
HAL Id: hal-03133208
https://hal.science/hal-03133208v1

Preprint submitted on 5 Feb 2021 (v1), last revised 6 May 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computational characterization of surface entropies for
Z2 subshifts of finite type

Antonin Callard, Pascal Vanier

To cite this version:
Antonin Callard, Pascal Vanier. Computational characterization of surface entropies for Z2 subshifts
of finite type. 2021. �hal-03133208v1�

https://hal.science/hal-03133208v1
https://hal.archives-ouvertes.fr

Computational characterization of surface
entropies for Z2 subshifts of finite type
Antonin Callard ! Ï

Université Paris-Saclay, ENS Paris-Saclay, Département Informatique, 91190 Gif-sur-Yvette, France

Pascal Vanier !Ï �

Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France

Abstract
Subshifts of finite type (SFTs) are colorings of the plane that avoid a finite family of forbidden
patterns. In this article, we are interested in the behavior of the growth of the number of valid
patterns in SFTs. While entropy h corresponds to growths that are squared exponential 2hn2

, surface
entropy (introduced in Pace’s thesis in 2018) corresponds to the eventual linear term in exponential
growths. We give here a characterization of the possible surface entropies of SFTs as the Π3 real
numbers of [0, +∞].

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics; Theory of
computation → Models of computation

Keywords and phrases surface entropy, arithmetical hierarchy of real numbers, 2D subshifts, symbolic
dynamics

Funding This research was partially funded by ANR JCJC 2019 19-CE48-0007-01

Acknowledgements The authors would like to thank Ronnie Pavlov for answering their many
questions about surface entropy when they started this work.

1 Introduction

For a finite alphabet of colors, a two dimensional subshift is a set of all colorings of the plane
Z2 that respect some local constraints. These constraints are usually given as a family of
forbidden patterns. The most studied class of subshift are Subshifts of Finite Type (SFTs),
subshifts that can be defined by a finite family of forbidden patterns. Wang tiles (unit
squares with colored edges that may only be placed side by side when the colors on the edges
match) are a famous special case of SFTs: the set of all tilings by some tileset is always an
SFT.

Subshifts were introduced in order to discretize continuous dynamical systems and are
themselves dynamical systems. While it has long been known that most problems concerning
Wang tiles (and thus subshifts) are undecidable [2, 5, 6], computability has since seen its
role shift from an obstacle to a tool and has played a major role in the study of SFTs and
other related classes of subshifts. An aperiodic subshift has for instance been constructed [4]
based on Kleene’s fixed-point theorem [11], a classical theorem of computability theory. Many
conjugacy invariants have been characterized thanks to computability or complexity classes.
The first such characterization was for topological entropy, which measures the exponential
growth of the number of valid colorings of finite patterns. For a subshift X, its (topological)
entropy is defined by:

h(X) = lim log NX(n)
n2

where NX(n) denotes the number of n × n patterns appearing in the subshift X. Having
entropy h corresponds to having NX = 2hn2+o(n2). It turns out that the possible entropies for
Z2 are exactly the numbers which are upper semi-computable [8]. Another invariant related

mailto:contact@acallard.net
https://www.acallard.net/
mailto:pascal.vanier@unicaen.fr
https://vanier.users.greyc.fr/
https://orcid.org/0000-0001-9207-9112

2 Computational characterization of surface entropies for Z2 subshifts of finite type

to growth, called entropy dimension, was then characterized using the arithmetical hierarchy
of real numbers [13]. Many other invariants have since been linked to computability: for
instance periodic data [10] is related to computational complexity classes, subactions [7, 1, 3]
can be characterized through recursively enumerable forbidden patterns and many more.

We focus here on the notion of surface entropy, a notion which was introduced in Dennis
Pace’s thesis [14] in order to quantify the linear term inside exponential growth functions.
Indeed, topological entropy cannot distinguish between the two following behaviors of the
complexity function:

NX(n) ≈ 2hn2
and NX(n) ≈ 2hn2+2sn

Surface entropy corresponds roughly to the s term in the second behavior and will be
introduced more formally in Subsection 2.2. In his thesis, Pace realizes Π1 and Σ1 numbers of
the arithmetical hierarchy of real numbers and conjectures that surface entropies are exactly
the Π3 numbers. This is exactly what we prove here:

▶ Theorem 1. The class of surface entropies of Z2 SFTs is [0, +∞] ∩ Π3.

As a corollary of Theorem 1 and using Corollary 4, we obtain the same result for sofic
subshifts, which are the letter-by-letter projections of SFTs, and effective subshifts, which are
the subshifts that can be defined with a recursively enumerable family of forbidden patterns :

▶ Corollary 2. The class of surface entropies of Z2 sofic and effective subshifts is [0, +∞]∩Π3.

The paper is organized as follows. The next section recalls some background and useful
definitions. Section 3 and Section 4 focuses on the proof of Theorem 1, and provides in
particular a construction which creates Z2 SFTs with arbitrary Π3 surface entropies. Some
open questions are then discussed in Section 5. Appendix A contains the proofs for the upper
and lower bounds on the surface entropy of the construction in Section 4.

2 Preliminaries

2.1 Subshifts

These paragraphs introduce some standard definitions and facts about subshifts. One may
consult [12] for more details.

Let Σ be a finite alphabet of colors. A Zd configuration (in this paper, d = 1 or d = 2)
is a coloring x : Zd 7→ Σ, and the value of x at position z is noted xz. A (d-dimensional)
pattern is a coloring p : D 7→ Σ, with D ⊆ Zd a finite domain. For a configuration x, we say
that a pattern p appears in x (noted p ⊑ x) if there exists some position t ∈ Zd such that for
all z ∈ D, pz = xt+z. A subshift is a set of colorings/configurations defined by some family of
forbidden patterns. Each family of forbidden patterns F defines a subshift, possibly empty:

XF = {(x : Zd 7→ Σ) : ∀p ∈ F , p ̸⊑ x}

A subshift is effective if it can be defined by a recursively enumerable family of forbidden
patterns. A subshift is of finite type (SFT) if it can be defined by a finite family of forbidden
patterns. A subshift is sofic if is the projection of an SFT letter-by-letter by a mapping
between two alphabets.

A. Callard and P.Vanier 3

2.2 Complexity function of Z2 subshifts

Given a Z2 subshift X, its complexity function NX(m, n) (for m, n ∈ N) is the number of
different patterns that appear in a rectangle of size m × n in the configurations of X :

NX(m, n) =
∣∣{p ∈ Σm×n : ∃x ∈ X, p ⊑ x

}∣∣
This complexity function can be used to define the (topological) entropy h(X):

h(X) = lim
n→+∞

log NX(n, n)
n2

This led Dennis Pace to introduce in [14] the notion of surface entropy, which corresponds
to the “linear term” of the complexity function. Here, we define surface entropy with
eccentricity α as :

hs(X, α) = lim sup
n→+∞

log NX(pn, qn) − pqn2h(X)
(p + q)n with α = p

q
∈ Q+

and p, q are relatively prime. This definition differs slightly from the one of [14]; this will be
further discussed in Section 5.

