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A general framework for
constrained convex quaternion optimization

Julien Flamant, Sebastian Miron, and David Brie

Abstract—This paper introduces a general framework for
solving constrained convex quaternion optimization problems in
the quaternion domain. To soundly derive these new results, the
proposed approach leverages the recently developed generalized
HR-calculus together with the equivalence between the origi-
nal quaternion optimization problem and its augmented real-
domain counterpart. This new framework simultaneously pro-
vides rigorous theoretical foundations as well as elegant, compact
quaternion-domain formulations for optimization problems in
quaternion variables. Our contributions are threefold: (i) we
introduce the general form for convex constrained optimization
problems in quaternion variables, (ii) we extend fundamental
notions of convex optimization to the quaternion case, namely
Lagrangian duality and optimality conditions, (iii) we develop
the quaternion alternating direction method of multipliers (Q-
ADMM) as a general purpose quaternion optimization algorithm.
The relevance of the proposed methodology is demonstrated by
solving two typical examples of constrained convex quaternion
optimization problems arising in signal processing. Our results
open new avenues in the design, analysis and efficient implemen-
tation of quaternion-domain optimization procedures.

Index Terms—quaternion convex optimization; widely affine
constraints; optimality conditions; alternating direction method
of multipliers;

I. INTRODUCTION

THE USE of quaternion representations is becoming
prevalent in many fields, including robotics [1], attitude

control and estimation [2], [3] polarized signal processing
[4]–[6], rolling bearing fault diagnosis [7], computer graph-
ics [8], among others. Compared to conventional real and
complex models, quaternion algebra permits unique insights
into the physics and the geometry of the problem at hand,
while preserving a mathematically sound framework. This is
particularly true in color imaging [9]–[24], where quaternion
models allow to efficiently and naturally handle cross cor-
relations between color channels, unlike standard real-valued
image representations – based either on processing each color
channel independently or by stacking them in a single long
vector. Quaternion modeling enables improved performances
in color imaging tasks, such as sparse representations, low-
rank approximations or missing data completion, to mention
only a few. Moreover, quaternions provide elegant and com-
pact algebraic representations which may result in a reduction
of the number of model parameters. For instance, it has
been recently shown [25], [26] that quaternion convolutional
neural networks (QCNNs) achieve better performance than
conventional real CNNs while using fewer parameters.
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CRAN, F-54000 Nancy, France. Corresponding author julien.flamant@
cnrs.fr. Authors acknowledge funding support of CNRS and GDR ISIS
through project OPENING.

Most problems involving quaternion models can be cast as
the minimization of a real-valued function of quaternion vari-
ables. Unfortunately, quaternion-domain optimization faces
immediately a major obstacle: quaternion cost functions being
real-valued, they are not differentiable according to quaternion
analysis [27] – just like real-valued functions of complex
variables are not differentiable according to complex analysis
[28]. Thus, for a long time, the intrinsic quaternion nature
of quaternion optimization problems has been disregarded by
reformulating them as optimization problems over the real
field. This procedure, however, is not completely satisfying.
Indeed, one can legitimately wonder whether such a real-
domain equivalent model could have been directly designed
without the algebraic / geometric insights offered by quater-
nion algebra. Thus, it appears more natural and intellectually
fulfilling to solve the optimization problem directly in its
originally quaternion form, rather than resorting to an equiv-
alent ad hoc real reformulation specifically designed for the
problem at hand. In this sense, developing a general quaternion
optimization framework would enable end-to-end quaternion
procedures, going from relevant algebraic / geometric models
to practical algorithms. Such a framework would boost the
emergence of full quaternionic methodologies for efficiently
solving practical problems, especially when dealing with 3D
or 4D data.

Recently, a crucial step towards quaternion-domain opti-
mization has been made with the development of the theory
of HR-calculus [29]–[32]. This new framework establishes a
complete set of differentiation rules, encouraging the system-
atic development of quaternion-domain algorithms. The HR-
calculus can be seen as the generalization to quaternions of
the CR-calculus [33], which has enabled the formulation of
several important complex-domain algorithms [34], [35]. The
theory of HR-calculus has led to the development of multiple
quaternion-domain algorithms, notably in adaptive filtering
[36]–[38], low-rank quaternion matrix and tensor completion
[12]–[14] and quaternion neural networks [15], [16].

Motivated by the increasing use of quaternion models in
various applications, this paper provides a general methodol-
ogy dedicated to quaternion constrained convex optimization
problems. We restrict ourselves to the convex case as it
allows to establish strong optimality guarantees. The proposed
framework builds upon two key ingredients: the recent theory
of generalized HR-derivatives, to compute derivatives of cost
functions defined in terms of quaternion variables, and the
explicit correspondence between the original quaternion opti-
mization problem and its real augmented counterpart, to rigor-
ously establish general mathematical properties. This work is
part of the current effort in signal and image processing toward
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the development of general tools for solving optimization
problems formulated in quaternion variables [39], [40].

More precisely, the use of systematic and explicit equivalen-
cies between the original optimization problem in quaternion
variables and its real-augmented domain counterpart allows
us to derive once and for all fundamental results for the
general form of a convex constrained optimization problem in
quaternion variables. It permits to naturally extend elementary
notions of convex optimization to the quaternion case, namely
Lagrangian duality and optimality conditions. Moreover, we
develop the quaternion alternating direction method of mul-
tipliers (Q-ADMM) as a versatile quaternion optimization
algorithm. In essence, the real-augmented equivalent problem
is used as a bridge to establish general full quaternion-domain
optimization tools. This methodology further reveals subtle
properties of quaternion-domain optimization that would have
been hindered otherwise. This includes the widely affine equal-
ity constraints that naturally arise in constrained quaternion
problems, together with the quaternion nature of Lagrange dual
variables associated with equality constraints.

The paper is organized as follows. In Section II we review
the necessary material regarding quaternion variables, their dif-
ferent representations and discuss the general affine constraint
in the quaternion domain. Section III describes generalized
HR-calculus and its particular properties in the case of quater-
nion cost functions. Section IV introduces the main theoretical
tools for quaternion convex optimization problems, including
definitions and optimality conditions. Section V develops
Q-ADMM in its general form to solve convex quaternion
optimization problems. Finally, we illustrate in Section VI the
relevance of the proposed methodology by a detailed study of
two examples of constrained quaternion optimization problems
inspired by the existing signal processing literature. Section
VII presents concluding remarks and perspectives.

II. PRELIMINARIES

A. Quaternion algebra

The set of quaternions H defines a 4-dimensional normed
division algebra over the real numbers R. It has canonical basis
{1, i, j,k}, where i, j,k are imaginary units such that

i2 = j2 = k2 = ijk = −1, ij = −ji, ij = k . (1)

These relations imply in particular that quaternion multiplica-
tion is noncommutative, meaning that for q, p ∈ H, one has
qp 6= pq in general. Any quaternion q ∈ H can be written as

q = qa + iqb + jqc + kqd , (2)

where qa, qb, qc, qd ∈ R are the components of q. The real
part of q is Re q = qa whereas its imaginary part is Im q =
iqb+jqc+kqd. A quaternion q is said to be purely imaginary
(or simply, pure) if Re q = 0. The quaternion conjugate of
q is denoted by q∗ = Re q − Im q and acts on the product
of two quaternions as (pq)∗ = q∗p∗. The modulus of q is
|q| =

√
qq∗ =

√
q∗q =

√
q2a + q2b + q2c + q2d. Any non-zero

quaternion q has an inverse q−1 = q∗/|q|2. The inverse of

the product of two quaternions is (pq)−1 = q−1p−1. Given a
nonzero quaternion µ ∈ H, the transformation

qµ , µqµ−1 =
1

|µ|2
µqµ∗ (3)

describes a three-dimensional rotation of the quaternion q. In
particular it satisfies the following properties

qµ∗ , (q∗)
µ

= (qµ)∗, (pq)
µ

= pµqµ . (4)

Pure unit quaternions such as i, j,k (and more generally,
any µ such that µ2 = −1) play a special role and will be
denoted in bold italic letters. In this case the transformation
(3) becomes an involution qµ = −µqµ. In particular

qi = −iqi = qa + iqb − jqc − kqd , (5)

qj = −jqj = qa − iqb + jqc − kqd , (6)

qk = −kqk = qa − iqb − jqc + kqd . (7)

It follows that the components of q can be directly expressed
as a function of q and its canonical involutions qi, qj , qk as

qa =
1

4

(
q + qi + qj + qk

)
,

qb = − i
4

(
q + qi − qj − qk

)
,

qc = −j
4

(
q − qi + qj − qk

)
,

qd = −k
4

(
q − qi − qj + qk

)
.

