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Abstract: Bivariate risk apportionment refers to the preference for spread-
ing risks associated with the multiple attributes of an outcome across different
states of the world rather than combining them in the same state. In this paper,
we propose an intensity measure of this preference by extending to the bivariate
case the concept of marginal rate of substitution between risks of different or-
ders introduced by Liu and Meyer (2013). We show that the intensity measure
of the preference for bivariate risk apportionment is characterized by bivariate
risk attitudes in the Ross sense. The usefulness of our measure in understanding
economic choices is illustrated by the analysis of two specific decisions: savings
under environmental risk and medical treatment in the presence of diagnostic
risks.
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Introduction

Decision making usually occurs in the presence of risks affecting several as-
pects of individuals’ well-being. Indeed, risk management strategies (such as
precautionary savings, the purchase of insurance contracts, preventive actions,
or portfolio choices) are often adopted while agents are exposed to risks asso-
ciated with attributes of the utility function other than wealth (health state,
environment, relatives’ wealth or health state,...). Papers analyzing precau-
tionary saving in bivariate (Courbage and Rey (2007)) or multivariate (Denuit,
Eeckhoudt, and Menegatti (2011); Jouini, Napp, and Nocetti (2013); Courbage
(2014)) settings, dealing with the effects of health risks on portfolio choices
(Edwards, (2008); Crainich, Eeckhoudt, and Le Courtois (2017)), or examining
investments improving future random health or environmental quality (Denuit,
Eeckhoudt, and Menegatti (2011); Jouini, Napp, and Nocetti (2013)) offer illus-
trations of these types of decisions. Note that non-financial decisions have also
been treated in the economic literature: the effect of random life expectancy on
the intensity of a medical treatment in the presence of therapeutic risk has for
instance been addressed in Bleichrodt, Crainich and Eeckhoudt (2011).

The above-mentioned papers can be classified into two categories: those an-
alyzing the direction of changes and those addressing the intensity of changes
in the decision variable once risks are either introduced or modified. Among the
second category, Jouini, Napp, and Nocetti (2013) and Crainich, Eeckhoudt,
and Le Courtois (2017) highlight that the trade-offs dictating agents’ decisions
depend on various measures of the intensity of multivariate risk attitude. In
both papers, the latter are expressed as ratios wherein numerators are cross
partial derivatives (of different orders) of the utility function while the denom-
inator is the marginal utility of wealth. These intensity measures share the
same denominator because the cost of the economic decision is purely financial
in both contributions: forsaken current consumption that improves the future
value of several attributes (Jouini, Napp, and Nocetti (2013)) and reduced ex-
pected returns when agents hold less risky assets in their financial portfolios
(Crainich, Eeckhoudt, and Le Courtois (2017)). In other analysis, the denomi-
nators of the intensity measures of multivariate risk attitudes are second-order
cross partial derivatives (see for instance Jouini, Napp, and Nocetti (2013) or
Courbage (2014) who evaluate the effects of multivariate risk on the strength of
precautionary saving).

In this paper, we show that the existing measures of the intensity of mul-
tivariate risk preferences are specific cases of a general approach as they all
correspond to marginal rates of substitution between various orders changes in
risk or in correlation. Our analysis is based on three important contributions in
risk theory: 1) the interpretation of the signs of successive cross partial deriva-
tives of the utility function exposed in Eeckhoudt, Rey, and Schlesinger (2007);
2) the concept of nth order increases in risk à la Ekern (1980); 3) the rate of sub-
stitution between two stochastic changes introduced in Liu and Meyer (2013).
Based on these concepts, we propose an intuitive interpretation of these inten-
sity measures which - as highlighted in the paper - prove useful when analyzing
risky decisions in the bivariate setting.

To provide these interpretations, we first make use of the bivariate prefer-
ence ordering introduced by Eeckhoudt, Rey, and Schlesinger (2007). The latter
concept generalizes that of correlation aversion (Richard (1975)), which refers to
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the preference for spreading wealth and health1 losses across states of the world
instead of associating them in the same state. Richard (1975) indicates that
correlation aversion corresponds to u(1,1) < 0 in the expected utility model2.
The generalization of this preference - called bivariated risk apportionment - is
obtained when the dissociation principle is extended from losses to higher or-
der zero-mean risks applied to both attributes3. In the expected utility model,
Eeckhoudt, Rey, and Schlesinger (2007) make the connection between this pref-
erence ordering and the signs of successive cross partial derivatives of the utility
function, that is, the signs of u(2,1), u(1,2), u(2,2), · · · , u(n1,n2). Doing so, they
establish the concept of (n1, n2)

th degree correlation aversion.
We then apply the concept of an nth degree increase in risk (Ekern (1980))

to bivariate cases in order to obtain changes in bivariate distributions corre-
sponding to the preference ordering defined in Eeckhoudt, Rey, and Schlesinger
(2007). More precisely, while Ekern (1980) defines an nth degree increase in
risk by keeping the n− 1 first moments of the distribution constant, Denuit et
al. (2013) define an (n1, n2)

