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Abstract

LIDAR sensors are usually used to provide autonomous vehicles with 3D representations of their
environment. In ideal conditions, geometrical models could detect the road in LIDAR scans, at the
cost of a manual tuning of numerical constraints, and a lack of flexibility. We instead propose an
evidential pipeline, to accumulate road detection results obtained from neural networks. First, we
introduce RoadSeg, a new convolutional architecture that is optimized for road detection in LIDAR
scans. RoadSeg is used to classify individual LIDAR points as either belonging to the road, or
not. Yet, such point-level classification results need to be converted into a dense representation,
that can be used by an autonomous vehicle. We thus secondly present an evidential road mapping
algorithm, that fuses consecutive road detection results. We benefitted from a reinterpretation of
logistic classifiers, which can be seen as generating a collection of simple evidential mass functions.
An evidential grid map that depicts the road can then be obtained, by projecting the classification
results from RoadSeg into grid cells, and by handling moving objects via conflict analysis. The
system was trained and evaluated on real-life data. A python implementation maintains a 10 Hz
framerate. Since road labels were needed for training, a soft labelling procedure, relying lane-level
HD maps, was used to generate coarse training and validation sets. An additional test set was
manually labelled for evaluation purposes. So as to reach satisfactory results, the system fuses road
detection results obtained from three variants of RoadSeg, processing different LIDAR features.

1 Introduction

Grid mapping algorithms are traditionally de-
ployed, within robotic systems, to infer the
traversability of discretized areas of the environ-
ment. In particular, evidential grid mapping al-
gorithms are commonly used to fuse sensor inputs
over time [1, 2, 3, 4]. The evidential framework
better represents uncertainties, and the fact of not
knowing, than regular Bayesian frameworks [5]. In-
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deed, the evidential framework allows for an ex-
plicit classification of unobserved, or ambiguous,
areas as being in an Unknown state.

Specifically, LIDAR-only evidential grid map-
ping systems tend to rely on a first ground de-
tection step, strong geometrical assumptions, and
manually tuned thresholds, to generate evidential
mass functions at the cell level [6, 7, 8]. However,
such systems might prove to have a limited applica-
bility, for autonomous vehicles that are intended to
evolve in urban or peri-urban areas. The first rea-



son is that autonomous ground vehicles can only,
typically, drive on roads. Yet, the road does not
necessarily cover the whole ground, especially in ur-
ban areas. Moreover, the need for manual finetun-
ing, and the use of geometrical assumptions, lead
to grid mapping systems that lack of flexibility, and
might fail when used in uncontrolled environments.
For instance, the use of ray tracing, to densify ev-
idential grid maps as in [2], supposes the absence
of negative obstacles in unobserved areas, which
cannot be guaranteed in practice when only using
LIDAR sensors [9]. We consider that a representa-
tion of the drivable area should only be generated
by fusing actual observations, without any upsam-
pling nor downsampling. Similarly, a grid mapping
system relying on the flat-ground assumption, and
altitude thresholds to detect obstacles [6], might
lead to false detections when encountering slopes
or speed bumps.

To tackle those limitations, we propose to clas-
sify individual LIDAR points as either belonging
to the road, or to an obstacle. The use of machine-
learning, for classification, would have the benefit
of removing the need for manually tuned geometri-
cal assumptions and thresholds, during the infer-
ence. The use of dense LIDAR scans, for road
detection, has been a common practice in aerial
data analysis for several years [10], and several ap-
proaches relying on machine learning techniques
have recently been proposed to address automo-
tive use cases [11, 12]. However, those systems
never generate a point-level classification, and al-
ways output an upsampled road area. Indeed, those
approaches are designed to process data from the
KITTI road dataset [13], and are evaluated with
regards to a dense ground-truth in the image do-
main. As such, the fact that LIDAR scans are
sparse is not considered when evaluating those sys-
tems. Recent machine learning architectures, such
as SqueezeSeg [14] and PointNet [15], have been
proposed to process raw point-clouds. In partic-
ular, SqueezeSeg relies on a very efficient convo-
lutional architecture that processes LIDAR scans,
which are organized as dense range images by sim-
ply using a spherical projection. This represen-
tation actually corresponds to the raw outputs
of most state-of-the-art LIDAR sensors, that only
measure ranges at fixed angular positions. We pro-
pose to adapt SqueezeSegV2 [16], and make it able
to classify each LIDAR point as road or obstacle.
Those classification results an then be accumulated
into a 2D road map, thanks to an evidential grid
mapping algorithm. Figure 1 depicts the whole sys-

tem.

To generate evidential mass functions from the
classification results, we propose to reinterpret the
output of neural networks as a collection of sim-
ple evidential mass functions, as proposed in [17].
The system was trained on a coarse training set,
which was generated by automatically labelling LI-
DAR scans from re-existing lane-level HD Maps,
thanks to a simple localization error model. An ad-
ditional test set was also manually labelled, in order
to reliably verify the classification performances.
The best classification performances are achieved
by fusing three distinct neural networks, that pro-
cess different sets of LIDAR features: the Cartesian
coordinates, the spherical coordinates, and the re-
turned intensity and elevation angles. The classi-
fication results are then accumulated on the XY-
plane, in order to generate an evidential grid that
depicts the road surface. Moving objects are de-
tected by analyzing of the evidential conflict dur-
ing the fusion, and a grid-level clustering pipeline.
Those objects are then excluded from the final road
surface estimation.

Our main contributions are:

• RoadSeg, a refined version of Squeeze-
SegV2 for road detection in LIDAR scans,
and optimized for the generation of eviden-
tial mass functions

• An automatic labelling procedure of the
road in LIDAR scans, from HD Maps

• A road mapping and object detection al-
gorithm relying on road detections results,
obtained from a fusion of independent
RoadSeg networks

The remainder of the paper is organized as fol-
lows. Section 2 reviews some related works on road
detection in LIDAR scans, machine learning archi-
tectures for LIDAR scan processing, and eviden-
tial grid mapping. Section 3 describes how eviden-
tial mass functions can be generated from a neu-
ral network. Section 4 describes RoadSeg, our re-
fined version of SqueezeSegV2 for road detection,
and optimized for the generation of evidential mass
functions. Section 5 presents our training, valida-
tion and test sets, alongside our Map-based au-
tomatic labelling pipeline. In section 6, we eval-
uate the performances of RoadSeg, and a fusion



Figure 1: Overview of the proposed system

of RoadSeg networks that process independent in-
puts, both on the KITTI dataset, and our manually
labelled test. Section 7 finally presents a road map-
ping and moving object detection algorithm, that
relies on evidential mass functions generated from
several RoadSeg networks. A python implementa-
tion of this algorithm processes LIDAR scans at a
10Hz rate.

2 Related Works

2.1 Evidential grid mapping from LIDAR
scans

Evidential occupancy grids associate evidential
mass functions to individual grid cells. Each mass
value represents evidence towards the fact that the
corresponding cell is Free, Occupied, or Unknown,
and their sum is equal to 1. The first evidential
occupancy grid mapping system that relied on LI-
DAR sensors was proposed in [18]. Evidential mass
functions were constructed at the cell level from
several stationary-beam LIDAR sensors, via ray
tracing and ad-hoc false alarm and missed detec-
tion rates. The use of the evidential framework was
shown to better represent uncertainty and the fact
of not knowing, when compared to a traditional
Bayesian fusion scheme. The Caroline vehicle al-
ready used evidential occupancy grid maps during
the 2007 DARPA Urban Challenge [2], but the rea-
soning was done globally from both LIDAR scans
and point-clouds generated by stereo-vision, with-
out considering the specificity of LIDAR sensors.

It was proposed, in [19], to extend the work in
[18] to four-layer LIDAR scanners. Based on [20],
a discount factor was applied to an evidential po-
lar grid, before fusing it with new sensor observa-

tions. Evidential mass functions were again gener-
ated from ray tracing, and ad-hoc false alarm and
missed detection rates. This model was general-
ized, in [6], to a more complex 360◦Velodyne HDL-
64 LIDAR scanner. A first ground-detection step,
based on a simple thresholding, is used to classify
LIDAR points as either belonging to an obstacle or
to the drivable area. Then, evidential mass func-
tions were created at the cell level, from the classi-
fication results and from, again, ad-hoc false-alarm
and missed-detection rates.

More recent works aim at tackling some intrinsic
limitations of LIDAR-based evidential occupancy
grid mapping. It was proposed, in [4], to couple
an evidential model with particle-filtering, in or-
der to estimate the speed of each grid cell, and de-
tect moving objects from a four-layer LIDAR scan.
This comes at the cost of various hyper-parameters
to manually tune, and a computational complexity,
as virtually any occupied cell could be associated
with a set of particles. Another recent work aims
at predicting dense evidential occupancy grid maps
from individual LIDAR scans [8]. Consecutive LI-
DAR scans are registered, and dense grids are ob-
tained from the resulting pointcloud thanks to a
ground removal step, and manually defined false-
alarm and missed detection rates. A convolutional
neural network is then trained to recreate the dense
evidential grids from a feature grid generated from
only one of the original scans.

All those approaches rely on several strong as-
sumptions, like the absence of negative obstacles
that justifies the use of ray tracing, or the fact that
the ground is flat. As such, they might lack flexibil-
ity, when used in uncontrolled environments. We
thus consider that in complex and uncontrolled en-
vironments, evidential LIDAR grids should only be



built from raw observations. The use of ad-hoc pa-
rameters should also be limited, so as to create gen-
eral models. Moreover, autonomous urban vehicles
are expected to drive on roads. Therefore, cur-
rent evidential occupancy grid mapping algorithms
cannot be used alone, in autonomous driving sce-
narios, as unoccupied grid cells are not necessarily
drivable. An explicit road detection step is thus
needed, when generating evidential grid maps for
autonomous driving.

2.2 Road detection in LIDAR scans

Road detection from LIDAR scans can be ad-
dressed by focusing on the detection of road bor-
ders. One of the first road detection approaches
that only relies on LIDAR data was proposed in the
context of the DARPA Urban Challenge 2007 [21].
Elevation information was obtained from a single-
layer LIDAR mounted on a prototype vehicle, and
oriented towards the ground. The road was then
considered as the lowest smooth surface within the
LIDAR scan, and a comparison with detected road
edges was used to confirm the results. A simi-
lar sensor setup was used in [22], to detect break-
points among LIDAR points, so that smooth road
segments and obstacles could be jointly detected.
More recently, [23] coupled a ground detection and
a probabilistic fusion framework, to accumulate
and vectorize road edge candidates. In [24], road
markings are detected among LIDAR points, from
the reflectance information, and the geometry of
the lane in inferred from the detected markings.
Simply detecting road borders from LIDAR scans is
nevertheless limited, as the provided information is
extremely coarse by nature. Those approaches also
heavily rely on assumptions about the sensor set-
up and geometry of the scene, such as the absence
of negative obstacles, the flatness of the ground,
and the presence of road markings. In complex ur-
ban scenarios, those assumptions are not necessar-
ily verified, which validates the need for algorithms
that explicitely detect the road, instead of simple
road borders.

State-of-the-art road detection algorithms usu-
ally rely on the fusion of LIDAR scans and RGB im-
ages [25, 26]. Yet, the release of the KITTI dataset
allowed for the emergence of LIDAR-only road de-
tection algorithms. Most of those approaches actu-
ally readapt image processing techniques, to detect
a road area instead of road edges. In [27], LI-
DAR points are projected and upsampled into a

2D image plane. The road area is then detected
in this plane, via a histogram similarity measure.
Another proposition was to project LIDAR points
into a 2D sparse feature grid corresponding to a
bird’s eye view, and to train a convolutional neural
network to predict a dense road region from this
representation [11]. Another proposal was to train
a neural network on range images, obtained from
the spherical projection of LIDAR scans, and to fit
a polygon on the predicted road points to obtain a
dense prediction [12]. Yet, some LIDAR points are
lost on the projection process, as each pixel of the
range image could represent several LIDAR points.

