N
N

N

HAL

open science

AWS Neptune Benchmark Over Real-World Dataset
Ghislain Auguste Atemezing

» To cite this version:

Ghislain Auguste Atemezing. AWS Neptune Benchmark Over Real-World Dataset. [Technical Report]

Mondeca. 2021. hal-03132794v2

HAL Id: hal-03132794
https://hal.science/hal-03132794v2
Submitted on 8 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03132794v2
https://hal.archives-ouvertes.fr

Benchmarking AWS Neptune Over Real-World
Datasets.

Ghislain Auguste Atemezing!

Mondeca, 35 Boulevard de Strasbourg, 75010, Paris, France.
ghislain.atemezing@mondeca.com

Abstract. Since the announcement by Amazon of its own graph database
service Neptune in November 2017, there have been many expectations
on how to compare Neptune with other state-of-the-art enterprise graph
databases. Neptune is defined as a high-performance graph database en-
gine supporting popular graph models: RDF and Property Graph Model
(PGM). This paper aims at giving an empirical evaluation of AWS Nep-
tune on real-world RDF datasets. We use three different versions of Nep-
tune (Preview, Neptune 1.0, and Neptune 1.0.1) to evaluate how fast and
reliable the engine is with real-world SPARQL queries. Additionally, we
compare some of the results with our previous benchmark with other en-
terprise RDF database graphs, even though one should be careful with
such comparison since the hardware settings are not completely equiva-
lent. The results of this evaluation give some preliminary insights about
AWS Neptune in the RDF benchmark task. The results demonstrate
that Neptune is the fastest in loading 2 Billion triples, performs bet-
ter on analytical queries, and outperforms on updates queries. However,
Neptune performs poorly on SELECT queries with the shortest response
time (60s).

Keywords: AWS Neptune, RDF, SPARQL, Benchmark.
Resource type: Benchmark
Permanent URL: https://doi.org/10.6084/m9.figshare.13414817

1 Introduction

The adoption of semantic technologies for data integration is continuing to gain
attention and adoption in industry, after the first impact in the research com-
munity. Knowledge Graphs (KGs) have proven to be an efficient way to struc-
ture, connect and share knowledge within organizations by bridging data silos.
SPARQL [7] is the W3C lingua franca recommendation to access to the KGs
encoded in RDF stored in graph database management systems. Since the an-
nouncement by Amazon of its own graph database service Neptune in November
2017 [2], there have been many expectations on how to compare Neptune with
other state-of-the-art enterprise graph Database Management Systems (DBMS).
According to 2020 DB-Engines ranking of Graph DBMQEI7 Amazon Neptune is

! nttps://db-engines.com/en/ranking/graph+dbms, accessed 2020-12-17

https://doi.org/10.6084/m9.figshare.13414817
https://db-engines.com/en/ranking/graph+dbms

the second after Virtuoso for RDF Graph DBMS. Neptune is defined as a high-
performance graph database engine supporting popular graph models: RDF and
Property Graph Model (PGM). This paper aims at giving an empirical evalua-
tion of AWS Neptune on real-world RDF datasets, hence dealing with its RDF
support.

In industry, many business requirements dealing with data management are
shifting to use cloud-based services. This benchmark is motivated by following
our previous assessment [3]| using real-world datasets from the Publications Office
(PO)E| using Neptune. We were also able to assess on three different versions of
Neptune corresponding to three different periods in time. This paper contributes
to an empirical evaluation of Neptune across the evolved versions (Preview, 1.0
and 1.0.1) and to give an insight with our previous benchmark without entering
in the “fairness” debate with the reader. We argue that the resource has an impact
in assessing RDF stores in general, hence supports the adoption of Semantic Web
technologies in industry.

The remainder of the paper is structured as follows: Section [2 presents a brief
review of some related works on benchmarking enterprise RDF stores, although
none of them are cloud-based Graph DBMS. Section [3] describes the selected
queries and datasets used for the experiments. Section [describes the settings.
The report of the loading process is described in Section[5} Then, we provide with
the results of the benchmark in Section [f] followed by a discussion in Section [7]
Section [§] concludes the paper and highlights future work.