th degree increase in bivariate risk as the movement
from one distribution to another such that the (n1, n2)

th comoments of these
two distributions differ and such that three constraints are satisfied. Namely,
the bivariate distributions must have: 1) the same first n1 moments for the
marginal distribution of the first variable; 2) the same first n2 moments for the
marginal distribution of the second variable; 3) the same first (n1 + n2 − 1) co-
moments. It can then be shown that every (n1, n2)

th degree correlation averse
agent dislikes (n1, n2)

th degree increases in bivariate risks (or, using a different
terminology, (n1, n2)

th degree increases in correlation).
Equipped with this definition, we extend Liu and Meyer (2013) and propose a

general measure of the intensity of preferences for bivariate risk apportionment.
Liu and Meyer (2013) show that the existing measures (−u′′

u′
, −u′′′

u′′
, u′′′

u′
,...) of the

intensity of preferences towards risk in the univariate setting correspond to a rate
of substitution between two increases in risk of different degrees. Specifically,
suppose that G(x) has more nth degree risk than F (x), that H(x) has more
mth degree risk than F (x) and that the agent is indifferent between G(x) and
(1− T )F (x) + TH(x). Liu and Meyer (2013) indicate that T is proportional to
the ratio um

un that corresponds therefore to a measure of the aversion towards
increases in nth degree risk. As noted by these authors, T is indeed “the weight
that the decision maker is willing to put on H(x) when forming a mixture of
F (x) and H(x) to avoid having an nth degree risk increase from F (x) to G(x)
instead ”. The same principle, applied to (n1, n2)

th degree increases in bivariate
risks, is used in our paper in order to provide a model-free interpretation of the
measures of the intensity of bivariate risk preferences. In the expected utility
model, the latter are expressed as ratios of cross partial derivatives of the utility
function. As a result, they do not depend on utility scales and allow us to
compare individuals’ intensity of preferences for bivariate risk apportionment.

Specifically, the concept of " (n1,n2)
(m1,m2)

th

Ross more risk aversion" will be shown to

1Or any other attributes of the utility function.
2The following notation is adopted throughout the paper: u

(n1,n2) refers to the n
th
1 and n

th
2

partial derivatives of the utility function with respect to its 1st and 2
ndarguments, respectively.

3In their paper, Eeckhoudt, Rey, and Schlesinger (2007) only consider the transition from
an extreme correlation to the other. Gollier (2019) generalizes the principle by evaluating -
via the concept of statistical concordance - the effect on utility of increases in higher-order
correlation.
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allow the interpersonal comparison of the marginal rates of substitution between
changes in bivariate risks.

The instrument we introduce generalize the existing measures of the inten-
sity of bivariate preferences proposed by Jouini, Napp, and Nocetti (2013) and
by Crainich, Eeckhoudt, and Le Courtois (2017). Their analyses exploit both
the concept of an (n1, n2)

th degree correlation aversion (Eeckhoudt, Rey, and
Schlesinger, (2007)) and the technique used by Crainich and Eeckhoudt (2008)
who measure the intensity of downside risk aversion in a univariate setting.
Namely, the intensity of preference towards a distribution F (x) compared to a
distribution G(x) is equivalent to the maximum amount of money one is willing
to sacrifice in order to be exposed to F (x) rather than to G(x). As a result,
these measures of the intensity of preferences in bivariate or multivariate settings
are all based on the marginal utility of wealth. We extend this interpretation
by stating that the compensation might take other forms, such as changes in
marginal distributions corresponding to decreases in mth degree risk or changes
in the distributions corresponding to decreases in (n1, n2)

th degree correlation.
Our paper is organized as follows. We define in Section 1 the concept of

(n1, n2)
th degree changes in risk and associate preferences for theses changes to

signs of various cross-derivatives of the utility function. We establish in Section
2 the measures of the intensity of preferences for (n1, n2)

th degree changes in
risk. We show in Section 3 how these intensity measures characterize economic
choices. More precisely, we analyze savings decisions when agents are exposed to
environmental risks and treatment intensity in the presence of diagnostic risks.

1 Comparison of Bivariate Risks

We consider a two dimensional random variable whose cumulative distribution
function is denoted by F . We construct by successive integrations the function
F [k,h](., .). Indeed, we have: F [k,h](x, y) =

∫ x

a
F [k−1,h](s, y)ds and F [k,h](x, y) =

∫ y

a
F [k,h−1](x, t)dt, where the initial point is F [1,1](x, y) = F (x, y).
Following Denuit et al. (2013), we define the concept of more high-order bi-

variate degree risks, ("(n1, n2)
th degree increases in risk"), which is an extension

to the bivariate case of Ekern’s definition of an "nth degree increase in risk".