Although those approaches are currently the best
performing LIDAR-only road-detection approaches
on the KITTI dataset, they share the same limi-
tation: they aim at predicting a dense road area
although LIDAR scans are sparse, since they are
evaluated with regards to dense, image-level road
labels. All those approaches then predict the pres-
ence of road on locations where no actual LIDAR
measurements are actually available, which is an
incorrect behavior for a LIDAR-only road detec-
tion algorithm. Indeed, gaps or small obstacles
could be present but unobserved, because of the
sparsity of LIDAR scans. Moreover, due to the
limitations of the KITTI dataset, which only have
road labels for the front camera view, those sys-
tems are not designed to detect the road at 360◦,
and might require to be significantly modified to
detect the road on full LIDAR scans, without any
guarantee of success. However, machine learning
approaches [11, 12] have the advantage of being
able to detect roads, after their training, with-
out any explicit geometrical model, nor manually
tuned thresholds. A machine-learning algorithm
that could process raw LIDAR scans, and classify
each individual LIDAR point as either belonging
to the road or to an obstacle, would then be valu-
able when generating evidential grid maps in the
context of autonomous driving.

2.3 Machine learning on raw LIDAR scans

The Machine Learning algorithms that can pro-
cess raw LIDAR scans, and output per-point
results, can be split into two main categories.
The first category of approaches consider LIDAR
scans as unorganized point-clouds, and usually rely
on PointNet-like architectures [15]. The seconc
category of approaches are strongly inspired by
SqueezeSeg [14], and consider that LIDAR scans



are organized point-clouds, which can be processed
as range images obtained by spherical projections,
similarly to what is done in [12].

PointNet applies a common multi-layer percep-
tron to the features of each point of a point-cloud.
A global max-pooling operation is then used to
extract a cloud-level feature. Such an architec-
ture was mathematically demonstrated to be able
to approximate any set function. Further layers
can then be trained to perform object classifica-
tion or semantic segmentation. However, PointNet
expects normalized, and relatively constrained in-
puts, which involves several pre-processing steps.
Several PointNet-like architectures, optimized for
the semantic segmentation of LIDAR scans, are
proposed in [28]. They require an initial pre-
processing step, as they process independent sub-
sets of the overall scan, and none of them reach
fully satisfactory results. PointNet was also tested
for object detection in LIDAR scans. Voxelnet [29]
applies PointNet network on individual voxel par-
titions of a LIDAR scan. It then uses addi-
tional convolutions, and a region proposal net-
work, to perform bounding-box regression. Point-
Net can also be used to perform bounding-box re-
gression on LIDAR frustrums, corresponding to a
pre-computed 2D bounding-box obtained from an
RGB image [30]. Given the limitations observed
in [28] for semantic segmentation, and the need for
pre-processing, we chose to rely on another type of
approach to perform road detection. Indeed, as the
results are intended to be fused in evidential grid
maps in real-time, a solution that could directly
process complete LIDAR scans would be more rel-
evant.

SqueezeSeg [14] was introduced as a refined ver-
sion of SqueezeNet [31], a highly efficient convo-
lutional neural network reaching AlexNet-level ac-
curacy, with a limited number of parameters and
a low memory footprint. SqueezeNet heavily on
Fire layers, that require less computations and use
fewer parameters than traditional convolution lay-
ers. SqueezeSeg adapts SqueezeNet for semantic
segmentation of LIDAR scans, by processing or-
ganized LIDAR scans. Spherical projection can
indeed be used to generate dense range images
from LIDAR scans. SqueezeSeg was initially de-
signed to perform semantic segmentation. The la-
bels were obtained from the KITTI dataset, and
ground-truth bounding-boxes: the LIDAR points
that were falling into those boxes were classified

according the class of the related object. Again, as
only the front camera view is labelled in KITTI,
the labels do not cover complete LIDAR scans.
A conditional random field (CRF), reinterpreted
as a recurrent neural network, was also trained
alongside SqueezeSeg, to further improve the seg-
mentation results. Recently, SqueezeSegV2 in-
troduced a context aggregation module, to cope
with the fact that LIDAR scans usually include
missing points, due to sensor noise. The input
range image used in SqueezeSegV2 also includes
an additional channel that indicates whether a
valid sensor reading was available, at each angu-
lar position. Finally, SqueezeSegV2 extensively
uses batch-normalization, contrary to SqueezeSeg.
Both SqueezeSeg and SqueezeSegV2 are highly ef-
ficient networks, as their original implementation
could process up to 100 frames per second. More
recently, RangeNet++ [32] reused a similar ap-
proach, to perform semantic segmentation on the
SemanticKitti dataset [33]. As the SemanticKitti
dataset is a finally labelled dataset, with numerous
labelled classes, RangeNet++ has more parame-
ters than SqueezeSegV2. It is also significantly
slower, so that its original implementation does not
match the 10Hz original frame rate of the Velodyne
HDL64, which was used to collect the raw data of
the SemanticKitti dataset.

As SqueezeSegV2 is highly efficient, and pro-
cesses full LIDAR scans that are easy to organize,
refining it for road detection seems to be a natural
option. Such a network, thanks to its fast inefer-
ence time, can also be coupled with an evidential
road mapping algorithm, to convert the segmenta-
tion results into a representation that can be di-
rectly used by an autonomous vehicle. A straight-
forward way to do it would be to create a dataset
with evidential labels, train the network on them,
and fuse the detection results over time. However,
such labels are hard to obtain, due to the presence
of an unknown class. We instead propose to extend
the model described in [17], which offers a way to
generate evidential mass functions from pre-trained
binary generalized logistic regression (GLR) classi-
fiers.



3 Generation of evidential
mass functions from a
binary GLR classifier

3.1 Definition of a binary GLR classifier
for road detection in LIDAR scans

Let Ω = {R,¬R} be a binary frame of discern-
ment, with R corresponding to the fact that a
given LIDAR point belongs to the road, and ¬R
to the fact that it does not. Following the eviden-
tial framework, the reasoning in done on the power
set 2Ω = {∅, R,¬R,Ω}. Ω indicates ignorance on
the class of the point. ∅ indicates that the point
does not fit the frame of discernment, which is not
possible in our case, since each LIDAR point either
belongs, or does not belong, to the road.

Let the binary classification problem with X =
(x1, ..., xd), a d-dimensional input vector represent-
ing a LIDAR point, and Y ∈ Ω a class variable. Let
pR(x) be the probability that Y = R given that
X = x. Then 1− pR(x) is the corresponding prob-
ability that Y = ¬R. Let w be the output of a
binary logistic regression classifier, trained to pre-
dict the probability that a LIDAR point belongs to
the road. Then, pR(x) is such that:

pR(x) = S(

d∑
j=1

βjφj(x) + β0) (1)

where S is the sigmoid function, and the β param-
eters usually learnt alongside those of the φi map-
pings. Equation 1 exactly corresponds to the be-
havior of a deep neural network trained as a binary
GLR classifier, with x being its input.

3.2 Reinterpratation the GLR classifier in
the evidential perspective

Let ⊕ be Dempster’s rule of combination, that
can be used to fuse two independent eviden-
tial mass functions m1,m2 that follow the same
frame of discernment. The resulting mass function

m1,2 = m1 ⊕m2 is such that:

m1,2(∅) = 0 (2a)

K =
∑

B∩C=∅

m1(B)m2(C) (2b)

∀A ∈ 2Ω \ {∅} : m1,2(A) =

∑
D∩E=A 6=∅m1(D)m2(E)

1−K
(2c)

A simple evidential mass function m on Ω is such
that ∃θ ⊂ Ω,m(θ) = s,m(Ω) = 1 − s. Let
w = −ln(1 − s) be the weight of evidence asso-
ciated to m; m can then be represented as {θi}w.
The sigmoid function is strictly increasing. Then,
in Equation 1, the larger the value generated by
the classifier is, the larger pR(x) is and the smaller
1−pR(x) is. Equation 1 can be rewritten as follows:

pR(x) = S(

d∑
j=1

(βjφj(x) + αj)) = S(

d∑
j=1

wj) (3)

with
d∑
j=1

αj = β0 (4)

Each wj can then be seen as piece of evidence
towards R or ¬R, depending on its sign. Let us as-
sume that the wj values are weights of evidence
of simple mass functions, denoted by mj . Let
w+
j = max(0, wj) be the positive part of wj , and

let w−j = max(0,−wj) be its negative part. What-
ever the sign of wj , the corresponding evidential
mass function mj can be written as:

mj = {R}w
+
j ⊕ {¬R}w

−
j (5)

Under the assumption that all the mj mass func-
tions are independent, the Dempster-Shafer opera-
tor can be used to fuse them together.The resulting
mass function obtained from the output of the bi-
nary logistic regression classifier, noted mLR is as



follows:

mLR({R}) =
[1− exp(−w+)] (exp(−w−))

1−K
(6a)

mLR({¬R}) =
[1− exp(−w−)] (exp(−w+))

1−K
(6b)

mLR(Ω) =
exp(−

∑d
j=1 |wj |)

1−K
(6c)

with (6d)

K =
[
1− exp(−w+)

] [
1− exp(−w−)

]
(6e)

By applying the plausibility transformation de-
scribed in [34] to the evidential mass function in
Equation 6, the expression of pR(x) can be recon-
structed. Indeed:

pR(x) =
mLR({R}) +mLR(Ω)

mLR({R}) +mLR({¬R}) + 2mLR(Ω)
(7)

This means that any binary GLR classifier can be
seen as a fusion of simple mass functions, that can
be derived from the parameters of the final linear
layer of the classifier. The previous assumptions are
thus justified. However, the αj values introduced
in Equation 4 have to be estimated.

3.3 Optimization of the parameters of the
evidential mass functions

Let α = (α1, ...αd). A cautious approach would
be to select them so as to maximize the mass val-
ues on Ω. A solution to the resulting minimization
problem over the training set was proposed in [17].
Alongside this approach, we propose to explore two
other possibilities.

3.3.1 Optimization over the training set as
a post-processing

The original approach proposed in [17] was to
select the α vector that maximizes the sum of the
mLR(Ω) mass values over the training set, so as to
get the most uncertain evidential mass functions.
This leads to the following minimization problem:

minf(α) =

n∑
i=1

d∑
j=1

(βjφj(xi) + αj)
2 (8)

with {(xi, yi)}ni=1 being the training dataset. Let
φk be the mean of φk(xi) on the training set. The
optimal value for αj is then:

αj =
β0

d
+

1

d

d∑
q=1

βqφq − βjφj (9)

This solution thus relies on a post-processing step,
and is dependent on the parameters that were ini-
tially learnt from the network. Typically, if ei-
ther d, the βj values or the φj(xi) values in Equa-
tion 3 are very large, the resulting optimal αj values
might remain negligible with regards to the corre-
sponding wj values. Given that binary GLR clas-
sifiers are usually trained from binary labels, and
thus to saturate the Sigmoid function by predict-
ing probabilities close to 0 or 1, this case is likely
to happen, especially for deep GLR classifiers for
which the d value can be extremely high.

3.4 Optimization over abundant
unlabelled data as a post-processing

There is actually no practical reason to optimize
the α vector over the training set, appart from the
lack of data. Indeed, the predicted probabilities are
not dependent on the α vector, since the sum of its
elements is always equal to β0. Moreover, the mini-
mization problem in Equation 8 does not depend on
the original labels. As we intend to use this model
for road detection in LIDAR scans, abundant and
various unlabelled data can be acquired easily by
simply recording LIDAR scans. Then, the mini-
mization problem in Equation 8 can be optimized
on these abundant LIDAR scans.

3.4.1 Optimization over the training set
during the training

It was observed in [17] that if the φk(xi) features
in Equation 8 were centered around their mean,
the minimization problem might be partially solved
by applying L2-regularization during the training.
Indeed, Equation 8 then becomes:

minf(α) =

d∑
j=1

β2
j (

n∑
i=1

φj(xi)
2) +

n

d
β2

0 (10)

However, nothing would then prevent the parame-
ters of the φk functions to overcompensate for the
L2-regularization during the training, especially if
non-linearities are used, and if the φk mappings are



modelled by a very deep network. This means that
the total sum might actually not be minimized.
Moreover, centering the φk(xi) is not a straight-
forward operation. If the classifier only used linear
operations, this could be easily done by centering
the training set. However, performant classifiers
are usually non-linear. The centering thus has to
be done as an internal operation of the network.