Note that in the definition of the topological entropy, only square patterns are used. In
fact, any shape of rectangular patterns would generate the same value. Interestingly, this
is no longer the case with surface entropy: the eccentricity (ratio of the patterns’ widths
to heights) affects the value of the calculations. This explains why hs is a function of both
a subshift X and a rational parameter α = p/q. The study in [14] focuses on both the
realizability of specific surface entropies, and the behavior of surface entropies as functions
of their eccentricities.

While surface entropy is not a conjugacy invariant, it was proved in [14] that its finiteness
is one. For more details about surface entropies, one may refer to [14].

2.3 Arithmetical hierarchy of real numbers

In order to state our main result, this section recalls from [15] the arithmetical hierarchy
of real numbers, which classifies elements of the real line according to their computational
properties. Denote by ΓQ the set of total computable functions f : Nk 7→ Q. For n ≥ 1, the
classes of real numbers Σn, Πn and ∆n are defined as follows:

Σn = {x ∈ R : ∃f ∈ ΓQ, sup
i1

inf
i2

sup
i3

...f(i1, ..., in)}

Πn = {x ∈ R : ∃f ∈ ΓQ, inf
i1

sup
i2

inf
i3

...f(i1, ..., in)}

∆n = Σn ∩ Πn

It is known that for any n ≥ 1, the inclusions Πn ⊂ Σn+1 and Σn ⊂ Πn+1 are proper. One
may refer to [15] for more details.

In this paper, we will be interested in the third level of the hierarchy, and one of its
equivalent characterization proved in [15]:

x ∈ Π3 iff there exists f ∈ ΓQ such that x = lim sup
i

inf
j

f(i, j)

4 Computational characterization of surface entropies for Z2 subshifts of finite type

3 Arithmetical restrictions of surface entropies

In this section, we prove the first and easiest direction of Theorem 1:

▶ Theorem 3. For any Z2 SFT X and α ∈ Q+:

hs(X, α) ∈ [0, +∞] ∩ Π3

Proof. Let X be a Z2 SFT. First, one should note that NX(m, n) is not computable in m, n.
Indeed, NX(m, n) = 0 if and only if X = ∅; the latter is well-known for being undecidable.

For j ≥ m, n, define N
(j)
X (m, n) as the number of m×n patterns that appear in admissible

patterns (patterns in which no forbidden pattern of X appears) of size j × j. These functions
are uniformly computable. Additionally, NX(m, n) = infj≥m,n N

(j)
X (m, n). In particular, this

implies that log NX(m, n) is a Π1 real number.
As proved in [8], h(X) is a Π1 real number. According to the closure properties proved

in [15], this implies that for any α = p/q ∈ Q+, and for every n ∈ N, the following is a ∆2
real number:

log NX(pn, qn) − pqn2h(X)
(p + q)n

which then leads to hs(X, α) ∈ Π3. Finally, Pace [14] proved that hs(X, α) ≥ 0. ◀

▶ Corollary 4. For any Z2 sofic or effective subshift X, hs(X) ∈ [0, +∞] ∩ Π3.

Proof. For a sofic or effective subshift X, log NX(m, n) is still a Π1 real number. Indeed:
A sofic subshift is a projection of an SFT. As a projection is a map between two finite
sets of colors, it is computable, and j, m, n 7→ N

(j)
X (m, n) is still a computable function.

An effective subshift is defined by a computably enumerable family of forbidden patterns.
In this context, define N

(k)
X (m, n) (for k ≥ m, n) as the number of patterns of size

m × n that appear in squares of size k × k in which none of the first k forbidden
patterns enumerated appear. These still define a computable function, and we still have
NX(m, n) = infk N

(k)
X (m, n).

After obtaining log NX(m, n) ∈ Π1, the rest of the proof is the same as before. ◀

4 Realization of Π3 real numbers as surface entropies

In this section, we prove the other (and harder) direction of Theorem 1. Because [14] provides
examples of SFTs with infinite surface entropy, we now prove:

▶ Theorem 5. For any x ∈ [0, +∞) ∩ Π3, there exists an SFT X with surface entropy:

∀α ∈ Q+, hs(X, α) = min(α, 1)
1 + α

x

Theorem 1 is a consequence of this statement.

Proof. Let x ∈ [0, +∞) ∩ Π3 be a Π3 real number.
Let e ∈ N and x′ ∈ [0, 1) be such that x = e + x′. Because x′ is also a Π3 real number,

there exists a computable function f : N2 7→ Q such that x′ = lim supk inf l f(k, l) (see the
characterization in Subsection 2.3). We can assume that f only takes values in [0, 1).

In the following subsections, we create an SFT X which verifies the property of Theorem 5.
The proof is organized as follows:

A. Callard and P.Vanier 5

1. Subsection 4.1 introduces our “sparse squares” construction, which aims at creating a set
of colorings of the plane with controlled surface entropy. All the sections that follow it
focus on implementing this geometrical construction into an actual SFT X.

2. Subsection 4.2 recalls the Toeplitz sequences, which are sequences of uniform densities.
They will be used in the sparse square layout to control the density of each square.

3. In Subsection 4.3, we create a Z effective subshift X1. Its effectiveness gives us a lot of
room to control its patterns, and we will use X1 as the foundation of X.

4. We use the “Fixed-Point” construction of [3] to create a Z2 SFT which simulates it.
Subsection 4.4 provides an intermediary lemma about the entropy and the surface entropy
of this construction: in our case, it proves that the intermediary construction has surface
entropy zero.

5. We then create the desired SFT X, which arranges the sparse squares on the plane (with
the help of the previous points). It is done in Subsection 4.5.

6. Finally, in Subsection 4.6 we compute the surface entropy of X. This proves that X is a
valid example for Theorem 5.

4.1 The sparse squares and the sparse square layout
To understand the idea behind this construction, consider the full shift over Z2 with the
alphabet {0, 1}. Configurations are full grids of free bits, ie. bits that are allowed to vary
freely in {0, 1}. It is not difficult to see that for the full shift, log Nfull(n, n) = n2. In
particular, its complexity function is quadratic in n, and its entropy is 1.

To realize specific surface entropies, we first need to figure out a way to contribute linearly
to log NX , instead of quadratically. To do this, we create a sequence of sparse squares. A
sparse square is, roughly, a finite piece taken from the full shift, but whose points are moved
apart from one another: the square is sparsified.

More precisely, the sparse square of index k (see Figure 1a) is a set of positions that form
a grid. Any position not in this set of points is blank. In the grid, there are k columns (the
distance between two columns is also k), and in each column there are k points (the distance
between two points in a column is also k).

The sparse square layout (see Figure 1b) makes the sparse squares sit next to one another
on a single line, according to their indices. We set the distance between the square of index
k − 1 and the square of index k to 2k.

The key feature of this geometrical layout lies in its linearity: the kth square has edges of
size k(k − 1) + 1: thus it has an area which is roughly

(
k2)2, while it also contains k2 points.

4
4

(a) 4th sparse square

22 23 24

(b) (Portion of) the sparse square layout

Figure 1 Presentation of the sparse square layout

6 Computational characterization of surface entropies for Z2 subshifts of finite type

t1(0) t2(0)

t2(0)

t2(1)

t2(1)

t3(0)

t3(0)

t3(0)

t3(1)

t3(1)

t3(1)

t3(2)

t3(2)

t3(2)

Figure 2 A sequence of words (tk) written in (a finite piece of) the sparse square layout

In addition, as the distance between two points increases as one considers squares of greater
indices, compactness will only lead to degenerate configurations that contain at most one
point. As such, they will not contribute significantly to the complexity function.

