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This paper considers adaptive schemes for the simultaneous monitoring of the mean and variability of a multivariate normal quality characteristic. At first, we extend an already existing bivariate nonadaptive simultaneous control chart to a multivariate one. Then, we develop several adaptive schemes, which will cover both previously bivariate and newly multivariate charts. After having designed adaptive schemes for the multivariate chart, eight performance measures are computed based on the run length, time to signal, number of observations to signal and number of switches to signal and evaluated using a new Markov chain model. With the developed performance measures, non-adaptive and adaptive schemes under different mean, variability, simultaneous shift sizes, and different number of quality characteristics are compared. Our scheme is also compared to one of the best methods available in the literature. A numerical example is also provided in order to demonstrate how the adaptive scheme can be implemented in practice.

Introduction

Multivariate control charts are widely used in order to monitor various kinds of processes and to detect assignable causes, in the case of more than one quality characteristic. The multivariate [START_REF] Hotelling | Multivariate quality control -Illustrated by the air testing of sample bombsights[END_REF]'s 2 T control chart is a very simple and effective tool to monitor the process mean vector when large shifts occur. However, in the case of small to moderate mean shifts, this Shewhart type control chart cannot perform properly. Allowing the chart to adapt based on the previous process states makes it capable to detect small and moderate process shifts more effectively. In adaptive control charts, at least one of the chart's parameters (sample size, sampling interval and probability of Type-I error) varies throughout the monitoring process and, based on that, adaptive charts can be divided into four main categories; VSS (Variable Sample Sizes), VSI (Variable Sampling Intervals), VSSI (Variable Sample Sizes and Sampling Intervals) and VP (Variable Parameters, if all of the chart parameters are allowed to vary). Researchers such as [START_REF] Aparisi | Hotelling's T 2 control chart with adaptive sample sizes[END_REF], [START_REF] Faraz | Hotelling's T 2 control chart with two-state adaptive sample size[END_REF], [START_REF] Khoo | A multivariate synthetic double sampling T 2 control chart[END_REF] and [START_REF] Sabahno | Optimal performance of the variable sample sizes Hotelling's T 2 control chart in the presence of measurement errors[END_REF] and [START_REF] Chong | Hotelling's T 2 control charts with fixed and variable sample sizes for monitoring short production runs[END_REF] considered VSS type adaptive Hotelling's 2 T charts. For VSI type Hotelling's 2

T control charts we can refer to [START_REF] Aparisi | Hotelling's T 2 control chart with variable sampling intervals[END_REF], [START_REF] Faraz | On the properties of the Hotelling's T 2 control chart with VSI scheme[END_REF] and [START_REF] Sabahno | Evaluating the effect of measurement errors on the variable sampling intervals Hotelling T 2 control charts[END_REF] for example.

VSSI type Hotelling's 2

T control charts have been studied by authors such as [START_REF] Aparisi | A comparison of T 2 charts with variable sampling scheme as opposed to MEWMA[END_REF] and [START_REF] Faraz | Hotelling's T 2 control chart with double warning lines[END_REF]. Finally, VP type ones have been investigated by authors such as [START_REF] Chen | Adaptive sampling enhancement of Hotelling's T 2 control charts[END_REF], [START_REF] Faraz | Double-objective economic statistical design of the VP T 2 control chart: Wald's Identity approach[END_REF] and [START_REF] Seif | A statistically adaptive sampling policy to the Hotelling's T 2 control chart: Markov Chain approach[END_REF]. Researchers such as [START_REF] Du | On-line classifying process mean shifts in multivariate control charts based on multiclass support vector machines[END_REF] proposed some approaches for classifying the source of the mean shift in the Hotelling's 2

T control chart.

Multivariate control charts for monitoring the process variability have been considered by researchers as well. One of the common and simple method consists in using the sample's generalized variance ( S ) defined as the determinant of the sample variance-covariance matrix. [START_REF] Alt | Multivariate control charts[END_REF] proposed a bivariate control chart based on S . [START_REF] Aparisi | Statistical properties of the |S| multivariate control chart[END_REF] extended the work of [START_REF] Alt | Multivariate control charts[END_REF] and they proposed a multivariate control chart either with upper and lower control limits or with an upper control limit only. Aparisi et al. (2001) developed a VSS scheme for the bivariate case of the generalized variance. They studied the performance of their control chart with the average run length criterion using a Markov chain approach. [START_REF] Grigoryan | Multivariate double sampling |S| charts for controlling process variability[END_REF] developed a multivariate double sampling (MDS) shewhart type S control chart scheme in order to monitor the variability. Using a genetic algorithm combined with simulations, they showed that their new method performs better than the FP (Fixed Parameters) and VSS charts. [START_REF] Lee | Multivariate synthetic |S| control chart with variable sampling interval[END_REF] added a VSI feature to the multivariate synthetic shewart type S control chart. [START_REF] Costa | The S chart with variable charting statistic to control bi and trivariate processes[END_REF] proposed the S chart with variable charting statistic (called VCS S chart) which is a Shewhart-type chart specially designed to control the covariance matrix of bi-and tri-variate processes. Though they found their method superior to the trivariate case, the only advantage of their method compared to the bi-variate generalized variance method was that it was easier to compute. The simultaneous monitoring of the process parameters (mean and variability) instead of monitoring only one of them (which is more desired due to its simplicity), has caught some authors attention in the past years. The simultaneous monitoring has been proven to reduce the false alarm rates and to improve the performance of the monitoring procedure. In general, the simultaneous monitoring of control charts can be divided into single-chart and double-charts (one for each parameter) schemes. Concerning multivariate control charts for which two separate charts are used, one may refer to [START_REF] Yeh | A multivariate exponentially weighted moving average control chart for monitoring process variability[END_REF], [START_REF] Cho | Multivariate control charts for monitoring the mean vector and covariance matrix[END_REF], [START_REF] Hawkins | Multivariate exponentially weighted moving covariance matrix[END_REF] and [START_REF] Zhang | Multivariate EWMA control charts using individual observations for process mean and variance monitoring and diagnosis[END_REF]. For multivariate single-chart schemes, the first contribution has been proposed by [START_REF] Yeh | A new variables control chart for simultaneously monitoring multivariate process mean and variability[END_REF]. By using a probability integral transformation method, they introduced the box chart and they compared their single simultaneous chart with the traditional 2 T and S (two) charts. However, they showed that their single chart, although simpler, does not usually perform better than the traditional 2 T and S charts, especially in detecting small shifts. [START_REF] Khoo | A new bivariate control chart to monitor the multivariate process mean and variance simultaneously[END_REF] introduced a simple bivariate control chart for the simultaneous monitoring of the mean and variability. He used the Hotteling's 2 T statistic for the mean and [START_REF] Alt | Multivariate control charts[END_REF]'s statistic, which is based on the generalized variance, for the variability. Then, based on those two statistics, he defined a new max-type statistic. Through simulations and by using the ARL performance measure, he evaluated the chart's performance under shifts in the mean, variability and both. [START_REF] Chen | A new multivariate control chart for monitoring both location and dispersion[END_REF] also developed a single chart based on a max-type statistic containing two exponentially weighted moving average (EWMA) type statistics for each process parameters and they called it the Max-MEWMA chart. They also compared the performance of their chart to the traditional 2 T and S charts and they concluded that the Max-MEWMA chart has better performances in detecting small to moderate shifts. [START_REF] Zhang | A multivariate control chart for simultaneously monitoring process mean and variability[END_REF] proposed a new single control chart which integrates an EWMA procedure with the generalized likelihood ratio (GLR) test and they called it ELR for jointly monitoring both multivariate process mean and variability. Their ELR chart, unlike the box and Max-MEWMA charts, can be applied for individual observations as well. [START_REF] Wang | Simultaneous monitoring of process mean vector and covariance matrix via penalized likelihood estimation[END_REF] developed two simultaneous monitoring charts i) based on the generalized likelihood ratio test (GLRT) called PGLRT (penalized GLRT) and ii) based on the multivariate exponentially weighted moving average and covariance (MEWMAC) called PMEWMAC (penalized MEWMAC). The PGLRT chart only uses a statistic while the other one uses two statistics. Both methods are only used for individual observations. For adaptive simultaneous double-chart schemes, Reynolds and Kim (2007) investigated the option of using sequential sampling, with the sample size at each sampling point depending on the process data, for the Shewhart and MEWMA-types chart combinations. They showed that the sequential sampling provides significant improvements to the charts' performance under most process shifts. [START_REF] Cho | Multivariate control charts for monitoring the mean vector and covariance matrix with variable sampling intervals[END_REF] extended the work of [START_REF] Kim | Multivariate control charts for monitoring the process mean and variability using sequential sampling[END_REF] by adding a VSI feature. To the best of the authors' knowledge, adaptive schemes for multivariate simultaneous single-chart schemes have not been considered yet. In order to summarize the literature review and to show the limitations of the papers, we have classified them in Table 1, in terms of the control chart type, the number of quality characteristics, whether they have adaptive features or not, whether they can simultaneously monitor the process mean and variability or not, and finally, the computation method of performance measure(s).