We previously observed that using Instance-
Normalization [35] in the final layer of the classifier
would be an easy way to solve those problems [36].
Let υ(x) = (υ1(x), ..., υd(x)) be the mapping mod-
elled by all the consecutive layers of the classifier
but the last one ; let υj be the mean value of the
υj function on the training set, and σ(υj)

2 its cor-
responding variance. Then, if it is assumed that
the final layer of the network relies on an Instance-
Normalization and a feature-wise sum, Equation 8
becomes:

minf(α) =

n∑
i=1

d∑
j=1

((βj
υj(xc)− υj√
σ(υj)2 + ε

) +

d∑
j=1

αj)
2

(11)
The α vector would actually correspond to the bi-
ases of the Instance-Normalization layer. After de-
velopment, if ε is assumed to be neglectible, the
following expression is obtained:

minf(α) = n

d∑
j=1

β2
j + n

d∑
j=1

α2
j (12)

Again, this expression would be minimized during
the training by simply applying L2-regularization.
Instance-Normalization is thus an interesting way
of centering the penultimate features of the net-
work, since it inhibates the influence of the inter-
mediate layers of the network.

It should be noted that the use of Instance-
Normalization is not incompatible with a post-
processing step to further optimize the α vector
over either the training set, or abundant unlabelled
data. The best strategy will thus have to be defined
with regards to the road detection and grid map-
ping tasks.

4 RoadSeg: a deep learning
architecture for road
detection in LIDAR scans

To properly detect the road in LIDAR scans, we
propose an architecture that is heavily inspired by
Squeezeseg [14] and SqueezeSegV2 [16], as those
network are particularly efficient to process LIDAR
scans. However, we introduce several refinements
to the original architectures and training schemes,
so as to better fit the task of road detection, and
allow for evidential fusion of segmented scans. We
name the resulting architecture ”RoadSeg”.

4.1 Dense range image generation from
LIDAR scans

Figure 2: Conversion of a LIDAR scan into a multi-
channel range image by spherical projection. The
channels in the lower part correspond to the re-
turned intensity, the Cartesian coordinates, and the
measured range.

Similarly to SqueezeSeg, RoadSeg processes LI-
DAR scans that are converted into dense range im-
ages. Such a representation corresponds to raw
sensor measurements, as LIDAR scanners actually
return distances at fixed angular positions. The di-
mensions of those range images then depend on the
specifications of the LIDAR sensor. In this work,
RoadSeg is assumed to process scans obtained from
Velodyne VLP32C sensors, operating at 10Hz, and
scanning at 360◦. These sensors rely on 32 stacked
lasers, each scanning at a different zenith angle,
with a horizontal angular resolution of 0.2◦when
operating at 10Hz. As such, only 32*360/0.2 angu-
lar positions can be observed by the sensor. Each



LIDAR scan obtained from a VLP32C can then be
represented by a 32*1800*C grid, with C being the
number of features available for each point. This
grid can be considered as an image with an height
of 32 pixels, a width of 1800 pixels, and C chan-
nels. Let (x,y,z) be the Cartesian coordinates of a
LIDAR point. Let α, β be the indexes of the pixel
that correspond to this point, and RingId the index
of the laser that measured the point. A RingId of
0 (respectively 31) indicates that the point is mea-
sured by the topmost (respectively lowest) laser.
Then α and β are such that:

α = arcsin(
z√

x2 + y2 + z2
) ∗ 5

β = RingId

The channels of the pixel at the (α,β) position
can then be filled with the features of the corre-
sponding point. Figure 2 presents the resulting
ranges images obtained after spherical projection
of LIDAR points. In practice, the VLP32C scan-
ner returns ethernet packets containing measured
ranges that are already ordered by laser and az-
imuth position. The range images can then be ob-
tained directly from the sensor, without having to
pre-process a cartesian LIDAR scan. This projec-
tion was only used to manually label data, in prac-
tice. But when run on the vehicle, RoadSeg pro-
cesses range images that are directly obtained from
the ethernet packets.

In total, we chose to represent a LIDAR point by
its Cartesian coordinates, its spherical coordinates,
and its returned intensity. Additionally, we also
use a validity channel, as done for SqueezeSegV2.
A point is valid, and the corresponding validity is
equal to 1, if the range that was measured at its
angular position is strictly positive. Otherwise, the
point is not valid, which can correspond to missed
detections, or lost ethernet LIDAR packets.

4.2 From SqueezeSeg to RoadSeg

Figure 3 depicts the RoadSeg architecture, which
is very close to the original SqueezeSeg architec-
ture, as it also relies on the use of Fire and
Fire-deconvolutional layers, and skip connections.
RoadSeg also only downsamples horizontally, as
SqueezeSeg and SqueezeSegV2. RoadSeg uses one
downsampling step less than SqueezeSegV2. In-
deed, the first convolutional layer of RoadSeg has

a stride of 1 in both direction, while SqueezeSeg
has a horizontal stride of 2. The kernel size is how-
ever still equal to 3. This is justified by the fact
that, in the case of road detection, downsampling
might make road hard to distinguish at long-range.
SqueezeSeg benefitted from this downsampling be-
cause it was originally designed for semantic seg-
mentation of road users, which are often relatively
close to the sensor. RoadSeg then also has one
deconvolutional layer less than SqueezeSeg. Addi-
tionnally, as done in SqueezeSegV2, RoadSeg uses
Batch Normalization after each convolution, both
inside and outside the Fire layers.

An initial Batch Normalization is also applied
on the input of the network. This mechanism was
proposed to replace the manual normalization step,
that is used in both SqueezeSeg and SqueezeSegV2.
As the normalization parameters initially used in
SqueezeSeg and SqueezeSegV2 are computed from
the train set, manual normalization assumes that
the sensor setup is the same in the train, validation
and test sets. As our labelled LIDAR scans were
not acquired by the same vehicles, this assumption
does not hold anymore. Applying Batch Normal-
ization to the inputs of RoadSeg is thus a way to
train the network on inputs that are not exactly
normalized. A T-Net, inspired by PointNet [15],
can also be used to realign the LIDAR scans, by
predicting a 3×3 affine transformation matrix that
is applied on the Cartesian coordinates of the LI-
DAR points. The TNet is composed of three 1× 1
convolutional layers, with respective output sizes of
32, 64 and 512 ; a channel-wise max-pooling; and
three linear layers having output sizes of 256, 128
and 9. Finally, according to Equations 11 and 12,
the final convolutional layer is replaced, in Road-
Seg, by an Instance-Normalization layer and a sum
over the output channels.

In order to limit the total number of weights
in RoadSeg, the number of output channels pro-
duced by the Fire layers was reduced, with regards
to their counterparts in SqueezeSeg and Squeeze-
SegV2. Table 1 compares the Fire layers in Road-
Seg and in SqueezeSeg/SqueezeSegV2. The Fire-
deconvolutional layers were left unchanged. The
Conditional Random Field (CRF) layer that was,
originally, refining the outputs of SqueezeSeg and
SqueezeSegV2, was removed for several reasons.
First, as it was originally implemented as a re-
current neural network, generating evidential mass
functions from this layer is more complex than



(a) General road classification architecture
(b) T-Net of RoadSeg

Figure 3: RoadSeg, a refined SqueezeSeg-like architecture for road detection and evidential fusion

Output channels
Layer SqueezeSegV1/V2 RoadSeg
Fire2 128 96
Fire3 128 128
Fire4 256 192
Fire5 256 256
Fire6 384 256
Fire7 384 256
Fire8 384 256
Fire9 512 256

Table 1: Comparison of the fire layers in RoadSeg
and SqueezeSeg

from a regular convolutional layer, or an Instance-
Normalization layer. Secondly, removing this layer
reduces the inference time of RoadSeg. Finally, ex-
periments showed than the CRF layer was degrad-
ing the performances of SqueezeSegV2, for the road
detection task, and was thus assumed not to be
suitable for RoadSeg. LIDAR scans were collected
in several urban and peri-urban areas in France,
to do those experiments. Coarse training and val-
idation sets were automatically labelled from HD
Maps. Moreover, a test set was manually labelled,
to obtain reliable performance indicators.

5 Automatic labellisation
procedure of LIDAR scans
from lane-level HD Maps

Reliable semantic segmentation labels are usu-
ally generated manually, by expert annotators.
This however proves to be expensive and time con-
suming. Automatic labelling can instead be used
to generate labelled LIDAR scans, on which a road
detection algorithm could be trained. Ideally, an
error model should be associated to an automatic
labelling procedure, as the resulting data is likely
to include errors. We thus chose to softly label the
road in LIDAR scans from pre-existing lane-level
maps, and according to a localization error model.

5.1 Soft-labelling procedure

The automatic soft-labelling procedure used in
the context of this work is presented in Figure 4. It
was assumed that the LIDAR scans can be acquired
in areas where reliable georeferenced maps, with
correct positions and road dimensions, are avail-
able. Moreover, the LIDAR scans were supposed
to be acquired from a moving data acquisition plat-
form, which includes a LIDAR scanner that can
perceive the ground and obstacles, and a GNSS lo-
calization system which returns an estimation of its
pose in the map frame, and a corresponding covari-
ance matrix. Those sensors were considered to be
rigidly attached to the acquisition platform, and
calibrated together. The coordinates in the map
frame were expressed in terms of northing and east-
ing offsets with regards to an origin. This origin
was close to the data acquisition platform. Under
the classical assumption that the localization error



Figure 4: Automatic soft-labelling of LIDAR scans from road maps

follows a zero-mean Gaussian model [37], an un-
certainty ellipse could then be obtained, from the
covariance matrix associated with the current pose.
A probability of belonging to a mapped road could
then be estimated, for each LIDAR point.

Let X l
i(x

l
i, y

l
i, z

l
i) represent the a LIDAR point,

and Xm
i (xmi , y

m
i , z

m
i ) the corresponding point after

projection in the map frame. Let Ri and Ti be the
rotation matrix, and translation vector, to projet
X l
i into the map frame. We were using a scan-

ning LIDAR with a parameterized sweeping speed
that we note S, and assumed that this rotation
speed remained constant over time. The vehicle
motion thus had to be accounted for, before pro-
jection into the map frame. We neglected the rota-
tion speed of the vehicle during the scan. We also
assumed that the longitudinal speed of the vehicle
was constant during the scan, and that the sensor
was positionned so that its X-axis was parallel with
the vehicle’s forward direction. Let ∆ti be the es-
timated time offset between the beginning of the
scan, and the moment when X l

i was acquired. A
spinning LIDAR records points at pre-defined az-
imuth positions. Let θi be the azimuth position, in
degrees, at which X l

i was acquired. Then, ∆ti can
be estimated by:

∆ti ≈ S ∗
θi

360
(13)

We also had access to the closest instantaneous
measure of the vehicle’s speed at the end of the

scan, via its CAN network. We note this speed vs.
The projection of X l

i into the map frame is then
done as follows:

Xm
i =

xmiymi
zmi

 =

[
R T
0 1

]
xli + ∆ti ∗ vs

yli
zli
1

 (14)

Let PR(X l
i), the labelled probability that X l

i be-
longed to the road. First, a ground detection step
was used to segregate obvious obstacles from points
that, potentially, belonged to the road. It was as-
sumed that the algorithm does not falsely classify
ground points as obstacles. If X l

i did not belong
to the detected ground, then PR(X l

i) = 0, since it
was considered to belong to an obstacle. Otherwise,
X l
i was projected into the map frame. Given that

the projection into the map frame relied on a rigid
transformation, the localization uncertainty of the
resulting Xm

i was equal to the uncertainty of the
pose measured by the GNSS localization system.
The closer from a road edge Xm

i was, the lower
the probability that it belonged to the road is. Let
di be the minimum distance between Xm

i and a
mapped road edge. The covariance matrix given by
the GNSS localization system could, ideally, have
been used to estimate the standard-deviation of the
Gaussian distribution that models the error on di,
by having considered the heading of the road in the
map frame [38]. However, the value of this head-



ing can be ambiguous in curbs or roundabouts. To
account for those use cases and facilitate the com-
putations, a bounding of this standard-deviation,
noted σb, was thus estimated instead. Let σn and
σe be, respectively, the standard-deviation in the
northing and easting directions; then σb was esti-
mated as follows:

σb = Max(σn, σe) + γ (15)

The γ term is a hyperparameter used to account
for the uncertainty in the measures of the LIDAR
sensor, and possible errors in motion compensation.
It also covers inevitable errors in the extrinsic cal-
ibration parameters, that we used to register the
LIDAR and the localization. Indeed, such param-
eters are only accurate up to a certain point [39].
Then, if X l

i belonged to the ground, PR(X l
i) was

estimated as follows: If Xm
i falls into a mapped

road:

PR(X l
i) =

∫ di

−∞

1

σb
√

2π
exp
− 1

2 ( xσb
)2
dx (16)

Otherwise:

PR(X l
i) = 1−

∫ di

−∞

1

σb
√

2π
exp
− 1

2 ( xσb
)2
dx (17)

It has to be noted that, even though the motion was
compensated in the forward direction via Equa-
tion 14, this probability is associated to the non-
compensated LIDAR point. The reason for that
was that, even though our compensation procedure
empirically seemed sufficient to build our training
set, it was far from being very accurate, as many
parameters were not considered (among others: the
variations in the longitudinal speed of the vehicle
over the scanning process, the variations in the ro-
tation speed of the LIDAR over the scanning pro-
cess, the rotation speed of the vehicle, the noises in
speed measurements, the differences in framerates
among the odometry and LIDAR sensors). In ac-
tual autonomous driving situations, those parame-
ters would have to be accounted for, probably via
approaches inspired by Kalman filters, which rely
on manualy tuned hyper-parameters. So as not
to have a road detection system trained on data
with a specific compensation process, which would
potentially have to be tuned manually and could
thus have to be modified for every experiment, we
decicided to build our training set from uncom-
pensated LIDAR scans, and to only compensate
roughly via Equation 14 when labelling automat-
ically from the map. This way, the training set,

and the road detection systems trained on it, are
independant from any compensation method. This
allows for the use of any compensation method af-
ter road detection, without having to potentially
generate training scans for every possible compen-
sation method. Figure 5 presents two use cases and
the resulting softly labelled LIDAR scans.