(8)

Any quaternion vector q ∈ Hn can be written as q =
qa + iqb + jqc + kqd, where qa,qb,qc,qd ∈ Rn are its
components. Similarly, any quaternion matrix A ∈ Hm×n
can be expressed as A = Aa + iAb + jAc + kAd with
Aa,Ab,Ac,Ad ∈ Rm×n. The transpose of quaternion matrix
A is denoted by A>. Its conjugate transpose (or Hermitian) is
AH , (A∗)> = (A>)∗. Unless otherwise stated, quaternion
rotations or involutions are always applied entry-wise. Note
that quaternion matrix product requires special attention due
to quaternion noncommutativity: that is for A ∈ Hm×n,B ∈
Hn×p, the (i, j)-th entry of AB reads

(AB)ij =

n∑
k=1

AikBkj 6=
n∑
k=1

BkjAik . (9)

This implies notably that (AB)> 6= B>A> and (AB)∗ 6=
A∗B∗ in general whereas (AB)H = BHAH always holds.
For more details on quaternions and quaternion linear algebra
we refer the reader to [41], [42] and references therein.

B. Representation of quaternion vectors

Quaternion vectors can be represented in three equivalent
ways. Let q ∈ Hn and let us introduce

R =
{

(q>a ,q
>
b ,q

>
c ,q

>
d )> ∈ R4n | q ∈ Hn

}
, (10)

H =

{(
q>,qi

>
,qj
>
,qk
>)> ∈ H4n | q ∈ Hn

}
. (11)

By definition, there exists a one-to-one mapping between each
set Hn,R and H. The set R defines the augmented real
representation of q ∈ Hn and can be identified with R4n. We
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denote the augmented real vector by qR. The setH defines the
augmented quaternion representation of q ∈ Hn by making
use of the three canonical involutions. Importantly, H is only
a subset of H4n, i.e. H ⊂ H4n. We denote the augmented
quaternion vector by qH.

Expressions (8) show that qR and qH are linked by the
linear relationship

qH = JnqR, Jn ,


In iIn jIn kIn
In iIn −jIn −kIn
In −iIn jIn −kIn
In −iIn −jIn kIn

 . (12)

It can be shown that Jn ∈ H4n×4n is invertible, with inverse
J−1n = 1

4J
H
n so that conversely

qR =
1

4
JH
nqH . (13)

Now, equip each representation Hn, R and H with the
following real-valued inner products:

〈q,p〉Hn , Re
(
qHp

)
, (14)

〈qR,pR〉R , q>RpR , (15)

〈qH,pH〉H ,
1

4
qH
HpH . (16)

Proposition 1 below shows that inner products are preserved
from one representation to another.

Proposition 1. Given q,p ∈ Hn, the following equalities
hold:

〈q,p〉Hn = 〈qR,pR〉R = 〈qH,pH〉H . (17)

Proof. Let q = qa+iqb+jqc+kqd and p = pa+ipb+jpc+
kpd be vectors of Hn. Using rules of quaternion calculus, a
direct calculation shows that

Re
(
qHp

)
= q>a pa + q>b pb + q>c pc + q>d pd = q>RpR .

Then, by developing qH
HpH and using (8), one gets

qH
HpH = qHp + qi

H
pi + qj

H
pj + qk

H
pk

= qHp +
(
qHp

)i
+
(
qHp

)j
+
(
qHp

)k
= 4Re

(
qHp

)
which concludes the proof. This result can also be obtained
using qH

HpH = qH
RJ

H
nJnpR = 4q>RpR.

It directly follows that induced norms are equal, such that
‖q‖Hn = ‖qR‖R = ‖qH‖H. Moreover, the norm induced by
the real-valued inner product (14) is identical to the standard
quaternion 2-norm, since

‖q‖2Hn = Re
(
qHq

)
= ‖q‖22 ,

n∑
i=1

|qi|2 . (18)

For brevity, the 2-norm notation will thus be used hereafter
independently from the representation Hn, R or H. In addi-
tion, whenever there is a risk of ambiguity, we add a subscript
to quantities R and H in order to indicate the underlying
dimension.

C. Affine and linear constraints

Affine equality constraints are ubiquitous in standard, real-
domain constrained convex optimization. To perform opti-
mization directly in the quaternion domain, a key step is to
investigate how such constraints translate to quaternions. Let
q ∈ Hn be the variable of interest. Using its augmented real
representation, the most general affine constraint reads

ARqR = bR, AR ∈ R4p×4n ,bR ∈ R4p . (AR)

The constraint is said to be linear if bRp = 0. Our goal
is to find equivalent formulations of (AR) in the augmented
quaternion domain H and in Hn, respectively. Using the linear
mapping between H and R, one gets

(AR)⇐⇒ 1

4
JpARJ

H
nqH = JpbR , (19)

⇐⇒ AHqH = bH . (AH)

The constraint remains affine in the augmented quaternion
domain, yet the matrix AH ∈ H4p×4n exhibits a specific band
structure. To see this, let us describe AR in terms of p × n
real-valued blocks:

AR ,


AR11 AR12 AR13 AR14
AR21 AR22 AR23 AR24
AR31 AR32 AR33 AR34
AR41 AR42 AR43 AR44 .

 (20)

Then, computations yield

JpAR =


Ã·1 Ã·2 Ã·3 Ã·4
Ãi·1 Ãi·2 Ãi·3 Ãi·4
Ãj·1 Ãj·2 Ãj·3 Ãj·4
Ãk·1 Ãk·2 Ãk·3 Ãk·4

 (21)

where Ã·j = AR1j + iAR2j + jAR3j + kAR4j ∈ Hp×n
for j = 1, 2, 3, 4. Next, define four quaternion matrices
A1,A2,A3,A4 ∈ Hp×n such that

A1 =
1

4

(
Ã·1 − Ã·2i− Ã·3j − Ã·4k

)
(22)

A2 =
1

4

(
Ã·1 − Ã·2i+ Ã·3j + Ã·4k

)
(23)

A3 =
1

4

(
Ã·1 + Ã·2i− Ã·3j + Ã·4k

)
(24)

A4 =
1

4

(
Ã·1 + Ã·2i+ Ã·3j − Ã·4k

)
. (25)

Then, the matrix AH , 1
4JpARJ

H
n explicitly reads:

AH =


A1 A2 A3 A4

Ai2 Ai1 Ai4 Ai3
Aj3 Aj4 Aj1 Aj2
Ak4 Ak3 Ak2 Ak1

 (26)

A careful inspection of the expressions above shows that
there exists a one-to-one mapping between quaternion matrices
A1,A2,A3,A4 and the real matrix blocks ARij that define
AR. To obtain the corresponding constraint in the quaternion
domain, remark that each line of the system of equations (AH)
corresponds to a block of p-equations. Writing (AH) explictly,
we see that the second, third and fourth p-blocks are simply
canonical involutions of the first block of equations. As a
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result, this shows that (AH) is equivalent to the following
widely affine quaternion constraint

A1q + A2q
i + A3q

j + A4q
k = b . (A)

The term widely refers to the fact that q and its three canonical
involutions qi,qj and qk are necessary to describe the most
general affine constraint in the corresponding augmented real
space. In particular, strictly affine quaternion constraints like
Aq = b – which are commonly found in the existing
literature – are only a special case of widely affine constraints
described by (A). Focusing on this special case, stricly affine
quaternion constraints Aq = b impose a peculiar structure
on the associated real matrix AR. The matrix AH becomes
diagonal, and letting A = Aa + Abi + Acj + Adk, with
Aa,Ab,Ac,Ad ∈ Rp×n one obtains

AR =
1

4
JH
p diag(A,Ai,Aj ,Ak)Jn , (27)

=


Aa −Ab −Ac −Ad

Ab Aa −Ad Ac

Ac Ad Aa −Ab

Ad −Ac Ab Aa

 , (28)

hence AR is a real structured matrix of size 4p× 4n.