2 Related Work

In the literature, several general purpose RDF benchmarks were developed on
both artificial data and real datasets. We briefly summarize them in this section.
FEASIBLE [10] which is a cluster-based SPARQL benchmark generator, which
is able to synthesize customizable benchmarks from the query logs of SPARQL
endpoints.

The Lehigh University Benchmark (LUBM) [6] a dataset generated for the
university domain. In the publication domain, the SP2Bench [II] benchmark
uses a both a synthetic test data and artificial queries.

The Berlin SPARQL Benchmark (BSBM) [4] applies a use case on e-commerce
in various triple stores. BSBM data and queries are artificial.

The DBpedia SPARQL Benchmark (DBPSB) [8] is another more recent
benchmark for RDF stores. It uses DBPedia with up to 239M triples, start-
ing with 14M to compare the scalability. The Waterloo SPARQL Diversity Test
Suite (WatDiv) [I] addresses the stress testing of five RDF stores for diverse
queries and varied workloads.

Iguana framework [5] provides with a configurable and integrated environ-
ment for executing SPARQL benchmark. It also allows a uniform comparison
of results across different benchmarks. However, we use for this benchmark a

2 https://publications.europa.eu

https://publications.europa.eu

different tool and plan to use Iguana for a more systematic benchmark with
cloud-based RDF stores.

All the above-mentioned benchmarks are not in the cloud environment as it
is the case of this work. We aim at pushing the benchmark comparison into the
cloud since many stakeholders are transiting to adopt the Software-as-a-Service
(SaaS) paradigm. To the best of our knowledge, this is the first publicly available
benchmark of AWS Neptune on real-world datasets.

3 Dataset and Queries

3.1 Datasets

Two datasets are used for the loading experiment, a dump dataset used in pro-
duction with 2,195 nquads files [9] and an augmented version based on the
previous dataset to 2B triples. The dataset is available in Zenodol)’| For com-
parison in the loading process, we use a dump version of Wikidata®| with 9,43B
triples. Table [I] summarizes the statistics of the datasets.

Table 1. Datasets statistics and RDF serializations

Dataset #Files #Triples RDF Format
PO Dataset 2195 727 959 570 NQUADS
PO Augmented Dataset 6585 2 183 878 710 NQUADS
Wikidata Dump 1 9.43B Turtle

3.2 SPARQL Queries

We use three different types of SPARQL queries according to their usage at
Pulications Office. Each time has a different goal with respect to the required
time to complete.

— Instantaneous queries: These queries are generally used to dynamically gen-
erate dynamic visualizations on the website. Thus, they should be faster. In
this group, we have a total of 20 queries, divided into 3 types of SPARQL
queries: SELECT with 16 queries, DESCRIBE with 3 queries and CON-
STRUCT with one query.

— Analytical queries: These queries are used for validation and mapping pur-
poses at PO, where the most important feature is the quality of the results,
not only the time to answer the query. In a total of 24 validation and map-
pings queries, all of them are SELECT SPARQL queries.

3 https://doi.org/10.5281/zenodo. 1036738
* https://dumps.wikimedia.org/wikidatawiki/entities /20190729 /wikidata-20190729-
all.ttl.gz

https://doi.org/10.5281/zenodo.1036738

— Update queries: This set is composed of 5 SPARQL queries with 1 CON-
STRUCT ; 1 DELETE/INSERT and 3 INSERT with a limit time to get the
results in 10s.

4 Neptune Benchmark Settings

We now cover the settings for configuring AWS Neptune instance, and the bench-
mark settings.

4.1 AWS Neptune Configuration

Neptune is a service in the Amazon Web services (AWS). This means you need
to first have an account. Once logged into the profile, the following steps are the
ones required specifically for creating an instance of Neptune:

— Configure an Amazon Virtual Private Cloud (VPC), which is important to
secure the access to your endpoint.

