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Abstract—We present a new lightweight CNN-based algorithm
for multi-frame optical flow estimation. Our solution introduces
a double recurrence over spatial scale and time through repeated
use of a generic ”STaR” (SpatioTemporal Recurrent) cell. It
includes (i) a temporal recurrence based on conveying learned
features rather than optical flow estimates; (ii) an occlusion
detection process which is coupled with optical flow estimation
and therefore uses a very limited number of extra parameters.
The resulting STaRFlow algorithm gives state-of-the-art perfor-
mances on MPI Sintel and Kitti2015 and involves significantly
less parameters than all other methods with comparable results.

I. INTRODUCTION

Optical Flow (OF) is the apparent displacement of objects
between two frames of a video sequence. It expresses the
direction and the magnitude of the motion of each object at
pixel level. The OF is a key component for several computer
vision tasks, such as action recognition [1], autonomous nav-
igation [2], tracking [3], or image registration for multi-view
applications like video inpainting [4], super-resolution [5],
[6], [7] or structure from motion [8]. OF estimation must
be fast, accurate even at subpixel level for some applica-
tions like super-resolution, and reliable even at sharp motion
boundaries despite occlusion effects. Particularly, it must deal
with challenging contexts such as fast motions, motion blur,
illumination effects, uniformly colored objects, etc.

Starting from the seminal work of Horn and Schunck [9],
OF estimation has been the subject of numerous works.
Recently, a breakthrough came with deep neural networks.
Convolutional neural network-based (CNNs) methods [10],
[11], [12], [13] reached the state of the art on mostly all
large OF estimation benchmarks, e.g., MPI Sintel [14] and
Kitti [15], while running much faster than previous variational
methods.

In order to increase the efficiency and the robustness of
these methods, the focus has then been put on occlusion de-
tection [16], [17], [18], temporal dependency [17] or memory
efficiency [19], [18]. Building on these concerns, our work
follows two main orientations. First, when processing a video
sequence, most object motions are continuous across frame
pairs. Thus, most of the uncertainties arising from two-frame
OF estimation can be solved using a number of frames greater
than two. This calls for a multi-frame estimation process able
to exploit temporal redundancy of the OF. Second, we believe

that related operations can be performed by identical models
with shared weights. We apply this principle to temporal
recurrence, as in [17], to scale recurrence, as in [18], but
also to occlusion detection, which is strongly correlated with
OF estimation. Based on these considerations, we propose
a ”doubly recurrent” network over spatial scales and time
instants. It takes explicitly into account the information from
previous frames and the redundancy of the estimation at each
network scale within a unique processing cell, denoted STaR
cell, for SpatioTemporal Recurrent cell. Given information
from the past and from a lower scale, the STaR cell outputs the
OF and occlusion map at current image scale and time instant.
This cell is repeatedly invoked over scales in a coarse-to-fine
scheme and over sets of N successive frames, leading to the
STaRFlow model. Thanks to this doubly recurrent structure,
and by sharing the weights between processes dedicated
to flow estimation and to occlusion detection, we obtain a
lightweight model: STaRFlow is indeed slightly lighter than
LiteFlowNet [19], while producing jointly multi-frame OF
estimation and occlusion detection.

Let us now outline the organization of the paper while
listing our main contributions. We first discuss related work
in Section II, then Section III is devoted to the description of
our main contribution, the STaRFlow model for multi-frame
OF estimation. Experiments are presented in Section IV, with
results on MPI Sintel [14] and Kitti [15]: examples of results
of STaRFlow on these two datasets are presented in Figure 1.
We conduct in particular an ablation study that addresses three
important subjects: temporal recurrence, occlusions and scale
recurrence. First, as regards temporal recurrence, we show that
passing learned features between instants compares favourably
to passing previously estimated OF as in ContinualFlow [17].
Our approach also makes a higher benefit from larger number
of frames than [17]. Secondly, our occlusion handling appears
as efficient as previously published approaches, but is much
simpler and involves a significantly lower number of extra pa-
rameters. Thirdly, the study of scale recurrence highlights the
compactness of our model. Finally, concluding remarks and
perspectives are given in Section V. Our implementation of
STaRFlow, with training code and trained model parameters,
is available on https://github.com/pgodet/star flow.

https://github.com/pgodet/star_flow


Fig. 1. Qualitative results of the proposed STaRFlow model, on MPI Sintel final pass (top line) and KITTI 2015 (bottom line) test sets. STaRFlow allows
accurate motion estimation on partially occluded objects (right knee of character in upper leftmost example) and on thin objects (fingers and posts in the
rightmost examples).