5.2 Data collection and resulting dataset

Appropriate data was needed to apply this auto-
matic labelling procedure. Accurate maps and lo-
calization were needed. Open source maps, such
as OpenStreetMap, were thus not considered, as
the road dimensions, and especially their width,
are rarely available and accurate. The NuScenes
dataset [40] includes LIDAR scans and an accu-
rate map ; however, the localization of the vehicle,
though extremely accurate, is not provided with
uncertainty indicators, which prevented us from us-
ing this dataset. Moreover, we observed that the
Velodyne HDL32E LIDAR sensors, that were used
to collect the nuScenes dataset, seemed improper
for road detection. Indeed, this sensor has a verti-
cal resolution of 1.33 deg. As such, most of the road
points in nuScenes were actually acquired very close
to the data collection platform, as presented in Fig-
ure 6, limiting the use of this dataset for long-range
road detection. Data was thus collected via a LI-
DAR scanner that has a better vertical resolution,
in several areas where Renault S.A.S has access to
lane-level HD-map. The framework of those maps
is described in [41].

5.2.1 Data acquisition platform

ZoeCab platforms were used to collect data. Zoe-
Cabs are robotized electric vehicles, based on Re-
nault Zoes, that are augmented with perception
and localization sensors, and intended to be de-
ployed as autonomous shuttles in urban and peri-
urban areas. Each vehicle embedded a VLP32C
Velodyne LIDAR running at 10 Hz, and a Trim-
ble BX940 inertial positioning system, which was
coupled with an RTK Satinfo, so that centimeter-
accurate localization could be achieved when RTK
corrections were available. The PPS signal pro-
vided by the GPS receiver was used to synchro-
nize the computers and sensors together. Figure 7
presents one of the ZoeCab systems that were used
for this work.



(a) Use case 1: two opposite lanes (b) Use case 2: Roundabout

(c) Use case 1: resulting labelled LIDAR can (d) Use case 2: Automatically labelled LIDAR scan

Figure 5: Use cases and examples of automatically labelled LIDAR scans. The data acquisition platform is
depicted in white, and the map in yellow. Green points are pre-classified as ground points ; the purpler a
point is, the higher its probability of belonging to the road is; the redder a point is, the lower its probability
of belonging to the road is.

5.2.2 Coarse training dataset

In order to get diverse training samples, LIDAR
and localization data was acquired in four differ-
ent cities and locations in France, with two dif-
ferent ZoeCab systems: Compiègne, Rambouillet,
Renault Techocentre and the Paris-Saclay campus.
One of the vehicles was used to collect the data in
Compiègne and Rambouillet, and the other one was
used in Renault Technocentre and the Paris-Saclay
campus.

All those locations are urban or peri-urban areas.
The sensor setup was similar, but not identical, be-

tween those vehicles, with a a VLP32C LIDAR and
GNSS antenna on top of the vehicle and the Trim-
ble localization system in the trunk. LIDAR scans
were only automatically labelled every ten meters,
to limit the redundancy in the training set. As an
accurate localization was needed to label the LI-
DAR point-clouds from the map, the LIDAR scans
were only labelled when the variance in the easting
and northing direction, associated with the pose es-
timated by the localization system, were lower than
0.5m. The γ parameter in Equation 15 was empiri-
cally set to 10 cm. The initial ground detection was
realized thanks to a reimplementation of the algo-
rithm described in [42]. The vehicles were driven



Figure 6: Example of labelled scan from the
nuScenes dataset. The horizontal resolution of the
scan is significant, and most of the points belong-
ing to the road are, actually, very close to the data
acquisition platform.

at typical speed of 30 km/h, in order to be able
to be able to rely on our compensation procedure.
Figure 8 presents the areas in which data was col-
lected. The total number of collected and labelled
samples for each location is reported in Table 2.

5.2.3 Test dataset

Though a training and validation dataset were
obtained, they would not enable road detection al-
gorithms to be properly evaluated, as the obtained
labels are not binary, and may still include errors.
An additional test set, that would only be used
to evaluate the performances of the road detection
system, was thus also created. As no open-source
dataset uses a VLP32C LIDAR scanner, this test
dataset was specifically labelled by hand for our
work. The platform used to collect the data was
the ZoeCab system that was used to collect the Re-
nault Technocentre and Paris-Saclay datasets, and
was driven in Guyancourt, France. Yet, the LIDAR
sensor that was used to collect the test data was
different from the one that was, previously, used
to create the automatically labelled dataset. In-
deed, we observed that some differences with re-
gards to the returned intensity exist among differ-
ent VLP32C LIDARs, even if the sensors are prop-
erly calibrated. Additionnally, the sensor was put
five centimeters lower than the position that was
used, previously, to collect the training and valida-

tion sets. This test dataset was pre-labelled thanks
to the same automatic labelling procedure that was
used for the training set, and manually refined af-
terwards. We chose the Guyancourt area for our
test set because it contains road setups that are
very different from our training scans: most of the
roads in Guyancourt are two-lane one-way roads,
while the training scans were mostly acquired on
single-lane two-way roads. Moreover, this area nu-
merous roundabouts with very varrying sizes. In
the Guyancourt area, the vehicle was driven at up
to 70km/h, following local driving rules, as the mo-
tion compensation for projection into the map did
not need to be as accurate as for the training set.
Indeed the automatic labels were refined. In total,
the resulting test dataset includes 347 scans. Fig-
ure 9 presents the locations where the test dataset
was collected.

A specificity of the Guyancourt area is that there
exist reserved lanes for buses that are physically
separated from the rest of the road. Those lanes
might have unique and particular setups. Figure 10
presents for instance a bus lane that goes through a
roundabout, while the other vehicles have to drive
in the circle. In Figure 10b, it can be observed that
the bus lane was separated from the other lanes be-
fore the roundabout. In Figure 10c, it can be seen
that the part of the bus lane that goes through the
roundabout does not have the same texture as the
other parts of the road. As those bus lanes are
very particular, they were labelled as belonging to
a Do not care class. We considered that classifying
those bus lanes as roads was not relevant, but not
an error per se, as they are still technically roads.
They were not considered in the evaluations done
on the Test set. Our training, validation and test
sets are made publicly available1, alongside meta-
data that include GPS locations and CAN mea-
surements from the data acquisition platforms.

6 Evaluation of the
performances

The performances of the RoadSeg are mainly eval-
uated on our manually labelled test set. The
KITTI dataset is also used to give some prelim-
inary, though limited, results, as it is one of the
most commonly used dataset for road detection.

1https://datasets.hds.utc.fr – under the ”Automatic and
manual LIDAR road labels” project



(a) A ZoeCab platform (b) Velodyne VLP32C and GNSS antenna

Figure 7: Data collection platform and sensor setup

Technocentre Rambouillet Compiègne Paris-Saclay Campus Total

Number of samples 647 337 160 356 1500

Table 2: Number of automatically labelled LIDAR scans

6.1 Evaluation on the KITTI Road
dataset

Contrary to other approaches that are evaluated
on the KITTI road dataset, we evaluate our sys-
tem at the scan level, and do not aim at predict-
ing the presence of road in areas that are not ob-
served by the LIDAR sensor. No publication to the
KITTI road benchmark was then possible. The la-
bels of the KITTI road dataset are only given in an
image plane corresponding to a camera whose in-
trinsic calibration parameters are available, along-
side extrinsic calibration parameters with regards
to a Velodyne HDL64 LIDAR, which was synchro-
nized with the camera. The image road labels can
then be projected into the LIDAR scans, to create
ground-truth for road detection in LIDAR scans.
Each point is represented by its Cartesian coordi-
nates, its reflectance, the range measured by the
LIDAR sensor, and its validity. The scans are then
represented as 6× 64× 512 images.

The TNet of RoadSeg only predicts transfor-
mations for the Cartesian coordinates, and leaves
the ranges and intensities unchanged. The LIDAR
scans can only be labelled partially, because the
camera view only covers a section of the corre-
sponding LIDAR scan. Moreover, some LIDAR
points can easily be mislabelled. Indeed, the LI-

DAR labels in the KITTI road dataset are not accu-
rate, especially around road objects, and synchro-
nization and calibration errors between the sensors
exist in the KITTI dataset. Figure 11 displays an
example of labels obtained from the KITTI dataset.
Short range points are unlabelled, most of 360◦scan
is excluded from the labelling procedures, and the
image labels around the cyclist and the parked ve-
hicles are noticeably coarse. Public labels are only
available for the 289 scans that are present in train-
ing set of the KITTI road dataset.

Given the small number of labelled scans avail-
able in the KITTI dataset, a 5-fold cross-validation
procedure was used to estimate the performances of
RoadSeg. RoadSeg is compared with both Squeeze-
SegV2, and SqueezeSegV2 without its CRF layer.
Each model was trained for 200 epochs on 4 of the
folds. The training procedure was the same for the
three models, and followed the one originally used
by SqueezeSegV2, with a batch size of 16 for all
the models. The training was repeated until each
model was trained on every possible combination
of folds. The 5 folds were the same for each model.
After the 200 epochs, the selected parameters for
each model correspond to those that maximize the
F1-score over the 4 training folds. Only the points
that are both valid and labelled are considered in
the loss function and by those metrics. We consider



(a) Technocentre
(b) Rambouillet

(c) Compiègne

(d) Paris-Saclay campus

Figure 8: Automatically labelled dataset, in four locations. Each point indicates a position where a LIDAR
scan was automatically labelled, and the white arrows are oriented towards the north direction. The blue
points correspond to the training set, the orange points correspond to the validation set.

that a point, for which a probability of belonging
to the road is strictly higher that 0.5, is predicted
as being a road point. Finally, average F1, Re-
call, Precision and IoU scores were computed from
the results of each model on the corresponding test
folds, and reported in Table 3. We also report max-
imum and minimum scores over the 5 test folds,
alongside the average execution time of each model
on an NVidia TitanX GPU.

The amount of data that is available on the KITTI
dataset is probably inadequate for proper training,
and thus limits the the relevance of those evalu-
ations. The limitations of the projection proce-
dure also prevent us from considering that those
results are completely reliable. However, they tend
to show that RoadSeg vastly outperforms Squeeze-
SegV2 for road detection. This however comes with
an increased mean inference time. Yet, RoadSeg
still processes LIDAR scans at a high rate, with a
mean inference time of 30.8 ms. We also observe
that the CRF layer of SqueezeSegV2 seems not to

improve the performances in road detection. This
may mean that using a CRF alongside Squeeze-
SegV2 may require other hyperparameters, or ker-
nels, for road detection. This could also mean that
the CRF layer struggles with large objects, such as
the road, as it aims at locally smoothing the seg-
mentation results. More reliable results are given
in the next section, as the models are evaluated on
our manually labelled dataset, after having been
trained on the automatically labelled dataset that
was generated from our HD Maps.

6.2 Evaluation on the manually labelled
Guyancourt dataset

6.2.1 Classification performances of single
networks

To give more significant results, we report met-
rics on our manually labelled test set. All the ap-
proaches were only trained thanks to the 1500 auto-



Figure 9: Generation of the test dataset in Guyancourt. Each green point indicates a location where a
manually labelled LIDAR scan was recorded.

