP )2k)≥MN}e
−Tr(V (C̃NP ))]

E[e−Tr(V (C̃NP ))]
≤ 1

2 ,

yielding the desired lower bound and therefore (54).
To prove (55), we proceed by approximation. We notice that if we denote by f εT the

density of the distribution ofM bεNc
P with respect distribution of a Toda matrix L̃bεNc with

parameter P to which we removed the extreme entries at (1, bεNc) and (bεNc, 1), then
we get

f εT =
Nε∏
i=1

b
−2P ( i

N
)

i

Therefore

E[e−TrV (MbεNcP )] ≥ e−ε
2NME[e−TrV (L̃bεNc)1−2P

∑εN

i=1
i
N

ln bi≥−ε2NM
]

= e−ε
2NME[e−TrV (L̃bεNc)](1− T̃V,PbNεc(−2P

εN∑
i=1

i

N
ln bi ≤ −ε2NM))

On the other hand

{2P
εN∑
i=1

i

N
ln bi ≥ ε2NM} ⊂ {P 1

Nε

εN∑
i=1

b2
i ≥M} ⊂ { 1

Nε
Tr((L̃bNεc)2) ≥M/P}

has exponentially small probability under T̃V,PbNεc for M large enough. This shows that
there exists a finite constant M such that

lim inf
N→∞

1
Nε

lnE[e−TrV (MbεNcP )] ≥ F V,P
T +Mε

Similarly, we can see that the density f̃ εT = ∏Nε
i=1 b

2P ( i
N
−ε)

i of the law a Toda matrix L̃bεNc
with respect to M bεNc

P is bounded below by −ε2NM on {∑εN
i=1(ε− i

N
) ln bi ≤ ε2NM} so

that we get similarly a finite constant M ′ such that

lim sup
N→∞

1
Nε

lnE[e−TrV (MbεNcP )] ≤ F
V,P (1−ε)
T +M ′ε (60)

We hence only need to show the continuity of ε → F
P (1−ε),R
T . We already proved above

that there exists a finite constant M such that for ε > 0

F V,P
T ≤ F

V,P (1−ε)
T +Mε
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We can get the reverse bound by using Lemma 4.2. Indeed, it insures that for all P > 0,∫
e−TrV (L̃N )dTPN ≥

∫
1∑ ln bi≥−LNe

−TrV (L̃N )dTPN

≥ ZP−δ
T
ZP

T
e−LδN

∫
1∑ ln bi≥−LδNe

−TrV (L̃N )]dTP−δN

≥ e−2LδN
∫

1∑ ln bi≥−LNe
−TrV (L̃N )dTP−δN

from which we deduce by Lemmas 4.2 and 4.3 that there exists a finite constant M such
that

F V,P
T ≥ F V,P−δ

T +Mδ .

Equality (53) follows then from (60) and the continuity of F V,.
T .

We finally show that (52) implies that T VP achieves its minimum value at ∂P (PµVP ).
Indeed, by (51), for any bounded continuous W , any probability measure ν, we have

T VP (ν) ≥ −
(∫

Wdν + F V+W,P
T − F V,P

T

)
We integrate this inequality at ν = νsP a measurable probability measure valued process
such that µ =

∫ 1
0 νsPds to deduce from (52) that∫ 1

0
T VP (νsP )ds ≥ −

(∫
Wdµ+ F V+W,P

C − F V,P
C

)
.

We finally optimize over W to conclude that∫ 1

0
T VP (νsP )ds ≥ − inf

W

(∫
Wdµ+ F V+W,P

C − F V,P
C

)
= IVP (µ) .

Since IVP vanishes only at µVP we deduce that any measurable minimizing path (νsP )0≤s≤1
must satisfy

∫ 1
0 νsPds = µVP . The last issue we have to address is the existence of non-

measurable minimizing paths. But we can follow arguments similar to those of Corollary
2.7 to show that the set MV

P where T VP achieves its minimum value is a compact convex
subset of P(R) and is continuous in the sense that for any ε > 0, there exists δε > 0 such
that for all δ < δε, any (t, s) ∈ R+∗ such that for |t− s| ≤ δ

MV
s ⊂ (MV

t )ε .

Indeed, even if we do not have the coupling of Corollary 2.7 we have seen just above that
the density of TV,sN with respect to TV,tN is bounded by eMN |t−s| with probability greater
than 1− e−c(M)N with c(M) going to infinity when M goes to infinity. This implies that

− inf
((MV

t )ε)c
T Vs ≤ max{M |s− t| − inf

((MV
t )ε)c

T Vt ,−c(M)N}

which implies that for any ε > 0, forM large enough and |s−t| small enough inf((MV
t )ε)c T

V
s >

0, from which the continuity follows. �
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5. Proof of Theorem 1.1 and 1.3

Lemma 44 proved a large deviation principle for the potential V (x) = ax2k. If now we
consider the case where V (x)/x2k goes to a > 0 at infinity, we can always write V (x) =
ax2k + W (x) where W (x)/x2k goes to zero at infinity. We have seen that under TP,VN
the probability that {Tr(L2k

N ) ≤ M} has exponentially large probability. Let for ε > 0,
Vε(x) = ax2k + (1 + εx2k)−1W (x). Then, the large deviation principle for the distribution
of µ̂LN under TVε,PN follows from Varadhan’s lemma. Moreover, on {Tr(L2k

N ) ≤ MN}, if
|W (x)| ≤ δx2k on |x| ≥ L,∣∣∣∣ 1

N
TrV (LN)− 1

N
TrVε(LN)

∣∣∣∣ ≤ εL2k

1 + εL2k max
|x|≤L

W (x) + δε
1
N

Tr( L4k
N

1 + εL2k
N

)

≤ εL2k

1 + εL2k max
|x|≤L

W (x) +Mδ

which is as small as wished if M is fixed, L taken large so that δ is small, provided ε is
taken small enough. This shows that we can approximate TV,PN by TVε,PN in the exponential
scale from which the result follows.

The proof of Theorem 1.3 follows the same arguments than those developed in the
last section: we approximated the general variance profile by a stepwise constant profile,
remove a neglectable number of off diagonal entries and then use the large deviation
principle for the Toda matrices. We leave the details to the reader.
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