— Configure an Amazon Elastic Compute Cloud (EC2) instance. This is an
important step because it is the location of the scripts to access the Neptune
instances. Two information are also useful for security reason, a private key
(.pem) and a public DNS.

— Configure a S3 bucket. It is the container to host the data to be loaded in
Neptune, with the corresponding Identity and Access Management (IAM)
role.

— Create an instance DB Neptune: This is where we actually create an endpoint
in the same VPC than the Bucket S3. In our case, we choose the EAST-1 re-
gion. We use a db.rd.4xlarge (16 vCPU, 122 GB RAM)H7 which is somewhat
closed to the settings on the previous benchmarkﬂ However, for the purpose
of comparing the effects of varying the size of the instances during the load-
ing time, we use other types of instances, respectively db.r4.8xlarge and
db.r5.12xlarge.

4.2 Benchmark Settings

The benchmark starts once the datasets are loaded into the AWS Neptune. We
do not take into account the time of loading the source files in S3 bucket. The
benchmark comprises the following steps:

1. Configuration step: We set in the corresponding configuration file the
timeout value for the queries. This forces the store to abort or kill the process
running the query.

® https://docs.aws.amazon. com/AmazonRDS/latest/UserGuide/Concepts .
DBInstanceClass.html

® Hardware configuration: Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz, 6C/12T,128
GB RAM with SATA disk

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html

2. Warm-up step: To measure the performance of a triple store under oper-
ational conditions, a warm-up phase is used. In the warm-up phase, query
mixes are posed to the triple store. We used a warm-up set to 20, meaning
that we run 20 times the set of queries in each category before starting the
run phase.

3. Hot-run step: During this phase, the benchmark query mixes were sent to
the tested store. We keep track of each run and output the results in a CSV
file containing the statistics. We perform 5 runs in this stage and also set
the max delay between query is set to 1000s.

5 Results Bulk Loading

We go through the results obtained during the loading process, querying both
three sets of SPARQL queries and a stress test.

The loading in Neptune is possible once the dataset is already available in
a S3 Bucket. In our case, we had to first transfer it into the bucket, without
reporting the time taken for this task. Hence, we assume the dataset is ready to
be loaded into Neptune.

curl -X POST \
-H 'Content-Type: application/json' \
http://opocegen2bio.clhdbvigzcza.us-east-1.neptune.amazonaws.com: 8182/

loader -4 '
{
"source" : "s3://mdk-neptune-gen2bio",
"format" : "nquads",
"iamRoleArn" : "arn:aws:iam::672418254241:role/
neptuneFroms3LoaderRole",
"region" : "us-east-1",
"failOnError" : "FALSE"
} '

Listing 1.1. Loading call process with AWS Neptune

In the listing line 3 specifies the endpoint for the loader, and lines 4-8 the
source S3 bucket, format, IAMRole and the location of the endpoint.

Loading on db.r4.4xlarge instance Table [2| summarizes the time to load dif-
ferent sizes of datasets. Wikidata Dump is used to estimate the time for almost 10
Billion. The results show an increase of 1 hour compared to Neptune Preview for
loading 727.95 Million triples. Overall, the order of magnitude (less than 5 hours) is
like Virtuoso (3.8h) and Stardog (4.59h). However, when it comes to load 2.18 Billion
triples, Neptune is faster than Virtuoso (13.01h) and Stardog (13.30h)

This result is useful in an emergency case of a database corruption with the need
to reload the dataset from scratch within a reasonable exploitation time frame main-
tenance.

Figure [I] depicts the performance time in hours taken by Neptune 1.0.1 on a
db.r4.xlarge instance.