For now, the set of positions in the sparse square layout is not very interesting. In order
to increase the complexity function, we will allow free bits to vary at each position inside a
sparse square. Additionally, to create a surface entropy related to x, the density of free bits
in each square will be related to x.

More precisely, define x′
k = inf l f(k, l) (recall that x = e+x′, and x′ = lim supk inf l f(k, l)).

For each k, let tk be a word of size k over the alphabet {On, Off}, whose density of On is x′
k.

Then, define the subshift X ′ as (the closure of) the following configurations (see Figure 2):
These configurations follow the sparse square layout.
Each position not marked in the sparse square layout is blank (ie. marked with □).
The word tk is written in each row of the kth square.

On the positions marked by On, we then allow free bits to vary. On every position of the
sparse square, we also allow free letters to vary in {1, ..., 2e}. With this, the square of index
k contributes to log NX′ with a term k(x′

k + e). If the squares do not interfere too much,
one should expect the surface entropy to “converge” towards lim supk x′

k + e = x′ + e = x.
The previous paragraphs were a draft of a geometrical construction. Below, we create an

actual Z2 SFT X which implements this subshift (with some additional construction lines).
Then, we formally prove that X has the desired surface entropy.

4.2 Toeplitz sequences are Z effective subshifts
In order to create specific densities of letters in a subshift, we recall the useful Toeplitz
sequences from [9]. Let 0 ≤ y =

∑+∞
i=1 yi2−i ≤ 1 be a real number. A Toeplitz sequence

associated to y is a bi-infinite sequence b ∈ {0, 1}Z such that:

bn =



y1 if n is even
y2 if n = 4k + 1
y3 if n = 8k + 3
y4 if n = 16k + 5
etc...

ie. one bit in two is y1; on the remaining bits, one bit in two is y2; etc...

A. Callard and P.Vanier 7

For any y ∈ [0, 1), consider the Z subshift T (y) defined by:

T (y) = {(b) ∈ {0, 1}Z : ∃0 ≤ y′ ≤ y, (b) is a Toeplitz sequence associated to y′}

▶ Lemma 6. If y ∈ Π1 ∩ [0, 1), then T (y) is an effective Z subshift.

Proof. If y ∈ Π1, there exists a computable total function f : N 7→ Q such that y = infn f(n).
It is possible to recursively enumerate the different values of f , to computably forbid patterns
of T (y) which do not respect the structure of Toeplitz sequences, and to computably forbid
patterns of T (y) that respect the structure of Toeplitz sequences but whose density is too
high. ◀

In the following subsection, we will use subwords of Toeplitz sequences on the alphabet
{On, Off} (rather than {1, 0}). They have high regularity and tightly controlled densities.
Indeed, assume that tn is a factor of length n which appears in T (y). Then the number of
letters On in tn is bounded by:

0 ≤ |tn|On ≤ ny + O(1)

4.3 Building the base line
By definition, any x′

k = inf l f(k, l) is a Π1 real number. As we recalled in the previous
section, for any k ∈ N, the subshift T (x′

k) composed of all Toeplitz sequences of density
lesser or equal to x′

k is a Z effective subshift.
Then it is no surprise that the base line (ie. the line in the sparse square layout on which

all the sparse squares sit) forms an effective Z subshift. We denote it by X1 for the rest of
the paper. More precisely, for each subword of length k in

Tk(x′
k) = {tk ∈ {On, Off}k : tk is a subword of T (x′

k)}

we create a base wk,tk
of the kth sparse square (ie. one rows of the kth sparse square)

wk,tk
= tk(1) Bk−1 tk(2) Bk−1 ... Bk−1 tk(k)

where letters B are blanks, and each tk(j) is a letter in {On, Off} (these letters will later
control the density of free bits in the squares). For each sequence (tk)k∈N of words such that
tk ∈ Tk, we can create the base line on which the whole squares sit:

B(tk) = {#∞s1 w1,t1 #22−2s2 w2,t2 ... sk−1 wk−1,tk−1 #2k−ksk wk,tk
...}

(we highlighted the base of each square in red), where the # are another sort of blanks, and
the words sk are prefixes which we will later use for the construction of the whole squares:

s1 = S and for k ≥ 2, sk = SBk−2E

Finally, X1 is defined as the closure of all the previous configurations B(tk) for all the
sequences (tk). X1 is a Z subshift over the alphabet Σ = {#, S, E, B, On, Off}.

It is possible to computably enumerate all the patterns in which at least two letters of the
set {On, Off} appear, and to forbid each of these patterns that do not respects the structure
of the configurations above. Furthermore, each x′

k is a Π1 real number, and their Toeplitz
sequences are effective. These considerations imply that X1 is an effective Z subshift.

8 Computational characterization of surface entropies for Z2 subshifts of finite type

4.4 Entropy of the fixed-point realization of effective Z subshifts as
subactions of Z2 SFTs

We now have a Z subshift X1 which can be used as a foundation in order to implement the
whole sparse square layout into an actual SFT. In this section, we recall a particular method
(from [3]) which transforms Z effective subshifts into Z2 SFTs. Additionally, we compute the
influence of this method on the surface entropy.

The construction of fixpoint-based tile sets was originally introduced in [4]. One particular
application of this construction, explained in [3], is the following theorem: for any Z effective
subshift X1, there exists a Z2 sofic subshift Y2 whose configurations are the configurations of
X1 repeated vertically:

Y2 = {(y(2) : Z2 7→ Σ) : ∃x(1) ∈ X1, ∀i, j ∈ Z, y
(2)
(i,j) = x

(1)
i }

The principle of the theorem was introduced in [7], which realized Z effective subshifts as
Z3 sofic subshifts. It was also proved in [1] with a different method. In these paragraphs, we
focus on the construction of [3] in order to prove:

▶ Lemma 7. Let X1 be a Z effective subshift. There exists an Z2 SFT X2 composed of two
superimposed layers of tilings such that:
1. The projection of X2 on its first layer is a sofic subshift Y2 whose configurations are the

configurations of X1 repeated vertically.
2. The second layer of X2 is composed of tilings of a fixpoint based tile set.
3. (New) For any p, q relatively prime,

h(X2) = h(Y2) = 0 and hs(X2, α) = hs(Y2, α) = α

1 + α
h(X1)

Points 1 and 2 of this lemma come from [3]. Point 3 is proved in Appendix A.1.

4.5 Building the sparse square layout
In this section, we use the Z subshift X1 to build the whole sparse square layout.

First, apply Lemma 7 from the previous section: there exists a Z2 SFT X2 with two
superimposed layers, such that its first layer contains all the vertical replications of configur-
ations of X1, and the second layer contains some embedded computations. We then create a
2D SFT X3 by superimposing a third layer to X2, which we describe below.

This Layer 3 is itself a superimposition of several sub-layers:
1. First, one must choose a line on Layer 1 to be the base line (the first layer is composed of

the same line repeated vertically: we choose one). To do so, we add a [Layer 3a] with
three colors (black, white and gray) whose only type of configurations are the following
three:

, ,

The base line will appear in gray (if it exists).
▶ Important. The other markings of Layer 3 (Layers 3b to 3d) will only be applied on
white and gray areas. Additionally, they are not applied on areas marked by # on Layer 1.