"Insert Table 1 here" According to our literature review (Table 1), adaptive features in multivariate simultaneous charts have only been considered in two papers and they both used double-charts and also they both used simulation runs in order to measure the chart performance. Using simulation methods to measure the charts performance is often very time consuming. If the distributions of the statistics used for monitoring are available, then the Markov chain is always the preferable method for computing performance measures. As mentioned above, the work of [START_REF] Khoo | A new bivariate control chart to monitor the multivariate process mean and variance simultaneously[END_REF], although very simple and innovative, presented a simultaneous scheme capable of monitoring processes with only two quality characteristics, which is a very limited situation and, generally speaking, products might have more than two quality characteristics to be monitored. In addition, it is assumed that all the chart parameters are fixed throughout the monitoring process and no adaptive strategies were used. He also only used the ARL as the chart performance measure, obtained through very time consuming simulation runs. In addition, his chart was very slow specially in detecting small shifts. In this paper, we improve the innovative approach of [START_REF] Khoo | A new bivariate control chart to monitor the multivariate process mean and variance simultaneously[END_REF] in four directions: 1) We extend his bivariate-only method to a multivariate one in order to be able to monitor products with more than two quality characteristics. 2) We add adaptive monitoring strategies to both bivariate and multivariate charts to increase the charts performance in detecting shifts. 3) We use 7 extra performance measures (other than just the classical ARL previously used by him) to measure the charts performance in many aspects. 4) We use a new Markov chain model to compute the performance measures instantaneously and more accurately rather than the very time consuming simulation method used by him. The structure of this paper is as follows. In Section 2, we develop a single-type chart for simultaneously monitoring the mean and variability of a multivariate normal characteristic. We add adaptive features to the chart in Section 3. The performance measures are developed using a Markov chains methodology in Section 4. In Section 5, we perform simulation studies in order to compare the charts' performances and also we present an industrial application. Concluding remarks and suggestions for future researches are discussed in Section 6.

Proposed Multivariate Control Charts for Simultaneous Monitoring of Mean and

Variability When the in-control process parameters ( 0 μ and 0 Σ ) are known, in order to monitor the process mean the Hotelling's 2 T statistic is evaluated for each subgroup 1, 2,3, i  as:

  1 2 0 0 0 ( ) ( ), T i i i Tn   X-μ X -μ  (1)
where n is the sample (subgroup) size, X i is the sample's mean and 2 i T ~2 () p  , i.e. a chi-square distribution with p degrees of freedom and p is the number of quality characteristics.

For the process variability, as suggested by [START_REF] Gnanadesikan | A selection procedure for multivariate normal distributions in terms of the generalized variances[END_REF], we use the following statistic:

1/ 1/ 0 ( 1) , S  p i i p n W   (2)
which follows approximately a gamma distribution . Note that i W exactly follows a gamma distribution for p=1 and p= 2.

In order to monitor the mean and variability simultaneously, we use the following transformations of

2 i T and i W : 12 ( ) ~(0,1), 1, 2,..., i p i M H T N i       (3) and ( , ) 1 ( ) 
~(0,1), 1, 2,..., ii ab V G W N i       (4) 
where (.)  is the standard normal cumulative distribution function, (.) p H represents the chi-square cumulative distribution function with p degrees of freedom and , (.) ab G denotes the gamma cumulative distribution function with shape parameter a and scale parameter b . Note that, [START_REF] Khoo | A new bivariate control chart to monitor the multivariate process mean and variance simultaneously[END_REF] used a similar approach to monitor bivariate quality characteristics. However, he used the following statistic   1 24 (2 ) ~(0,1), 1, 2,...,

i n i V H W N i  
   instead of the proposed statistic for monitoring the variability, where 2 i W follows a chi-square distribution with 24 n  degrees of freedom. Note that p=2 in the 2 i W statistic by Khoo (2005). Then, we use the following max-type statistic:

  = max . i i i C M ,V (5) 
The upper control limit (UCL) of this chart can be obtained by solving the following equation:

  2 max )) (2 ( ) 1)(2 ( ) ( ) ( ( ) 1) (2 ( 1 ( ) ) 1 , i ii ii M ,V M UCL P V UCL UC P C UCL P UCL P L UCL UCL UCL UCL                    (6)
where  is the probability of Type-I error.

Proposed Adaptive Multivariate Control Charts for Monitoring the Mean and Variability

Simultaneously For adaptive control charts, at least one of the process parameters (sample size, sampling interval and probability of Type-I error) is allowed to vary throughout the sampling process. If all parameters vary, the adaptive chart is called a VP control chart. In this paper, we assume that there are: i C UCL  , the process is declared as being out-of-control and corrective actions have to be taken.


In the VP scheme, the following equations should be satisfied.

1 0 2 0 (1 ), ASS n n PP   (7) 1 0 2 0 (1 ), ASI t t PP   (8) 0 2 0 1 , (1 ) PP ATE    ( 9 
)
where ASS is the average sample size, ASI is the average sampling interval and ATE is the average Type-I error where 0 P is the probability of being in the safe state ( 1  ) while the process is in-control, i.e.:

    2 0 2 max ) ) ) max ) )) [2 ( ) 1] )) ( ( ( ( 
(( (( [2 ( ) 1] ii i i ii ii ii P P P M ,V UW L C UW L C UCL M ,V UCL M UW L V UW L UW L M UC P L V UCL UC P P L P PP               (10) 
Note that for a VSS scheme, only Equation (7) must be kept and Equations ( 8) and ( 9) must be disregarded. Similarly, for a VSI scheme, only Equation ( 8) must be kept and Equations ( 7) and ( 9) have to be disregarded. Finally, for a VSSI scheme, only Equations ( 7) and ( 8) must be kept and Equation ( 9) must be ignored.

In order to solve Equations ( 7) to (9), some of the parameters' values should be fixed and some others have to be computed. The following steps can be taken to obtain the parameters' values.

Step 1. Fix 1  and, using Equation ( 6), 1 UCL is obtained as:

1 1 1 11 2 UCL         . ( 11 
)
Step 2. Fix ASS, 1 n , 2 n and, using Equation ( 7), 0 P is obtained as:

2 0 12 . ASS n P nn    (12) 
Step 3. Fix ATE and, using Equations ( 9) and ( 12), 2

 is obtained as:

1 2 1 2 2 1 ( ) ( ) , ATE n n ASS n n ASS        (13) 
and 2 UCL is deduced from Equation (6) as:

2 1 2 11 2 UCL         . ( 14 
)
Step 4. Fix ASI, 2 t and, using Equations ( 8) and ( 12), 1 t is obtained as:

1 2 2 1 1 2 ( ) ( ) . ASI n n t n ASS t ASS n      (15) 
Step 5. By using Equation (10), The ARL and SDRL are the average and standard deviation of the number of samples taken before an out-of-control signal occurs, the ATS and SDTS are the average and standard deviation of the time needed until a control chart signals, the ANOS and SDNOS are the average and standard deviation of the number of products observed before an out-of-control signal and, finally, the ANSW and SDNSW are the average and standard deviation of the number of switches from 12 /  to 21 /  while the process is in-control. If the number of switches increases, the difficulty of the chart's administration increases as well. This is why these performance measures are worth to be investigated. Since there is no switching in FP control charts, they always have an advantage in this regard and can be easily administrated.