III. OPTIMIZATION OF REAL-VALUED FUNCTIONS
OF QUATERNION VARIABLES

Given a real-valued function of quaternion variables (e.g. a
cost function), is it possible to define quaternion derivatives
and if so, how can we compute them? One key obstacle lies in
the non-analytic nature of real-valued functions: this means, in
particular, that such functions are not quaternion differentiable
[27], [43] and that other strategies need to be developed.

First, a pseudo-derivative approach can be used by treating
a function f of the variable q ∈ Hn as a function of its four
real components qa,qb,qc,qc – however, as the compactness
of quaternion expressions is lost, such an approach may
require tedious and cumbersome computations. Alternatively,
the recent advent of (generalized) HR-calculus [29], [31]
paved the way to efficient computation of quaternion-domain
derivatives. It provides a complete framework generalizing the
CR-calculus [33] of complex-valued optimization to the case
of quaternion functions. Generalized HR-calculus is one of
the key ingredients of the proposed framework for constrained
quaternion optimization. This section covers the fundamental
definitions and properties, focusing on practical aspects. For
detailed proofs and discussions, we refer the reader to the
pioneering papers [30]–[32].

A. Generalized HR-derivatives for cost functions

We first consider the simpler case of a univariate function
f : H → R. The function f is said to be real-differentiable
[44] if the function f(q) = f(qa, qb, qc, qd) = f(qR) is
differentiable with respect to the real variables qa, qb, qc, qd.
Generalized HR (GHR)-derivatives are defined in terms of
standard real-domain derivatives as follows.

Definition 1 (Generalized HR-derivatives [31]). Let µ be
a nonzero quaternion. The GHR derivatives of a real-
differentiable f : H→ R with respect to qµ and qµ∗ are

∂f

∂qµ
=

1

4

(
∂f

∂qa
− ∂f

∂qb
iµ − ∂f

∂qc
jµ − ∂f

∂qd
kµ
)

(29)

∂f

∂qµ∗
=

1

4

(
∂f

∂qa
+
∂f

∂qb
iµ +

∂f

∂qc
jµ +

∂f

∂qd
kµ
)

(30)

The term generalized refers to the use of an arbitrary
quaternion rotation encoded by µ 6= 0 in expressions (29)–
(30). This is necessary to ensure that GHR calculus can be
equipped with product and chain rules (see [31] for details and
further properties). Since f is real-valued, its GHR derivatives
enjoy several nice properties, such as the conjugate rule(

∂f

∂qµ

)∗
=

∂f

∂qµ∗
,

(
∂f

∂qµ∗

)∗
=

∂f

∂qµ
, (31)

together with a special instance of the rotation rule [31]

∂f

∂qν
=

(
∂f

∂q

)ν
,

∂f

∂qν∗
=

(
∂f

∂q∗

)ν
. (32)

for ν ∈ {1, i, j,k}.

B. Quaternion gradient and stationary points

Consider now a real-valued function f : Hn → R of the
quaternion vector variable q = (q1, q2, . . . qn)> ∈ Hn. We as-
sume that f is real-differentiable, that is, is real-differentiable
with respect to each vector component qi, i = 1, 2, . . . , n.
The µ-gradient operator and µ-conjugated gradient operators
are defined in terms of GHR derivatives as follows [32]:

∇qµf ,

(
∂f

∂q1µ
,
∂f

∂q2µ
, . . . ,

∂f

∂qnµ

)>
∈ Hn, (33)

∇qµ∗f ,

(
∂f

∂q1µ∗
,
∂f

∂q2µ∗
, . . . ,

∂f

∂qnµ∗

)>
∈ Hn. (34)

Remark immediatly that since f is real-valued, the conjugate
rule (31) implies that ∇qµf = (∇qµ∗f)

∗. When µ = 1,
we simply call ∇qf (resp. ∇q∗f ) the quaternion gradient
of f (resp. conjugated quaternion gradient of f ). Choosing
the canonical involutions µ ∈ {1, i, j,k}, we define the
augmented quaternion gradient and conjugated augmented
quaternion gradient as

∇Hf ,


∇qf
∇qif
∇qjf
∇qkf

 , ∇H∗f ,


∇q∗f
∇qi∗f
∇qj∗f
∇qk∗f

 ∈ H4n . (35)

Introducing the (standard) augmented real gradient operator as
∇R , (∇>qa ,∇

>
qb
,∇>qc ,∇

>
qd

)> and exploiting the definition
of generalized HR derivatives (29)–(30), one obtains

∇Hf =
1

4


In −iIn −jIn −kIn
In −iIn jIn kIn
In iIn −jIn kIn
In iIn jIn −kIn



∇qaf
∇qbf
∇qcf
∇qdf


=

1

4
J∗n∇Rf , (36)
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and

∇H∗f =
1

4


In iIn jIn kIn
In iIn −jIn −kIn
In −iIn jIn −kIn
In −iIn −jIn kIn



∇qaf
∇qbf
∇qcf
∇qdf


=

1

4
Jn∇Rf . (37)

In particular, the real augmented and conjugated augmented
quaternion gradients are related by a simple linear transform:

∇Rf = JH
n∇H∗f . (38)

This result is fundamental for the proposed quaternion op-
timization framework since it permits to switch from one
representation of quaternion vectors to another while preserv-
ing gradient-related properties. Notably, it allows to derive
necessary and sufficient conditions for stationary points of
real-valued functions of quaternion variables.

Proposition 2 (Stationary points). Let f : Hn → R be real-
differentiable and let µ ∈ {1, i, j,k}. The vector q? ∈ Hn is
a stationary point of f iff

∇qµf(q?) = 0⇔ ∇qµ∗f(q?) = 0⇔ ∇Rf(q?R) = 0

⇔ ∇Hf(q?H) = 0⇔ ∇H∗f(q?H) = 0 .
(39)

Proof. Let q? ∈ Hn and define q?R and q?H its augmented
real and quaternion vectors. Suppose that ∇Rf(q?R) = 0. By
Eqs. (36)–(37) one has

∇Rf(q?R) = 0⇔ ∇Hf(q?H) = 0⇔ ∇H∗f(q?H) = 0 .

Clearly, by definition of ∇H one has ∇Hf(q?H) = 0 ⇒
∇qf(q?) = 0. Conversely, suppose that ∇qf(q?) = 0. Since
f is real-valued, one has ∇qµf = (∇qf)

µ for µ ∈ {1, i, j,k},
so that ∇qf(q?) = 0 ⇒ ∇Hf(q?H) = 0. Similarly one
shows that ∇q∗f(q?) = 0 ⇔ ∇H∗f(q?H) = 0, which
concludes the proof.

Proposition 2 has a very important consequence: it states
that optimization problems involving quaternion variables can
be equivalently tackled in any representation: Hn, R or H.
This equivalence allows to move back-and-forth between the
three representations and to benefit from the advantages of
each. This result is a cornerstone for the proposed framework
for quaternion convex optimization detailed in the remaining
of this paper.

IV. CONVEX OPTIMIZATION
WITH QUATERNION VARIABLES

This section starts by introducing the notion of convex
sets and convex functions in the quaternion domain. Then we
introduce the most general form for a constrained quaternion
convex problem by leveraging the equivalent augmented real
optimization problem. The notion of Lagrangian and duality
are introduced next, which enables the formulation of two
fundamental optimality conditions. Some of these definitions
may appear trivial to the reader familiar with the convex
optimization field: yet, in our opinion, explicit and rigorous
definitions are necessary to ensure the soundness of the
proposed framework for quaternion convex optimization.