A. Callard and P.Vanier 9

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

t4(1)

t4(1)

t4(1)

t4(1)

t4(1)

t4(1)

t4(1)

t4(1)

t4(1)

t4(1)

t4(1)

t4(1)

t4(1)

t4(1)

t4(1)

t4(1)

t4(1)

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

t4(2)

t4(2)

t4(2)

t4(2)

t4(2)

t4(2)

t4(2)

t4(2)

t4(2)

t4(2)

t4(2)

t4(2)

t4(2)

t4(2)

t4(2)

t4(2)

t4(2)

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

t4(3)

t4(3)

t4(3)

t4(3)

t4(3)

t4(3)

t4(3)

t4(3)

t4(3)

t4(3)

t4(3)

t4(3)

t4(3)

t4(3)

t4(3)

t4(3)

t4(3)

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

t4(4)

t4(4)

t4(4)

t4(4)

t4(4)

t4(4)

t4(4)

t4(4)

t4(4)

t4(4)

t4(4)

t4(4)

t4(4)

t4(4)

t4(4)

t4(4)

t4(4)

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

(a) Layers 1 and 3a-3c. Layer 3b ensures there are at most 4 orange lines on Layer 3c.

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

t4(1)

t4(1)

t4(1)

t4(1)

t4(1)

t4(1)

t4(1)

t4(1)

t4(1)

t4(1)

t4(1)

t4(1)

t4(1)

t4(1)

t4(1)

t4(1)

t4(1)

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

t4(2)

t4(2)

t4(2)

t4(2)

t4(2)

t4(2)

t4(2)

t4(2)

t4(2)

t4(2)

t4(2)

t4(2)

t4(2)

t4(2)

t4(2)

t4(2)

t4(2)

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

t4(3)

t4(3)

t4(3)

t4(3)

t4(3)

t4(3)

t4(3)

t4(3)

t4(3)

t4(3)

t4(3)

t4(3)

t4(3)

t4(3)

t4(3)

t4(3)

t4(3)

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

t4(4)

t4(4)

t4(4)

t4(4)

t4(4)

t4(4)

t4(4)

t4(4)

t4(4)

t4(4)

t4(4)

t4(4)

t4(4)

t4(4)

t4(4)

t4(4)

t4(4)

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

(b) Layers 1 and 3a-3d. Layer 3d enforces the positions of the orange lines.

Figure 3 Behavior of the construction for a pattern which contains the 4th sparse square. These
figures reveal the effect of each layer. (Positions of the sparse square are highlighted for the
convenience of the reader)

10 Computational characterization of surface entropies for Z2 subshifts of finite type

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

On

On

On

On

On

On

On

On

On

On

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

On

On

On

On

On

On

On

On

On

On

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Figure 4 Two examples of degenerate configurations

2. Add [Layer 3b] with purple construction lines (see Figure 3a). Any E marked in gray (on
Layer 3a) starts a line at its top, and this line goes up.
Purple lines have the ability to “start” an orange line (on Layer 3c). Each time they start
an orange line, they move to their left (it ensures that there are at most k orange lines in
the kth sparse square).
Purple lines can only end on an S.
Because compactness might lead to surprising results (like infinitely many purple lines
behaving erratically), we add colored areas below and above these lines. In these areas of
color, we forbid any other purple line to exist: this ensures that there are exactly one
purple line per square.

3. Add [Layer 3c] with orange construction lines (see Figure 3a). These lines will highlight
the rows of the sparse squares. They can only be started by the purple line at their left,
and end just before a # on the right. Additionally, an E colored in gray (in [Layer 3a])
must start an orange line.
(In the figure, we highlight in bold the tk(i) marked by an orange line. These lines mark
the future rows of the sparse squares, and these letters On, Off marked by an orange
line will be at the exact non-blank positions of the sparse squares layout.)

4. Add [Layer 3d] with blue construction lines (see Figure 3b). These lines are diagonals.
Each tk(i) colored in orange (on Layer 3c) and not in gray (on Layer 3a) should start a
line that goes diagonally down and left. Additionally, these lines should end either on a
letter S (colored in purple on Layer 3b), or on the next column marked with tk(i′), on
another letter that is colored in orange (on Layer 3c).
We also impose with colored areas that there can be only one blue line between two
orange lines. These blues lines ensure the structure of the sparse squares, and constrain
the behavior of degenerate configurations (see Figure 4 for examples of these degenerate
configurations).

4.6 Contributing to the entropy
The subshift X3 reflects the sparse square layout in the following way: by considering letters
tk(i) marked in orange on Layer 3c, we obtain a set of positions that respects the layout.

The final step of the construction consists in adding a fourth layer to X3 with free letters
(ie. letters in the alphabet 1, ..., 2e) and free bits (ie. bits in {0, 1}) to obtain an SFT X with
the right surface entropy. More precisely:

Free letters: At each emplacement in the sparse square layout (ie. for each position
marked by On or Off on [Layer 1], and which is marked in orange on Layer 3c, we add

A. Callard and P.Vanier 11

a free letter which varies in {1, ..., 2e}.
Free bits: At each activated position in the sparse square layout (ie. for each position
marked by On on [Layer 1], and which is marked in orange on Layer 3c), we add a free
bit which varies in {0, 1}.

Let X be the SFT composed of these four superimposed layers. We prove in Appendix A.2:

▶ Lemma 8. For any α = p/q ∈ Q+ (for p and q relatively prime), and for any n ∈ N, if k

is the integer such that k(k − 1) + 1 ≤ min(p, q)n < (k + 1)k − 1, then the complexity function
of the SFT X (defined in Section 4) behaves as follows:

min(p, q)n (e + x′
k) + o(n) ≤ log NX(pn, qn) ≤ min(p, q)n

(
e + sup

log n≤i
x′

i

)
+ o(n)

In particular, this first implies that h(X) = 0, then that:

hs(X, α) = lim sup
n→+∞

log NX(pn, qn)
(p + q)n = min(p, q)

p + q

(
e + lim sup

n→+∞
x′

n

)
= min(p, q)

p + q
x

which concludes the proof of Theorem 5. ◀

5 Conclusive remarks and open questions

Many questions remain about the notion of surface entropy.

Computational behavior of the definition in [14]

The definition of surface entropy used in this paper differs from the original notion of surface
entropy in Pace’s thesis [14], which was: for any eccentricity α ∈ R+,

hs(X, α) = sup
(xn,yn)∈(N2)N:

xn,yn→+∞, xn
yn

→α

lim sup
n→+∞

log NX(xn, yn) − xnynh(X)
xn + yn

This definition was chosen in [14] because it provides a unified approach for rational (ie.
α ∈ Q+) and irrational eccentricities. However, we are currently unsure of how the supremum
over all sequences impacts the computational characterization of surface entropies. Our
construction still realizes any Π3 surface entropy with the definition of [14], but surface
entropies may not be Π3 real numbers anymore. For all we know, they may not be at any
level of the arithmetical hierarchy.

Equivalence between the two definitions

Furthermore, as we modified [14]’s definition of surface entropy, a natural question is whether
our new definition coincides with it in the case of rational eccentricities. In other words,
can the supremum over all sequences be removed when the eccentricity is a rational number.
Our investigations in these directions were not fruitful at the time of writing these lines.