It is reasonable to say that the most important criteria in order to measure the charts' performance is the time to signal (ATS/SDTS) and all charts' performances should be compared primarily via this time to signal criteria. When the process is out-of-control, smaller ARL, ATS and ANOS values are preferable. On the contrary, when the process is in-control, larger ARL, ATS and ANOS values are expected. However, no matter if the process is in-or out-of-control, smaller SDRL, SDTS, SDNOS, ANSW and SDNSW values are always expected, especially in out-of-control situations.

In order to compute these quantities, we use a Markov Chain model. This approach requires to define the following three states:

State 1:

  0, , i C UWL  State 2: ( , ], i C UWL UCL  State 3: ( , ). i UCL C  
The first two states are transient while, the third one is absorbing. The Markov transition probability matrix P corresponding to the VP chart is equal to 

  1 ( ) ( ) max ) ), ( ( ii ii si p P C UWL P UWL P M ,V M UWL P UWL UW V L UWL           (17)   2 ( ) ( ) ( ( (( ( ( max )) ( ( ) ) 
))

)

) ii ii ii ii i i i s M ,V M UW L P V UW L P M UW L P V UW L M UW L P V UCL M UW p P UW L C UCL P UW L UCL P UCL UCL UCL UW L P UCL UW L P V U L P UW L UCL W P L                                       (( ( ( ( ( )) 
))

))

). ( ()

ii ii ii ii UW L UW L P UW L UW L P UW L UW M UW L P V UCL M UCL P V UCL M UCL P V UW L M UCL P V UW L L P UW L UCL                        (18)
Concerning the other probabilities of transition, we simply have 

 p

As it can be seen, Equations ( 17) and ( 18) are both sums of products 12

() i P m M m  by 12 ( ) i P v V v 
where 12 , mm, 12 and vv stand for +/-UWL and +/-UCL. In general, these terms can be evaluated using Equations ( 21) and ( 23) when the process is out-of-control and using Equations ( 22) and ( 24) when the process is in-control. Let us first derive Equations ( 21) and ( 22) for 12 ()

i P m M m . We have: 12 1 2 1 2 2 12 1 2 1 12 ( ) ( ( ) ) ( ( ) ( ) ( )) ( ( ( )) ( ( ))). i p i pi p i p P m M m P m H T m P m H T m P H m T H m                       (19) 
In order to compute Equation ( 19), let us assume that

1 p  , i.e. X ~ MN( , )  j , 1, 2,..., . s jn  When the process is in-control, we have 0    and 0    . Let 1/2 00 () X  i is Zn   ,
where

1/ 2 0   is the matrix square root of the inverse of 0  , i.e. 1/2 1/2 1 0 0 0       
. When the process is in-control, we have ~ MN( , )

i Z 0 I and, therefore 22 = ~ ( )

T i i i Tp  ZZ .
When the process is out-of-control, we have

1    , 1    and the statistic 1/2 1/2 1/2 0 1 0 0 1 0 ~ MN( , () ) i s n     Z       . Let us define 1/2 1/2 0 1 0  Λ     and we deduce 1/2 1/2 1/2 1 1/2 1/2 1 1/2 1/2 0 1 0 0 1 0 ) ) )       Λ        . Consequently, we have 1/2 1/2 1/2 0 1 0 ( ), ~ MN( ) i s n     Λ Σ μ μ Z ΛI , and 1/2 1 2 /2 1 = ~( , ) TT i i i i p      Z Z Z Z Λ Λ Λ , With the noncentrality parameter  equals to 1/2 1/2 1/2 1/2 1 0 1 0 1/2 1 1/2 00 1 0 1 0 0 0 ( ) ( ) ( ) ( ). T s T s n n               ΣΣ μ μ Λ Λ μ μ μ μ Λ μ μ ΣΣ If we replace Λ with 1/2 1/2 0 1 0     , we have 1 1/2 1 1/2 0 1 0  Λ     and the noncentrality parameter simplifies to   1 1 0 0 1 1 ( ) ( ). T s n      μμ Σ μμ ( 20 
)
As it is mentioned above, for general variance-covariance matrices 0 Σ and 1 Σ , we have

1 2 ~( , ) T ii p    Λ ZZ
. However, in order to evaluate the terms 12 ()

i P m M m  in Equation (19), it is impossible to obtain the distribution of 2 = T i i i
T ZZ for an out-of-control condition. To overcome this problem, we will assume that 10 ΣΣ   , with 0   . Therefore, we have 

T i i i Tp    ZZ with   1 0 1 0 1 0 ( ) ( ). μ μ μ μ Σ T s n      
As a result, we have

11 1 2 , 2 , 1 ( ) ( ( ( )) (1/ )) ( ( ( )) (1/ )). i p p p p P m M m H H m H H m            (21)
When the process is in-control, i.e. 0   and 10 ,  ΣΣ the previous equation reduces to:

11 1 2 2 1 2 1 ( ) ( ( ( ))) ( ( ( ))) ( ) ( ) i p p p p P m M m H H m H H m m m            (22) 
Similarly, for 12 ( )

i P v V v  , we have: ( , ) ( , ) ( , ) ( , ) 1 1 2 1 2 1 2 1 1 1 2 ) ( ) ) ( ( ) ( )) ( ( ( ( ( ( ( ( ) 
( )) ))) a b a b i i i ab a i b P v V v P v G W v P v G W v P G v W G v                           
In order to obtain the distribution of i W when the process is out-of-control we multiply in the previous equation 0

Σ by 11 /1 ΣΣ  , i.e. ( , ) ( , ) 1/ 11 12 1/ 0 1 1 ( 1) ( ( ( ( ))). ( )) / Σ Σ Σ a b a b p si p nS P G v G v        
Finally, all the terms are multiplied by 1/ 01 / ΣΣ p   and as a result, we have

( , ) ( , ) ( , ) ( , ) 
12

1/ 1/ 1 1 2 0 1 1 0 1 ) ( ( ( )) / ) ( ( ( )) / ). ( a b a b a b a b i p p P v V v G G v G G v                   Σ Σ Σ Σ (23)
When the process is in-control, i.e. 10 ,  ΣΣ the previous equation reduces to:

( , ) ( , ) ( , ) ( , ) 11 1 2 2 1 21 ) ( ( ( ))) ( ( ( ))) ( ) ( ).
(

a b a b a b a b i P v V v G G v G G v vv            (24) 
One can easily compute Equations ( 17) and ( 18 21) -( 24) with UWL and UCL.

In this paper, we consider two scenarios for the shift in the variance-covariance matrix as follows:

 Scenario 1-In this scenario we assume that all the elements (variance and covariance values) in 0 Σ shift with an equal multiplier  .  Scenario 2-In this scenario, each element of the variance-covariance matrix shifts independently and not necessarily in an equal way. In this case, we again consider the general form Note that, the scenario 1 is a special case of scenario 2. Then, from [START_REF] Jensen | Design issues for adaptive control charts[END_REF], we have the general forms of the performance measures as:

  T -1 ARL ,  b I -Q 1 (25)     T 11 2 SDRL ) A ) , (2 ( RL       b I Q I I Q 1 1 (26)   T -1 ATS , b I -Q t  (27)     T 11 (2) 2 ( SDTS ) (ATS 2 ), t b I Q I Q t t D       (28)   T -1 ANOS ,  b I -Q n (29)     T 1 (2) 1 2 (2 SDNOS ) (ANOS) ,       n b I Q I Q D n n (30)   T -1 ANSW ,  b I -Q p (31)     T 1 (2) 1 2 (2 SDNSW ) (ANSW) ,       p b I Q I Q D p p ( 32 
)
where T b =( 12 ,) bb is the vector of starting probabilities such that 12 1 bb  , I is the identity matrix of order 2, Q is a 22  transition probability matrix for the transient states, 1 is a 21  unit column vector, p contains the squares of the elements of vector p .