Table 2. Loading time per dataset in Neptune 1.0.1

Dataset Size Time(h)
PO Dataset 727.95 Million 4.2
PO Augmented Dataset 2.183 Billion 12.9
Wikidata Dump 9.43 Billion 72

Fig. 1. Loading time in hours with Neptune. Mio=Million ; Bio=Billion

Loading time per Dataset - r4.r4xlarge instance

80

Time (hours)

727Mio (PO) 2.183Bio (PO) 9.43Bio (Wikidata)

Dataset

Loading on other EC2 instances We evaluate the loading with bigger instances
of Neptune to evaluate the impact of the loader with respect to the hardware. We
observe a high correlation (0.999) between the times on loading the above-mentioned
datasets in both 4xlarge and 8xlarge. Table [3]shows the corresponding values obtained
during this sub task.

Table 3. Loading on a db.r4.4xlarge vs r4.8xlarge

Dataset size Time 4xlarge (h) Time 8xlarge (h)

727 Million 4.2 2.7
2.18 Billion 12.95 7.29
9.43 Billion 72 42.63

We even decide to load Wikidata Dump on a r5.12xlarg(ﬂ (vCPU: 48 RAM: 384
GiB), and the task completed in 75,932s, that is 21.09h. Thus, reducing to almost one
day compared to its predecessor, r4.8xlarge.

" https://aws.amazon.com/ec2/instance-types/r5/

https://aws.amazon.com/ec2/instance-types/r5/

Fig. 2. Overview of the completion time on different EC2 instances

r4.4xlarge vs r4.8xlarge loading time with Neptune

B rd4xlarge W@ rd.Bxlarge
80

60

40

20

727Mio (PO) 2.183Bio (PO) 9.43Bio (Wikidata)

Dataset

6 Benchmarking AWS Neptune

We use the Sparql Query Benchmarker tooﬂ an open-source tool based on Jena to
run our experiment. We set 20 runs of mix queries per category to warm up the server.
Furthermore, we make 5 additional runs to compute the average of the time taken for
each query. Each group of queries has different time out which was decided based on
functional requirements by experts at Publications Office. The timeout settings are 60s
for instantaneous queries and 600s for analytical queries.

Listing [[.2] represents a script to launch the benchmark with a timeout set to 600s
on a set of queries in a TSV file, and the results gathered in a CSV file.

./benchmark -s O -t 600 -q \ http://mdk.cluster-caidoed44teuh.us-east-1-
beta.rds.amazonaws.com:8182/sparql -m mixqueries_cat2_neptune.tsv \
-r 5 -w 20 -c results/results_neptune_group2.csv

Listing 1.2. sample command used to run an instance of AWS Neptune with analytical
queries

6.1 Evaluating Instantaneous Queries

We proceed to compare the results of querying the RDF stores using the benchmarker
tool. We gathered the output of each run in CSV files as explained in the previous
section. We use set two substasks: (i) first by using a single thread and (ii) by emulating
multiple clients with the same set of queries.

8 https://github.com/rvesse/sparql-query-bm

https://github.com/rvesse/sparql-query-bm

Single Thread Table [4] shows the results obtained by the 3 versions of Neptune.
Neptune 1.0.1 timed out with 8 queries, which an improvement over the preview version
(9 timed out), but not with Neptune 1.0 (7 timed out). While query IQ10 was under
60s, the same query with Neptune 1.0.1 timed out.

Comparing the results obtained with other enterprise RDF stores, such are Vir-
tuoso, Oracle 12c, Stardog and GraphDB, we conclude that Neptune performs poorly
with respect to this set of queries. Table [5| summarizes the number of queries with
timeout obtained by all five RDF stores. Neptune is at the bottom of the ranking with
Virtuoso the clear winner.

Query Neptune P. Neptune 1.0 Neptune 1.0.1

IQ1 .04 07 08
IQ2 .05 07 08
IQ3 .09 07 09
Q4 .12 05 07
IQ5 60 60 60
IQ6 60 20.47 59.96
IQ7 60 60 60
IQ8 60 60 60
IQ9 60 60 60
IQ10 60 55.99 60
IQ11l .12 05 06
IQ12 60 60 60
IQ13 .09 07 11
IQl4 60 60 60
IQ15 .08 04 04
IQ16 .09 05 04
IQ17 60 60 60
IQ18 .21 15 21
IQ19 .14 A1 14
IQ20 .09 .04 .05

Table 4. Average response time in second per queries over different versions of Neptune.
Neptune P. = preview version.