12 Computational characterization of surface entropies for Z2 subshifts of finite type

Arbitrary topological entropy with an arbitrary surface entropy

Finally, in the main section of this paper, we created SFTs with zero topological entropy and
any Π3 surface entropy. It was proved in [8] that the class of entropies of Z2 SFTs is exactly
the class of Π1 real numbers. This led us to wonder whether we could create a family of Z2

SFTs with arbitrary Π1 entropy and arbitrary Π3 surface entropy.
As the main constructions of Π1 entropies have non-zero surface entropies, the straightforward
construction (ie. a Cartesian product of our construction with one for Π1 entropies) is not
an answer to this problem.

References

1 Nathalie Aubrun and Mathieu Sablik. Simulation of effective subshifts by two-dimensional
subshifts of finite type. Acta Applicandae Mathematicae, 126(1):35–63, 2013. doi:10.1007/
s10440-013-9808-5.

2 Robert Berger. The Undecidability of the Domino Problem. Number 66 in Memoirs of the
American Mathematical Society. The American Mathematical Society, 1966.

3 Bruno Durand, Andrei Romashchenko, and Alexander Shen. Effective Closed Subshifts in 1D
Can Be Implemented in 2D. In Fields of Logic and Computation, number 6300 in Lecture Notes
in Computer Science, pages 208–226. Springer, 2010. doi:10.1007/978-3-642-15025-8_12.

4 Bruno Durand, Andrei Romashchenko, and Alexander Shen. Fixed-point tile sets and their
applications. Journal of Computer and System Sciences, 78(3):731–764, May 2012. doi:
10.1016/j.jcss.2011.11.001.

5 Yuri Gurevich and I Koryakov. Remarks on Berger’s paper on the domino problem. Siberian
Math. Journal, pages 319–320, 1972.

6 David Harel. Recurring Dominoes: Making the Highly Undecidable Highly Understandable.
Annals of Discrete Mathematics, 24:51–72, 1985.

7 Michael Hochman. On the dynamics and recursive properties of multidimensional symbolic
systems. Inventiones Mathematicae, 176(1):2009, April 2009.

8 Michael Hochman and Tom Meyerovitch. A characterization of the entropies of multi-
dimensional shifts of finite type. Annals of Mathematics, 171(3):2011–2038, May 2010.
doi:10.4007/annals.2010.171.2011.

9 Konrad Jacobs and Michael Keane. 0-1-sequences of toeplitz type. Zeitschrift für Wahrschein-
lichkeitstheorie und Verwandte Gebiete, 13(2):123–131, 1969. URL: http://dx.doi.org/10.
1007/BF00537017, doi:10.1007/BF00537017.

10 Emmanuel Jeandel and Pascal Vanier. Characterizations of periods of multidimensional shifts.
Ergodic Theory and Dynamical Systems, 35(2):431–460, April 2015. doi:10.1017/etds.2013.
60.

11 S.C. Kleene. Two Papers on the Predicate Calculus., chapter Finite Axiomatizability of Theories
in the Predicate Calculus Using Additional Predicate Symbols, pages 31–71. Number 10 in
Memoirs of the American Mathematical Society. American Mathematical Society, 1952.

12 Douglas A. Lind and Brian Marcus. An Introduction to Symbolic Dynamics and Coding.
Cambridge University Press, New York, NY, USA, 1995.

13 Tom Meyerovitch. Growth-type invariants for Zd subshifts of finite type and arithmetical classes
of real numbers. Inventiones Mathematicae, 184(3), 2010. doi:10.1007/s00222-010-0296-1.

14 Dennis Pace. Surface Entropy of Shifts of Finite Type. PhD thesis, University of Denver, 2018.
15 Xizhong Zheng and Klaus Weihrauch. Arithmetical hierarchy of real numbers. In Mathematical

Foundations of Computer Science (MFCS), pages 23–33, 1999. doi:10.1007/3-540-48340-3_
3.

https://doi.org/10.1007/s10440-013-9808-5
https://doi.org/10.1007/s10440-013-9808-5
https://doi.org/10.1007/978-3-642-15025-8_12
https://doi.org/10.1016/j.jcss.2011.11.001
https://doi.org/10.1016/j.jcss.2011.11.001
https://doi.org/10.4007/annals.2010.171.2011
http://dx.doi.org/10.1007/BF00537017
http://dx.doi.org/10.1007/BF00537017
https://doi.org/10.1007/BF00537017
https://doi.org/10.1017/etds.2013.60
https://doi.org/10.1017/etds.2013.60
https://doi.org/10.1007/s00222-010-0296-1
https://doi.org/10.1007/3-540-48340-3_3
https://doi.org/10.1007/3-540-48340-3_3

A. Callard and P.Vanier 13

A Proofs in Section 4

A.1 Proof of Lemma 7

In this appendix, we prove Lemma 7, which we recall below:

▶ Lemma 7. Let X1 be a Z effective subshift. There exists an Z2 SFT X2 composed of two
superimposed layers of tilings such that:
1. The projection of X2 on its first layer is a sofic subshift Y2 whose configurations are the

configurations of X1 repeated vertically.
2. The second layer of X2 is composed of tilings of a fixpoint based tile set.
3. (New) For any p, q relatively prime,

h(X2) = h(Y2) = 0 and hs(X2, α) = hs(Y2, α) = α

1 + α
h(X1)

Proof. Points 1 and 2 of this lemma come directly from the construction of Theorem 1 in [3].
This proof focuses on point 3, and uses notations from [3].

Let X1 be some Z effective subshift, and X2 (resp. Y2) be the SFT (resp. the sofic
subshift) given by the first two points of Lemma 7. Below, we compute the entropies and
the surface entropies of X2 and Y2.

First, we prove that log NX2(pn, qn) = pnh(X1) + o(n).
By definition of Z entropy, log NX1(n) = nh(X1) + o(n). As any configuration of Y2 is

entirely determined by a single line, one has log NY2(pn, qn) = log NX1(pn) = pnh(X1)+o(n).
The complexity function of X2 is greater than the contribution of its first layer, which leads
to log NX2(pn, qn) ≥ log NY2(pn, qn) = pnh(X1) + o(n).

On the other hand, one can find an upper bound of log NX2(pn, qn) by considering the
contributions of the two layers independently. As the contribution of the first layer is the
contribution of Y2, we now focus on the contribution of all the tilings obtained from the
fixpoint-based tile set. Here, we use notions and notations of [3].

In the basic construction of a self-simulating tile set, each macro-tile of level i (ie. of
size Ni) is entirely determined by its four macro-colors, which fit in O(log Ni) bits. In the
construction used in [3] to transform Z effective subshifts into Z2 SFTs, these macro-colors
contain additional data: the level of the macro-tile (log Ni bits), one segment of li and three
segments of li+1 letters from configurations of X1, and the position in the grand-father macro-
tile (log Ni+2 bits). By taking (as in [3]) Ni = 2C2i with C being a constant, Li =

∏i−1
j=0 Ni

and li = log log Li, we obtain that these macro-colors still fit in O(log Ni) bits.
For any n big enough, there exists i verifying Li ≤ pn ≤ Li+1 and qn ≤ Li+2 (indeed,

limi→+∞ Li+2/Li+1 = +∞). In this context, a pattern of size pn × qn can partially cover
at most four macro-tiles of level i + 2. These macro-tiles are entirely determined by their
four macro-colors; each macro-tile of level i + 1 entirely determines the macro-tiles of inferior
levels that compose it; and by the previous paragraph each macro-color fits on O(log Ni+2)
bits (and the constant in the O does not depend on i): all these considerations imply that
the number of patterns of size pn × qn on the second layer is at most polynomial in Ni+2.