A. Convex sets and convex functions

Definitions of convexity for quaternion sets of Hn or for
a real-valued function of quaternions variables f : Hn → R
appear very close to the standard real case. This is essentially
due to the fact that convexity is intrisically a “real” property,
so that convexity in the quaternion domain is inherited from
convexity of the equivalent, real-augmented representation.

Convex sets. Let C ⊂ Hn and define CR =
{(q>a ,q>b ,q>c ,q>d )> ∈ R4n | q ∈ C} its augmented real
representation. We say that C is a convex set (resp. cone,
convex cone) of Hn if CR is a convex set (resp. cone, convex
cone) of R4n. This leads to the following explicit definitions.

Definition 2 (Convex set). A set C ⊂ Hn is convex if ∀p,q ∈
C and any θ ∈ [0, 1], one has θp + (1− θ)q ∈ C.

A similar definition is possible for cones and convex cones
of Hn.

Definition 3 (Cone and convex cone). A set C ⊂ Hn is a cone
if ∀ q ∈ C and θ ≥ 0, θq ∈ C. A set C is a convex cone if it
is convex and a cone, which means that ∀ p,q ∈ C and any
θ1, θ2 ≥ 0 we have θ1p + θ2q ∈ C.

Remark 1. Given a convex set C ⊂ Hn (resp. convex cone),

CH ,
{

(q,qi,qj ,qk)> ∈ H4n | q ∈ C
}

is a convex set (resp. convex cone) of H4n. The converse is
also true.

Remaining definitions such as convex hull, dual cone, etc.
for the quaternion domain are omitted for brevity. They can be
obtained if desired, by proceeding analogously and exploiting
equivalence with the augmented real representation.
Convex functions. Similarly to the definition of convex
sets of quaternions, the definition of convexity of real-valued
functions of quaternion variables relies on convexity of the
associated function in terms of augmented real-variables.

Definition 4 (Convex function). A function f : Hn → R is
convex if its domain dom f is convex and if for all p,q ∈
dom f and for θ ∈ [0, 1] one has

f (θp + (1− θ)q) ≤ θf(p) + (1− θ)f(q) (40)

A function f is strictly convex if the above inequality is strict
whenever p 6= q and θ ∈ (0, 1).

Remark that if f(q) is convex, the function f(qH) is also
convex, and conversely.

In practice, supposing that f is real-differentiable it is
possible to characterize convexity in terms of quaternion
gradients introduced in Section III-B.

Proposition 3 (First-order characterization). Consider f :
Hn → R a real-differentiable function such that dom f is
convex. Then f is convex if and only if ∀ p,q ∈ dom f

f(p) ≥ f(q) + 4Re
(
∇q∗f(q)H(p− q)

)
(41)

⇐⇒ f(pH) ≥ f(qH) +∇H∗f(qH)H(pH − qH) (42)

⇐⇒ f(pR) ≥ f(qR) +∇Rf(qR)>(pR − qR) . (43)
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Proof. Suppose dom f convex and f real-differentiable. Then
the usual convexity condition [45, Chapter 3] on f reads in
terms of real augmented variables

f is convex⇔

{
∀ p,q ∈ dom f,

f(pR) ≥ f(qR) +∇Rf(qR)>(pR − qR)
.

Using (38), the inner product term can be rewritten as

∇Rf(qR)>(pR − qR) = ∇Rf(qR)H(pR − qR)

=
(
JH∇H∗f(qH)

)H
J−1(pH − qH)

= ∇H∗f(qH)H(pH − qH) ,

which yields the second equivalency. To obtain the result in
q,p coordinates, remark that ∇H∗f(qH) is the quaternion
augmented vector of ∇q∗f(q), so that by Proposition 1

∇H∗f(qH)H(pH − qH) = 4Re
(
∇q∗f(q)H(p− q)

)
which concludes the proof.

Example. Consider the function f : Hn → R defined by

f(q) = ‖P1q + P2q
i + P3q

j + P4q
k − b‖22 , (44)

where P1,P2,P3,P4 ∈ Hp×n and b ∈ Hp are arbitrary.
First, note that dom f = Hn is convex. From Proposition 1,
f(q) = f(qR) = ‖PRqR − pR‖22; f is a convex function of
the augmented real variable qR, so f is convex in q.

For brevity, properties of quaternion convex functions such
as closedness, properness, etc. are omitted. They can be
defined without difficulty just like above, by exploiting the
augmented real representation.

B. Convex problems

The most general form of quaternion constrained convex op-
timization problems consists in the minimization of a convex
function subject to inequality constraints defined by convex
functions and to widely affine equality constraints. Formally,

minimize f0(q)

subject to fi(q) ≤ 0, i = 1, . . . ,m

A1q + A2q
i + A3q

j + A4q
k = b

(P )

where f0, . . . fm : Hn → R are real-valued convex functions
and where A1,A2,A3,A4 ∈ Hp×n and b ∈ Hp encode p
quaternion widely affine equality constraints. This particular
type of equality constraints – specific to quaternion algebra –
ensures that (P ) defines the most general form of constrained
convex quaternion optimization problems. Using results from
Section II-C, the problem (P ) can be equivalently rewritten in
terms of the augmented quaternion variable qH ∈ H ⊂ H4n

as follows:

minimize f0(qH)

subject to fi(qH) ≤ 0, i = 1, . . . ,m

AHqH = bH

, (PH)

where AH ∈ H4p×4n is the structured quaternion matrix given
by (26). Similarly, one can obtain the equivalent constrained
convex problem in real augmented variables as

minimize f0(qR)

subject to fi(qR) ≤ 0, i = 1, . . . ,m

ARqR = bR

, (PR)

which is a constrained convex problem in real augmented
variables written in its most general form.

In the sequel, the equivalence between the three optimiza-
tion problems (P ), (PH) and (PR) is thoroughly exploited
to construct a general constrained convex optimization frame-
work directly in the quaternion domain.

C. Lagrangian and duality

As a first step, we exploit the equivalent real problem
(PR) as a bridge to obtain the Lagrangian associated with
the quaternion optimization problem (P ). The Lagrangian as-
sociated with the real equivalent problem (PR) is the function
L : Rn × Rm ×Rp defined by

L(qR,ν,λR)

, f0(qR) +

m∑
i=1

νifi(qR) + λ>R (ARqR − bR) ,
(45)

where ν = (ν1, ν2, . . . , νm)> ∈ Rm is the dual variable
associated to the m inequality constraints and λR ∈ Rp
is the dual variable corresponding to the 4p real-augmented
equality constraints ARqR = bR. To get the expression of
the Lagrangian in terms of quaternion variables, we exploit
the linear relation between the real and quaternion augmented
quaternion representations R and H described in Sections
II-B together with the equivalence between affine constraints
described in Section II-C. Using Proposition 1, we get from
(45) the Lagrangian in augmented quaternion variables as

L(qH,ν,λH)

= f0(qH) +

m∑
i=1

νifi(qH) +
1

4
λH
H (AHqH − bH) .

(46)

Applying the same approach, one obtains the expression of
the Lagrangian of the quaternion optimization problem (P ) as
the function L : Hn × Rm ×Hp defined by

L(q,ν,λ) , f0(q) +

m∑
i=1

νifi(q)

+ Re
[
λH
(
A1q + A2q

i + A3q
j + A4q

k − b
)]

.

(47)

Remark 2. It can be easily checked by direct calculation that
L(q,ν,λ) = L(qH,ν,λH) = L(qR,ν,λR), meaning that
they represent the same quantity.

Remark 3. The Lagrange dual variable ν ∈ Rm associated to
the inequality constraints is always a real-vector variable no
matter which representation (Hn,R,H) is chosen, since the
inequality constraints are defined by the real-valued functions
fi, i = 1, . . .m. The main difference between (45), (46)
and (47) lies in the way the affine equality constraints are
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handled, since p quaternion equality constraints are equivalent
to 4p real equality constraints. This explains why, in the
expression of the quaternion Lagrangian (47), the Lagrange
dual variable λ associated to equality constraints is a p-
dimensional quaternion vector.