Definition 1.1 (More (n1, n2)
th degree risk). A distribution G has more (n1, n2)

th

degree risk than a distribution F if and only if, for all (k, h) ≤ (n1, n2),

G[k,h](s, b) = F [k,h](s, b) ∀s ∈ [a, b], (1)

and
G[k,h](b, t) = F [k,h](b, t) ∀t ∈ [a, b], (2)

and also
G(n1,n2)(s, t) ≥ F (n1,n2)(s, t) ∀(s, t) ∈ [a, b]2. (3)

Equipped with this definition, we extend Ekern (1980)’s result to the case
of bivariate random vectors:

Proposition 1.2. Let X = (X1, X2) and Y = (Y1, Y2) be bivariate random
vectors that are respectively F -distributed and G-distributed. When G has more
(n1, n2)

th degree risk than F , then

E(Xk
1 Xh

2 ) = E(Y k
1 Y h

2 ) ∀(k, h) < (n1, n2), (4)
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and
(−1)n1+n2 E(Xn1

1 Xn2
2 ) ≤ (−1)n1+n2 E(Y n1

1 Y n1
2 ). (5)

Proof. For brevity, we omit the proof, which relies on multiple integrations by
parts.

This proposition states that contrasting X and Y at order (n1, n2) can be
made by comparing the non-centered comoment of order (n1, n2) when all of
their lower-order non-centered moments and comoments are identical. These
last constraints are expressed in Eq. (4). Note that there is no equivalence
between (1), (2) and (3) on the one hand and (4) and (5) on the other: if
any (n1, n2)

th degree increase in risk implies that the bivariate distributions
considered differ in their last comoment (their lower order comoments being
equal), the opposite is not true. Therefore, the approach based on the concept
of an (n1, n2)

th degree increase in risk is more general than an approach based
on the comoments.

We now come to the characterization of agents faced with bivariate choices.

Definition 1.3 ((n1, n2)
th degree risk aversion). An agent is (n1, n2)

th degree
risk averse if and only if

(−1)n1+n2−1 u(n1,n2)(s, t) > 0 ∀(s, t) ∈ [a, b]2.

Then, we can relate the comparisons of (n1, n2)
th degree risks to the prefer-

ences of agents as follows:

Proposition 1.4. G has more (n1, n2)
th degree risk than F if and only if every

(n1, n2)
th degree risk averter prefers F to G.

Proof. Let X and Y be bivariate random vectors that are F-distributed and
G-distributed, respectively. The proof relies on the computation of

E(u(X))− E(u(Y)) =

∫ b

a

∫ b

a

u(s, t) dF (s, t)−

∫ b

a

∫ b

a

u(s, t) dG(s, t)

via multiple integrations by parts, and on the study of its sign.

Proposition 1.4 describes the preferences that (n1, n2)
th degree risk averse

agents have towards bivariate distributions. But it says nothing about the
intensity of these preferences or about the choices that two different (n1, n2)

th

degree risk averse agents might make. We address this question in the next
section.

2 Substitution of Bivariate Risks

The transition from the concept of "direction" to that of "intensity" of prefer-
ences for bivariate risk apportionment is established by comparing two changes
in distributions. We do so by extending to the bivariate case the intensity mea-
sure introduced in the univariate context by Liu and Meyer (2013). Assume
that G(x, y) has more (n1, n2)

th degree risk than F (x, y) and that H(x, y) has
more (m1,m2)

th degree risk than F (x, y). What is the value of T such that an
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agent is indifferent between G(x, y) and (1−T )F (x, y)+TH(x, y)? The higher
T , the more the agent is sensitive to (n1, n2)

th degree increases in risk relative
to (m1,m2)

th degree increases in risk. As a result, T provides a measure of the
intensity of the preference for (n1, n2)

th risk apportionment. Note that the mea-
sure is "model-free" in the sense that it is not associated to a specific decision
criterion. However, if agents behave according to the expected utility model, it
is straightforward to show that for the agent u, the value of T - denoted Tu - is
given by:

Definition 2.1.

Tu =

b
∫

a

b
∫

a

u(s, t)(dF (s, t)− dG(s, t))

b
∫

a

b
∫

a

u(s, t)(dF (s, t)− dH(s, t))

.

As in Liu and Meyer (2013), the proposed measure of intensity of bivariate
risk preference is a ratio of two expected utility changes. While the Arrow-Pratt
measure of risk aversion is sufficient to deal with the introduction of risks (i.e.
the comparison between non-risky and risky situations), Ross (1981) has shown
that a stronger measure of the increase in risk aversion might be required once
increases in risks were addressed (i.e. the comparison two risky situations). In
the paper, we show that the generalization of the Ross measure of "stronger risk
aversion" is helpful when higher-order increases in bivariate risk are considered4.
The Arrow-Pratt and Ross increases in higher-order bivariate risk aversion are
respectively defined as follows:

Definition 2.2. u is ((n1, n2)/(m1,m2))
th degree more risk averse than v if,

for all (s, t) ∈ [a, b]2,

(−1)n1+n2−1 u(n1,n2)(s, t)

(−1)m1+m2−1 u(m1,m2)(s, t)
≥

(−1)n1+n2−1 v(n1,n2)(s, t)

(−1)m1+m2−1 v(m1,m2)(s, t)
,

whereas u is ((n1, n2)/(m1,m2))
th degree Ross more risk averse than v if, for

all (s, t) ∈ [a, b]2 and for all (w, z) ∈ [a, b]2,

(−1)n1+n2−1 u(n1,n2)(s, t)

(−1)m1+m2−1 u(m1,m2)(w, z)
≥

(−1)n1+n2−1 v(n1,n2)(s, t)

(−1)m1+m2−1 v(m1,m2)(w, z)
.