Considering now the contribution of the two layers independently, one obtains that
log NX2(pn, qn) ≤ log NY2 + log poly(Ni+2). We have just proved:

log NX2(pn, qn) = pn h(X1) + o(n) and log NY2(pn, qn) = pn h(X1) + o(n)

14 Computational characterization of surface entropies for Z2 subshifts of finite type

This immediately leads to:

h(X2) = lim
n→+∞

nh(X1) + o(n)
n2 = 0 = h(Y2)

hs(X2, p/q) = lim sup
n→+∞

pnh(X1) + o(n)
(p + q)n = p

p + q
h(X1) = hs(Y2, p/q) ◀

A.2 Computation of the complexity function
Let α = p/q (for p and q relatively prime) be a positive rational number. In this appendix, we
compute the complexity function NX(pn, qn) of the SFT X introduced in Section 4. We recall
that x = e + x′ is a Π3 real number with x′ ∈ Π3 ∩ [0, 1), given by x′ = lim supi inf l f(i, l),
and that we defined x′

i = inf l f(i, l).
We now recall and prove Lemma 8:

▶ Lemma 8. For any α = p/q ∈ Q+ (for p and q relatively prime), and for any n ∈ N, if k

is the integer such that k(k − 1) + 1 ≤ min(p, q)n < (k + 1)k − 1, then the complexity function
of the SFT X (defined in Section 4) behaves as follows:

min(p, q)n (e + x′
k) + o(n) ≤ log NX(pn, qn) ≤ min(p, q)n

(
e + sup

log n≤i
x′

i

)
+ o(n)

Proof. Here is the structure of the proof:
1. First, we provide a lower bound of log NX(pn, qn) (subsection A.2.1).
2. We then consider the contribution of “degenerate configurations” (ie. configurations

that do not respect the structure of the sparse square layout: these are obtained when
defining X1 as a closure) to log NX(pn, qn), and prove that they contribute only as o(n)
(subsection A.2.2).

3. Finally, we consider how many sparse squares can appear simultaneously in a pattern of
size pn × qn (subsection A.2.3), and:
a. We provide a lower bound for the sparse square that appear simultaneously in a pattern

of size pn × qn (subsection A.2.4). As these squares have very low indices, they only
contribute as o(n).

b. We provide an upper bound for the sparse squares that appear alone (subsection A.2.5;
they contribute with the significant term of the upper bound). To obtain it, we bound
the number of positions that can appear simultaneously (in a pattern of size pn × qn)
of such a sparse square.

Before we begin, in the whole proof we denote by k the integer such that k(k − 1) + 1 ≤
min(p, q)n < (k + 1)k + 1. (Please note that k(k − 1) + 1 is the size of the edges of the kth

sparse square).

A.2.1 Lower bound of the complexity function
▷ Claim 9.

log NX(pn, qn) ≥ min(p, q)n(e + x′
k) + o(n)

Proof. As k(k − 1) + 1 ≤ min(p, q)n, the kth sparse square can fit entirely in a pattern of size
pn × qn. To find a lower bound of the complexity function, one can ignore the contribution
of Layers 1, 2 and 3, consider the position of the kth sparse square fixed, and only look at
the contribution induced by its “free bits” and “free letters” on Layer 4.

A. Callard and P.Vanier 15

Free bits (For now, we assume the “free letters” are fixed). In the kth square appear all
the Toeplitz subwords of length k, associated to a density y ≤ x′

k. To obtain a lower bound
of log NX(pn, qn), we can consider a single Toeplitz subword tk associated to the density x′

k.
Consider a configuration in which the kth square is marked with tk. Then, the number

of free bits in the kth sparse square (which is the number of positions in the sparse squares
marked with On) is k|tk|On. Indeed, there are k identical lines, and in each line there are
|tk|On positions marked with On.

Additionally, one has |tk|On = kx′
k +O(1) (because its density is x′

k). This implies that all
the free bits of the kth sparse square (fixed at this position), when marked with tk, contribute
to the complexity function with a term

exp2(k|tk|On) = exp2(k2x′
k + O(k))

Free letters Recall that free letters vary in the alphabet {1, ..., 2e} at each point in the
kth sparse squares. There are k2 points in the kth sparse squares, so the previous contribution
is multiplied by exp2(k2e). As k2 = min(p, q)n + o(n), this concludes the proof. ◁

In the rest of the proof, we look for an upper bound of log NX(pn, qn).

A.2.2 Contribution of degenerate configurations
We call “degenerate” the configurations that do not respect the structure of the sparse square
layout. There are two possible sources for these configurations: some were obtained when X1
was defined as a closure; and some are obtained if Layer 1 respects the structure of a base
line, and Layer 3a is full white or full black (ie. there is no gray base line for the squares to
sit on).

▷ Claim 10. The contribution of these configurations to log NX(pn, qn) is o(n).

Proof. First, we consider the case of a degenerate configuration in the case Layer 1 is not a
base line. One should note that there can be at most one letter On or Off colored in orange
in such a degenerate configuration: indeed, there can be at most one orange line (on Layer
3c) because of the colored areas of the blue line on Layer 3d.

With this in mind, a pattern of a degenerate configuration depends on the position of
the gray line on Layer 3a (if it exists at all), of the position of the letter On or Off in the
pattern, etc... The corresponding varying bit (if the letter is On) only multiplies the number
of patterns by two.

All these depend on finitely many parameters that range from 0 to max(p, q)n, so the
contribution to NX(pn, qn) of these configurations is polynomial in n, ie. logarithmic to
log NX(pn, qn).

Consider then the case of degenerate configurations in the case Layer 1 is a base line, and
Layer 3a does not have a gray line. If Layer 3a is a full black configuration, there are no
markings at all on Layer 3 or 4, and the number of patterns depends only on Layer 1. If
Layer 3a is a full white configuration, then red lines on Layer 3b can only go up, and never
go left: if they did, there would be an orange line on Layer 3c, which is impossible because
of the blue areas of color on Layer 3d. This implies that the number of patterns again only
depends on Layer 1 (and by Lemma 7, Layer 1 contributes as o(n)).

All in all, degenerate configurations contribute to log NX(pn, qn) as o(n). ◁

In the rest of the proof, we assume that we consider non-degenerate configurations, ie.
configurations that respect the sparse square layout.

16 Computational characterization of surface entropies for Z2 subshifts of finite type

We can also assume that the gray line of Layer 3a is fixed at the bottom of the pattern
of size pn × qn which we consider: this maximizes the number of free bits/free letters in the
pattern, which are the main contributors to the complexity function. Furthermore, we will
happily forget to count the different horizontal positions of the squares in the patterns.

Indeed, all these other patterns can be taken into account by translating the figure/vary-
ing some parameters which range between 0 and max(p, q)n: these considerations only
multiply the complexity function by a polynomial in n, or in other words only add a o(n) to
log NX(pn, qn).