Precision Recall F1-score IoU Inference time

Model Avg. Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. Max. Min. Mean
SqueezeSegV2 without CRF 0.9267 0.9573 0.8882 0.9108 0.9675 0.8345 0.9177 0.9426 0.8792 0.8487 0.8914 0.7844 16.3 ms

SqueezeSegV2 with CRF 0.9277 0.9424 0.8993 0.9074 0.9635 0.8303 0.9167 0.9459 0.8730 0.8472 0.8974 0.7746 17.8 ms
RoadSeg 0.9411 0.9741 0.8253 0.9758 0.9942 0.9649 0.9572 0.9783 0.8909 0.9199 0.9575 0.8033 30.8 ms

Table 3: Comparison of the fire layers in RoadSeg and SqueezeSeg

matically labelled LIDAR scans that were recorded
in Compiègne, Renault Technocentre, Rambouillet
and the Paris-Saclay Campus, and thus have never
been trained on the area where the manually la-
belled data was recorded. The training/validation
split is exactly the one presented in Figure 8, and
all the approaches were trained with the same pro-
cedure, which is close to the one used for the KITTI
dataset, except that batch size was reduced to 10
for all the approaches. This was needed because,
while the scans from the KITTI dataset only cover
the front view, our training set is composed of
360◦scans. This also justified to modify the behav-
ior regarding the padding of the feature maps pro-
cessed by the networks. Indeed, the left and right
sides of the inputs actually correspond to neighbor-
ing areas. The left (respectively right) padding is
then obtained by mirroring the right (respectively
left) side. Tests on several variants are presented.
First of all, SqueezeSegV2, SqueezeSegV2 with-
out CRF, RoadSeg, and RoadSeg without TNet
have been trained on the whole automatically la-
belled dataset, and each point was represented by
the eight available features (Cartesian coordinates,
spherical coordinates, intensity and validity). We
also trained four additional and lighter networks.

• RoadSeg-Intensity: the points are only
represented by their intensity, elevation an-
gle, and validity.

• RoadSeg-Spherical: the points are only
represented by their spherical corrdinates,
and their validity

• RoadSeg-Cartesian: the points are only
represented by their Cartesian corrdinates,
and their validity

• RoadSeg-Cartesian without TNet: like
RoadSeg-Cartesian, but without the TNet

RoadSeg-Intensity and RoadSeg-Spherical do not
include TNets. Indeed, TNets normally predict
an affine transformation matrix for Cartesian co-
ordinates. Yet, in the case of RoadSeg-Intensity
and RoadSeg-Spherical, only spherical features are
used. A spherical transformation could be pre-
dicted by a modified TNet. Yet, since the elevation
and azimuth angles are unique for each position in
the range image, such a transformation would be
equivalent to an image deformation, which could
complexify the further convolutions used in Road-
Seg. RoadSeg-Intensity processes the elevation an-
gle, alongside the intensity, to cope with the indi-
vidual behavior of each LIDAR laser. Indeed, the
intensity might be inconsistent among each LIDAR
laser. Each model was trained ten times on the
training set, to account for the possible variability
in the results due to the random initialization of
the network. At each training session, the param-
eters that were kept were those that maximize the



(a) Exemple of situation in the test set, with
a reserved bus lane that goes through a round-
about

(b) Camera view 1 ; the orange mask represents the reserved the
bus lane

(c) Camera view 2 ; the orange mask represents the reserved the
bus lane

(d) Corresponding manually labelled LIDAR scan. Purple points are labelled as road, red points as obstacle, and
green points as do not care, since they belong to a reserved bus lane.

Figure 10: Example of reserved bus lane in Guyancourt that go through a roundabout

F1-score on the validation set. We again report,
in Table 4, average F1, Recall, Precision and IoU
scores reached by all the models on the test set. We
also report maximum and minimum scores along-
side the average execution time of each model on an
NVidia TitanX GPU. As the test set is manually
labelled, and considered as reliable, it is a proper
way to evaluate what was learnt by the networks

from the automatically labelled dataset.

Interestingly, SqueezeSegV2 without CRF seems to
have the best precision on the test set. Yet, this
is compensated by its poor performances in terms
of recall. We can assume that this is mainly due
to the additional subsampling that it uses with re-
gards to RoadSeg: SqueezeSegV2 cannot properly
process points at long-range, and considers a sig-



Precision Recall F1-score IoU Inference time

Model Avg. Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. Max. Min. Mean
SqueezeSegV2 without CRF 0.8799 0.9097 0.8597 0.7982 0.8269 0.7776 0.8363 0.8590 0.7952 0.7190 0.7312 0.6601 12,3 ms

SqueezeSegV2 with CRF 0.8606 0.8989 0.8319 0.7920 0.8059 0.7801 0.8247 0.8352 0.8052 0.7018 0.7171 0.6739 14,1 ms
RoadSeg with TNet 0.8561 0.8803 0.8199 0.8587 0.9097 0.7979 0.8561 0.8796 0.8355 0.7493 0.7851 0.6463 33,4 ms

RoadSeg without TNet 0.8268 0.8547 0.7944 0.8902 0.9316 0.8668 0.8570 0.8750 0.8426 0.7500 0.7777 0.7107 11,7 ms
RoadSeg-Intensity 0.7687 0.8014 0.7471 0.8076 0.8865 0.7653 0.7870 0.8108 0.7526 0.6491 0.6818 0.6033 11.5 ms
RoadSeg-Spherical 0.8565 0.8968 0.8253 0.8776 0.9045 0.8414 0.8665 0.8830 0.8497 0.7645 0.7409 0.7899 11.6 ms

RoadSeg-Cartesian with TNet 0.8528 0.8911 0.8160 0.8927 0.9159 0.8606 0.8718 0.8874 0.8594 0.7729 0.7976 0.7543 33,1 ms
RoadSeg-Cartesian without TNet 0.8674 0.8900 0.8317 0.8852 0.9178 0.8575 0.8758 0.8865 0.8659 0.7791 0.7961 0.7635 11,6 ms

Table 4: Comparison variants of RoadSeg and SqueezeSegV2

(a) Labels from the KITTI road dataset in the image plane

(b) Labelled LIDAR scan by projection of the image labels.
Points that do not intersect the field-of-view of the camera
are not displayed. Green points are labelled as road, red
points as not road, and grey points are unlabelled.

Figure 11: Generation of LIDAR labels from the
KITTI road dataset.

nificant amount of remote road points as obsta-
cles. We again observe that the use of the CRF de-
grades the performances for road detection. Road-
Seg, when used without the TNet and trained on
the full set of features, outperforms SqueezeSegV2,
while being slightly faster. The use of the TNet
does not seem relevant when training on the full set
of features, as it doubles the inference time while
slightly degrading the performances, except for the
precision scores. Another interesting result is that
RoadSeg-Spherical and both version of RoadSeg-
Cartesian outperform the networks that are trained
on the full set of features. The best F1-score
and IoU are even reached by a specific instance of

RoadSeg-Cartesian that relies on a TNet. However,
RoadSeg-Cartesian without TNet is faster, and eas-
ier to train since it has best F1-score and IoU in
average. This network thus seems to be the best
trade-off for road-detection. However, the perfor-
mances reached so far are still relatively low. This
can be explained by the automatic labelling pro-
cedure that we used to generate the train set, as
it is very sensitive to unmapped roads, localiza-
tion errors and improper obstacle filtering. These
results also highlight the difficulties for RoadSeg
and SqueezeSeg to process numerous features for
a given point, as the best performing approaches
only process a limited number of features. Fusing
the results from several networks, that process dif-
ferent sets of features, however lead to significant
improvements.

6.2.2 Fusion of neural networks

RoadSeg has been designed to allow for the
generation of evidential mass functions from its
outputs. A straighforward way to fuse several
RoadSeg-like networks could then be to rely on
an evidential fusion. We thus propose to use the
model described in Equation 6 to generate eviden-
tial mass functions for each LIDAR point, from a
set of neural networks. The resulting mass func-
tions can then be fused, for each point, thanks to
Dempster’s rule of combination that is described
in Equation 2. Figure 12 displays exemples of ev-
idential mass functions that can be obtained from
all the variants of RoadSeg that are expected to
be independent. Those mass functions are directly
obtained after the training, from the biases of the fi-
nal Instance-Normalization layer, and without any
optimization of the α vector.

The plausibility transformation in Equation 7 can
then be used to compute the fused probability
that each points belongs to the road, and the re-
sults can then be evaluated again on our test set.
Given to the properties of plausibility transforma-
tion [34], fusing the evidential mass functions ob-



(a) m({R}), RoadSeg-Intensity (b) m({¬R}), RoadSeg-Intensity (c) m({Ω}), RoadSeg-Intensity

(d) m({R}), RoadSeg-Spherical (e) m({¬R}), RoadSeg-Cartesian (f) m({Ω}), RoadSeg-Spherical

(g) m({R}), RoadSeg-Cartesian with
TNet

(h) m({¬R}), RoadSeg-Cartesian
with TNet

(i) m({Ω}), RoadSeg-Cartesian with
TNet

(j) m({R}), RoadSeg-Cartesian
without TNet

(k) m({Ω}), RoadSeg-Cartesian
without TNet

(l) m({Ω}), RoadSeg-Cartesian
without TNet

Figure 12: Example of evidential mass values, obtained from the weights optimized after the training, from
all the variants of RoadSeg that can be fused together. Better seen in color, and by zooming in the
electronic version of the article.



tained from the different networks via Dempster’s
rule, and then applying plausibility transformation
on the resulting mass function, is equivalent to a
Bayesian independent opinion poll fusion among
the probabilities obtained from each network. This
means that a classification which purely relies on
a Bayesian interpretation of the probabilities, ob-
tained from the networks, only depends on the sum
of the values of the α vector in Equation 3, which is
supposed to be equal for all the possible α vectors.
As we have chosen to consider that LIDAR points
are classified as belonging to the road when the
probabilities that are predicted by the network are
higher than 0.5, we are in this case. We thus report
in Table 5 recomputed F1-score, Precision, Recall
and IoU obtained after the fusion of different sets
of networks. To prevent data incest, only RoadSeg-
Intensity, RoadSeg-Spherical, RoadSeg-Cartesian
and RoadSeg-Cartesian without TNet are consid-
ered. We also do not fuse RoadSeg-Cartesian and
RoadSeg-Cartesian without TNet together, again
to prevent data incest. Since the networks are then
not trained jointly, a set of parameters has to be
chosen for each one, among the ten that are avail-
able. For a fair comparison, the parameters that
were selected for each network correspond to the
best ones in terms of F1-score on the validation
set. Indeed, they are not necessarily the best per-
forming ones on the test set. We thus only report
one Precision, Recall, F1-score and IoU for each
combination.

Fusion leads to significantly better Precision
and F1-scores and IoU scores, with Recall scores
that in par with the best ones that are obtained
from single networks. Fusion then prevents false-
positives from happening, without significantly in-
creasing the false-negative rate. Especially, the fu-
sion of RoadSeg-Intensity, RoadSeg-Spherical and
RoadSeg-Cartesian leads to the best results. The
obtained road detection is satisfactory, as the F1-
score is equal to 0.9, and the IoU is higher than 0.8.
This is significantly better than the performances
of each individual network, which seems to confirm
that, originally, RoadSeg does not have enough pa-
rameters to properly detect the road from all the
available features. This result moreover is particu-
larly satisfactory because the training and valida-
tion labels were obtained automatically.