  1 T 2 , t
At the beginning, when the process is assumed to be in-control 25) -(32) can be used to compute the performance measures.

Numerical analyses

In this section, for scenarios 1 and 2 defined in the previous section, by using the Matlab software, we perform numerical analyses in order to compare the adaptive schemes with each other as well as with the FP one. We perform our analyses for several number of quality characteristics p. We also compare our proposed scheme to one of the best existing methods. Finally, in this section, through an illustrative example we show how our scheme can be implemented in practice.

Performance comparison of the proposed methods: Scenario-1

First, for p=2, we assume that 01 1 0.5 0.5 ; 0 0.5 1 0.5 ΣΣ

  

               
. Since the in-control correlation between the quality characteristics is 0.5 and their variances are equal, then, as it was numerically tested as well, the following shifts 01 (0, 0) ( , 0) μμ 6), ( 7), ( 8) and ( 10) we have: 3.023 UCL  , 0 0.5 p 

    , 01 (0, 0) (0, ) μμ   
, 1 1.9 t  and 1.0479 UWL  .

For the VSS scheme, assuming ASS=10, 1 t  , 0.005   , 1 5 n  and 2 15 n  , from Equations ( 6), ( 7) and ( 10) we have: 3.023 UCL  , 0 0.5 p  and 1.0479 UWL  .

For the VSI scheme, assuming ASI=1, 0.005 6), ( 8) and ( 10) we have:

  , 1 1.9 t  , 2 0.1 t  10 n  , from Equations (
3.023 UCL  , 0 0.5 p  and 1.0479 UWL  .

The results for all performance measures in the VSSI, VSS and VSI charts can also be seen in Table 2. Note that, although the computations have been done for both average and standard deviation types performance measures, in order to decrease the size/number of tables, we only present in this paper the results for the average type performance measures. However, the results for standard deviation type performance measures can be easily available from the corresponding author. "Insert Table 2 here" From the results shown in Table 2, as the shift sizes increase, the performance measures' values decrease. Moreover, under small to moderate simultaneous and separate shifts, in terms of time to signal, VP, VSSI, VSI, VSS, and FP charts have the best to the worst performances, meaning the VP chart is the best scheme and the FP chart is the worst one. With the exception of 0.3 mean shift, in which VSS chart has a better time to signal performance than the VSI chart. Under small to moderate simultaneous and separate shifts, in terms of the run length and number of observations to signal, VP, VSSI=VSS, VSI=FP have the best to the worst performances. In terms of the number of switches to signal, the order is FP, VP, VSSI=VSS and VSI. Under large shifts, all the adaptive and non-adaptive charts have almost the same performances.

For p=3, we assume 01 1 0.5 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 ; 0 0.5 0.5 1 0.5 0.5

ΣΣ                                  
. Again, as for the case p=2, the following shifts, 01 (0, 0, 0) ( , 0, 0)

      , 01 (0, 0, 0) (0, , 0)       , 01 (0, 0, 0) (0, 0, )      
and 01 (0, 0, 0) ( , , )

       
correspond to the same performance measures values.

With the same methodology used for p=2, one can see the results for the FP, VP, VSSI, VSS and VSI charts, for p=3 in Table 3. All the conclusions for p=2 (Table 2) can be drawn for the p=3 case from Table 3 as well. Moreover, as it is clear from the results presented in Tables 2 and3, as the number of quality characteristics increases, under small to relatively large mean shifts, the performance measures worsen. However, under small to large variance shifts, the charts performance improves and also, in most of the cases, under simultaneous shifts, the charts performances improve, except under 1.05 variance and 0.3 mean shifts, in which the performances deteriorate and also under 1.05 variance and 0.7 mean shifts, for which the performances only deteriorate for the FP and VSI charts. "Insert Table 3 here"

Performance comparison of the proposed methods: Scenario-2

In this scenario, we assume that all the assumptions are the same as for the first scenario, except for 1 Σ . In this scenario, we assume two cases for the shift in variance-covariance matrix.

Scenario-2. Case 1: Mean and Variance Shifts

In the first case, only the variance components increase in the variance-covariance matrix such as:

For p=2:

1 01 2 0.5 1 0.5 0.5 0.5 1 ΣΣ            ; 12 ,1

 and

For p=3:

1 0 1 2 1 2 3
3 1 0.5 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 ; , , 1 0.5 0.5 1 0.5 0.5

ΣΣ                               .
For p=2, we assume that: We also assume that:

0 1 1 2 (0, 0) ( , ) μμ  
  so that 12 ( , ) {(0.0), (0.1, 0), (0.1, 0.3), (0.5, 0.8), (2, 2)  

.

For p=3 we have:

1 2 3 ( , , ) {(1,1,1),(1.05,1,1),(1.05,1.05,1.05),(1.05,1.3,1.05),(1.4,1.4,1.05),(3,3,1.4)}

     , 0 1 1 2 3 (0, 0, 0) ( , , )       μμ
{(0,0,0),(0.1,0,0.1),(0.1,0.3,0.3),(0.5,0.8,0.5),(2, 2, 2)}  .

The results for the scenario 2 case 1 for p=2 and 3 can be seen in Tables 4 and5, respectively. The conclusions that have been drawn for scenario 1 (Tables 2 and3) can be applied for this scenario as well (see Tables 4 and5). Since in this scenario the shift sizes for p=2 and 3 are assumed different, there is no systematic trend in the charts' performances when the number of quality characteristics changes. "Insert Tables 4 and5 here"

Scenario-2. Case 2: Mean and Covariance shifts

In the second case, we assume that only the covariance component shifts in the variance-covariance matrix, such as: 0 1 1 0.5 0.5 0.5 1 1 0.5 0.5 1 1 0.5 0.5 1 0.5 0.5 1 1 / 0.5 1 0.5 / / 1 / 0.5 1 0.5 0.5 1 0.5 1 1 0.5 0.5 1 1 0.5 0.5 0.5 1 1

Σ Σ                                                                         ;
{0.01, 0.02,..., 0.99},   for p=2, 3 and 4, respectively.

For this analysis, since the trends are the same for all performance measures, in order to decrease the size of the paper we only used the most important, i.e. the ATS, performance measure in order to compare the charts. We also assume that the mean shifts for all quality characteristics are equal 01 (0, 0) / (0, 0, 0) / (0, 0, 0, 0) ( , ) / ( , , ) / ( , , , ) μμ

            , under none ( 0   ), small ( 0.2)   , medium ( 0.8  
) and large ( 1.5

  ) mean shifts. All other assumptions are as assumed similar as before. In Figures 1 to 3, the performances of all non-adaptive and adaptive charts are compared for p=2, 3 and 4, respectively. Since the in-control covariance is 0.5, and the variances are assumed fixed, logically, any deviation from the in-control covariance, should result in less (better) performance measure value than the in-control one. This happens for all the charts for covariance shifts less than 0.5. However, for covariance shifts more than the in-control value (0.5), the charts' performance values increase up to some point and decreases afterward. That point, goes further away from 0.5 as the mean shifts increase and gets near to 0.5 as p increases (see Figures 1 to 3). Moreover, in case of large mean shifts, the performances of all the charts remain almost fixed with shifts in the covariance. "Insert Figures 1 to 3 here"