We also define the following set of words for any l ∈ N and y ∈ [0, 1) (usually T (y) is
defined on the alphabet {0, 1} rather than {On, Off} ; otherwise, there is no difference):

Tl(y) = {tl ∈ {On, Off}l : tl is a subword of T (y)}

It is interesting to say that, because we are looking at non-degenerate configurations,
Layers 3b-3d (construction layers) are fixed by the line chosen by Layer 3a. This means that
we can now focus the different Toeplitz words written on Layer 1, and on the contribution
from the free bits and free letters that appear on Layer 4. To count these patterns, we mainly
have to compute how many free bits/letters can fit in a pattern at the same time.

A.2.3 Which sparse squares can only appear alone in a pattern?
To find an upper bound of the complexity function, we ask the following question: how many
sparse squares can fit in a pattern of size pn × qn?

▷ Claim 11. For n ≥ p, if at least two different sparse squares appear (maybe partially) in a
pattern of size pn × qn, then their indices are below 2 log n.

Proof. Assume that a range of squares from i to j, with i < j, appear (maybe partially) in a
pattern of size pn × qn. Then the horizontal space before the square of index j is entirely
contained in the pattern, ie 2j < pn. Then for any n ≥ p, one has j ≤ 2 log n. ◁

Reciprocally,

▷ Claim 12. If a sparse square can only appear alone in a pattern of size pn × qn, then its
index is greater than log n.

Proof. Assume that a square of index j can “only” appear alone in a pattern of size pn × qn.
This means that the space before the sparse square, and the space after the sparse square,
are bigger than the horizontal size of the pattern pn. In other words, 2j ≥ pn, which becomes
j ≥ log n + log p ≥ log n. ◁

A.2.4 Contribution of simultaneously appearing sparse squares
▷ Claim 13. The sparse squares that can appear grouped with others contribute as M1 = o(n)
to log NX(pn, qn).

Proof. Assume that a range (between i and j, i < j) of sparse squares appear (partially) in
a pattern of size pn × qn. For n big enough, one has j ≤ 2 log n by Claim 11. Additionally,
because we are interested in an upper bound of log NX(pn, qn), we can freely assume that
all the free bits of the sparse squares of index i and j appear in this pattern.

A. Callard and P.Vanier 17

If Ci,j denotes the contribution to NX(pn, qn) of this slice of squares between i and j,
then an upper bound on Ci,j is (we count all the Toeplitz subwords written in the squares
on Layer 1, and then their free bits and free letters on Layer 4):

Ci,j ≤
∑

ti∈Ti(x′
i
),...,tj∈Tj(x′

j
)

exp2

(
j∑

r=i

r|tr|On + e

j∑
t=i

r2

)

≤
∑

ti∈Ti(x′
i
),...,tj∈Tj(x′

j
)

exp2

(
j∑

r=1
(r|tr|On + er2)

)

≤
∑

ti∈Ti(x′
i
),...,tj∈Tj(x′

j
)

exp2(j3(1 + e))

≤
∑

t1,...,tj∈{On,Off}1+...+j

exp2((2 log n)3(1 + e))

≤ exp2(j2 + o(j2)) exp2((2 log n)3(1 + e))

≤ exp2(O((log n)3))

As there are less than (2 log n)2 different tuples of i, j ≤ 2 log n, the contribution M1 of these
sparse squares to log NX(pn, qn) verifies:

M1 ≤ log

 ∑
i<j≤2 log n

Ci,j

 ≤ log
[
(4(log n)2) exp2(O((log n)3))

]
≤ log exp2(O((log n)3)))
≤ o(n) ◁

A.2.5 Contribution of the other sparse squares

The other sparse squares can only appear alone (maybe partially) in a pattern of size pn × qn.
We distinguish two cases for them:

The sparse squares of indices i ≤ k. As they can fit entirely in a pattern of size pn × qn

(recall that k(k + 1) − 1 ≤ min(p, q)n ≤ (k + 1)k + 1), we assume they do (this maximizes
the number of free bits that appear simultaneously).
The sparse squares of indices i > k. They can only fit partially in a pattern of size
pn × qn, and we need to “count” the number of their free bits/letters that can appear
simultaneously.

Contribution of the sparse squares of index i ≤ k

▷ Claim 14. The sparse squares that can only appear alone in a pattern of size pn × qn,
and of indices i ≤ k, contribute to log NX(pn, qn) with a term:

M2 ≤ min(p, q)n
(

e + max
log n≤i≤k

x′
i

)
+ o(n)

Proof. As #Ti(x′
i) ≤ 2i, each of these squares contribute with a term (again, we count the

18 Computational characterization of surface entropies for Z2 subshifts of finite type

words of Ti(x′
i) on Layer 1, and free letters and free bits on Layer 4):

Ci ≤ (2e)i2
×

∑
ti∈Ti(x′

i
)

exp2(i|ti|On)

≤ exp2(ei2) × exp2(i) exp2(i2x′
i + O(i))

≤ exp2(i2(e + x′
i) + O(i))

By Claim 12, such a square must be of index ≥ log n. This implies that all these squares
contribute to log NX(pn, qn) with a term:

M2 ≤ log

 k∑
i=log n

Ci


≤ log

 k∑
i=log n

exp2(i2(e + x′
i) + O(i))


≤ log

(
k exp2

(
k2
(

e + max
log n≤i≤k

x′
i

)
+ O(k)

))
≤ log exp2

(
k2
(

e + max
log n≤i≤k

x′
i

)
+ O(k)

)
≤ k2

(
e + max

log n≤i≤k
x′

i

)
+ O(k)

≤ min(p, q)n
(

e + max
log n≤i≤k

x′
i

)
+ o(n) ◁

Contribution of the sparse squares of index i ≥ k Finally, we consider the sparse squares
of indices i ≥ k: these square only appear partially in a pattern of size pn × qn. They
contribute significantly to log NX(pn, qn), as explained in the following claim:

▷ Claim 15. The sparse squares of indices i ≥ k contribute to log NX(pn, qn) with a term:

M3 ≤ min(p, q)n
(

e + max
k≤i≤max(p,q)(k+1)2

x′
i

)
+ o(n)

Proof. This proof is organized as follows:
1. We provide an upper bound on the contribution Ci of the ith sparse square to NX(pn, qn),

for i ≥ k, according to the number of free bits/free letters of these squares that can
appear simultaneously in a pattern of size pn × qn.

2. Then, we provide an upper bound on the contribution M3 of all these sparse squares of
indices i ≥ k to log NX(pn, qn).

3. By studying the variations of two functions h : N 7→ N and v : N 7→ N we prove that for
any i ≥ k the number of simultaneously appearing free bits/free letters of the ith sparse
square is h(i)v(i) ≤ min(p, q)n + o(n). This will conclude the proof.

Contribution Ci of the sparse square of index i First, we need to answer the following
question: how many bits can appear simultaneously in a pattern of size pn × qn? Recall that
there are exactly i bits in the square of index i per row (and per column). If h(i) denotes
the number of horizontal bits that can appear simultaneously in a slice of width pn (and
height 1), and v(i) the number of vertical bits in a slice of height qn (and width 1), then:

A. Callard and P.Vanier 19

h(i) = min
(

i,

⌊
pn − 1

i

⌋
+ 1
)

v(i) = min
(

i,

⌊
qn − 1

i

⌋
+ 1
)

h and v are eventually decreasing, and limi→+∞ h(i) = limi→+∞ v(i) = 1. There exists
an integer Jk ≤ max(p, q)(k + 1)2 such that for any i ≥ Jk, one has v(i) = h(i) = 1.