It indicates that Neptune 1.0.0 solved the problem with IQ10, but it appeared in
version 1.0.1. We observe also in general that Neptune 1.0 performed better than the
other two versions.

Table 5. Number of timeouts per RDF stores

RDF Stores nbTimeOut Rank

Virtuoso 0 1
Oracle 2 2
Stardog 2 2
GraphDB 4 3
Neptune 1.0.1 8 4

Next, we manually rewrite seven queries (IQ5, 1Q6, IQ7, IQ8, 1Q12, IQ14 and IQ17)
using the EXPLAII\Elfeature of Neptune. The main strategy is to incorporate hint : Group
hint:joinOrder "Ordered". Interestingly, Neptune is 4x faster (QMpH[°|=6.65 w.r.t.
26.59), and with a reduced number of queries reaching the limits. Table [6| shows the
differences using optimized queries.

Query Avg. time (s) Previous bench (s)

IQ5r .04 60
IQ6r .68 59.96
1IQ7r 057 60
IQ8r .03 60
IQ12r 14 60
IQ14r .03 60
IQ17r .05 60

Table 6. Average response time in second per queries with optimized queries in Nep-
tune 1.0.1

Multi-Thread In real-world settings, a SPARQL endpoint usually receives concur-
rent queries. We test this feature in the benchmark by emulating multi-threading to
AWS Neptune 1.0.1 with respectively 5 clients, 20 clients, 50 clients, 70 clients and 100
clients. We observe a constant value of QMPH of 6.65. Moreover, it places Neptune
in second position after Virtuoso, and before Oracle, GraphDB and Stardog. Table [7]
presents the results of QMpH values in case of multi-thread benchmark for instanta-
neous queries.

RDF Store 5clients 20clients 50clients 70clients 100clients

Neptune 1.0.1 6.653 6.654 6.655 6.654 6.654
Virtuoso 7.2.4.2 367.22 358.27 371.76 354.60 341.02

GraphDB EE 8.2 2.13 2.12 2.13 2.12 2.13
Stardog 4.3 1.973 1.94 1.97 1.96 1.95
Oracle 12c 2.10 1.99 2.01 2.01 2.02

Table 7. QMpH values in multi-threading bench for instantaneous queries

6.2 Evaluating Analytical Queries

We set 600s for timeout because the queries in this category are more analytical-based
queries, and so need more time to complete. This value is based on the business re-
quirement at PO. Table [§] presents the results of Neptune throughout the different
versions. Surprisingly, there is no time out with these set of queries, and the latest ver-
sion of Neptune is 4x faster than the two previous versions. Regarding the comparison

9 https://docs.aws.amazon.com/neptune/latest/userguide/
~ sparql-explain-operators.html
Y QMpH = Query Mixed per Hour

https://docs.aws.amazon.com/neptune/latest/userguide/sparql-explain-operators.html
https://docs.aws.amazon.com/neptune/latest/userguide/sparql-explain-operators.html

with related triple stores, Table [0] reports the 3rd position for Neptune, compared to
Virtuoso, GraphDB, Oracle and Stardog.

Table 8. Average response time in second per analytical SPARQL queries with Neptune
versions.