Performance comparison of the proposed methods with the ELR Chart

In this section we compare our proposed scheme with the one proposed by [START_REF] Zhang | A multivariate control chart for simultaneously monitoring process mean and variability[END_REF] which should be considered as one of the most powerful scheme available for the simultaneous monitoring of the process mean and variability as it based on the combination of the EWMA and GLR frameworks. In their paper, they compared their single-chart scheme with some available charts and they concluded that their chart surpasses them in many situations. However, as for any EWMA schemes, the choice of the optimal value for the smoothing parameter  is crucial for the chart to have an optimal efficiency and, unfortunately this optimal value actually depends on the size of the shift which is generally unknown. These kinds of issues do not exist in our proposed scheme. For all the charts considered for the comparison we assumed that the in-control ATS=370 and p=2. Also, for the FP chart we used: 0.0027

 

(to have the in-control ATS=370), n=5, t=1, for the VP chart we used: ASS=5, ASI=1, ATE=0.0027 (to have the in-control ATS=370),

1 0.0017   , 2 0.1 t  , 1 3 n  , 1 7 n  .
The ATS for the ELR scheme is also obtained with n=5, t=1 and for different  values (0.1, 0.2, 0.3 and 0.4). In addition, the parameters used in Table 5 to represent the shifts are:

0 1 1 2 (0, 0) ( , ) μμ     and 1 1 2 01 1 2 2 10 01 ΣΣ                   .
Moreover, the performance of the ELR chart has been obtained based on 10000 simulation runs. We used 30 different separate as well as simultaneous shifts and, as it can be easily seen in Table 6, in many situations the proposed scheme surpasses the ELR chart. More precisely, among the 30 situations investigated, the scheme proposed in this paper is better than the ELR chart in 16 cases, i.e.

about 50% of the time. However, unlike the ELR scheme (as explained above), our scheme can be easily implemented in practice. "Insert Tables 6 here"

An illustrative example

For illustration of the proposed adaptive method, and to show how it works, the illustrative example presented by [START_REF] Aparisi | Hotelling's T 2 control chart with adaptive sample sizes[END_REF] is adopted. We have a mechanical part with p=3 main quality characteristics as it is shown in Figure 4. The quality characteristics are the width 1 X , the inner diameter 2

X and the length 3 X .

"Insert Figure 4 here" Based on Aparisi (1996)'s assumptions, the average Type-I error is 0.005 ATE  and the mean vector and the variance-covariance matrix of the quality characteristics are: 0 (7,3,15)' μ  , 0 0.2 0.054 0.162 0.054 0.09 0.042 0.162 0.042 0.31

      Σ .
Since it was proven in the previous sections that the VP scheme has the best performance, we adopt this scheme for our process monitoring. We use the VP strategy explained in section 3 and all the other chart parameters values related to the adaptive scheme are assumed as (to be determined by quality experts): ASS=10, ASI=1hr, 1 0.004   , 2 0.1 t  , 1 5 n  and 2 15 n  . Having the assumed parameters values, by using Equation ( 11) we obtain 1 3.0899 UCL 

, by using Equation ( 14) we obtain 2 2.9673 UCL 

, by using Equation ( 15) we obtain 1 1.9 t  hrs, and at last, by using Equation ( 16) we obtain 1 1.0487 UWL  and 2 1.0472 UWL  .

For the second to the last columns of Table 7, respectively we have: the number of samples taken for the current sample, the cumulative number of samples taken up to the current sample, the sampling interval adopted for reaching the current sample, the cumulative sampling intervals up to the current sample, the total number of switches between the in-control states up to the current sample, the i M , i V and i C statistics values for the current sample (which are computed by using Equations ( 3), ( 4) and

(5), respectively), UWL and UCL adopted for the current sample, and finally, the state of the process after taking the current sample. Before beginning the process monitoring, we randomly shift the mean and variability as: We have generated 20 consecutive samples for the process monitoring. As it can be seen in Table 7, the proposed VP chart was able to find an out-of-control situation in sample #17; after 10.6 hours, 205 samples measured and with three shifts between in-control states. After finding an out-of-control situation, quality practitioners should investigate the cause and find the problem source.

"Insert Table 7 here" In addition, the proposed VP control chart can also be seen graphically (plotted using MS Excel) in Figure 5.

"Insert Figure 5 here"

Conclusions and future research

A new multivariate control chart based on an already existing bivariate chart has been introduced in order to monitor both process parameters (mean and variation) simultaneously and by using only a single max-type chart. After establishing the multivariate control chart, adaptive schemes have been proposed to make the chart's performance better in detecting small and moderate shifts. In order to measure the charts' performances and to compare the non-adaptive with the adaptive charts, eight performance measures have been used, each measuring one aspect of the performance. The average run length and its standard deviation, the average time to signal its standard deviation, the average number of observations to signal and its standard deviation, the average number of switches to signal and its standard deviation are the performance measures used. In order to compute these performance measures, a new Markov chain model has been proposed with the derivation of the corresponding transition probabilities. We used two scenarios for the variance-covariance matrix shifts. In the first scenario, the shifted variance-covariance matrix is a constant multiplier of the in-control one. In the second scenario, the more general one, the elements in the variance-covariance matrix are allowed to change independently. We also considered two cases: in the first, only the variances shift but the covariance components stay unchanged. However, in the second case, only the covariance components shift. Through extensive numerical analysis, adaptive schemes were found to perform much better under small to moderate separate and simultaneous shifts in all scenarios; VP and VSSI charts, respectively, having the best performances. However, the adaptive and FP charts almost have the same performance under large shifts. In the case two of the second scenario, in which only the covariance shifts and the variances remain fixed, we concluded that an increasing shift in the covariance components, would result in negative performance of all the charts up to some point (covariance value). However, that point gets closer to the in-control value as the shift in the mean decreases (except for large mean shifts in which the chart performance is almost insensible to the covariance change) or, also, as the number of quality characteristics increases. Moreover, our results showed that in the first scenario, in which the variance and covariance components shift with an equal multiplier, with the increase in the number of quality characteristics, as the mean shift increases to a relatively large one, the performance measures' values increase. However, as the variability shift increases and also in most simultaneous mean and variability shifts, the performance measures improve. In addition, we compared the proposed scheme with the ELR scheme and the results showed that our scheme performs at least as good as the ELR method and can be easily implemented in practice, unlike the ELR scheme. Finally, through a numerical example, the implementation of the proposed adaptive scheme was shown in practice.

Concerning possible extensions of this paper, researchers can apply the proposed adaptive schemes and also the proposed Markov chain model for other types simultaneous control charts, especially max-type ones. Moreover, the effect of estimated parameters, measurement errors as well as autocorrelation can be considered on the performance of the proposed control charts as future research.
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Figure1-ATS vs Covariance ()  for zero, small (0.2), medium (0.8) and large (1.5) mean shifts, respectively, for p =2 using first scenario case 2.

Figure2-ATS vs Covariance ()  for zero, small (0.2), medium (0.8) and large (1.5) mean shifts, respectively, for p =3 using first scenario case 2.

Figure3-ATS vs Covariance ()  for zero, small (0.2), medium (0.8) and large (1.5) mean shifts, respectively, for p =4 using first scenario case 2. 