II. RELATED WORK

A. Optical Flow (OF) Estimation With CNN

Dosovitskiy et al. [10] were the first to publish a deep
learning approach for OF estimation. They proposed a syn-
thetic training dataset, FlyingChairs, and two CNN archi-
tectures FlowNetS and FlowNetC. They have shown fairly
good results, though not state-of-the-art, on benchmarks data
which are very different from their simple 2D synthetic
training dataset. By using a more complex training dataset,
FlyingThings3D [11], and a bigger architecture involving
several FlowNet blocks, Ilg et al. [12] proposed the first state-
of-the-art CNN-based method for OF estimation. Moreover,
their learning strategy (FlyingChairs → FlyingThings) was
then used by several supervised learning approaches.

Some of the works that followed [20], [19], [13] sought to
leverage well-known classical practices in OF estimation, like
warping-based multi-scale estimation, within a deep learning
framework, leading to state-of-the-art algorithms [19], [13].
In particular, PWC-Net of [13] has then been used as a
baseline for several top-performing methods [17], [21], [22],
[18], [23]. Very recently, Hur and Roth [18] got even closer to
classical iterative OF estimation processes with an ”iterative
residual refinement” (IRR) version of PWC-Net. IRR mainly
consists in using the same learned parameters for every stage
of the decoder, so as to obtain a lighter and better-performing
method. We exploit the same idea but extend it to scale and
temporal iterations in a multi-frame setting.

B. Multi-Frame Optical Flow Estimation

Exploiting temporal coherence as been proven to improve
estimation quality. Wang et al. [24] use multiple frames in a
Lucas-Kanade [25] estimation process and show better results
when increasing the number of frames, i.e. a less noisy
estimation and a reduced number of ambiguous matching
points. Volz et al. [26] also improve their estimate, in particular
in untextured regions, by modeling temporal coherence with
an adaptive trajectory regularization in a variational method.
Kennedy and Taylor [27] shown improved results on the
MPI Sintel benchmark [14] by using additional frames, more
significantly in unmatched regions.

Additional frames are useful to cope with occlusions, as,
for instance, pixels visible at time t and occluded at time t+1

may have been visible at time t − 1. Hence, the OF is ill-
defined from t to t+ 1 but can be filled in with the estimation
at the previous time step. Ren et al. [21] propose a multi-
frame fusion process to fuse the current OF estimate with the
estimate at the previous time step. Maurer and Bruhn [28]
propose to learn, with a CNN, how to infer the forward flow
from the backward flow, and fuse it with the actual estimated
forward flow. Note that in these references, the multi-frame
estimation stems from the fusion of two OF estimates provided
by classical two-frame processes launched between different
frame pairs. In contrast, in the ContinualFlow model of [17],
a temporal connection is introduced to pass the OF estimate
at time t − 1 to the estimation process at time t, making
the estimation recurrent in time. Let us also mention that, in
an unsupervised learning framework, [29], [22] and [30] also
show improved results, more significantly in occluded areas,
by using multiple frames. These methods use 3 frames and
estimate jointly the OF from t to t− 1 and from t to t+ 1.

Our work is closer to [17], as we propose to use a recurrent
temporal connection, but is based on passing learned features
from one instant to the next rather than OF estimates. Accord-
ing to our experiments, this approach is more efficient and
allows to exploit a larger time range than ContinualFlow [17].

C. Occlusion Handling
As OF is ill-defined at occluded pixels, occlusions have

to be accounted for during estimation. Classical methods
either treat occlusion as outliers within a robust estimation
setting [31], or conduct explicit occlusion detection, often
using a forward-backward consistency check [32]. In a deep
learning framework, several methods estimate jointly OF and
occlusion maps. In doing so, most authors (eg. [17], [18])
observe a significant improvement on the OF estimation —
an exception being [16]. Unsupervised methods also estimate
occlusion maps, as they need to ignore occluded pixels in their
photometric loss. [33] estimates occlusion maps by forward-
backward check, [29], [22] learn occlusion detection in an
unsupervised manner. Very recently, [34] proposes a self-
supervised method to learn an occlusion map and uses it to
filter the features warping so as to avoid ambiguity due to
occlusions.