These definitions allow the interpersonal comparison of the propensity to
trade (n1, n2)

th order changes against (m1,m2)
th order changes in risk. Com-

bining what precedes, the following Proposition can indeed be established:

Proposition 2.3. We consider two agents u and v that are each both (n1, n2)
th

degree risk averse and (m1,m2)
th degree risk averse. The following statements

are equivalent:

(i) u is ((n1, n2)/(m1,m2))
th degree Ross more risk averse than v on [a, b]2,

if there exists λ > 0 such that u(n1,n2)(s,t)

v(n1,n2)(s,t)
≥ λ ≥

u(m1,m2)(w,z)

v(m1,m2)(w,z)
for all

(s, t) ∈ [a, b]2 and (w, z) ∈ [a, b]2.

4In the univariate setting, Liu and Neilson (2019) recently indicated that higher-order risk
aversion in the Ross sense characterizes three behavioral notions of comparative risk attitude:
the risk premium approach (Pratt, (1981)), the probability premium approach (Pratt, (1981))
and the comparative statics approach (Jindapon and Neilson, (2007)).
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(ii) There exist λ > 0 and φ : [a, b]2 → R such that u = λv + φ and such that
(−1)m1+m2−1φ(m1,m2)(s, t) ≤ 0 and (−1)n1+n2−1φ(n1,n2)(s, t) ≥ 0 for all
(s, t) ∈ [a, b]2.

(iii) Tu ≥ Tv for all F , G, and H such that G has more (n1, n2)
th degree risk

than F and H has more (m1,m2)
th degree risk than F

Proof. See the appendix.

Part (i) of Proposition 2.3 determines the condition under which an individ-
ual whose preferences are represented by the utility function u is ((n1, n2)/(m1,m2))

th

degree Ross more risk averse than another individual whose preferences are rep-
resented by v. Parts (ii) of Proposition 2.3 defines the transformation of the
bivariate utility function that preserves this partial order. Part (iii) of the
Proposition compares the intensity of preferences for (n1, n2)

th order bivariate
risk apportionment of individuals u and v. The equivalence between parts (i),
(ii) and (iii) of Proposition 2.3 establishes that the propensity to trade (n1, n2)

th

order changes against (m1,m2)
th order changes in risk, i.e. the intensity of pref-

erence for (n1, n2)
th order bivariate risk apportionment is characterized by the

concept of "((n1, n2)/(m1,m2))
th degree Ross more risk aversion".

3 Bivariate High-Order Economic Decisions

In this section, we show how the concept of "Ross more risk aversion" that
characterizes the intensity of preference for bivariate risk apportionment can be
useful in explaining economic decisions. The illustrations we propose are based
on the way agents react to changes in the distribution of a variable h, in the spirit
of the technique introduced by Jindapon and Neilson (2007). Specifically, we
suppose that agents are exposed to a distribution Z(h, t), which is a weighted
average between two distributions X(h) and Y (h) whose supports are both
contained in [a, b] and such that Z(h, t) = (1 − t) Y (h) + t X(h). We also
assume that Y ≻n X, that is, X is an nth degree increase in risk à la Ekern
(1980) with respect to Y . In what follows, X0(h) and Y 0(h) denote density
functions, X1(h) and Y 1(h) denote cumulative density functions, and, more
generally, we have for N = X,Y, Z:

Nn(h) =

∫ b

a

Nn−1(h)dh.

Following Ekern (1980), the distribution Y is an nth degree decrease in risk
over the distribution X if and only if

Y k(b) = Xk(b) for k = 1, 2, ...n

and

Y n(h) ≤ Xn(h) ∀h ∈ [a, b] with strong inequality for some h.

The first condition implies that the n− 1 first moments of the distributions
X and Y are equal.
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3.1 A saving decision

Consider the following savings problem. An agent lives two periods during
which she earns an identical income (w). Besides this income, the environment
quality (h) she enjoys also enters in her utility function so that her preferences
are represented by u(w, h). We suppose that the utility of wealth and the utility
of environmental quality are both increasing and concave: u(1,0) > 0, u(0,1) > 0,
u(2,0) < 0, and u(0,2) < 0. The agent has the opportunity to transfer money
through savings, denoted by s, from period 1 to period 2.