Query Neptune Preview Neptune 1.0 Neptune 1.0.1

AQl 15.94 13.69 12.98
AQ2 36.12 30.10 20.98
AQ3 56.62 43.71 28.81
AQ4 1.08 2.89 1.12

AQ5 63.71 102.75 19.70
AQ6 1.12 3.56 1.14

AQ7 .04 14 .05

AQ8 .84 2.20 .62

AQ9 .06 .24 .05

AQ10 25.80 102.71 62.71
AQ11 .97 3.74 1.37
AQ12 28.16 594.60 87.79
AQl3 .24 91 74

AQ14 120.36 300.85 120.60
AQl5 14.01 28.39 15.42
AQ16 5.24 6.89 2.69
AQ17 2.63 17.16 1.56
AQ18 12.89 21.58 14.35
AQ19 5.23 8.09 2.72
AQ20 2.60 1.37 1.50
AQ21 17.78 25.42 19.71
AQ22 5.36 12.71 2.96
AQ23 2.77 5.14 1.78
AQ24 3.04 7.34 2.21

Table 9. Ranking of Neptune with other RDF stores using analytical queries

RDF Store QMpH Rank

Virtuoso 7.2.4.2 80.23 1
GraphDB EE 8.2 19.94 2
Neptune 1.0.1 8.4 3
Oracle 12¢ 2.41 4
Stardog 4.3 .89 5

6.3 Evaluating Updates Queries

Single Thread We set the queries in this group of queries to finish in 10s. Table
10|, with a total of 14,694 QMpH. This result is almost 2K more than the results
obtained with Virtuoso under the same queries. This is the first scenario where Neptune
outperforms any other RDF store in this benchmark, with all the precaution with the
comparison as we stated in the previous section. Table [11] summarizes the ranking for
this set of queries.

Table 10. Average time in seconds with update queries

Query Avg time (s)

UQl 0.05
uQ2 0.07
uQ3 0.01
UQ4 0.01
uQs 0.01

It also shows that the winner for this task is Neptune. Additionally, Neptune shares
more or less the same order of magnitud with regards to numbers of QMpH. However,
there is a huge gap with the three other RDF stores.

Table 11. Ranking of Neptune

RDF Stores Avg time (s) QMpH Rank

Neptune .24 14,594.81 1
Virtuoso .29 12,372.49 2
GraphDB EE .87 4,133.53 3
Stardog 11.83 304.14 4
Oracle 50 71.99 5

Multi-Thread In this scenario, we observe a non constant values when varying
the number of clients. Figure [3] presents the evolution of QMpH, which starts with
QMpH=5225 on 5 clients to reach the value of 461 with 100 simultaneous clients.

Fig. 3. Evolution of QMpH for different clients on updates queries

QMpH with multi-clients

SCLIENTS 20CLIENTS S0CLIENTS TOCLIENTS 100CLIENTS

Table[T2] presents an overview values with other RDF stores. Neptune follows Oracle
in the highest numbers of QMpH. Surprisingly, this is the only situation where Oracle
performs better than the rest of the RDF stores.

RDF Store

5clients 20clients 50clients 70clients 100clients

Neptune 1.0.1 5225 2304
Virtuoso 7.2.4.2 71.32 48.34
GraphDB EE 8.2 273.18 146.87
Stardog 4.3 35.47 36.65
Oracle 12c

1467
48.51
79.52
35.18
8382.21 8358.48 6980.34 7771.74

461
48.26
56.24
26.17

8718.96

Table 12. QMpH values in multi-threading bench for updates queries

6.4 Stability Test

We perform a stress test on the triple stores to have a quantitative indication related
to stability. For this purpose, all the set of instantaneous queries are run continuously
under a progressively increasing load to see how the engine reacts to high load. We use

this test to empirically evaluate how stable is the RDF store.

The test starts by specifying the number of parallel clients within the script. Each
client completes the run of the mix queries in parallel. The number of parallel clients
is then multiplied by the ramp up factor and the process is repeated. This is repeated
until either the maximum runtime or the maximum number of threads are reached.
We set the maximum runtime to 180 minutes and set the maximum parallel threads

to 128.

Listing displays a sample command used to run the stress test on a given triple

store.

1 ./stress -q <https://my/neptune.location.amazonaws.com:8182/sparql> -m
mixqueries_catl.tsv --max-runtime 180 --max-threads 128 --ramp-up 2.

Listing 1.3. Sample command used to run the stress test

Table 13. Results of the stress test on triple stores using instantaneous queries.