Here, we propose a very simple and lightweight way of
dealing with occlusions by processing occlusion maps almost
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Fig. 2. Unrolled view of the proposed SpatioTemporal Recurrent architecture for multi-frame OF estimation (STaRFlow).

in the same way as OF estimates and observe a significant
gain on OF accuracy in accordance with [17], [18].

III. PROPOSED APPROACH

We propose a doubly recurrent algorithm for optical flow
(OF) estimation. It is mainly the repeated application of the
same SpatioTemporal Recurrent (STaR) cell recursively with
respect to time and spatial scale on features extracted from
each image of the sequence. Fig. 2 presents an unrolled
representation of this recurrent ”STaRFlow” model. Feature
extraction uses a shared encoder (green block) which archi-
tecture comes from [13]. The scale recurrence, represented as
horizontal gray arrows in Fig. 2, consists in feeding the STaR
cell at each scale with the features extracted from the current
frame and with the OF and occlusions coming from previous
scale. The data flow related to the temporal recurrence carries
learned features from one time instant to the next; it is depicted
as vertical pink arrows.

The rest of this Section aims at a complete description of
STaRFlow. The internal structure of the STaR cell is presented
in section III-A. Then section III-B focuses on the temporal
recurrence, section III-C is dedicated to occlusions handling,
and section III-D presents the spatial recurrence. Finally, in
Section III-E, we discuss the compound loss used for multi-
frame optical estimation and the optimization process.

A. STaR Cell

As several other recent OF estimation approaches, the
proposed method builds upon PWC-Net [13], which has been
designed to use well-known good practices from energy mini-
mization methods: multi-scale pyramid, warping, cost-volume
computation by correlation. These three elements are found
in the architecture of the STaR cell presented in Fig. 3. It is
fed by features from a siamese pyramid encoder applied to

both frames. Similarly to PWC-Net, the core trainable block
is a CNN dedicated to OF (blocks CNN optical flow estimator
and Context network in Fig. 3). Finally, to avoid blurry results
near motion discontinuities, we use the lightweight bilateral
refinement of [18].

In addition to the inputs already appearing in PWC-Net
(features from reference image, cost-volume from correlation
of features and the upsampled flow from the previous scale),
two supplementary input/output data flows are involved in the
STaR cell. The first one implements the temporal recurrence
leading to a multi-frame estimation. It conveys features from
the highest layers of the CNN OF estimator which are fed into
the CNN OF estimator at the next time step, see Sec. III-B.
The second concerns the occlusion map, which undergoes
essentially the same pipeline as the OF — further details on
occlusions handling are given in Sec. III-C.

B. Temporal Recurrence for Multi-Frame Estimation

The temporal connection passes features from time t − 1
to time t (Figure 3). These features are the outputs of the
penultimate layer of the CNN OF estimator at t − 1, which
are compressed by a 1 × 1 convolution to keep the number
of input channels constant from one time step to the next.
They are then warped into the current first image geometry,
using the previous time-step backward flow i.e., the optical
flow from t to t − 1. This flow is not directly accessible at
inference as our network predicts the forward flow, i.e., from
t − 1 to t. Thus, we apply our network on two frames with
reversed time (from t to t− 1) to estimate the backward flow
(the temporal connection being set to zero).

C. Joint Estimation of Occlusions

As already mentioned, previous works such as [17], [18]
considered the idea of estimating jointly OF and occlusion



Fig. 3. Structure of the proposed SpatioTemporal Recurrent cell (STaR cell).

maps, with the purpose of improving OF estimation. In [17]
occlusion maps are estimated using an extra CNN module
and used as an input of the OF estimator, while [18] processes
occlusion map and OF in parallel by adding an occlusion CNN
estimator with the same architecture as the OF CNN estimator,
but ending with a one-channel sigmoid layer. These methods,
especially [18], lead to a significant increase in the number of
parameters of the model.