We now count free letters and free bits to compute an upper bound on the contribution Ci

of a square of index i ≥ k. As opposed to the previous cases, in which the squares appeared
entirely in the pattern of size pn × qn, here we can only see at once h(i) different column:
but thanks to the use of Toeplitz sequences, which have a very uniform distribution, the
density of a Toeplitz subword of size h(i) is still h(i)x′

i + O(1):

Ci ≤
∑

ti∈T (x′
i
)h(i)

exp2 [h(i)v(i)e + v(i)|ti|On)]

≤ exp2 [h(i)v(i)(e + x′
i) + O(v(i))]

Additionally, as v(i) ≤ qn−1
i + 1, i ≥ k and k = Θ(

√
n), one has O(v(i)) = O(

√
n).

Contribution M3 of the sparse square of index i ≥ k This implies that the contribution
M3 of all these squares of indices i ≥ k is:

M3 ≤ log
(

Jk∑
i=k

exp2[h(i)v(i)(e + x′
i) + o(h(i)v(i))]

)

≤ log
(

Jk exp2

([
max

k≤i≤Jk

h(i)v(i) + o(h(i)v(i))
]

×
[
e + max

k≤i≤Jk

x′
i

]))
≤
[

max
k≤i≤Jk

h(i)v(i) + o(h(i)v(i))
]

×
[
e + max

k≤i≤Jk

x′
i

]
+ o(n)

Study of the product h(i)v(i) for k ≥ i ≥ Jk We now have to study the product h(i)v(i)
for k ≤ i ≤ Jk. Below, we will prove that ∀k ≤ i ≤ Jk, h(i)v(i) ≤ min(p, q)n + O(

√
n).

Without any loss of generality, assume q ≥ p. We prove that:

h(i)v(i) ≤ pn + O(
√

n), ie M3 ≤ pn

(
e + max

k≤i≤max(p,q)(k+1)2
x′

i

)
+ o(n)

As p = min(p, q), one has h(i) =
⌊

pn−1
i

⌋
+ 1 and v(i) = min

(
i,
⌊

qn−1
i

⌋
+ 1
)
. For the first

values of i, h is an increasing function, and it then decreases for i large enough: below, we
study these variations and conclude about the product h(i)v(i).

For any i ≤ ⌊
√

qn − 1⌋, one has
⌊

qn−1
i

⌋
+ 1 ≥ i (which implies v(i) = i). Indeed,⌊

qn − 1
i

⌋
+ 1 ≥

⌊√
qn − 1

⌋
+ 1

≥ i

For any k ≤ i ≤ ⌊
√

qn − 1⌋, one has h(i)v(i) ≤ pn + O(
√

n). Indeed,

h(i)v(i) = h(i)i ≤
(⌊

pn − 1
i

⌋
+ 1
)

i

≤ i

⌊
pn − 1

i

⌋
+ i

≤ pn − 1 + i

≤ pn + O(
√

n)

20 Computational characterization of surface entropies for Z2 subshifts of finite type

For any i ≥ ⌊
√

qn − 1⌋ + 1, one has i ≥
⌊

qn−1
i

⌋
+ 1 (which implies v(i) =

⌊
qn−1

i

⌋
+ 1).

Indeed,⌊
qn − 1

i

⌋
+ 1 ≤

⌊
qn − 1√
qn − 1

⌋
+ 1

≤
⌊√

qn − 1
⌋

+ 1

≤ i

For any ⌊
√

qn − 1⌋ + 1 ≤ i ≤ Jk, one has h(i)v(i) ≤ pn + O(
√

n). Indeed,

h(i)v(i) = h(i)
(⌊

qn − 1
i

⌋
+ 1
)

=
⌊

pn − 1
i

+ 1
⌋⌊

qn − 1
i

+ 1
⌋

≤
⌊

pn − 1√
qn − 1

+ 1
⌋⌊

qn − 1√
qn − 1

+ 1
⌋

≤
⌊

pn − 1√
qn − 1

+ 1
⌋(√

qn − 1 + 1
)

≤ pn + O(
√

n)

With all of these computations, we conclude that

max
k≤i≤Jk

h(i)v(i) ≤ pn + o(n)

In the case p ≥ q, the computations are completely symmetric and one obtains:

max
k≤i≤Jk

h(i)v(i) ≤ qn + O(
√

n) ◁

A.2.6 Conclusion
We can now conclude the proof about the bounds of log NX(pn, qn):

min(p, q)n (e + x′
k) + o(n) ≤ log NX(pn, qn) ≤ min(p, q)n

(
e + sup

log n≤i
x′

i

)
+ o(n)

Indeed, we already proved the lower bound on the complexity function. In order to compute
the upper bound, we can count the contributions of the different layers independently.

Layer 1 and 2 (the 1D subshift composed of the base line repeated vertically, and the
tilings obtained with self-simulating tile sets) do not contribute to the surface entropy by
Lemma 7. Indeed, the 1D entropy of the base line is h(Y1) = 0. In other words, these two
layers add o(n) to log NX(pn, qn).

Degenerate configurations, Layer 3, along with considerations on the different shifts
of the configurations, also contribute as o(n) to log NX(pn, qn) (they indeed contribute
polynomially in n to NX(pn, qn), see the remark at the end of “Contribution of degenerate
configurations”). Finally, in the previous pages, we provided 3 quantities M1, M2, M3 whose
sum is greater than the contribution of Layer 4 (and which take into account the different
written words on non-degenerate configurations of Layer 1).

With these considerations, we conclude that:

log NX(pn, qn) ≤ o(n) + M1 + M2 + M3

≤ o(n) + o(n) + min(p, q)n
(

e + max
log n≤i≤max(p,q)(k+1)2

x′
i

)
+ o(n)

≤ min(p, q)n
(

e + max
log n≤i≤max(p,q)(k+1)2

x′
i

)
+ o(n) ◀

	1 Introduction
	2 Preliminaries
	2.1 Subshifts
	2.2 Complexity function of Z^2 subshifts
	2.3 Arithmetical hierarchy of real numbers

	3 Arithmetical restrictions of surface entropies
	4 Realization of Pi_3 real numbers as surface entropies
	4.1 The sparse squares and the sparse square layout
	4.2 Toeplitz sequences are Z effective subshifts
	4.3 Building the base line
	4.4 Entropy of the fixed-point realization of effective Z subshifts as subactions of Z^2 SFTs
	4.5 Building the sparse square layout
	4.6 Contributing to the entropy

	5 Conclusive remarks and open questions
	A Proofs in Section 4
	A.1 Proof of Lemma 7
	A.2 Computation of the complexity function
	A.2.1 Lower bound of the complexity function
	A.2.2 Contribution of degenerate configurations
	A.2.3 Which sparse squares can only appear alone in a pattern?
	A.2.4 Contribution of simultaneously appearing sparse squares
	A.2.5 Contribution of the other sparse squares
	A.2.6 Conclusion