RDF Store #mix runs #op. run Max.//.threads # HTTP 5xx Errors

GraphDB 255
Virtuoso 255
Neptune 1.0.1 127
Stardog 92
Oracle 63

5,100
5,100
2,540
1,840
1,260

256
256

139
4,732
1,136
576
1,009

Neptune finishes with the limit of the parallel threads, unlike Virtuoso and GraphDB
that completed the test after 180 minutes, reaching 256 parallel threads. The results
in Table suggest that Neptune is less stable than GraphDB and Virtuoso based on

the total mix runs, the parallel threads and the total errors.

7 Discussion

We proceed to compare the results across the versions of Neptune, as well as with non
cloud-based solutions of our previous work. We also briefly highlight some arguments
for the potential impact of the resource.

7.1 Comparison across Neptune versions

The loader of Neptune 1.0.1 is less faster compared to Neptune Preview, at least with
the experiment on 727 Million datasets, with almost the same behaviour with the
previous version of 1.0. We observe a regression in terms of engine optimization when
upgrading the minor version of Neptune 1.0. in the case of querying instantaneous
queries. We agree on a faster engine after the preview release on the same set of
queries.

7.2 Comparison with non-cloud-based RDF stores

We use Neptune 1.0.1 to proceed with some of our previous results with non-cloud
RDF stores. Table [[4] presents the results when querying those 8 queries with at least
6 Basic Graph Patterns (BGPs) in instantaneous queries. Neptune falls in 80% of the
total queries.

Table 14. Comparison results time execution (in second) of the seven instantaneous
queries with at least seven six BGPs.

Query Neptune Virtuoso GraphDB Stardog Oracle #BGP

I1Q5 60 .09 .01 .82 31.35 7
1Q6 59.96 .28 .01 10 39.35 6
1Q7 60 .06 .01 .01 34.82 7
1Q8 60 .10 .01 1.35 31.88 7
1Q9 60 .05 .01 .20 60 7
1Q10 60 12 60 60 3.64 7
I1Q19 .04 11 60 60 .04 11

Now, we consider in the analytical queries, those queries containing a combination
of at least three of the SPARQL features REGEX, DISTINCT, FILTER, OPTIONAL
and GROUP BY. Table [I5] shows the results by comparing Neptune with other RDF
stores. While AQ14 hits a highest time reported by Neptune, it is rather surprising the
huge difference with GraphDB, Virtuoso and Stardog.

7.3 Potential Impact

The main dataset used in production by the Publications Office for this benchmark
has been granted usage to three persons from different organizations and RDF ven-
dors (Allegrograph, RDFox) with the goal of replicating this benchmark. The recent
justification of usage last September was by someone who wanted to:

Table 15. Comparison results time in seconds of querying analytical queries with a
mix of SPARQL features.

Query Neptune Virtuoso GraphDB Stardog Oracle

AQ13 .74 .06 .01 26.28 85.19
AQ14 120.60 .06 .01 .10 206.308
AQ15 1542 .72 .06 60 3.74
AQ18 14.35 .06 .01 292.24 293

— Perform more benchmarks against Neptune
— See how Neptune Query Plans hints can influence the response of compler SPARQL
queries

We imagine that the person is either using Neptune or works closely with Amazon.
Therefore, we argue that the resource has an impact in assessing RDF stores in general,
hence supports the adoption of Semantic Web technologies in industry.

In summary, this benchmark shows the following insights:

— Neptune loader has been slower since the Preview version, probably a design choice
while gaining new features.

— Neptune 1.0 is faster than the upgraded minor version with instantaneous queries.

— Neptune 1.0.1 engine is 4x faster than the previous versions when it comes to
analytical queries.

— In general, Neptune performs well in multi threading scenario, and outperforms in
updates queries.

— The stability test reveals that Neptune is less stable than GraphDB and Virtuoso,
which are the most stables in this task.

— aAS Benchmarking a cloud-based solution comes with a financial cost, that has be
taken into consideration when planning such task.