  For a FP control chart (for which the chart parameters are all fixed), performance measures like the Average Run Length (ARL) and the Standard Deviation of Run Length (SDRL) can be used and investigated. However, for adaptive schemes, six additional performance measures can be used: the Average Time to Signal (ATS), the Standard Deviation of Time to Signal (SDTS), the Average Number of Observations to Signal (ANOS), the Standard Deviation of Number of Observations to Signal (SDNOS), the Average Number of Switches to Signal (ANSW) and the Standard Deviation of Number of Switches to Signal (SDNSW).

  transition probilities via the proposed method, the general formulas in Equations (

  Figure 4-A mechanical part for an illustrative example

  

  

  

  

  

  

  

  

  

  

  

  

  two types of sample sizes (

								: n s s	  1,2 with  12 n n	)	,
	 two types of sampling intervals (	t	  1,2 wi th s st :  , 21 ) t
	 two types of type I error probabilities	( 	: s s		  1,2	where 12 )   	,
	and, as our max-type control chart is one-sided, we also assume that there are:
	 two upper control limits	1 UCL (related to 1  ) and	2 UCL (related to 2  ) As 12   	we have
	21 UCL UCL 	.
	 two upper warning limits	1 UWL and	2 UWL verifying	11 UWL UCL 	and	22 UWL UCL 	,
	respectively.		
	The VP strategy for choosing the next sampling scheme is as follows:
	 If	C		[0, UWL	]	, the process is declared as being in-control and the parameters for the next
		i					
	sample must be 11 1 ( , nt 	1 ,, UCL U WL 1	)	, i.e. the small sample size, the long sampling
	interval and the large control and warning limits UCL and UWL.
	 If	C		( UWL UCL ,	]	, the process is also declared as being in-control but the parameters for the
		i					
	next sample must be	2 	2 2 (, nt	2 ,UCL U , WL	2	)	, i.e. the large sample size, the short sampling
	interval and the small control and warning limits UCL and UWL.
	 If			(	, )

   the results for all performance measures can be seen in Table2. In this Table, the values ANSW=0 and SDNSW=0 correspond to the FP scheme for which no switching occurs. the results for all performance measures can be seen in Table1. In this Table, the values ANSW=0 and SDNSW=0 correspond to the FP scheme for which no switching occurs.

												and
	01 (0, 0) μμ   	( , ) 	, will correspond to the same performance measures values. We also assume
	that	 	{0, 0.1, 0.3, 0.7, 2}	and	 	{1,1.05,1.2,1.5,3}	.
	For the FP scheme, assuming n=10, t For the FP scheme, assuming n=10, 0.005   (Equation (6) results in 3.023 UCL  ) and 0.005   (Equation (6) results in 3.023 UCL  ) and t  For the VP scheme, assuming ASS=10, ASI=1, ATE=0.005, 1 0.004   , 2 0.1 t  , 1 5 n  and 2 15 1, 1, n  ,
	from Equations (11) -(16) we have:	1 UCL 	3.0899	, 0 0.5 p 	, 2 0.006  	,	2 UCL 	2.9673	, 1 1.9 t 	,
	1 UWL 	1.0487	and	2 UWL 	1.0472	. The results for all performance measures in the VP chart can be
	seen in Table 2, as well.				
	For the VSSI scheme, assuming ASS=10, ASI=1,	 	0.005	, 2 0.1 t 	, 1 5 n  and 2 15 n  , from
	Equations (							

Table 2

 2 

					0			0.1			0.3			0.7			2	
	Scenario1.			ARL	ATS	ANOS	ANSW	ARL	ATS	ANOS	ANSW	ARL	ATS	ANOS	ANSW	ARL	ATS	ANOS	ANSW	ARL	ATS	ANOS	ANSW
	and using for p=2		FP VSI	163.7649 163.7649	163.7649 159.8549	1637.649 1637.6	0 81.3248	147.6008 147.6008	147.6008 142.2147	1476.008 1476 73.1791 0	61.9614 61.9614	61.9614 53.0002	619.614 619.6145	0 29.6807	5.3831 5.3831	5.3831 2.7654	53.831 53.8309	0 1.4058	1.0001 1.0001	1.0001 1.0000	10.001 10.0013	0 0.0000
	non-adaptive schemes	1.05	VSS VSSI	163.7648 163.7648	163.7648 159.8506	1659.4 1659.4	81.0088 81.0088	146.9438 146.9438	146.9438 141.5306	1499.5 1499.5	72.0492 72.0492	53.4155 53.4155	53.4155 45.1392	580.1342 580.1342	23.5638 23.5638	3.5337 3.5337	3.5337 2.0020	43.8458 43.8458	0.7565 0.7565	1.0279 1.0279	1.0279 1.0031	10.4164 10.4164	0.0277 0.0277
	for and adaptive		VP FP	162.3187 200.0000	158.4435 200.0000	1644.7 2000	80.3043 0	144.2625 181.1620	138.9601 181.1620	1472.1 1811.620	70.7472 0	49.9569 74.3715	42.2747 74.3715	542.2483 743.715	22.0569 0	3.4100 5.6445	1.9729 5.6445	42.0845 56.444	0.7494 0	1.0314 1.0001	1.0035 1.0001	10.4698 10.0009	0.0313 0
	measures,		VSI	200.0000	200.0000	2000	99.5000	181.1620	178.9487	1811.6	90.0643	74.3715	65.3187	743.7149	36.0055	5.6445	2.8686	56.4446	1.4795	1.0001	1.0000	10.0009	0.0004
	-Performance	1	VSS VSSI	200.0000 200.0000	200.0000 200.0000	2000 2000	99.5 99.5000	180.6405 180.6405	180.6405 178.4073	1818.8 1818.8	89.1778 89.1778	63.9442 63.9442	63.9442 55.5488	686.0836 686.0836	28.5766 28.5766	3.6072 3.6072	3.6072 2.0291	44.8388 44.8388	0.7630 0.7630	1.0261 1.0261	1.0261 1.0029	10.3896 10.3896	0.0259 0.0259
	τ		VP	200.0000	200.0000	2000	99.5000	178.7717	176.5693	1800	88.2583	59.7137	51.9333	640.3619	26.7014	3.4748	1.9980	42.9527	0.7548	1.0295	1.0032	10.4414	0.0294

Table 2 (

 2 Continued).

				0			0.1			0.3				0.7				2	
			ARL	ATS	ANOS	ANSW	ARL	ATS	ANOS	ANSW	ARL	ATS	ANOS	ANSW	ARL	ATS	ANOS	ANSW	ARL	ATS	ANOS	ANSW
		FP	1.3940	1.3940	13.940	0	1.3908	1.3908	13.908	0	1.3649	1.3649	13.649	0	1.2500	1.2500	12.500	0	1.0037	1.0037	10.037	0
		VSI	1.3940	1.0735	13.9404	0.1515	1.3908	1.0726	13.9076 0.1505	1.3649	1.0656	13.6487	0.1419	1.2500	1.0393	12.5002	0.1031	1.0037	1.0004	10.0366	0.0018
	3	VSS	1.4372	1.4372	16.0739	0.3009	1.4349	1.4349	16.0434	0.2999	1.4165	1.4165	15.8007	0.2923	1.3328	1.3328	14.6774	0.2548	1.0501	1.0501	10.7352	0.0484
		VSSI	1.4372	1.1309	16.0739	0.3009	1.4349	1.1299	16.0434	0.2999	1.4165	1.1221	15.8007	0.2923	1.3328	1.0900	14.6774	0.2548	1.0501	1.0079	10.7352	0.0484
		VP	1.4418	1.1315	16.1410	0.3114	1.4395	1.1305	16.1113	0.3104	1.4215	1.1227	15.8751	0.3028	1.3399	1.0908	14.7824	0.2655	1.0542	1.0083	10.7966	0.0525
		FP	14.2970	14.2970	142.970	0	13.8628	13.8628	138.628	0	10.6539	10.6539	106.539	0	3.4703	3.4703	34.703	0	1.0009	1.0009	10.009	0
		VSI	14.2970	9.0462	142.9695	5.4581	13.8628	8.6776	138.6276	5.2342	10.6539	6.1604	106.5389	3.6570	3.4703	1.7859	34.7031	0.7305	1.0009	1.0001	10.0093	0.0004
	1.5	VSS	11.0533	11.0533	134.3329	3.5190	10.7093	10.7093	130.5807	3.3551	8.0942	8.0942	100.8027	2.2263	2.6788	2.6788	33.0406	0.5461	1.0414	1.0414	10.6149	0.0408
		VSSI	11.0533	6.7692	134.3329	3.5190	10.7093	6.4815	130.5807	3.3551	8.0942	4.5192	100.8027	2.2263	2.6788	1.5534	33.0406	0.5461	1.0414	1.0054	10.6149	0.0408
		VP	10.4080	6.4337	126.1587	3.3386	10.0821	6.1621	122.5992	3.1839	7.6318	4.3215	94.7093	2.1251	2.6130	1.5421	32.0789	0.5501	1.0456	1.0058	10.6767	0.0449
		FP	67.7209	67.7209	677.209	0	62.7476	62.7476	627.476	0	33.5879	33.5879	335.879	0	4.6837	4.6837	46.837	0	1.0003	1.0003	10.003	0
		VSI	67.7209	58.5297	677.2086	32.5904	62.7476	53.4869	627.4757	30.0301	33.5879	25.5019	335.8786	15.0923	4.6837	2.4207	46.8367	1.1669	1.0003	1.0000	10.0029	0.0001
	1.2	VSS	64.3712	64.3712	693.8959	29.5358	59.2546	59.2546	643.0133	26.8482	28.4255	28.4255	325.0268	11.3447	3.2830	3.2830	40.6814	0.7025	1.0330	1.0330	10.4917	0.0327
		VSSI	64.3712	55.3380	693.8959	29.5358	59.2546	50.1704	643.0133	26.8482	28.4255	21.0867	325.0268	11.3447	3.2830	1.8696	40.6814	0.7025	1.0330	1.0039	10.4917	0.0327
		VP	61.2081	52.6587	659.5779	28.1096	56.1523	47.5871	609.1077	25.4679	26.5336	19.7460	303.0453	10.6145	3.1811	1.8468	39.2232	0.6993	1.0368	1.0043	10.5488	0.0365