To simplify this problem, we suppose without loss of generality that the
agent’s utility function is the same across periods and that the interest rate
and the rate of intertemporal preference are both null. Suppose also that the
saving decision is made under an environmental risk resulting from policies
implemented by public authorities. Specifically, the environmental policy we
consider is related to the intensity of the use (denoted by t) of a non-polluting
technology which, however, involves some risks as it potentially leads to en-
vironmental damages. The initial distribution of the environmental quality is
given by Z(h, t) = (1 − t)Y (h) + tX(h). Any intensification in the use of the
technology simultaneously improves the average environmental quality at a con-
stant rate α and creates an nth degree deterioration in the environmental risk,
because Y ≻n X. A special case - which corresponds to n = 3 - is that of
nuclear technologies, which improve the average environmental quality but also
entail catastrophic risk, that is, huge potential damage with a low probability.
More generally, the agent’s maximization problem is given by:

max
s

[

u(w − s, h) +

∫ b

a

u(w + s, h+ αt) Z0(h, t) dh

]

.

The first order condition for this program is given by:

EUs = −u(1,0)(w − s∗, h) +

∫ b

a

u(1,0)(w + s∗, h+ αt) Z0(h, t) dh = 0.

The second order condition is satisfied because risk aversion towards financial
risks has been assumed (u(2,0) < 0):

EUss = u(2,0)(w − s∗, h) +

∫ b

a

u(2,0)(w + s∗, h+ αt) Z0(h, t) dh < 0.

We use the implicit function theorem in order to determine the conditions
under which the agent increases her savings in reaction to the intensification of
the environmental policy t by public authorities:

ds

dt
= −

∂EUs

∂t
∂EUs

∂s

=
∂EUs

∂t

−EUss

.

Since EUss < 0, the sign of ds
dt

is the same as that of ∂EUs

∂t
, where

∂EUs

∂t
= α

∫ b

a

u(1,1)(w + s, h+ αt) Z0(h, t) dh

+

∫ b

a

u(1,0)(w + s, h+ αt) [X0(h)− Y 0(h)] dh.
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Suppose first that X is a mean preserving spread of Y or, equivalently,
that an increase in t corresponds to a second order increase in risk. Applying
integration by parts twice to re-express the second term of ∂EUs

∂t
, we obtain:

∂EUs

∂t
= α

∫ b

a

u(1,1)(w + s, h+ αt) Z0(h, t) dh

+

∫ b

a

u(1,2)(w + s, h+ αt) [X2(h)− Y 2(h)] dh,

where Y 2(h) ≤ X2(h) ∀h ∈ [a, b], by definition of a second order increase in
risk.

If u(1,1) and u(1,2) have the same sign, it is straightforward to determine
the way savings change with the implementation of the environmental policy:
agents increase savings (∂EUs

∂t
> 0) if u(1,1) > 0 and u(1,2) > 0 and decrease

savings (∂EUs

∂t
< 0) if u(1,1) < 0 and u(1,2) < 0. If the cross-derivatives of the

utility function alternate in signs, the effect of the environmental policy on their

saving decision depends on the intensity of
(

1,2
1,1

)th

bivariate risk preferences:

∂EUs

∂t
T 0 ⇔ −

∫ b

a
u(1,2)(w + s, h+ αt) [X2(h)− Y 2(h)] dh
∫ b

a
u(1,1)(w + s, h+ αt) Z0(h, t) dh

T α.

Specifically, consider two agents u and v, where agent u is
(

1,2
1,1

)th

Ross more

risk averse than agent v, so that the following condition is met:

−
u(1,2)(w,e)

u(1,1)(w,h)
≥ −

v(1,2)(w,e)

v(1,1)(w,h)
∀e, h ∈ [a, b].

In line with Jindapon and Neilson (2007), it can be shown that this inequality
implies:

−
u(1,2)(w,e)

∫ b

a
u(1,1)(w, h) Z0(h, t) dh

≥ −
v(1,2)(w,e)

∫ b

a
v(1,1)(w, h) Z0(h, t) dh

∀e ∈ [a, b],

which in turn implies:

−

∫ b

a
u(1,2)(w, h) [X2(h)− Y 2(h)] dh
∫ b

a
u(1,1)(w, h) Z0(h, t) dh

≥ −

∫ b

a
v(1,2)(w, h)[X2(h)− Y 2(h)]dh
∫ b

a
v(1,1)(w, h)Z0(h, t)dh

.

As a result, if − u(1,2)(w,e)

u(1,1)(w,h) ≥ v(1,2)(w,e)

v(1,1)(w,h) ∀e, h ∈ [a, b], one can find values of α
such that u increases savings while v decreases it as public authorities intensify
the environmental policy t.

The interpretation of the signs of various cross derivatives of a bivariate
utility function provided by Eeckhoudt, Rey and Schlesinger (2007) can be used
in order to understand this result. When n = 2, the intensification of the public
policy both improves the average environmental quality and increases 2nd order
environmental risk. Following Eeckhoudt, Rey, and Schlesinger (2007): 1) sure
improvements in the environmental quality reduce the marginal utility of wealth
if u(1,1) < 0; 2) increases in 2nd order environmental risk increase the marginal
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utility wealth if u(1,2) > 0. Therefore, the environmental policy has two opposite
effects on savings. Its final effect then depending on the relative sensitivity of
the marginal utility of wealth to these two changes, which corresponds to the

intensity of
(

1,2
1,1

)th

bivariate risk.