The definition of the quaternion Lagrangian (47) is a key
step. It allows to define quaternion-domain counterparts of fun-
damentals tools from Lagrangian duality in a straightforward
way. For instance, let D denote the domain of the problem (P )
such that D = ∩mi=0 dom fi ∩ domA, where domA denotes
the domain of the widely affine constraint (A). The quaternion
dual function is defined as

g(ν,λ) , inf
q∈D

L(q,ν,λ) . (48)

The dual quaternion Lagrange problem then reads

maximize g(ν,λ)

subject to ν � 0
(49)

Just like with standard real-domain optimization, the dual
Lagrange function yields lower bounds on the optimal value
of the original problem (P ), meaning that weak duality holds.
Conditions for strong duality are not given here. They may be
derived as well, by simple adaptation of the real case, see e.g.
[45, Section 5.2.3].

D. Optimality conditions

Exploiting the equivalence between the quaternion opti-
mization problem (P ) and the real, augmented optimization
problem (PR) we derive two fundamental optimality condi-
tions for (P ). To simplify the presentation, assume that the
functions fi, i = 0, 1, . . .m are real-differentiable.

Simple optimality condition. Applying the usual optimality
conditions for the equivalent real convex optimization problem
(see [45, Section 4.2.3] for details) allows to derive a simple
optimality condition for real-differentiable f0. Let F denote
the feasibility set

F ,

{
q

∣∣∣∣ fi(q) ≤ 0, i = 1, . . .m
A1q + A2q

i + A3q
j + A4q

k = b

}
. (50)

Then by using the first order characterization of the convexity
of f0 given in Proposition 3, one obtains the following
necessary and sufficient condition: the vector q̃ is optimal for
the problem (P ) if and only if q̃ ∈ F and

Re
(
∇q∗f0(q̃)H(r− q̃)

)
≥ 0 for all r ∈ F . (51)

Karush-Kuhn-Tucker (KKT) conditions. Considering the
convex quaternion optimization problem (P ), sufficient opti-
mality conditions known as KKT conditions can be derived
from its real equivalent convex optimization problem.

Proposition 4 (KKT conditions). Consider the constrained
quaternion convex problem (P ) with quaternion Lagrangian

L(q,ν,λ) given in (47). Let q̃ ∈ Hn, ν̃ ∈ Rm, λ̃ ∈ Hp be
any points such that

fi(q̃) ≤ 0 i = 1, . . . ,m (52)

A1q̃ + A2q̃
i + A3q̃

j + A4q̃
k − b = 0 (53)

ν̃i ≥ 0 i = 1, . . . ,m (54)
ν̃ifi(q̃) = 0 i = 1, . . . ,m (55)

∇q∗L(q̃, ν̃, λ̃) = 0 (56)

then q̃ and (ν̃, λ̃) are primal and dual optimal, with zero-
duality gap.

KKT conditions look almost the same as standard KKT con-
ditions for real problems, except primal feasibility for equality
constraints (53) and the Lagrangian stationarity condition (56).
Proposition 5 below provides the explicit form of the stationary
condition for the Lagrangian in quaternion variables.

Proposition 5. Let q̃ ∈ Hn, ν̃ ∈ Rm, λ̃ ∈ Hp such that they
satisfy KKT conditions (52)–(56). The stationarity condition
(56) is explicitly given by

∇q∗f0(q̃) +

m∑
i=1

ν̃i∇q∗fi(q̃)

+
1

4

[
AH

1 λ̃+
(
AH

2 λ̃
)i

+
(
AH

3 λ̃
)j

+
(
AH

4 λ̃
)k]

= 0.

(57)

Proof. Using Proposition 2, the stationarity condition can be
equivalently expressed as

∇q∗L(q̃, ν̃, λ̃) = 0⇔ ∇RL(q̃R, ν̃, λ̃R) = 0

⇔ ∇H∗L(q̃H, ν̃, λ̃H) = 0 ,
(58)

where L(q̃R, ν̃, λ̃R) and L(q̃H, ν̃, λ̃H) are given by (45)
and (46), respectively. A straightforward calculation gives
explicitly the stationarity condition in the R representation

∇RL(q̃R, ν̃, λ̃R) = 0

⇔ ∇Rf0(q̃R) +

m∑
i=1

ν̃i∇Rfi(q̃R) + A>Rλ̃R = 0 .
(59)

Turning to the H-domain condition, we exploit the linear
relationship between vectors ofR andH as well as the relation
(38) between R and H gradients ∇H∗f = 1

4Jn∇Rf . After
simplification, one obtains the stationarity condition in H:

∇H∗L(q̃H, ν̃, λ̃H) = 0

⇔ ∇H∗f0(q̃H) +

m∑
i=1

ν̃i∇H∗fi(q̃H) +
1

4
AH
Hλ̃H = 0 .

(60)

To obtain the desired stationarity condition (57) in Hn, we
keep the n-first rows of (60) and compute explicitly the n-
first blocks of the quaternion matrix product AH

Hλ̃H.

V. QUATERNION ALTERNATING DIRECTION METHOD OF
MULTIPLIERS

The quaternion-domain optimization framework introduced
in previous sections permits an efficient and natural derivation
of quaternion-domain algorithms from their existing real-
domain counterparts. The methodology is as follows: given a
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quaternion-domain optimization problem in variable q ∈ Hn,
we find its real augmented domain equivalent in variable
qR ∈ R4n. Then, one can pick any real-domain algorithm to
solve the real-augmented problem; once the iterates for qR are
found, they are converted into quaternion augmented domain
H. Finally the quaternion-domain algorithm is obtained by
considering only the first n entries of qH. This strategy is
very general and can be virtually applied to any real-domain
algorithm. Importantly, it also ensures that the convergence
properties of the quaternion-domain algorithms are directly
inherited from their augmented real counterparts.

To illustrate the proposed methodology, we derive in the
sequel the quaternion version of the popular alternating direc-
tion method of multipliers (ADMM), which we simply call
quaternion ADMM (Q-ADMM). This focus is motivated by
the fact that its real-domain counterpart [46] can accomodate
a large variety of constraints together while maintaining sim-
ple and efficient updates. As such, Q-ADMM appears as a
versatile algorithm for quaternion-domain optimization. Note
that there have been several attempts to formulate ADMM
for quaternion-domain optimization problems: they either rely
on a real augmented formulation [17], [18] or are particularly
designed for specific applications [13], [14]. In contrast, this
paper introduces a general Q-ADMM framework by leveraging
the proposed quaternion convex optimization framework.

Now, consider the general quaternion optimization problem:

minimize f(q) + g(p)

subject to A1q + A2q
i + A3q

j + A4q
k

+ B1p + B2p
i + B3p

j + B4p
k = c ,

(61)

where f and g are real-valued convex functions of quaternion
variables q ∈ Hn and p ∈ Hm, respectively. The two
variables are linked through a widely affine constraint, defined
by Ai ∈ Hp×n,Bi ∈ Hp×m for i = 1, 2, 3, 4 and c ∈ Hp.
Note that since f and g are supposed convex, problem (61)
is a widely affine equality constrained convex quaternion
optimization problem. Once again, widely affine relations in
q and p variables are necessary to ensure that (61) encodes
the generality of convex quaternion equality constraints.

Quaternion ADMM aims at solving (61) in its quater-
nion variables q and p. To develop this algorithm described
in Section V-C below, we start by deriving the standard
ADMM updates for the real-augmented problem associated
with (61). Then, by considering equivalencies, one obtains
the corresponding algorithms in the quaternion augmented
representation H and eventually for Hn. For completeness,
note that a special instance of Q-ADMM has been proposed
recently in [47], where Ai = Bi = 0 for i = 1, 2, 3 in (61).