In the STaR cell, joint estimation of OF and occlusions is
done simply by adding a channel to the last convolutional
layer of the CNN OF estimator (which, hence, becomes a
”OF+occlusion” estimator). After a sigmoid layer, this sup-
plementary channel gives an occlusion probability map with
value between 0 (non-occluded) and 1 (occluded). Compared
to [18], [17], this leads to a negligible number of extra
parameters, while achieving competitive results, according to
the experiments conducted in Sec. IV-C.

D. Spatial Recurrence over Scales

We iterate on the same weights on each scale, according
to the IRR approach of [18] — but unlike them we apply
this coarse-to-fine process to a concatenation of the OF and
the occlusion map. This allows a significant decrease in the
number of parameters, while keeping estimation results almost
unchanged, as shown in Sec. IV-D3.

E. Multi-Frame Training Loss

We use N -frame training sequences and train our network to
estimate the OFs for each pair of consecutive images. From the
second image pair of the sequence, information from previous
estimations is transmitted through the temporal connection.
At the end of the sequence, we update the weights so as to
decrease:

L =
1

N

N∑
t=1

Lt (1)

where Lt is a multi-scale and multi-task loss for image pair
(It, It+1):

Lt =

L∑
l=1

αl

(
Lt,l

flow + λLt,l
occ

)
(2)

coefficients αl being chosen as in [13]. The supervision of OF
ult(x) at each time step t and each scale l is done as in [13]
using the L2 norm summed over all pixel positions:

Lt,l
flow =

∑∥∥ult − ult,GT

∥∥
2

(3)

For the occlusion map olt, the loss is a weighted binary cross-
entropy:

Lt,l
occ = −1

2

∑(
wl

to
l
t log olt,GT + w̄l

t(1− olt) log(1− olt,GT)
)

(4)
where summation is done over all pixel positions and denoting
wl

t = Hl·W l∑
olt+

∑
olt,GT

and w̄l
t = Hl·W l∑

(1−olt)+
∑

(1−olt,GT)
, H l and

W l being the image size at scale l. As in [18] we update at
each iteration the weight λ that balances the flow loss and the
occlusion loss.

IV. EXPERIMENTS

A. Implementation Details

As proposed in [12], all models are first trained on Fly-
ingChairs [10] and then on FlyingThings3D [11]. We then
finetune on either Kitti or MPI Sintel. We use photometric
and geometric data augmentations as in [18] except that
for the geometric augmentations we do not apply relative
transformations.

1) Pretraining on Image Pairs on FlyingChairs: Following
[17], we first train our multi-frame architecture, except from
the temporal connection, on 2D two-frame data. To supervise
both OF and occlusion estimation, we use the FlyingChairsOcc
dataset [18]. We train with a batch size of 8 for 600k iterations,
with an initial learning rate of 10−4 which is divided by 2
every 100k iterations after the first 300k iterations.

2) Multi-Frame Training on FlyingThings3D: Then we
train the STaRFlow model on sequences of N = 4 images
from FlyingThings3D, the temporal data stream being initial-
ized to zero — note that longer sequences could be exploited,
at the cost of an increase in the memory space required for
training. As it is the first training for the temporal connection,
we start with a higher learning rate of 10−4 compared to
two-frame training (as suggested by [17]) and train for 400k



TABLE I
RESULTS ON MPI SINTEL AND KITTI 2015 BENCHMARKS (TEST SETS).

ENDPOINT ERROR [PX] ON SINTEL, PERCENTAGE OF OUTLIERS ON KITTI.

Method MPI Sintel KITTI 2015 Number of
clean final Fl-all parameters

ARFlow-mv∗ [30] 4.49 5.67 11.79 % 2.37M
LiteFlowNet [19] 4.54 5.38 9.38 % 5.37M
PWC-Net [13] 4.39 5.04 9.60 % 8.75M
LiteFlowNet2 [35] 3.48 4.69 7.62 % 6.42M
PWC-Net+ [36] 3.45 4.60 7.72 % 8.75M†
IRR-PWC [18] 3.84 4.58 7.65 % 6.36M
MFF∗ [21] 3.42 4.57 7.17 % 9.95M
ContinualFlow ROB∗ [17] 3.34 4.53 10.03 % 14.6M†

SelFlow∗ [22] 3.74 4.26 8.42 % 4.79M‡
MaskFlowNet [34] 2.52 4.17 6.11 % N/A
ScopeFlow [23] 3.59 4.10 6.82 % 6.36M
STaRFlow-ft∗ (ours) 2.72 3.71 7.65 % 4.77M

Best results are in bold characters, second ones in italic. Multi-frame
methods are marked with ∗. †: value given in [18], ‡: value given in [30].

iterations, dividing the learning rate by 2 every 100k iterations
after the first 150k iterations. We use a batch size of 4. For
the ablation study, this is the final step of our training.