The use of a TNet improves the results, but that
comes at the cost of an increased inference time,
as observed in Table 4. We however consider that

the use of the TNet is relevant, when using eviden-
tial fusion. Indeed, the risk of data incest among
RoadSeg-Spherical and RoadSeg-Cartesian exists,
because the Cartesian coordinates can be obtained
from the Spherical ones, and vice-versa. As Demp-
ster’s rule of combination is designed to fuse in-
dependent mass functions, this risk of data incest
should better be limitted when operating in real-
life conditions. We however point out that the fact
that, when being trained, all the networks were ini-
tialized randomly, and trained on random batches.
Although these elements seem to be enough to en-
sure a certain level of independance [43], we pre-
ferred to enforce further this independance, by fus-
ing networks with different inputs. Moreover, as
the TNet transforms the input to the fire modules
by an affine transformation, this dependence be-
tween RoadSeg-Cartesian and RoadSeg-Spherical
is less likely to happen. To support this claim,
we observe that just fusing RoadSeg-Spherical and
RoadSeg-Cartesian leads to the second best re-
sults in terms of F1-score and IoU, while the fu-
sion of RoadSeg-Spherical and RoadSeg-Cartesian
without any TNet is significantly less performant.
We also show, in Figure 13, a LIDAR scan be-
longing to the test set, and the pointcloud ob-
tained after transformation by the TNet used in
the evidential fusion. The transformation predicted
by the TNet is normally applied to a point-cloud
that was normalized by batch-normalization, but
for the sake of clarity, we apply it on the orig-
inal point-cloud. Indeed, the normalized point-
cloud is, by definition, more compact, and harder
to visualize. We can see that, in this case, the
TNet mainly applies rotations around the x and
z axes. The global alignment of the scan is thus
modified. The initial Batch-Normalization layer of
RoadSeg-Spherical could also be seen as a global
affine transformation applied to the scan. Yet, it is
extremely unlikely that both a RoadSeg-Cartesian
using a TNet and a RoadSeg-Spherical actually ap-
ply the same affine transformation to their input.
The TNet can then be considered as a way to en-
force independence among RoadSeg-Cartesian and
RoadSeg-Spherical.

6.3 Comparison of the evidential mass
functions obtained from the fused
RoadSeg networks

As a reminder, RoadSeg networks are trained as
SqueezeSegV2 was originally on the KITTI object
dataset, and thus use a weight decay of 0.0001,



Intensity Spherical Cartesian Cartesian (w/o TNet) Precision Recall F1-score IoU
0.8986 0.8588 0.8782 0.7829
0.8932 0.8991 0.8962 0.8119
0.9114 0.8740 0.8923 0.8055
0.8869 0.8830 0.8849 0.7936
0.8920 0.8501 0.8705 0.7707
0.9178 0.8694 0.8929 0.8066
0.9098 0.8904 0.9000 0.8182

Table 5: Evaluation of the results for several fusion schemes among RoadSeg networks

(a) Original test scan (b) Test scan transformed by the TNet

Figure 13: Effect of the TNet on a LIDAR scan. Purple points were manually labelled as road points, red
ones as not belonging to the road. The two pictures correspond to the same field of view and scale.

which was also needed by the results displayed in
Equation 12. We propose to compare the differ-
ent evidential mass functions that can be obtained
from the fusion of RoadSeg-Cartesian, RoadSeg-
Spherical and RoadSeg-Intensity, as this is our best
performing model, so as to verify their behavior
depending on how the α vector is obtained. Espe-
cially, we focus on the points of the test set that
are misclassified by this fusion of networks. A de-
sirable behavior would be to have uncertain mass
values generated for those falsely classified points.
We chose to rely on the decomposable entropy for
the evidential theory, defined in [44], to quantify
the uncertainty level of the mass functions obtained
from the fused RoadSeg networks. This entropy is
similar to Shannon’s entropy, especially in the sense
that an uncertain evidential mass function will lead
to a high entropy. In our case, this entropy measure

H on a mass function m is computed as:

H(m) =− (m({R}) +m({R,¬R}))log2(m({R})
+m({R,¬R}))
− (m({¬R}) +m({R,¬R}))log2(m({¬R})
+m({R,¬R}))
+m({R,¬R})log2(m({R,¬R}))

(18)

We report in Table 6 the mean entropy on the
misclassified points, from evidential mass functions
obtained by solving the minimization problem de-
scribed in Equation 8 on several sets. We compare
those values with their equivalent obtained with-
out post-processing of the weights. The consid-
ered sets for the post processing were the training
set, the training and validation sets, a collection
of 2221 unlabelled random LIDAR scans that were
acquired at the same locations as the the training
and validation sets, and a collection of 695 unla-
belled scans acquired in Guyancourt alongside the



Set(s) used for post-processing
None train validation additional train additional test Mean Entropy on misclassified points

0.3537
0.3663
0.3664
0.3676
0.3668
0.3669
0.3664
0.3668

Table 6: Comparison of the mean evidential entropies that were generated, for misclassified points, by
RoadSeg-Intensity, RoadSeg-Spherical and RoadSeg-Cartesian

test set. The latest sets correspond to a tenth of
the whole squences that were recorded to make the
training, validation and test set. To ensure variety
among the scans, the difference between the times-
tamps of those unlabelled scans is at least of one
second. Those sets are denoted respectively as ad-
ditional train and additional test.

The lowest mean entropy on the misclassified
points corresponds to the vanilla results, when
no post-processing is used on the weights of the
networks. This is thus the most over-confident
case. However, all the values of mean entropy are
extremely close among each other. Interestingly
the maximum entropy is achieved when only addi-
tional train is used for post-processing. The use
of data similar to the test set does not seem par-
ticularily useful and, counterintuitively, the use of
bigger sets did not necessarily lead to more cau-
tious evidential mass functions. As a conclusion,
evidential mass functions can be generated only us-
ing the training and validation sets, and potentially
additonal similar and unlabelled data. The use of
Instance Normalization and weight decay is con-
firmed as a way to obtain near-optimal evidential
mass functions during the training, as the differ-
ences in terms of entropy are barely visible. It could
even be considered that no post-processing should
be used, since the dataset on which it should be
computed is not clear, but this should be confirmed
by further experimental and theoretical analyses.

6.4 Examples of results

We now present some segmentation results from
the test set, that were generated from the fu-
sion of RoadSeg-Cartesian, RoadSeg-Spherical and
RoadSeg-Intensity.

6.4.1 Best F1 score

We first show the scan for which the fused net-
works reach the best results, in terms of per-scan
F1-score. On this situation, the fused networks
achieved an F1-score of 0.9569, and an IoU of
0.9173. As displayed in Figure 14, this is a very
simple situation with a straight road, and no other
vehicles, although a small part of the scan is miss-
ing. The fact that the system can handle such sim-
ple situations is reassuring. We also point out the
fact that the reserved bus lane, labelled in green,
was fully classified as road. Following the policy we
previously exposed, those points corresponding to
the bus lane were not considered in the evaluation.

6.4.2 Worst F1 score

We show, in Figure 15, the scan for which the fused
networks achieve the worst result in terms of F1-
score and IoU. The F1-score for this scan is equal
to 0.8971, and the IoU is equal to 0.8133. The er-
rors are mainly localized on the left side, probably
because the central median partially occluded this
area. The results on the ego-lane are still satisfac-
tory.

6.4.3 Crossroad

We present a result at a crossroad. Most of the
actual road surface is classified as road. However,
remote, narrow roads on top-right and bottom-left
are undetected. This is because those roads are
hard to distinguish when projected into the range
images processed by the RoadSeg networks, due
to their narrowness. The network achieves an F1-
score of 0.9271 and an IoU of 0.8641 on this scan.



(a) Labels (b) Predicted road probabilities

Figure 14: Scan For which the fused networks achieve the best F1-score. On the left side, purple points
were manually labelled as road; red ones as obstacles; green ones as do not care, as they correspond to a
reserved bus lane. On the right, the purpler a point is, the higher the probability of being a road point is
high, according to the fused networks.

(a) Labels (b) Predicted road probabilities

Figure 15: Scan for which the fused networks achieve the worst F1-score.

6.4.4 Junction

To counterbalance the results on the previous use
case, we present results obtained at a junction.
Again most of the road surface is properly detected.
However, the networks consider that the entrance
to the road on the right is narrower than what it
actually is. This is because of our label generation
procedure, which relied on a map. Indeed, many of
the junctions in those maps were mapped similarly,
which under-estimated entrance width that were
considered to be equal to the roads’ length. The

fused networks still achieve an F1-score of 0.9323
and IoU of 0.8732 on this scan.

6.4.5 Roundabout

We conclude with a roundabout. The results are
very satisfying, as most of the actual road surface
is properly detected. The remote vehicle is also
properly considered as an obstacle. The central
median in front of the vehicle if however partially
considered as belonging to the road. The fused
networks achieve an F1-score of 0.9010 and an IoU
of 0.8199 on this scan.



(a) Labels (b) Predicted road probabilities

Figure 16: Example at a crossroad

(a) Labels (b) Predicted road probabilities

Figure 17: Exemple at a junction

(a) Labels (b) Predicted road probabilities

Figure 18: Example at a roundabout



The fusion of RoadSeg-Cartesian, RoadSeg-
Spherical and RoadSeg-Intensity leads to very
promising results, especially in straight roads and
roundabouts. Junctions and crossroads can also
be processed with a certain efficiency, although the
network is limited by what was present in the train-
ing set. Indeed, very few crossroads were automat-
ically labelled, and the approximative representa-
tion of the junctions in the maps that we used influ-
ence the final results of the network. Hopefully, the
fact that these results have been achieved with a
relatively small training set, that was automatically
labelled, indicates that there is probably room for
improvement. Additional and finer training data
would certainly correct the behavior of the fused
networks.

7 Evidential road mapping
and road object detection
from the fused RoadSeg
networks

From the satisfactory results obtained by fusing
several RoadSeg networks, and evidential mass
functions that can be generated from their outputs,
an usable representation of the road for a naviga-
tion algorithm can be created, by fusing consecu-
tive road detection results. We chose to rely on
an evidential grid mapping framework. A naive
approach would be to extend the evidential grid
mapping algorithm depicted in [6], by replacing
the original geometrical model by the evidential
mass functions generated from RoadSeg. Such an
approach however cannot handle moving objects
properly, as it only relies on the fusion of consecu-
tive observations. Inspired by the work in [19], in
which it is observed that the conflict induced by the
fusion of evidential grids can correspond to mov-
ing objects, we propose an evidential road map-
ping algorithm, to generate both a grid depicting
the actual road surface, and a list of moving road
obstacles. We consider that the area below a mov-
ing road obstacle should be considered as road, and
that the road grid should only depict the reality of
the road, independently of the presence of obsta-
cles. Figure 19 depicts the whole algorithm, and
Figure 20 presents a possible output of the system.
In the next sections, we present its different steps
in details.

7.1 Projection of the segmentation on the
xy-plane

As an evidential fusion of RoadSeg-Intensity,
RoadSeg-Spherical and RoadSeg-Cartesian leads to
the best classification performances, the algorithm
processes the segmentation results obtained after
evidential fusion of the three networks. The gener-
ation of evidential mass functions can be performed
either from the original weights, that are directly
obtained after the training of the networks, or from
post-processed weights. We arbitrarily chose to
make the road grid correspond to the xy-plane, in
the reference coordinate system used by the LI-
DAR. This plane is split into equally sized grid
cells, which cover a pre-defined area around the
sensor. The state of each cell of index i can be rep-
resented by three evidential mass values mi({R})
(road), mi({¬R}) (not road) andmi({R,¬R}) (un-
known). Similarly to what is done at the LIDAR
point level, those evidential mass values respec-
tively quantify the evidence towards the fact that
the ith cell belongs to the road, does not belong to
the road, or is in an unknown state. A straight-
forward way to compute mi({R}),mi({¬R}) and
mi({R,¬R}) is to project, into the xy-plane, all
the LIDAR points, and the evidential mass values
that are obtained after the fusion of the Road-
Seg networks. As previously stated, the Road-
Seg networks process scans in which the motion
of the vehicle was not compensated. As such, this
motion has to be compensated, in the segmented
point-cloud that we obtain from the RoadSeg net-
works, before projecting the points into the grid
map. We thus reuse the same approach and as-
sumptions as for the soft-labelling procedure, which
we described in Section 5.1, except that we use an
identity Rotation/Translation matrix, because the
grid map and the LIDAR sensor share the same
coordinate system. Then, mi({R}),mi({¬R}) and
mi({R,¬R}) can be obtained by fusing the mass
values of the points projected into the grid-cell i,
thanks to Dempster’s rule of combination. To re-
duce the computational complexity of this projec-
tion and fusion step, each grid cell is processed in
parallel. For the sake of clarity, we drop the cell-
index i. The number of points projected into each
grid-cell is unknown, and varries over time and for
each cell of the grid. To solve this issue, we rely
on the rewriting of the Dempster-Shafer operator
in terms of commonality functions [45].