Note finally that when changing t, different risks are attached to different

environmental quality levels h + αt. As a result, if −u(1,2)(w+s,h)

u(1,1)(w+s,h) > v(1,2)(w+s,h)

v(1,1)(w+s,h)

while −u(1,2)(w+s,h+αt)

u(1,1)(w+s,h+αt) < v(1,2)(w+s,h+αt)

v(1,1)(w+s,h+αt) , the effects of the environmental policy
on the savings made by individuals u and v cannot be compared. This is why
(

1,2
1,1

)th

Ross risk aversion is required in this particular illustration.

Using the same technique, it can be shown that environmental policies in-
tensifying the use of nuclear energy (n = 3), lead to increased (resp. reduced)
savings by agent u (resp. v) if u is more ( 1,31,1 )

th Ross risk averse than v. More

generally, when the intensification of t corresponds to a nth order increases in
risk (Y ≻n X), savings decisions depends on ( 1,n1,1 )

th Ross risk aversion.

3.2 A treatment decision

Consider a patient whose preferences are represented by a bivariate utility func-
tion u(w, h) that depends on wealth w and health h. The utility of wealth and
the utility of health are supposed to be both increasing and concave: u(1,0) > 0,
u(0,1) > 0, u(2,0) < 0, and u(0,2) < 0. This patient suffers from a disease whose
severity is random: the distribution Z(h, t) of his health state h is given by
Z(h, t) = (1 − t) Y (h) + t X(h) with Y ≻n X. Therefore, increases in t corre-
spond to nth order increases in health risk. Patients perform a treatment whose
intensity is denoted by z and whose constant unitary cost and benefit are de-
noted by α and β, respectively. The patient chooses an intensity of treatment
that maximizes his expected utility:

max
z

∫ b

a

u(w − αz, h+ βz) Z0(h, t) dh.

The first order condition of this program is given by:

EUz =− α

∫ b

a

u(1,0)(w − αz, h+ βz) Z0(h, t) dh

+ β

∫ b

a

u(0,1)(w − αz, h+ βz) Z0(h, t) dh = 0.

The second order condition is satisfied since risk aversion towards both fi-
nancial and health risks has been assumed (u(2,0) < 0 and u(0,2) < 0):

EUzz = α2

∫ b

a

u(2,0)(w − αz, h+ βz)Z0(h, t)dh

+ β2

∫ b

a

u(0,2)(w − αz, h+ βz)Z0(h, t)dh < 0.

Are patients more or less treatment prone in case of nth order increases in
the severity of the disease? The change in treatment intensity is given by the

10



sign of:
dz

dt
= −

∂EUz

∂t
∂EUz

∂z

=
∂EUz

∂t

−EUzz

,

which is identical to the sign of ∂EUz

∂t
, where:

∂EUz

∂t
= −α

∫ b

a

u(1,0)(w − αz, h+ βz) [X0(h)− Y 0(h)] dh

+ β

∫ b

a

u(0,1)(w − αz, h+ βz) [X0(h)− Y 0(h)] dh.

Applying the integration by parts n times in order to re-express the two
terms of ∂EUz

∂t
, we obtain:

∂EUz

∂t
= −α(−1)n

∫ b

a

u(1,n)(w − αz, h+ βz) [Xn(h)− Y n(h)] dh

+ β(−1)n
∫ b

a

u(0,n+1)(w − αz, h+ βz) [Xn(h)− Y n(h)] dh,

where Y n(h) ≤ Xn(h) ∀h ∈ [a, b], by definition of an nth order increase in risk.
When u(1,n) and u(0,n+1) have different signs, it is straightforward to show

that nth order increases in the severity of disease lead to more treatment when
u(1,n) < 0 and u(0,n+1) > 0 and have the opposite effect (i.e. they reduce the
treatment intensity) when u(1,n) > 0 and u(0,n+1) < 0. When these derivatives
of the utility function have the same sign, changes in the treatment intensity
consecutive to nth order increases in the severity of the disease depend on the

intensity of
(

1,n
0,n+1

)th

multivariate risk aversion. Re-arranging the last expres-

sion, we indeed obtain:

∂EUz

∂t
R 0 ⇔

∫ b

a

u(1,n)(w − αz, h+ βz)

u(0,n+1)(w − αz, h+ βz)
[X0(h)− Y 0(h)] dh ⋚ β

α
,

when u(1,n) and u(0,n+1) are both positive.
Similarly, we have:

∂EUz

∂t
R 0 ⇔

∫ b

a

u(1,n)(w − αz, h+ βz)

u(0,n+1)(w − αz, h+ βz)
[X0(h)− Y 0(h)] dh R β

α
,

when u(1,n) and u(0,n+1) are both negative.
To understand this result, let us consider increases in the spread of the health

distribution (corresponding to n = 2). This change increases the marginal utility
of health of prudent individuals (u(0,3) > 0; see Eeckhoudt and Schlesinger
(2006)) and simultaneously increases the marginal utility of wealth of "cross-
prudent in wealth" individuals (u(1,2) > 0; see Eeckhoudt, Rey and Schlesinger
(2007)). The global effect on the treatment intensity depends on the comparison
between: 1) the relative sensitivity of the marginal utility of wealth and of health

to this change
(

u(1,2)

u(0,3)

)

; 2) the relative unitary cost and benefit of the treatment

(β
α
).
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Note that since the increase in risk affects the marginal utility of wealth and
of health evaluated at the same point (the wealth level w − αz and the health
level h+βz), interpersonal comparisons can be established through the concept
of Arrow-Pratt bivariate risk aversion (i.e. the concept of Ross bivariate risk
aversion is not required to compare the effects of changes in risk on the treatment
intensity selected by two individuals). More precisely, for any n, if u(1,n) and

u(0,n+1) are both positive, and if u is
(

1,n
0,n+1

)th

Arrow-Pratt more risk averse

than v, one can find values of α and β such that nth order increases in the
severity of the disease reduce (resp. increase) the treatment intensity selected
by u (resp. v). Likewise, for some values of α and β, the same changes in risk
increase the treatment performed by u while reducing that performed by v when
u(1,n) and u(0,n+1) are both negative.

Conclusion

Decision-makers consider various aspects of their well-being, such as wealth,
health, or environment quality, when they make choices that modify the risks
they are exposed to. We extend Liu and Meyer (2013) to the bivariate case to
show that the propensity to trade (n1, n2)

th order changes against (m1,m2)
th or-

der changes in risk measure the intensity of preference for (n1, n2)
th order bivari-

ate risk apportionment. Besides, the interpersonal comparisons of the intensity
of these preferences is characterized by the concept of "((n1, n2)/(m1,m2))

th

degree Ross more risk aversion". We also show that these concepts can be
useful in understanding how individuals make, for instance, savings decisions
when they anticipate environmental risks or treatment decisions in the case of
diagnostic risks.

In a recent contribution, Jindapon, Liu and Neilson (2019) compare the
intensity of risk apportionment preferences of two individuals in the univariate
setting. Instead of using the marginal rate of substitution between two increases
in risk as we do in our paper, they define another measure of the intensity of
preference for nth degree risk apportionment, namely the ( n

m
)th degree proba-

bility premium. The main result of their paper is that increases in ( n
m
)th degree

Ross and in ( n
m
)th degree Arrow-Pratt risk aversion are, respectively, sufficient

and necessary for comparing preferences for nth degree risk apportionment. Es-
tablishing the relative merits of these two ways of measuring the intensity of
preferences for bivariate risk apportionment would constitute a natural exten-
sion of the present paper. This issue is left for future research.
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Appendix: Proof of Proposition 2.3

The equivalences are shown by generalizing the arguments in Liu and Meyer
(2013).

(i) ⇒ (ii). Using λ defined in (i), we construct φ as follows:

φ(s, t) = u(s, t)− λ v(s, t) ∀(s, t) ∈ [a, b]2.

We readily check that

(−1)m1+m2−1φ(m1,m2)(s, t)

= (−1)m1+m2−1u(m1,m2)(s, t)− λ (−1)m1+m2−1v(m1,m2)(s, t) ≤ 0

and

(−1)n1+n2−1φ(n1,n2)(s, t)

= (−1)n1+n2−1u(n1,n2)(s, t)− λ (−1)n1+n2−1v(n1,n2)(s, t) ≥ 0.

(ii) ⇒ (iii). From the definition of Tu, we have:

b
∫

a

b
∫

a

u(s, t) [(1− Tu)dF (s, t) + TudH(s, t)] =

b
∫

a

b
∫

a

u(s, t) dG(s, t).

Then,
b

∫

a

b
∫

a

u(s, t) dG(s, t) =

b
∫

a

b
∫

a

(λv(s, t) + φ(s, t)) dG(s, t)

and

b
∫

a

b
∫

a

(λv(s, t) + φ(s, t)) dG(s, t) ≤

b
∫

a

b
∫

a

λv(s, t) dG(s, t) +

b
∫

a

b
∫

a

φ(s, t) dF (s, t)
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because φ shows (n1, n2)
th degree risk aversion. Further, using the definition of

Tv and the fact that φ shows (m1,m2)
th degree risk taking, we have:

b
∫

a

b
∫

a

λv(s, t) dG(s, t) +

b
∫

a

b
∫

a

φ(s, t) dF (s, t) ≤

b
∫

a

b
∫

a

λv(s, t) [(1− Tv)dF (s, t) + TvdH(s, t)] +

b
∫

a

b
∫

a

φ(s, t) [(1− Tv)dF (s, t) + TvdH(s, t)] ,

so that

b
∫

a

b
∫

a

λv(s, t) dG(s, t)+

b
∫

a

b
∫

a

φ(s, t) dF (s, t) ≤

b
∫

a

b
∫

a

u(s, t) [(1− Tv)dF (s, t) + TvdH(s, t)] .