A. ADMM in real augmented domain

The original real-domain ADMM algorithm [46] can be
directly applied to the real-augmented optimization problem
equivalent to (61), which reads

minimize f(qR) + g(pR)

subject to ARqR + BRpR = cR
(62)

where qR ∈ Rn and pR ∈ Rm are augmented real variables,
and where AR ∈ R4p×4n,BR ∈ R4p×4m and cR ∈ R4p

encode a general affine relation between augmented real
variables qR and pR. First, define the augmented Lagrangian
for ρ ≥ 0 and Lagrange multiplier λR ∈ Rp:

Lρ(qR,pR,λR)

, f(qR) + g(pR) + λ>R (ARqR + BRpR − cR)

+
ρ

2
‖ARqR + BRpR − cR‖22 .

(63)

ADMM updates then consist of the iterations

q
(k+1)
R = arg min

qR

Lρ(qR,p
(k)
R ,λ

(k)
R ) (64)

p
(k+1)
R = arg min

pR

Lρ(q
(k+1)
R ,pR,λ

(k)
R ) (65)

λ
(k+1)
R = λ

(k)
R + ρ

(
ARq

(k+1)
R + BRp

(k+1)
R − cR

)
(66)

Defining the scaled dual variable as uR = (1/ρ)λR one
obtains the scaled form for ADMM

q
(k+1)
R = arg min

qR

{
f(qR)

+
ρ

2

∥∥∥ARqR + BRp
(k)
R − cR + u

(k)
R

∥∥∥2
2

}
(67)

p
(k+1)
R = arg min

pR

{
g(pR)

+
ρ

2

∥∥∥ARq(k+1)
R + BRpR − cR + u

(k)
R

∥∥∥2
2

}
(68)

u
(k+1)
R = u

(k)
R + ARq

(k+1)
R + BRp

(k+1)
R − cR . (69)

Equipped with these expressions, the goal is now to find
augmented quaternion domain and quaternion domain coun-
terparts for the expressions above.

B. ADMM in quaternion augmented domain

The linear relationship between R and H permits a simple
derivation of ADMM in quaternion augmented variables. First,
note that by Proposition 1 one has

‖ARqR + BRpR − cR‖22 = ‖AHqH + BHpH − cH‖22
(70)

so that together with the expression of the Lagrangian in aug-
mented quaternion variables (46) the augmented Lagrangian
in augmented quaternion variables reads:

Lρ(qH,pH,λH) = f(qH) + g(pH)

+
1

4
λH
H (AHqH + BHpH − cH)

+
ρ

2
‖AHqH + BHpH − cH‖22 .

(71)

Then, since optimal points are the same regardless the repre-
sentation (see Proposition 2) the first two iterates of ADMM
are identical. The dual ascent step is obtained once again
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by exploiting the linear relationship between R and H. The
augmented Q-ADMM iterates thus read

q
(k+1)
H = arg min

qH

Lρ(qH,p
(k)
H ,λ

(k)
H ) (72)

p
(k+1)
H = arg min

pH

Lρ(q
(k+1)
H ,pH,λ

(k)
H ) (73)

λ
(k+1)
H = λ

(k)
H + ρ

(
AHq

(k+1)
H + BHp

(k+1)
H − cH

)
. (74)

Similar arguments and computations give the scaled form
iterates, which are omitted for space considerations.

C. ADMM in quaternion domain

ADMM iterates in quaternion domain can now be obtained
directly from expressions above. For the sake of notation
brevity, let us introduce the quaternion residual r(q,p) as

r(p,q) = A1q + A2q
i + A3q

j + A4q
k

+ B1p + B2p
i + B3p

j + B4p
k − c

(75)

and recall that by Proposition 1 one has ‖r(p,q)‖22 =
‖rH(pH,qH)‖22. The augmented Lagrangian in quaternion
variables then reads

Lρ(q,p,λ) = f(q) + g(p)

+ Re
(
λHr(p,q)

)
+
ρ

2
‖r(p,q)‖22

(76)

The ADMM iterates in the quaternion domain are very similar
to their corresponding real augmented counterparts

q(k+1) = arg min
q

Lρ(q,p
(k),λ(k)) (77)

p(k+1) = arg min
p

Lρ(q
(k+1),p,λ(k)) (78)

λ(k+1) = λ(k) + ρr(q(k+1),p(k+1)) (79)

and can be expressed in scaled form as

q(k+1) = arg min
q

{
f(q) +

ρ

2

∥∥∥r(q,p(k)) + u(k)
∥∥∥2
2

}
(80)

p(k+1) = arg min
p

{
g(p) +

ρ

2

∥∥∥r(q(k+1),p) + u(k)
∥∥∥2
2

}
(81)

u(k+1) = u(k) + r(q(k+1),p(k+1)) . (82)

D. Convergence of Q-ADMM

Q-ADMM inherits its convergence properties from the
convergence results of the associated augmented real ADMM
algorithm [46], which are adapted to the quaternion case
below for completeness. More precisely, let us make the
standard assumptions that the extended-real-valued functions
f : Hn → R and g : Hm → R are closed1, proper and convex.
We also assume that there exist at least one (q̃, p̃, λ̃) such
that L0(q̃, p̃,λ) ≤ L0(q̃, p̃, λ̃) ≤ L0(q,p, λ̃) for all q,p,λ.
Under these two assumptions, the Q-ADMM iterates satisfy:

1Alike in standard real optimization [45, A.3.3], a function h : Hn → R is
said to be closed if, for each α ∈ R, the sublevel set {q ∈ domh|h(q) ≤ α}
is closed. Recall that a set S is closed if its complement Hn \ S is open.
A quaternion set S ⊆ Hn is open iff ∀q ∈ S, ∃ε > 0 such that {p |
‖q− p‖2 ≤ ε} ⊆ S.

• Convergence of the quaternion residual (75):
r(q(k),p(k))→ 0 as k →∞, ;

• Objective convergence: f(q(k)) + g(p(k))→ ṽ, where ṽ
is the optimal value of (61);

• Dual variable convergence: λ(k) → λ̃ as k →∞ .
Necessary and sufficient conditions for primal-dual optimality
of the triplet (q̃, p̃, λ̃) can be directly obtained for the Q-
ADMM problem (61) using the KKT conditions (52)–(56);
they are omitted here for space considerations.

E. Special case: proximal operator form

Consider the special case where the affine constraint in (61)
is simply given by q−p = 0, that is, m = n, A1 = B1 = In
and Ai = Bi = 0n for i = 2, 3, 4. Q-ADMM iterations then
become

q(k+1) = arg min
q

{
f(q) +

ρ

2

∥∥∥q− p(k) + u(k)
∥∥∥2
2

}
(83)

p(k+1) = arg min
p

{
g(p) +

ρ

2

∥∥∥q(k+1) − p + u(k)
∥∥∥2
2

}
(84)

u(k+1) = u(k) + q(k+1) − p(k+1) . (85)

Focusing on the q-update for simplicity, (83) can be rewritten
as

q(k+1) , prox
f/ρ

(p(k) − u(k)) (86)

where proxf/ρ denotes the quaternion proximal operator of f
with penalty ρ, first introduced in [19]. Importantly, when f
is the indicator function on a closed convex set C ⊂ Hn, the
q-update becomes

q(k+1) = arg min
q∈C

∥∥∥q− p(k) + u(k)
∥∥∥2
2
, ΠC

(
p(k) − u(k)

)
(87)

where ΠC denotes the projection onto C in the quaternion
Euclidean norm.

VI. THE FRAMEWORK IN PRACTICE

This last section illustrates the relevance of the proposed
framework by considering two general examples of con-
strained convex optimization problems in quaternion variables.
Both problems can be solved efficiently using the Q-ADMM
algorithm introduced in Section V. Since Q-ADMM share
the same convergence and numerical properties with its real-
augmented domain counterpart, we only focus hereafter on the
many insights enabled by the quaternion framework. Note that
all quaternion-domain algorithms presented in this section can
safely be implemented in MATLAB R© using QTFM2.