Table 3 (

 3 Continued).

				0			0.1			0.3				0.7				2	
			ARL	ATS	ANOS	ANSW	ARL	ATS	ANOS	ANSW	ARL	ATS	ANOS	ANSW	ARL	ATS	ANOS	ANSW	ARL	ATS	ANOS	ANSW
		FP	1.1980	1.1980	11.980	0	1.1964	1.1964	11.964	0	1.1836	1.1836	11.836	0	1.1257	1.1257	11.257	0	1.0012	1.0012	10.012	0
		VSI	1.1980	1.0294	11.9803	0.0844	1.1964	1.0291	11.9641	0.0838	1.1836	1.0266	11.8360	0.0789	1.1257	1.0165	11.2568	0.0563	1.0012	1.0001	10.0125	0.0006
	3	VSS	1.3470	1.3470	14.8238	0.2840	1.3454	1.3454	14.8032	0.2831	1.3328	1.3328	14.6394	0.2753	1.2739	1.2739	13.8614	0.2368	1.0376	1.0376	10.5537	0.0366
		VSSI	1.3470	1.1034	14.8238	0.2840	1.3454	1.1027	14.8032	0.2831	1.3328	1.0967	14.6394	0.2753	1.2739	1.0718	13.8614	0.2368	1.0376	1.0055	10.5537	0.0366
		VP	1.3558	1.1044	14.9552	0.2948	1.3543	1.1037	14.9350	0.2939	1.3418	1.0977	14.7738	0.2861	1.2835	1.0729	14.0051	0.2476	1.0409	1.0059	10.6033	0.0399
		FP	10.7879	10.7879	107.879	0	10.5383	10.5383	105.383	0	8.5651	8.5651	85.651	0	3.1679	3.1679	31.679	0	1.0004	1.0004	10.004	0
		VSI	10.7879	6.2654	107.8789	3.7236	10.5383	6.0638	105.3828	3.5964	8.5651	4.6073	85.6511	2.6536	3.1679	1.6196	31.6791	0.6168	1.0004	1.0000	10.0045	0.0002
	1.5	VSS	7.6364	7.6364	94.7039	2.0690	7.4688	7.4688	92.8390	1.9946	6.0980	6.0980	76.8630	1.4547	2.4604	2.4604	30.1484	0.4963	1.0331	1.0331	10.4922	0.0327
		VSSI	7.6364	4.3353	94.7039	2.0690	7.4688	4.2017	92.8390	1.9946	6.0980	3.2391	76.8630	1.4547	2.4604	1.4625	30.1484	0.4963	1.0331	1.0042	10.4922	0.0327
		VP	7.2150	4.1563	89.1423	1.9787	7.0566	4.0302	87.3790	1.9086	5.7735	3.1257	72.4453	1.4023	2.4054	1.4544	29.3377	0.5019	1.0366	1.0045	10.5439	0.0361
		FP	58.4969	58.4969	584.969	0	54.9973	54.9973	549.973	0	31.9631	31.9631	319.631	0	4.6093	4.6093	46.093	0	1.0001	1.0001	10.001	0
		VSI	58.4969	49.1617	584.9686	27.8288	54.9973	45.6435	549.9726	26.0166	31.9631	23.7985	319.6313	14.1942	4.6093	2.3609	46.0932	1.1276	1.0001	1.0000	10.0014	0.0000
	1.2	VSS	53.6914	53.6914	586.7073	23.8000	50.2188	50.2188	552.0109	21.9954	26.4978	26.4978	305.5935	10.2466	3.1982	3.1982	39.5961	0.6746	1.0268	1.0268	10.3992	0.0265
		VSSI	53.6914	44.7286	586.7073	23.8000	50.2188	41.2506	552.0109	21.9954	26.4978	19.1871	305.5935	10.2466	3.1982	1.8277	39.5961	0.6746	1.0268	1.0031	10.3992	0.0265
		VP	50.5153	42.1338	551.7162	22.4155	47.1492	38.7828	517.9728	20.6747	24.6425	17.9113	283.8208	9.5539	3.1011	1.8071	38.2006	0.6724	1.0300	1.0034	10.4471	0.0297

Table 4 (

 4 Continued).

				0, 0			0.1, 0			0.1, 0.3			0.5, 0.8			2, 2	
		ARL	ATS	ANOS	ANSW	ARL	ATS	ANOS	ANSW	ARL	ATS	ANOS	ANSW	ARL	ATS	ANOS	ANSW	ARL	ATS	ANOS	ANSW
		FP	1.2186	1.2186	12.1862	0	1.2170	1.2170	12.1695	0	1.2070	1.2070	12.0705	0	1.1453	1.1453	11.4526	0	1.0033	1.0033	10.0328	0
		VSI	1.2186	1.0359	12.1862	0.0924	1.2170	1.0355	12.1695	0.0918	1.2070	1.0333	12.0705	0.0881	1.1453	1.0211	11.4526	0.0643	1.0033	1.0004	10.0328	0.0016
	3,3	VSS	1.3213	1.3213	14.4927	0.2527	1.3198	1.3198	14.4738	0.2519	1.3113	1.3113	14.3610	0.2472	1.2566	1.2566	13.6245	0.2145	1.0469	1.0469	10.6883	0.0453
		VSSI	1.3213	1.0908	14.4927	0.2527	1.3198	1.0902	14.4738	0.2519	1.3113	1.0867	14.3610	0.2472	1.2566	1.0660	13.6245	0.2145	1.0469	1.0075	10.6883	0.0453
		VP	1.3290	1.0917	14.6089	0.2631	1.3276	1.0911	14.5902	0.2623	1.3192	1.0876	14.4792	0.2575	1.2651	1.0669	13.7522	0.2247	1.0508	1.0079	10.7459	0.0492
		FP	13.7311	13.7311	137.3112	0	13.3249	13.3249	133.2490	0	11.0111	11.0111	110.1107	0	3.4340	3.4340	34.3396	0	1.0010	1.0010	10.0095	0
		VSI	13.7311	8.6088	137.3112	5.1860	13.3249	8.2662	133.2490	4.9770	11.0111	6.4360	110.1107	3.8321	3.4340	1.7688	34.3396	0.7185	1.0010	1.0001	10.0095	0.0004
	1.4,1.4	VSS	10.5675	10.5675	128.7483	3.3166	10.2485	10.2485	125.2578	3.1655	8.3843	8.3843	104.1311	2.3505	2.6582	2.6582	32.7714	0.5414	1.0417	1.0417	10.6183	0.0410
		VSSI	10.5675	6.4142	128.7483	3.3166	10.2485	6.1494	125.2578	3.1655	8.3843	4.7326	104.1311	2.3505	2.6582	1.5442	32.7714	0.5414	1.0417	1.0054	10.6183	0.0410
		VP	9.9572	6.1031	120.9831	3.1501	9.6549	5.8530	117.6717	3.0074	7.9046	4.5220	97.8379	2.2419	2.5935	1.5332	31.8262	0.5456	1.0458	1.0058	10.6802	0.0451
		FP	60.1571	60.1571	601.5706	0	55.9856	55.9856	559.8564	0	35.8374	35.8374	358.3739	0	4.5996	4.5996	45.9958	0	1.0003	1.0003	10.0032	0
		VSI	60.1571	51.0015	601.5706	28.7184	55.9856	46.8144	559.8564	26.5654	35.8374	27.5095	358.3739	16.2241	358.3739	2.3754	45.9958	1.1359	1.0003	1.0000	10.0032	0.0001
	1.0.5,1.3	FP	56.4559	56.4559	614.1366	25.4947	52.2117	52.2117	571.6813	23.2724	31.0725	31.0725	353.5614	12.6158	3.2475	3.2475	40.2433	0.6930	1.0336	1.0336	10.5008	0.0333
		VSI	56.4559	47.5321	614.1366	25.4947	52.2117	43.2900	571.6813	23.2724	31.0725	23.3620	353.5614	12.6158	3.2475	1.8493	40.2433	0.6930	1.0336	1.0040	10.5008	0.0333
		VSS	53.4876	45.0767	581.6035	24.1798	49.3252	40.9437	539.8168	22.0114	29.0327	21.8894	330.0125	11.8131	3.1481	1.8273	38.8188	0.6903	1.0374	1.0044	10.5582	0.0371