Recombining the above equalities and inequalities shows that Tu ≥ Tv.

(iii) ⇒ (i). By integration by parts, we can show that

b
∫

a

b
∫

a

(−1)k+h−1 u(k,h)(s, t) (G[k,h](s, t)− F [k,h](s, t)) ds dt

b
∫

a

[

(−1)k+h−1 u(k,h)(s, t) (G[k+1,h](s, t)− F [k+1,h](s, t))
]b

a
dt

−

b
∫

a

b
∫

a

(−1)k+h−1 u(k+1,h)(s, t) (G[k+1,h](s, t)− F [k+1,h](s, t)) ds dt.

Using conditions (1) and (2), we obtain:

b
∫

a

b
∫

a

(−1)k+h−1 u(k,h)(s, t) (G[k,h](s, t)− F [k,h](s, t)) ds dt =

b
∫

a

b
∫

a

(−1)(k+1)+h−1 u(k+1,h)(s, t) (G[k+1,h](s, t)− F [k+1,h](s, t)) ds dt,

which shows that an identical formula prevails at orders k and k+1 on wealth.
By extension, we have:

b
∫

a

b
∫

a

u(s, t) (dF (s, t)− dG(s, t)) ds dt =

b
∫

a

b
∫

a

(−1)n1+n2−1 u(n1,n2)(s, t) (G[n1,n2](s, t)− F [n1,n2](s, t)) ds dt.
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Therefore,

Tu ≥ Tv ⇔

b
∫

a

b
∫

a

(−1)n1+n2−1 u(n1,n2)(s, t) (G[n1,n2](s, t)− F [n1,n2](s, t)) ds dt

b
∫

a

b
∫

a

(−1)m1+m2−1 u(m1,m2)(s, t) (H [m1,m2](s, t)− F [m1,m2](s, t)) ds dt

≥

b
∫

a

b
∫

a

(−1)n1+n2−1 v(n1,n2)(s, t) (G[n1,n2](s, t)− F [n1,n2](s, t)) ds dt

b
∫

a

b
∫

a

(−1)m1+m2−1 v(m1,m2)(s, t) (H [m1,m2](s, t)− F [m1,m2](s, t)) ds dt

Next, we assume that (i) does not hold: we can find two compact sets [c, d]2

and [e, f ]2 and µ > 0 such that

u(n1,n2)(s, t)

v(n1,n2)(s, t)
< µ <

u(m1,m2)(w, z)

v(m1,m2)(w, z)

for all (s, t) ∈ [c, d]2 and (w, z) ∈ [e, f ]2.
Because we assume that v is (n1, n2)

th and (m1,m2)
th degree risk averse,

we have:

(−1)n1+n2−1u(n1,n2)(s, t) < µ (−1)n1+n2−1v(n1,n2)(s, t)

for all (s, t) ∈ [c, d]2 and

(−1)m1+m2−1u(m1,m2)(w, z) > µ (−1)m1+m2−1v(m1,m2)(w, z)

for all (w, z) ∈ [e, f ]2

Then, choosing F̃ , G̃ and H̃ such that G̃ − F̃ > 0 on [c, d]2, H̃ − F̃ > 0 on
[e, f ]2 and such that these two differences are null outside the compact sets, we
can write:

b
∫

a

b
∫

a

(−1)n1+n2−1 u(n1,n2)(s, t) (G̃[n1,n2](s, t)− F̃ [n1,n2](s, t)) ds dt <

µ

b
∫

a

b
∫

a

(−1)n1+n2−1 v(n1,n2)(s, t) (G̃[n1,n2](s, t)− F̃ [n1,n2](s, t)) ds dt

and

b
∫

a

b
∫

a

(−1)m1+m2−1 u(m1,m2)(s, t) (H̃ [m1,m2](s, t)− F̃ [m1,m2](s, t)) ds dt >

µ

b
∫

a

b
∫

a

(−1)m1+m2−1 v(m1,m2)(s, t) (H̃ [m1,m2](s, t)− F̃ [m1,m2](s, t)) ds dt
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so that

b
∫

a

b
∫

a

(−1)n1+n2−1 u(n1,n2)(s, t) (G̃[n1,n2](s, t)− F̃ [n1,n2](s, t)) ds dt

b
∫

a

b
∫

a

(−1)m1+m2−1 u(m1,m2)(s, t) (H̃ [m1,m2](s, t)− F̃ [m1,m2](s, t)) ds dt

<

b
∫

a

b
∫

a

(−1)n1+n2−1 v(n1,n2)(s, t) (G̃[n1,n2](s, t)− F̃ [n1,n2](s, t)) ds dt

b
∫

a

b
∫

a

(−1)m1+m2−1 v(m1,m2)(s, t) (H̃ [m1,m2](s, t)− F̃ [m1,m2](s, t)) ds dt

which is a contradiction. Therefore (i) holds.
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