A. Constrained widely linear least squares

Quaternion widely linear models have attracted a lot of
interest in recent years, see for instance [36], [38], [48], [49],
among others. Importantly, resulting (unconstrained) widely
linear quaternion estimators yield optimal mean square error
estimation when considering improper (i.e. non-circular) 3D or

2Quaternion toolbox for Matlab, available online at https://
sourceforge.net/projects/qtfm/.

https://sourceforge.net/projects/qtfm/.
https://sourceforge.net/projects/qtfm/.
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4D data. A natural generalization of this approach is to require
the solution to obey to some convex constraints, leading to the
following constrained widely linear least squares problem

minimize
1

2
‖y −P1q−P2q

i −P3q
j −P4q

k‖22
subject to q ∈ C ,

(88)

where C is a closed convex subset of Hn. An important special
case is when C is a convex cone, in particular to encode
quaternion non-negative constraints. For instance, in [23] the
authors enforce each component of the vector to have non-
negative real and imaginary parts; in [20], each component
of the vector must obey to qa ≥ 0 and q2a ≥ q2b + q2c + q2d,
which can be interpreted as the non-negative definiteness of a
specific 2-by-2 complex matrix.

The general constrained widely linear least square problem
(88) can be solved efficiently using Q-ADMM. Following a
standard procedure [46], the problem (88) can be cast as

minimize
1

2
‖y −P1q−P2q

i −P3q
j −P4q

k‖22 + ιC(p)

subject to q− p = 0 (89)

where ιC denotes the indicator function of C such that ιC(p) =
0 for p ∈ C and ι(p) = +∞ otherwise. Q-ADMM iterations
can be directly applied:

q(k+1) = arg min
q

{
‖y −P1q−P2q

i −P3q
j −P4q

k‖22

+ρ‖q− p(k) + u(k)‖22
}

(90)

p(k+1) = ΠC

(
q(k+1) + u(k)

)
(91)

u(k+1) = u(k) + q(k+1) − p(k+1) . (92)

In a nutshell, Q-ADMM consists in iteratively solving a gen-
eral unconstrained quaternion least squares problem followed
by projection onto the constraint set C and dual ascent. Such
formulation is thus particulary useful when projection onto C
can be carried out explicitly, as in the case of non-negative
constraints mentioned above [20], [23].
Solving the q-variable subproblem (90) Since the function
to be minimized involves q and its three canonical involutions
qi,qj ,qk, finding a solution is not as straightforward as in
the linear case (P2 = P3 = P4 = 0). Two strategies are
essentially possible: (i) obtain an explicit expression for q(k+1)

using the augmented real R or the augmented quaternion
representation H; (ii) solve iteratively for (90) e.g. using
quaternion gradient descent in Hn. We describe below these
two approaches in detail.

a) Explicit solution via augmented representations: The
q-update (90) can be rewritten in R as the qR-update

q
(k+1)
R = arg min

qR

{
‖PRqR − yR‖22 + ρ ‖qR − vR‖22

}
(93)

where PR ∈ R4m×4n,yR ∈ R4m and vR = p
(k)
R − u

(k)
R ∈

H4n is constant. Being a standard real optimization problem,
the optimality condition reads:

P>R (PRqR − yR) + ρ (qR − vR) = 0 (94)

so that one gets easily the standard explicit solution

q
(k+1)
R =

(
P>RPR + ρI4n

)−1 (
P>RyR + ρvR

)
. (95)

Exploiting the relation between R and H augmented repre-
sentations, we also get

q
(k+1)
H =

(
PH
HPH + ρI4n

)−1 (
PH
HyH + ρvH

)
(96)

so that the explicit q-update reads

q(k+1) = S
(
PH
HPH + ρI4n

)−1 (
PH
HyH + ρvH

)
(97)

where S =
[
In 0n 0n 0n

]
∈ Rn×4n selects the first n

entries of q
(k+1)
H . Notably, when the cost function is linear

quadratic, i.e. when Pi = 0 for i = 2, 3, 4, Eq. (97) becomes

q(k+1) =
(
PH

1P1 + ρIn
)−1 (

PH
1y + ρv

)
. (98)

Unfortunately for the general (widely linear) case, such ex-
pression of q(k+1) in terms of quaternion-domain matrices
Pi, i = 1, 2, 3, 4 is not possible. One has to turn back to (97),
which requires inversion of augmented matrices of size 4n,
thus limiting its application for large scale applications when
n is large.

b) Iterative scheme via quaternion gradient descent: An-
other possibility is to use an iterative scheme to approximately
solve (90). We choose here quaternion gradient descent [32],
[50], which takes the form

q(`+1) = q(`) − η`∇q∗h(q(`)) , (99)

where η` is an iteration dependent step-size and where h(q)
is defined by

h(q) =
∥∥P1q + P2q

i + P3q
j + P4q

k − y
∥∥2
2

+ ρ
∥∥∥q− p(k) + u(k)

∥∥∥2
2
.

(100)

These iterations provide an approximate solution to the q-
optimization problem (90) such that q(k+1) = q(`0), where `0
is defined by an appropriate stopping criterion controlling the
accuracy of the solution. Explicit iterations can be obtained
by using results from Appendix A:

q(`+1) = q(`) − η`
2

{
PH

1 r
(`)
P +

(
PH

2 r
(`)
P

)i
+
(
PH

3 r
(`)
P

)j
+
(
PH

4 r
(`)
P

)k}
− ρη`

2

[
q(`) − p(k) + u(k)

]
(101)

where r
(`)
P := rP(q(`)) such that rP(q) = P1q + P2q

i +
P3q

j+P4q
k−y. Compared with the explicit solution (97) of

the subproblem (90), the approximate iterative solution does
not require quaternion matrix inversion. This is particularly
interesting with ADMM, since overall convergence of the
algorithm can still be guaranteed even when minimization of
subproblems is carried out approximately [46]. As a conse-
quence, performing a few (cheap) quaternion gradient steps
(99) at each iteration k will ensure convergence of Q-ADMM
to a stationary point of the cost function.
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B. 3D basis pursuit denoising
A major application of quaternion algebra lies in its ability

to represent 3D data, including color images [9], [51], wind
data [52], seismics [4], among others. A dataset comprising N
3D vectors is coded as a pure quaternion vector of dimension
N : for instance, a color image patch is described as the
pure quaternion vector q = ir + jg + kb, where r,g,b are
real vectors denoting the red, green and blue components of
the image. With this representation, we consider the general
pure quaternion (or 3D) basis pursuit denoising problem, first
formulated in the color image processing literature [11], [18],
[24]. 3D data measurements y are supposed to follow the
linear quaternion model y = Dq+n, where D ∈ Hm×n is the
dictionary (m < n), q ∈ Hn is the vector of sparse coefficients
and n is the noise. While the relevance of the quaternion model
has been established by many authors, its interpretability is
conditioned by the reconstructed 3D signal Dq being a pure
quaternion vector, that is Re (Dq) = 0. Unfortunately, this
is not the case in general, when D and q are quaternion-
valued and must be enforced within the algorithm in order
to obtain interpretable solutions. Currently [24], the constraint
Re (Dq) = 0 is generally imposed by simply nulling the real
part of the product Dq – which does not preserve convergence
properties. The proposed algorithm hereafter solves this issue
of existing algorithms by leveraging the Q-ADMM framework.