3) Finetuning on MPI Sintel or Kitti: We use the same
finetuning protocol as [18] but extended to our multi-frame
(N = 4) estimation process. For Sintel, we can supervise every
time step. In KITTI, only one time step is annotated, hence
we only supervise the last time-step estimation. This finetuning
step is only used for benchmark submissions.

4) Running Time: On Sintel images (1024 × 436) the
inference time of STaRFlow is of 0.22 second per image pair,
on a mid-range NVIDIA GTX 1070 GPU.

B. Optical Flow Results on Benchmarks

Results of STaRFlow on benchmarks MPI Sintel and KITTI
2015 are given in Tab. I, and compared to top-leading methods
and/or methods closely related to our approach. STaRFlow
reaches the best EPE score on the final pass of Sintel, is
second on the clean pass, and is on par with IRR-PWC on
Kitti2015. Kitti2015 is characterized by very large movements
of foreground objects, which generally disadvantages multi-
frame methods: among them, STaRFlow still ranks second
behind MFF. Regarding the number of parameters, STaRFlow
ranks second behind ARFlow but outperforms it (as well
as other light methods such as LiteFLowNet and SelFlow)
in terms of OF precision. It is also interesting to compare
STaRFlow with the related methods [17] and [18]. STaRFlow
significantly outperforms ContinualFlow [17] on all bench-
marks while being three times lighter. Compared to IRR-PWC
[18], the benefit of the multi-frame estimation of STaRFlow
clearly appears on MPI Sintel.

C. Occlusion Estimation

Our main purpose here is to compare our solution for
occlusion estimation, which shares almost all its weights with
the OF estimator, to the dedicated decoder used in IRR-
PWC. To do this comparison as fairly as possible, we have
trained a two-frame version of STaRFlow (by removing the red

TABLE II
OCCLUSION MAP ESTIMATION RESULTS (F1-SCORE) ON MPI SINTEL.

Method Clean Final Parameters
ContinualFlow [17] - 0.48 14.6M
SelFlow [22] 0.59 0.52 4.79M
IRR-PWC [18] 0.71 0.67 6.36M
ScopeFlow [23] 0.74 0.71 6.36M
Our occlusion estimator 0.70 0.66 4.09M

Best results are in bold characters.

connections and operators on Fig. 3), which then essentially
differs from IRR-PWC by the occlusion detection process.
In Tab. II, we compare F1-scores of our occlusion estimator
and various methods (including IRR-PWC) on occlusion maps
estimated from MPI Sintel data. Our occlusion estimation is on
par with IRR-PWC while being much lighter. We also report
scores of SelFlow and ScopeFlow for comparison to other
state-of-the-art methods.

D. Ablation Study

In this section, we consider the contributions of the follow-
ing components of the STaRFlow model to the OF estimation:
temporal recurrence and number of used frames, joint occlu-
sion estimation and spatial recurrence. For all the experiments,
our backbone is the two-frame PWC-Net architecture [13]1

that we trained as described in [18]. As this backbone does
not include a bilateral refinement module, we do not include
this module in the following tests. The models are trained
on FlyingChairs and FlyingThings3D, without any further
finetuning, and tested on the training sets of MPI Sintel
and KITTI2015. All comparisons are made with the main
performance metrics proposed in the benchmark websites —
note that we use the revised occlusion maps provided by [18]
to compute occ/noc scores on MPI Sintel.

1) Temporal Recurrence: Two different temporal recur-
rences are evaluated, with and without occlusion handling in
Tab. III, and compared to the two-frame backbone. The first
one, termed ”TRFlow”, is inspired from [17], and passes the
estimated OF at time t − 1 to the CNN OF estimator at t.
In the second approach, denoted by ”TRFeat”, the temporal
connection conveys learned features. ”TRFeat” is the method
implemented in STaRFlow and described in Sec. III-B.