8 Conclusion

We have presented in this paper an empirical evaluation of AWS Neptune on real-world
RDF datasets. We have described the steps to do such a benchmark with the goal to
ease reproducibility. To this end, we used the same resource across three different
versions of Neptune, which span for almost two years.

‘We compare the results obtained with our previous work on benchmarking enter-
prise RDF stores. This comparison is used to put in perspective, knowing the limitations
of a strict comparison. For example, the settings of the hardware used in that work
(SATA disk and 128 GB RAM) are not stricto sensu comparable with Amazon instance
(db.r4.4xlarge), or that Neptune is a multi-modal data graph on the cloud.

The resource for this benchmark and the results are accessible online on Zenoddzl
with a CC—BY-4.(E license attached to it. We hope this work will show a growing
interest in a more rigorous assessment of AWS Neptune with existing latest versions of
RDF Graph Databases on the cloud.

" https://doi.org/10.6084/m9. figshare.13414817
12 https://creativecommons.org/licenses/by/4.0

https://doi.org/10.6084/m9.figshare.13414817
https://creativecommons.org/licenses/by/4.0

Acknowledgments. We would like to thank the AWS team based in Paris, in
particular Jean-Philippe Pinte and Alice Temem for granting us credits to perform our
test on Neptune.

References

1.

10.

11.

G. Alug, O. Hartig, M. T. Ozsu, and K. Daudjee. Diversified stress testing of
rdf data management systems. In International Semantic Web Conference, pages
197-212. Springer, 2014.

Amazon. Amazon neptune: Fast, reliable graph database built for the cloud, 11
2017.

G. A. Atemezing and F. Amardeilh. Benchmarking commercial rdf stores with
publications office dataset. In European Semantic Web Conference, pages 379-394.
Springer, 2018.

C. Bizer and A. Schultz. Benchmarking the performance of storage systems that
expose sparql endpoints. World Wide Web Internet And Web Information Systems,
2008.

F. Conrads, J. Lehmann, M. Saleem, M. Morsey, , and A.-C. Ngonga Ngomo.
IGUANA: A generic framework for benchmarking the read-write performance of
triple stores. In International Semantic Web Conference (ISWC), 2017.

Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark for owl knowledge base systems.
Web Semantics: Science, Services and Agents on the World Wide Web, 3(2):158-
182, 2005.

S. Harris, A. Seaborne, and E. PrudaAZhommeaux. Sparql 1.1 query language.
W3C recommendation, 21(10):778, 2013.

M. Morsey, J. Lehmann, S. Auer, and A.-C. Ngonga Ngomo. DBpedia SPARQL
Benchmark—Performance Assessment with Real Queries on Real Data. In ISWC
2011, 2011.

O. Publications and Mondeca. Dump of rdf dataset used for rdf benchmark, 2017.
http://doi.org/10.5281 /zenodo.1036739.

M. Saleem, Q. Mehmood, and A.-C. N. Ngomo. Feasible: A feature-based sparql
benchmark generation framework. In International Semantic Web Conference,
pages 52—69. Springer, 2015.

M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. Sp~ 2bench: a sparql perfor-
mance benchmark. In Data Engineering, 2009. ICDE’09. IEEE 25th International
Conference on, pages 222-233. IEEE, 2009.

	Benchmarking AWS Neptune Over Real-World Datasets.
	Introduction
	Related Work
	Dataset and Queries
	Datasets
	SPARQL Queries

	Neptune Benchmark Settings
	AWS Neptune Configuration
	Benchmark Settings

	Results Bulk Loading
	Loading on db.r4.4xlarge instance
	Loading on other EC2 instances

	Benchmarking AWS Neptune
	Evaluating Instantaneous Queries
	Single Thread
	Multi-Thread

	Evaluating Analytical Queries
	Evaluating Updates Queries
	Single Thread
	Multi-Thread

	Stability Test

	Discussion
	Comparison across Neptune versions
	Comparison with non-cloud-based RDF stores
	Potential Impact

	Conclusion