The resulting 3D basis pursuit denoising can be formulated
as follows

minimize
1

2
‖y −Dq‖22 + β‖q‖1

subject to Re (Dq) = 0 ,
(102)

where β > 0 is a parameter that controls the amount of
sparsity. The quaternion `1-norm promotes sparsity and is
defined by

‖q‖1 ,
n∑
i=1

|qi| =
n∑
i=1

√
q2ai + q2bi + q2ci + q2di . (103)

As noted in [11], the quaternion `1-norm is equivalent to
the real `2,1-norm in Rn×4, meaning that quaternion Lasso
can be seen as an instance of real-valued group Lasso where
groups are composed of the real and three imaginary parts of a
quaternion. The constraint Re (Dq) = 0 is widely affine since

Re (Dq) = 0⇔ Dq + (Dq)
i

+ (Dq)
j

+ (Dq)
k

= 0 (104)

This ensures that (102) defines a quaternion convex optimiza-
tion problem, which can be rewritten in Q-ADMM form as

minimize
1

2
‖y −Dq‖22 + β‖p‖1

subject to q− p = 0 and Re (Dq) = 0 .
(105)

Q-ADMM iterations then read

q(k+1) = arg min
q

Re (Dq)=0

1

2
‖y −Dq‖22 +

ρ

2
‖q− p(k) + u(k)‖22

(106)

p(k+1) = prox
β
ρ ‖·‖1

(
q(k+1) + u(k)

)
(107)

u(k+1) = u(k) + q(k+1) − p(k+1) . (108)

The q-update is a widely affine constrained least squares
problem, which can be tackled by solving the KKT conditions
(52)–(56), see details below. The p-update involves the com-
putation of the proximal operator of the quaternion `1-norm,
whose expression can be found in the existing literature [19]:

prox
λ‖·‖1

(q) =

[
max

(
0, 1− λ

|qi|

)
qi

]
i=1...n

, Sλ(q) , (109)

where Sλ(·) is the quaternion soft-thresholding operator. As a
result, the p-update becomes

p(k+1) = S β
ρ

(
q(k+1) + u(k)

)
. (110)

Solving the q-variable subproblem (106) KKT conditions
(52)–(56) for the widely affine constrained least squares prob-
lem (106) give necessary and sufficient conditions for (q̃, λ̃)
to be primal and dual optimal:

Dq̃ + (Dq̃)
i

+ (Dq̃)
j

+ (Dq̃)
k

= 0 (111)
1

4
DH (Dq̃− y) +

ρ

4
(q̃− v)

+
1

4

[
DHλ̃+ DHλ̃

i
+ DHλ̃

j
+ DHλ̃

k
]

= 0 (112)

where v = p(k) − u(k). Solving for q̃ gives

q̃ =
(
DHD + In

)−1 (
ρv + DHy − 4DHRe λ̃

)
. (113)

Let q̃un =
(
DHD + In

)−1 (
ρv + DHy

)
denote the uncon-

strained solution to the least square problem (106). Plugging
(113) into the constraint Re (Dq̃) = 0 gives the value of the
real part3 of the Lagrange multiplier λ̃:

Re λ̃ =
1

4

[
Re
(
D(DHD + In)−1DH

)]−1
Re (Dq̃un) .

(114)
Note that for large N , the computational burden of (114)
may be important due to the double matrix inverse operation.
To summarize, the subproblem (106) is solved using KKT
conditions as follows:
• compute the unconstrained least square solution q̃un;
• compute Re λ̃ using (114);
• obtain the explicit solution q̃ to (106) using (113).

It is easily verified that if the unconstrained least square
solutions satisfies the constraint, then Re λ̃ = 0 and the
solution to (106) is q̃ = q̃un.
Numerical validation For completeness, we provide exper-
imental results which demonstrate the effectiveness of the
proposed quaternion ADMM algorithm to solve the 3D basis
pursuit denoising problem (102). We generated a dictionary
D ∈ H10×1000 with random i.i.d. entries sampled from a
quaternion unit Gaussian distribution. Columns of D were
normalized to 1. Then, we fixed a sparse (about 3 % nonzeros
entries) vector q0 ∈ H1000 such that Re (Dq0) = 0 to ensure
a meaningful physical interpretation of Dq0 as a vector of
3D objects. We further generated a noisy observation vector
y = Dq0 +n, with n ∈ H10 a pure quaternion random vector
with i.i.d. entries such that nm = inam + jnbm + kncm, and

3Note that the imaginary part of λ̃ can be arbitrary, since the constraint
Re (Dq̃) = 0 is here between real-valued expressions.
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Fig. 1. Numerical validation of the proposed quaternion ADMM algorithm for 3D basis pursuit denoising. Evolution of the suboptimality cost (A), norm of
the primal residue (B) and norm of dual residue (C) with respect to iteration number k.

nam, nbm, ncm ∼ N (0, σ2). A value of σ = 10−1 was chosen
in all numerical experiments. We found empirically that the
`1-penalty parameter β = 0.05 and Q-ADMM parameter
ρ = 1 gave us the best results in terms of rate of convergence
and correct identification of sparse components. To assess the
behaviour of the proposed Q-ADMM, we closely followed the
approach proposed in [46, Section 3.3].

Figure 1a) displays the evolution of the suboptimality cost
ν(k)−ν? where ν(k) = f(q(k))+g(p(k)) = 1

2‖y−Dq(k)‖22+
β‖p(k)‖1. The optimal value ν? of the cost function f(p) +
g(q) was obtained by running Q-ADMM for 1000 iterations.
As expected, ν(k) − ν? decreases to zero with the number
of iterations k. Figure 1b) and 1c) depicts, respectively, the
evolution of the norm of the primal residue q(k+1) − p(k+1)

and the norm of dual residue ρ
(
p(k+1) − p(k)

)
as iterations

increase. Similarly, both residues converge to zero as Q-
ADMM proceeds. These results show that Q-ADMM behaves
similarly to standard real ADMM [46]. This is not surprising,
since the proposed Q-ADMM algorithm (see Section V-C)
was derived using systematic equivalencies with its real-
augmented domain counterpart and therefore it enjoys the
same convergence properties as standard ADMM.

VII. CONCLUSION

In this paper, we provide a general and systematic
quaternion-domain mathematical framework to solve con-
strained convex optimization problems formulated in quater-
nion variables. This framework builds upon two key ingre-
dients: i) the recent theory of generalized HR-derivatives
[31] which allows the computation of derivatives with respect
to quaternion variables, and ii) the explicit correspondence
between the original quaternion optimization problem and its
real augmented counterpart, to provide sound and general
mathematical guarantees. Notably, it enables the formulation
of fundamental quaternion-domain convex optimization tools,
such as the quaternion Lagrangian function or KKT optimality
conditions. This methodology further reveals subtle properties
of quaternion-domain optimization that would have been hin-
dered otherwise, such as widely affine equality constraints. For

practical purposes, we derived quaternion ADMM (Q-ADMM)
as a versatile framework for quaternion-domain optimization.
These results establish a systematic and general methodology
to develop quaternion-domain algorithms for convex and non-
convex quaternion optimization problems.

We hope that the proposed framework will favor the devel-
opment of full quaternion-domain methodologies to efficiently
solve practical problems involving 3D and 4D data. Indeed,
when such a problem has a natural formulation in the quater-
nion domain, we expect the proposed quaternion optimization
framework to fully take advantage of the many physical or
geometric insights offered by the quaternion representation –
features that would be lost when resorting to an equivalent
real formulation of the problem at hand. Together with the
recent interest in high-performance hardware implementations
of quaternion operations [53], [54], the proposed framework
pave the way to the generalization of quaternion-domain
optimization procedures in a wide range of signal processing
applications.

APPENDIX A
QUATERNION GRADIENT COMPUTATIONS

Consider the function f : Hn → R defined by f(q) =
1
2

∥∥A1q + A2q
i + A3q

j + A4q
k − b

∥∥2
2

where Ai ∈ Hp×n
and b ∈ Hp are arbitrary. Using manipulations similar to those
of Section II-C, we get f(q) = f(qR) = 1

2‖ARqR − bR‖22
with real augmented gradient

∇Rf(qR) = A>R (ARqR − bR)

Knowing that AH = 1
4JpARJ

H
n and qH = JnqR, we get the

augmented conjugated quaternion gradient from (37) as

∇H∗f(qH) =
1

4
Jn∇Rf(q) =

1

4
AH
H (AHqH − bH) .

Let the residual rH = AHqH − bH. By developing the first
n-rows of the quaternion matrix product AHrH we get the
conjugated quaternion gradient

∇q∗f(q) =
1

4

(
AH

1 r +
(
AH

2 r
)i

+
(
AH

2 r
)j

+
(
AH

2 r
)k)

.
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