According to Tab. III, using learned features in the temporal
connection yields better results than passing estimated OFs,
with higher EPE gains on degraded images (Sintel Final vs.
Sintel Clean) and especially on the real images of KITTI2015
training dataset. Results are consistent whether an occlusion
module is used or not.

The qualitative results displayed in Fig. 4–6 aim to better
understand the gains brought by our temporal connection
and occlusions handling. As could be expected, multi-frame
estimation improves robustness to degraded image quality.
This is shown in Fig. 4 which compares results on Sintel Clean
and Final (blurry) images.

1Implementation from https://github.com/visinf/irr

https://github.com/visinf/irr


TABLE III
INFLUENCE OF TEMPORAL CONNECTION AND OCCLUSION MODULES ON PERFORMANCES (MPI SINTEL AND KITTI 2015 TRAINING SETS).

Method Cat. Sintel Clean [px] Sintel Final [px] KITTI 2015 Parameters
all noc occ all noc occ epe-all Fl-all number relative

Without joint occlusion estimation.
Backbone (PWC-Net) 2F 2.74 1.46 16.48 4.18 2.56 21.70 11.75 33.20 % 8.64M 0 %
Backbone + TRFlow MF 2.47 1.41 13.97 4.01 2.52 20.00 11.27 33.77 % 8.68M +0.5 %
Backbone + TRFeat MF 2.45 1.44 13.36 3.76 2.46 17.82 9.94 32.12 % 12.31M +42.5 %
With joint occlusion estimation.
Backbone 2F 2.46 1.32 14.82 3.96 2.47 20.06 10.58 31.28 % 8.68M +0.5 %
Backbone + TRFlow MF 2.17 1.23 12.33 3.90 2.50 19.11 10.82 32.51 % 8.73M +1.0 %
Backbone + TRFeat MF 2.09 1.21 11.63 3.43 2.24 16.24 8.79 28.18 % 12.38M +43.3 %
With joint occlusion estimation and spatial recurrence.
Backbone 2F 2.29 1.20 14.03 3.72 2.32 18.77 10.74 31.35 % 3.37M −61.0 %
Backbone + TRFlow MF 2.20 1.25 12.40 3.98 2.56 19.38 11.00 35.23 % 3.38M −60.9 %
Backbone + TRFeat MF 2.10 1.22 11.67 3.49 2.32 16.15 9.26 30.75 % 4.37M −49.4 %

Best results are in bold characters. Fl-all, on KITTI, is the percentage of outliers (epe > 3 px).
2F (resp. MF) refers to two-frame (resp. multi-frame) methods. TR stands for temporal recurrence.

Multi-frame estimation also allows temporal inpainting: for
a region occluded at time t + 1 but visible at t and previous
time steps, the previously estimated motion can be used to
predict the motion between t and t+1. This could be observed
on the Sintel example shown in the upper left part of Fig. 1:
the right knee of the central character, although occluded in
the next frame, is correctly estimated by STaRFlow. Fig. 5
displays an example extracted from KITTI2015 training set
where temporal connection and occlusions estimation are both
required to correctly estimate motion of the roadsign on the
lower right part of the image, which is occluded in the next
frame. Finally, Fig. 6 shows that our temporal connection with
learned features yields increased sensitivity to small object
motion compared to the backbone and also to TRFlow.

2) Occlusion Handling: Comparison of methods with and
without occlusion estimation in Tab. III shows that adding the
task of detecting occlusions consistently helps OF estimation.
This is true for two-frame and multi-frame methods.

3) Spatial Recurrence: The lower part of Tab. III is devoted
to the spatial recurrence, i.e. the iterations on the same
weights over scales in the coarse-to-fine multi-level estimation
[18]. While OF precision is only marginally affected by this
implementation, large gains in terms of number of parameters
are obtained with respect to the PWC-Net backbone (see last
column).

4) Impact of the Number of Frames at Test Time: Recall
that N = 4 frames are used for training multi-frame models
(TRFlow and TRFeat). It means that, at training time, the
temporal connection is reinitialized to zero every 4 frames,
essentially to avoid an increased memory cost, beyond the
capacity of the hardware. However, at test time, the temporal
connection can be exploited over a different time horizon. This
is the object of Tab. IV, which compares temporal connections
TRFlow and TRFeat when increasing the number of frames
N ′ used at test time. Each line of the Table presents scores
computed for the OF estimated between time instants N ′ − 1
and N ′.