Figure 19: General evidential road mapping and road object detection algorithm

For Ω = {R,¬R} our binary frame of discern-
ment, a commonality value Q(A) can be computed
from a mass function m for each element A ∈ 2Ω,
as follows:

Q(A) =
∑
B⊇A

m(B) (19)

The evidential mass function m can be recovered
from the commonality values, as follows:

m(A) =
∑
B⊇A

(−1)|B|−|A|Q(B) (20)

Commonality functions can be used to fuse n ev-
idential mass functions into a fused mass function

mres as follows:

1. Compute Q1,...,Qn from the n mass func-
tions, using Equation 19

2. For each A ∈ 2Ω, Qres(A) =
exp(

∑n
j=1 ln(Qj(A)))

3. Compute m∗res from Qres, the unnormal-
ized version of mres using Equation 20

4. Normalize mres as follows: ∀A ∈ 2Ω \ {∅},
mres(A) = Km∗res(A) witk K = 1/(1 −
m(∅)) ; m(∅) = 0



Figure 20: Results obtained from the road mapping and object detection pipeline. The LIDAR scan classified
by the three RoadSeg network is visible. Below, a greyscale RoadGrid represents the belief for m({R}) in
each cell. The clustered objects (mainly vehicles on the road) are colored according to their cluster id.

This procedure is equivalent to consecutively ap-
plying the Dempster’s rule of combination among
the n evidential mass functions. However, this for-
mulation enables the projection and fusion opera-
tions to be reinterpreted as an operation on a 2D
histogram.

The log-commonalities associated to each point
can trivially be computed in parallel, after the fu-
sion of the results generated by the three Road-
Seg networks. If n corresponds to the number
of points that are projected into a grid cell, and
whose evidential mass functions have to be fused,∑n
j=1 ln(Qj(A)) can be computed by histogram-

ming the x and y coordinates of each point, and by
weighting the samples by the corresponding log-
commonalities. The evidential mass values asso-
ciated to each cell can then be recovered for each
cell. We call the resulting evidential grid, which
was only generated from a single scan, a ScanGrid.

7.2 Conflict analysis

In order to generate a dense representation of the
road, ScanGrids have to be fused over time. Let
a RoadGrid be an evidential grid that has been
obtained by accumulating several previous Scan-
Grids. A RoadGrid is supposed to only repre-
sent the road surface, without considering objects
that might stand on the road. The latest Scan-
Grid is noted ScanGrid(ti), and the latest Road-
Grid available is noted RoadGrid(ti−1). Let mti

be the evidential mass function that correspond
to a given cell of ScanGrid(ti), and mti−1

the evi-
dential mass function of the cell of RoadGrid(ti−1)
that is at the same position. A naive way to ac-

cumulate ScanGrids would be to use, again, the
Dempster-Shafer operator to fuse all the mtis with
the corresponding mti−1

. However, this could lead
to a catastrophic accumulation of objects over time,
that would affect the estimated road surface, with-
out corresponding to actual objects. This case is
depicted in the Figure 21. The current LIDAR
scan is depicted in green and red. Green points
are classified as road points, and red points as ob-
stacles (not road). Under the scan, an evidential
grid corresponding to the simple accumulation of
ScanGrids is depicted. White cells are classified as
road cells (m({R}) > 0.5), black cells as obstacle
cells (m({¬R}) > 0.5), and the grey ones are in
an unknown state (m({R,¬R}) > 0.5). We can
observe that the vehicles that are driving on the
road create artifacts, and cells that intersect their
trajectories are falsely considered as not belonging
to the road surface. Consequently, it must be en-
sured that the objects that stand on the road, and
are potentially moving, are not falsely fused with
the RoadGrid. We introduce two frame of discern-
ments: Ωobs = {O,¬O} and Ωdisplaced = {D,¬D}.
The first one models the presence of road obsta-
cles that do not belong to the road surface, as
the O proposition. The second one models the
fact that a previously present road obstacles is no
longer present, as the D proposiion. This case typ-
ically corresponds to a vehicle that was static on
the road, while the RoadGrid was being generated,
and started moving.

Ωobs can be used to detect which cells of
the ScanGrid(ti) should not be fused with
RoadGrid(ti−1). The evidential mass functions in
this frame of discernment can be computed, for
each cell, from the conflict between the mti−1

and



Figure 21: Exemple of RoadGrid obtained by accumulating ScanGrids without considering the objects that
stand on the road. White cells have an m({R}) value higher than 0.5, black cells have an m({¬R}) value
higher than 0.5, grey cells have an m({R,¬R}) value higher than 0.5.

mti mass functions. Indeed, a high value for both
mti({¬R}) and mti−1({R}) can indicate that a
moving road obstacle is currently observed in the
corresponding ScanGrid(ti) cell, and thus should
not be fused with RoadGrid(ti−1). However, it
could also indicate that the neural network has
trouble detecting a given road, meaning that the
corresponding cells should instead be fused. Let
mobs be the evidential mass function associated to
a cell of ScanGrid(ti) under the Ωobs frame of dis-
cernment. We propose to compute mobs as follows:

mobs({O}) = α(Z)mti−1({R})mti({¬R}) (21a)

mobs({¬O}) = 0 (21b)

mobs({O,¬O}) = 1−mobs({O}) (21c)

This formulation supposes that only mti−1({R})
and mti({¬R}) can indicate the presence of a road
obstacle. The α function computes a discounting
factor, which depends on the mean z coordinates of
the points that have been projected, while creating
the ScanGrid(ti), into the considered grid cell. This
mean elevation is noted Z. As the LIDAR used by
the ZoeCab systems is put on the roof of the ve-
hicles, Z is typically negative when only ground
points have been projected into a grid cell. We
define α as follows:

α(z) = min(exp(ν(z + ξ)), 1) (22)

This function only generates discounting factors in
the ]0,1] range. The ξ parameter indicates the ab-
solute value of the height from which the conflict
does not have to be discounted. The ν factor mon-

itors the growth of α(z).

Similarly, we can define mdisplaced as the ev-
idential mass function associated to a cell of
ScanGrid(ti) under the Ωdisplaced frame of discern-
ment. We propose to compute mdisplaced as follows:

mdisplaced({D}) = (1− α(Z))mti({R})mti−1({¬R})
(23a)

mdisplaced({¬D}) = 0 (23b)

mdisplaced({D,¬D}) = 1−mdisplaced({D}) (23c)

7.3 Moved objects removal

From mdisplaced, grids that should not be consid-
ered anymore as occupied in RoadGrid(ti−1) can
easily be detected. The grids in RoadGrid(ti−1)
for which mdisplaced(D) is higher than 0.5 are reini-
tialized to a fully unknown state: mti−1

({R}) = 0,
mti−1

({¬R}) = 0, mti−1
({R,¬R}) = 1.

7.4 Clustering and road object detection

Similarly, the mobs mass can be used to de-
tect grid cells that belong, in a ScanGrid, to
a road obstacle, and should not be fused with
RoadGrid(ti−1). A binary ObsMap(ti) map is cre-
ated from ScanGrid(ti) and the mobs values. This
binary map represents, for each cell, the presence
of a road obstacle. A binary cell is set to 1 if the
corresponding cell in ScanGrid(ti) has an mobs(O)
value higher than 0.5. Otherwise, it is set to 0.



(a) m({R}) in RoadGrid(ti−1) (b) m({¬R}) in ScanGrid(ti)

(c) Maximum filtered ObsGrid(ti) (d) ClusterMap(ti)

Figure 22: Grids used for clustering and road object detection. The evidential mass values were generated
from the weights obtained after the training, without any post-processing.

ObsMap(ti) can be used to generate a list of de-
tected road obstacles. First of all, a 5×5 maximum
filter is applied to ObsMap(ti), to inflate the de-
tected objects. This pessimistic behavior is justi-
fied by the need of taking into account the fact that
the LIDAR points at the edges of those objects,
when having been projected into the grid cells,
might have been projected into cells where road
points were also present. The α function might
then be affected, an return an under-confident dis-
counting factor. This maximum filtering is also
used to connect grid cells that belong to the same
physical obstacle, which might not be the case be-
cause of the sparsity of the LIDAR scans. Finally,
ObsGrid(ti) is converted into a grid of cluster ids,
noted ClusterMap(ti), by connected component la-
belling, with an 8-connectivity. In each cell of
ClusterMap(ti) is indicated the id of the cluster to
which the cell belongs, or 0 if the cell does not cor-
respond to a clustered object. This ClusterMap(ti)
can be seen as a list of localized road obstacles. Af-
terwards, the cells of ScanGrid(ti) for which a clus-
ter id has been returned are also reinitialized to a
fully unknown state: mti({R}) = 0, mti({¬R}) =

0, mti({R,¬R}) = 1. Each grid used in this step
is presented in Figure 22.

7.5 Road accumulation and ego-motion
compensation

As potential road objects and displaced ob-
jects have been removed, ScanGrid(ti) and
RoadGrid(ti−1) can trivially be fused, by simply
using the Dempster-Shafer operator on mti and
mti−1 for each grid cell. The resulting RoadGrid(ti)
is then available for a navigation system, and can
be fused with new incoming LIDAR scans. How-
ever, when a new ScanGrid will be generated, the
displacement of the vehicle over time will have to
be considered, before fusing it with a RoadGrid.
An odometry model is thus needed to reproject the
RoadGrid. A CAN odometry model can be used
to track the movement of the acquisition platform,
and reproject the RoadGrid when a new ScanGrid
will be available. Cells of the RoadGrid that are not
projected into the area covered by the new Scan-
Grid are dropped. New cells that cover previously
unobserved areas are initialized to a fully unknown



state, with a mas value of 1 for {R,¬R}.

7.6 Implementation and example of
output

The algorithm was implemented as a Python
ROS node. The inference and evidential fusion
of the neural networks is done via the PyTorch
framework, and the operations on the grid are per-
formed thanks to the Numpy, OpenCV and Scipy
libraries. The TitanX GPU that was used for the
training in reused for the inference of the neural
networks, but all the grid operations are done on
an Intel i7-6700K octacore CPU. An 80m × 50m
grid is computed around the vehicle, with a cell
size of 0.2m. Only points that have a Z coordinate
in the [-2.5,0] range are considered. The odometry
is evaluated from an Extended Kalman filter rely-
ing on a classical Constant Turn Rate and Velocity
(CTRV) model. The CAN network provides the
system with speed an heading direction measure-
ments at 10 Hz, and a yaw rate measurement at
100Hz. The CTRV model normally also fuses posi-
tion measurements obtained from a GNSS sensor,
but we chose to rely on a pure CAN odometry, so
as to be agnostic to the localization system that is
in use. The ν and ξ values in the α function are
empirically set to 4 and 1,5. Similarly to what was
done for the training, validation and test sets, the
LIDAR scans are obtained from a VLP32C run-
ning at 10Hz. We report in Figure 24 the temporal
behavior of the algorithm over a 12-minute record-
ing session in Guyancourt. The measured runtimes
cover the unpacking of the LIDAR scans, the in-
ference of the neural networks, their fusion, and all
the steps of the grid-level mapping and detection
algorithm. Our current implementation manages
to match, on this recording session, the publication
rate of the LIDAR, as the run time is always below
100ms. Yet, the processing time is sometimes very
close to 100ms, due to significant jitter. We thus
cannot guarantee that the LIDAR scans will always
be processed at 10Hz with the current implementa-
tion. However, the fact that most of the current im-
plementation relies on standard functions, without
extensive use of the GPU, indicates that the per-
formances will be improved by using a dedicated,
pure GPU implementation of the functions used in
this road mapping and object detection algorithm.
We report an additional example of the outputs
that are available from the algorithm, in Figure 23.
This example highlights one limitation with using
conflict analysis for object detection: false posi-

tives tend to happen at road edges. This can be
explained by the fact that road edges are ambigu-
ous by nature, especially because the system was
trained on coarse labels. Errors while estimating
the odometry from CAN readings, due to sensor
noise, can also lead to false positives. A video de-
picting the whole sequence is available online.2

7.7 Evaluation of the quality of the grids

By using the HD Maps from which the training
and validation sets were labelled, a ground truth
to evaluate the quality of the road grids can be ob-
tained. An empty grid around the vehicle, which
follows the same dimensions as the grids obtained
from our algorithm (80m × 50m, with a cell size
of 0.2m) is first created. The center of each cell is
then projected into the corresponding map of the
environment. Then, if the center of a cell is pro-
jected into a mapped road, the cell is considered
as fully belonging to the road ; if not, it is sup-
posed not to belong to the road. We assume a
perfect localization system ; otherwise, the result-
ing grids would be ambiguous, and could not be
considered as a ground truth anymore. Figure 26
shows an example of such a ground-truth grid. The
grid mapping algorithm can then be evaluated over
a driving sequence, provided that the localization
remains accurate enough, and that all the roads are
properly and unambiguously mapped. The Guyan-
court area, where the test set was recorded, was
thus not suitable, because of the reserved bus lanes
that are present over the area. We chose to eval-
uate the road mapping algorithm over a driving
sequence recorded in the Rambouillet area. In or-
der to make this evaluation fair, the recording was
done on roads that are perfectly mapped, and were
not part of the training dataset. We selected a
peri-urban section where the roads were bordered
by fields and small buildings, so as ensure an ac-
curate GNSS positioning, and reliable RTK correc-
tions, over the whole sequence. The driving area is
depicted in Figure 25. The LIDAR grids are gen-
erated from the same LIDAR and vehicle than the
test set. The vehicle was driving on open roads,
and traffic was thus present during the recording.