According to Tab. IV, performance improves more for TR-
Feat than for TRFlow when N ′ increases. This is particularly

TABLE IV
IMPACT OF THE NUMBER OF FRAMES N ′ USED AT TEST TIME.

Backbone + occ + TRFlow + SR
Sintel Clean Sintel Final Kitti15

N ′ all noc occ all noc occ epe-all Fl-all
2 2.36 1.27 14.17 4.05 2.57 20.06 12.53 35.95 %
3 2.17 1.24 12.29 3.95 2.56 19.03 11.26 35.35 %
4 2.20 1.25 12.40 3.98 2.56 19.38 11.01 35.27 %
5 2.20 1.26 12.37 3.98 2.56 19.30 10.94 35.17 %
6 2.20 1.26 12.33 3.98 2.58 19.11 10.94 35.19 %

Backbone + occ + TRFeat + SR
Sintel Clean Sintel Final Kitti15

N ′ all noc occ all noc occ epe-all Fl-all
2 2.40 1.30 14.34 4.04 2.55 20.12 12.01 34.22 %
3 2.10 1.23 11.60 3.58 2.35 16.90 9.95 31.49 %
4 2.10 1.22 11.67 3.49 2.32 16.15 9.26 30.78 %
5 2.08 1.22 11.36 3.43 2.27 15.99 9.17 30.66 %
6 2.09 1.22 11.52 3.50 2.32 16.25 9.14 30.69 %

Best results are in bold characters.

true for degraded (Sintel Final) or real images (KITTI), or
in occluded regions. Furthermore, we observe that TRFeat
still improves using N ′ = 5 frames. TRFeat, by propagating
learned features in the temporal connection instead of OF,
exploits more efficiently long term memory than TRFlow and
appears even able to learn a temporal continuity beyond the
number of frames used for training.

This can also be seen on the qualitative results presented on
Fig. 7. Estimations using N ′ = 3 and N ′ = 4 (columns 2 and
3) are presented for TRFlow and TRFeat. The fact that the
object is very close to the image border makes the problem
difficult. For the two methods, using 3 frames is not enough
to correctly estimate the object’s contour. TRFeat manage to
resolve the contour with a 4th frame, while TRFlow still fails
to do it.

V. CONCLUSION

We have presented STaRFlow, a new lightweight CNN
method for multi-frame OF estimation with occlusion han-
dling. It involves a unique computing cell which recursively



Fig. 4. Multi-frame estimation provides robustness to degraded image quality: results on Sintel clean (upper row) and Sintel Final pass (lower row).

Fig. 5. Both the occlusion and temporal coherence modules are needed here to resolve the motion of the lower right roadsign.

Fig. 6. Our temporal recurrent cell improves optical flow estimation of small objects.

processes both a spatial data flow in a coarse-to-fine multi-
scale scheme and a temporal flow which conveys learned fea-
tures. Using learned features in the temporal recurrence allows
better exploitation of temporal information than propagating
OF estimates as proposed in [17]. STaRFlow builds upon
approaches such as [37], [18] based on the repeated use of
the same weights over a scale recurrence but extends this idea
to a double time-scale recurrence. Moreover, we have also
shown that occlusion estimation can be done with a minimal
number of extra parameters, simply by adding a dedicated
layer to the output tensor of the CNN OF estimator. STaRFlow
gives state-of-the-art results on the two benchmarks MPI Sintel
and Kitti2015, even outperforming, at the time of writing, all
previously published methods on Sintel final pass. Moreover,
STaRFlow is lighter than all other two-frame or multi-frame
methods with comparable performance.

Quantitative and qualitative evaluations on MPI Sintel and
KITTI2015 show that STaRFlow improves OF quality on
degraded images and on small objects thanks to temporal
redundancy, and is also able to achieve efficient temporal
inpainting in occluded areas. Our experiments also confirm
conclusions of [18], [17] that learning to predict occlusions

consistently improves OF estimation. Moreover, our imple-
mentation, based on sharing almost all weights between OF
and occlusion estimation, further indicates that these two tasks
are closely related one to the other.
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