To evaluate the quality of our evidential road
grids, we propose to rely on three metrics, that
are traditionnally used to compare occupancy grids

2https://datasets.hds.utc.fr/tmp/

automatic-and-manual-lidar-road-labels/

road-mapping-demo/

https://datasets.hds.utc.fr/tmp/automatic-and-manual-lidar-road-labels/road-mapping-demo/
https://datasets.hds.utc.fr/tmp/automatic-and-manual-lidar-road-labels/road-mapping-demo/
https://datasets.hds.utc.fr/tmp/automatic-and-manual-lidar-road-labels/road-mapping-demo/


(a) m({R}) for each point (b) m({¬R}) for each point (c) m({R,¬R}) for each point

(d) m({R}) in RoadGrid(ti) (e) m({¬R}) in RoadGrid(ti) (f) m({R,¬R}) in RoadGrid(ti)

(g) ClusterMap(ti) and (d)

Figure 23: Outputs from the road mapping and object detection algorithm. The evidential mass values were
generated from the weights obtained after the training, without any post-processing.



Figure 24: Runtime of the road mapping and object detection algorithm relying on the fused RoadSeg
networks

Figure 25: Area of evaluation of the road mapping algorithm. The red line indicates the path of the vehicle
over the driving sequence used for evaluation. The arrow indicates the north direction.

with simulated ground truth, as in [46]: the cross
correlation coefficient [47], the Map-Score [48], and
the Overall Error [49]. At each update of the road
grid, and at each new LIDAR scan, those met-
rics can be computed with regards to the ground
truth grid obtained from the HD map. Those three
metrics are complementary, since the cross correla-
tion coefficient globally compares the statistics of
the ground truth and estimated grids, the Overall
Error estimates the error on the evidential mass
values at the cell level, and the Map-Score com-
pares how well probabilities estimated at the cell
level match the ground truth. We however adapt
those metrics to our system, as they were origi-
nally used to assess the performances of fully au-
tonomous robotics systems, that relied on path
planning and exploration algorithms. That is the
reason why we only compute the Map-Score, the

Overall Error, and the cross correlation coefficient
from grid cells in which at least one LIDAR point
has been projected. The Map-Score and Overall
Error are also normalized with regards to the num-
ber of grid cells that were used to compute them.
Let i be the frame index, Nc the number of cells in
the ground truth and estimated road grids, 1R(j)
a binary indicator which indicates that the jth grid
cell of the ground truth grid belongs to the road,
1L(j) a binary indicator which indicates that at
least one LIDAR point was projected into the jth

cell of our road grid, mj(R) the estimated mass
value on R evaluated on the jth cell from our algo-
rithm, and Pl Pmj(R) the probability that the jth

grid cell belongs to the road, computed from the
corresponding evidential mass values and the plau-
sibility transformation. We compute a Map-Score



Figure 26: Generation of ground-truth grid from
HD Maps. The yellow lines represent the map
skeleton ; black cells are considered as belonging
to the road, and grey ones as not belonging to the
road

as follows:

MapScorei =

Nc∑
j=1

1L(j) ∗ [1 + log2(Pl Pmj(R) ∗ 1R(j))]

1L(j)

+

Nc∑
j=1

1L(j) ∗ [(1− Pl Pmj(R)) ∗ (1− 1R(j))]

1L(j)

(24)

We compute an Overall Error on mj(R) as follows:

Overall Errori =

∑Nc
j=1 1L(j) ∗ |mj(R)− 1R(j)|∑Nc

j=1 1L(j)

(25)
Finally, the cross-correlation coefficient is esti-
mated as follows:

Cross Correlationi =
Pl Pmj(R) ∗ 1R(j) ∗ Pl Pmj(R) ∗ 1R(j)

σ(Pl Pmj(R)) ∗ σ(1R(j))
(26)

where the mean values and standard deviations are
only computed from cells in which at least one LI-
DAR point has been projected.

Those metrics do not directly indicate whether a
road grid can be used by a robotic system. They
only indicate how well estimated grids match with

ground truth grids. However, they can be used to
compare several grid mapping algorithms, as ap-
proaches that match ground truth grids have high
cross correlation coefficients and Map Scores, and
low Overall Error rates. We thus propose to com-
pare the evidential road grids obtained from Road-
Seg networks using weights that were not post-
processed, and grids obtained from RoadSeg net-
works using post-processed weights. We especially
compare the results without post-processing of the
weights with the results from weights that were
post-processed on the training set, as originally
proposed in [17]. Doing so, we evaluate the in-
terest of this post-processing, with regards to the
use of RoadSeg weights directly obtained after the
training.

Figure 27 depicts the evolution of these met-
rics over the drving sequence used for evaluation.
For the three metrics, both curbs obtained from
the post-processed and original weights follow the
same evolution. None of the two approaches con-
sistently outperform the other over the whole se-
quence. The local minima of the curbs depicting
the performances of the weights that were not post-
processed, in terms of Map-Score and Cross corre-
lation, are significantly lower than their counter-
part in the curbs depicting the performances of the
post-processed weights. The local maxima how-
ever are not necessarily lower for the post-processed
weights, which indicates that the post-processed
weights have led to more cautious results in in-
stances where the road grids were wrong. For
the Overall Error rates, the local maxima reached
by the original weights are, often, significantly
larger than their counterparts corresponding to the
post-processed weights. The fact that the post-
processed weights are more cautious, especially
where classification errors have happened, is thus
clearly visible. However, the original weights still
perform relatively well, when compared to their
post-processed counterparts. Indeed, in 37.5% of
the frames, the original weights lead to road maps
that have strictly higher Map-Scores than the post-
processed weights. In 40.7% of the frames, the
original weights lead to lower Overall Error rates
than the post-processed weights. Finally, in 53.3%
of the frames, the grids obtained from the original
weights even have strictly higher cross correlation
coefficients than the grids obtained from the post-
processed weights.



Figure 27: Map-Score, Overall Error and Cross correlation of our road grids, over a driving session.



The fact that the post-processed weights seem to
lead to more cautious grids when analyzed at the
cell-level, via Map-Scores and Overall Error rates,
while the impact on a global cross correlation coef-
ficient is not as clearly visible, indicates that over-
all, grids obtained from the post-processed weights
and the original weights are very similar. The dif-
ferences seem to mainly come from individual cells
that might happen to be misclassified, and more
uncertain when using post-processed weights, with-
out significantly impacting the overall grid. This is
compatible with our previous observations on mis-
classified points, for which the entropy was indeed
higher when using post-processed weights, but still
close to its counterpart calculated from the original
weights.

8 Conclusion

We presented a system that relies on the eviden-
tial fusion of three neural networks to detect the
road in LIDAR scans. From a training set that was
automatically labelled thanks to an HD Map, we
achieve performant results on a manually labelled
test set. The evidential framework thus seems to
be a performant way to fuse neural networks, pro-
vided that their respective inputs are independent.
We also presented an algorithm that uses this road
detection system to map the road surface over time,
and cluster road objects. A simple CPU/GPU im-
plementation of this algorithm is able to process
LIDAR scans at approximately 10 Hz, which fits
the usual publication rate of state-of-the-art LI-
DAR sensors. Additional training data is likely to
lead to even better results, which is easy to ob-
tain from our automatic label generation proce-
dure, provided that accurate maps are available.
A refinement of the training procedure, to cope
with the label noise in the automatic labels, is also
a possible research direction. Moreover, a more
accurate compensation mechanism, to handle the
movement of the vehicle during the scanning pro-
cess, would be beneficial. However, such a mech-
anism would have to be able to cope with sensor
noise and timing errors, and to produce uncertainty
estimates in the individual coordinates of each LI-
DAR, point while constructing a coherent scan dur-
ing the sweeping process. This uncertainty infor-
mation could even be directly used in a grid map-
ping algorithm, to further improve the representa-
tion of the environment. To the best of our knowl-
edge, such an approach has not been proposed yet.
Another interesting research direction, to improve

our road mapping algorithm, would be to force the
networks to generate even more cautious evidential
mass values for misclassified points, as the current
post-processing procedure proposed in [17] does not
lead to road grids that are significantly better than
grids obtained from the directly obtained after the
training. Multi-class classification would also be
valuable, especially for road object detection, but
this would come at the cost of, either, semantically
enhanced maps, or intensive manual labellisation.
This would however be very useful to detect more
objects, as conflicts analysis only allows us to detect
objects on the road, but not on the sidewalks for in-
stance. Huge LIDAR datasets for semantic segmen-
tation are emerging [33], but the burden of manual
labellisation is still a reality. Furthermore, LIDAR
scans produced from different sensors can be very
different, in terms of granularity and resolution.
This makes the use of external data way more com-
plex than for image segmentation. Finally, even if
we manage to detect the road from a neural net-
work, without relying on a explicit model, we still
rely on hyper-parameters for conflict analysis and
object detection. We thus produce false positives
at the road edges. A neural network, trained to
detect objects, could potentially replace this con-
flict analysis step. Nevertheless, a mechanism to
ensure the absence of false negatives would then
have to be implemented. We instead believe that
knowledge-based approaches could properly handle
false positives. For instance, it has been proposed
to ensure the consistence of the perception informa-
tion via rule-based systems, so as to build a coher-
ent World Model from pre-existing knowledge [50].
Adequate rules could potentially be used to cope
with the false positives, depending on their dimen-
sions and location for instance. For example, flat
objects that are localized at road borders could be
easily considered as false positives.

Acknowledgments

This work is supported by a CIFRE fellow-
ship from Renault S.A.S, and realized within the
SIVALab joint laboratory between Renault S.A.S,
and Heudiasyc (UMR 7253 UTC/CNRS). We also
benefited from fundings from the Equipex ROBO-
TEX (ANR-10- EQPX-44-01). We thank Nicolas
Caddart who, in the context of an internship at Re-
nault S.A.S, to complete his engineering cursus at
the ENSTA school of engineering, participated in
the labelling of the test dataset, and in the software
developments.



References

[1] S. Lacroix, A. Mallet, D. Bonnafous,
G. Bauzil, S. Fleury, M. Herrb, and R. Chatila,
“Autonomous rover navigation on unknown
terrains: Functions and integration,” The
International Journal of Robotics Research,
vol. 21, no. 10-11, pp. 917–942, 2002.

[2] F. W. Rauskolb, K. Berger, C. Lipski, M. Mag-
nor, K. Cornelsen, J. Effertz, T. Form,
F. Graefe, S. Ohl, W. Schumacher, et al.,
“Caroline: An autonomously driving vehi-
cle for urban environments,” Journal of Field
Robotics, vol. 25, no. 9, pp. 674–724, 2008.

[3] G. Tanzmeister and D. Wollherr, “Eviden-
tial grid-based tracking and mapping,” IEEE
Transactions on Intelligent Transportation
Systems, vol. 18, pp. 1454–1467, June 2017.

[4] D. Nuss, S. Reuter, M. Thom, T. Yuan,
G. Krehl, M. Maile, A. Gern, and K. Di-
etmayer, “A random finite set approach for
dynamic occupancy grid maps with real-time
application,” The International Journal of
Robotics Research, vol. 37, no. 8, pp. 841–866,
2018.

[5] J. Mullane, M. D. Adams, and W. S. Wije-
soma, “Evidential versus bayesian estimation
for radar map building,” in 2006 9th Inter-
national Conference on Control, Automation,
Robotics and Vision, pp. 1–8, IEEE, 2006.

[6] C. Yu, V. Cherfaoui, and P. Bonnifait, “An ev-
idential sensor model for velodyne scan grids,”
in 13th International Conference on Control
Automation Robotics & Vision (ICARCV),
pp. 583–588, IEEE, 2014.

[7] E. Capellier, F. Davoine, V. Frémont,
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