Table 5 (

 5 Continued).

				0, 0, 0		0.1, 0, 0.1	0.1, 0.3, 0.3		0.5, 0.8, 0.5			2, 2, 2
			ARL	ATS	ANOS	ANSW	ARL	ATS	ANOS	ANSW	ARL	ATS	ANOS	ANSW	ARL	ATS	ANOS	ANSW	ARL	ATS	ANOS	ANSW
		FP	1.2855	1.2855	12.8554	0	1.2823	1.2823	12.8234	0	1.2640	1.2640	12.6404	0	1.1871	1.1871	11.8706	0	1.0014	1.0014	10.0136	0
		VSI	1.2855	1.0456	12.8554	0.1151	1.2823	1.0448	12.8234	0.1140	1.2640	1.0407	12.6404	0.1077	1.1871	1.0260	11.8706	0.0800	1.0014	1.0001	10.0136	0.0007
	3,3,1.4	VSS	1.4022	1.4022	15.5595	0.3097	1.3995	1.3995	15.5257	0.3084	1.3844	1.3844	15.3310	0.3004	1.3194	1.3194	14.4793	0.2639	1.0387	1.0387	10.5700	0.0377
		VSSI	1.4022	1.1253	15.5595	0.3097	1.3995	1.1240	15.5257	0.3084	1.3844	1.1166	15.3310	0.3004	1.3194	1.0881	14.4793	0.2639	1.0387	1.0057	10.5700	0.0377
		VP	1.4094	1.1262	15.6669	0.3204	1.4068	1.1249	15.6338	0.3190	1.3919	1.1175	15.4439	0.3112	1.3282	1.0891	14.6109	0.2749	1.0421	1.0060	10.6211	0.0411
		FP	18.1039	18.1039	181.0392	0	17.3344	17.3344	173.3439	0	13.1345	13.1345	131.3449	0	4.1210	4.1210	41.2096	0	1.0003	1.0003	10.0031	0
		VSI	18.1039	11.8940	181.0392	7.2371	17.3344	11.2168	173.3439	6.8345	13.1345	7.8112	131.3449	4.7354	4.1210	2.0606	41.2096	0.9246	1.0003	1.0000	10.0031	0.0002
	1.4,1.4,1.05	VSS	13.6631	13.6631	164.3651	4.4996	13.0701	13.0701	158.0144	4.2150	9.7098	9.7098	120.2935	2.7509	3.0186	3.0186	37.5596	0.6089	1.0311	1.0311	10.4622	0.0307
		VSSI	13.6631	8.6710	164.3651	4.4996	13.0701	8.1536	158.0144	4.2150	9.7098	5.5345	120.2935	2.7509	3.0186	1.6912	37.5596	0.6089	1.0311	1.0038	10.4622	0.0307
		VP	12.7767	8.1756	153.3282	4.2324	12.2188	7.6903	147.3463	3.9656	9.0925	5.2509	112.2670	2.6024	2.9283	1.6741	36.2509	0.6096	1.0344	1.0041	10.5128	0.0341
		FP	64.6986	64.6986	646.9855	0	59.3116	59.3116	593.1161	0	34.3427	34.3427	343.4275	0	5.5290	5.5290	55.2904	0	1.0001	1.0001	10.0013	0
		VSI	64.6986	55.3201	646.9855	31.0101	59.3116	49.8716	593.1161	28.2283	34.3427	26.0029	343.4275	15.4212	5.5290	2.8748	55.2904	1.4780	1.0001	1.0000	10.0013	0.0001
	1.05,1.3,1.05	VSS	60.2258	60.2258	652.7814	27.1215	54.7821	54.7821	598.5558	24.2880	28.6805	28.6805	328.5604	11.3000	3.7350	3.7350	46.4979	0.8088	1.0264	1.0264	10.3939	0.0262
		VSSI	60.2258	51.1317	652.7814	27.1215	54.7821	45.6500	598.5558	24.2880	28.6805	21.1646	328.5604	11.3000	3.7350	2.0885	46.4979	0.8088	1.0264	1.0030	10.3939	0.0262
		VP	56.8366	48.3020	615.7810	25.6183	51.5313	42.9923	562.7520	22.8703	26.6838	19.7578	305.3159	10.5376	3.6017	2.0550	44.6100	0.7996	1.0296	1.0034	10.4416	0.0294

Table 6

 6 ATS comparison of the proposed schemes versus the ELR scheme when p=2, ASS=5, ASI=1 and incontrol ATS=370.

	1 ( , , 2      1 1 , , )				ELR				
		 	0.1	 	0.2	 	0.3	 	0.4	FP	VP
	(0.2,0.2,1,1,0)	32.1	42.5	59.3	77.0	260.4	232.9
	(0.5,0.5,1,1,0)	7.6	7.1	7.3	8.2	44.8	20.6
	(0.8,0,1,1,0)	6.5	5.9	5.9	6.2	29.2	11.3
	(0,0,1.2,1.2,0)	17.5	21.6	27.2	33.5	51.5	32.3
	(0,7,0,7,1,1,0)	5.0	4.3	4.2	4.2	13.0	3.9
	(0,0,1.5,1,0)	7.6	7.6	8.4	9.1	41.1	24.0
	(0.2,0.2,1.5,1,0)	6.8	6.6	7.0	7.9	33.7	18.5
	(0.5,0,1.5,1,0)	5.6	5.3	5.4	5.7	22.7	10.9
	(0.5,0.2,1.5,1.2,0)	5.0	4.6	4.7	4.9	10.8	4.3
	(1.1,1.1,1,1,0)	2.8	2.4	2.2	2.1	2.4	1.2
	(0,0,1.5,1.5,0)	4.7	4.2	4.3	4.4	6.9	2.7
	(0.2,0.2,1.5,1.5,0)	4.4	3.9	3.9	4.2	6.5	2.5
	(1.5,1,1,1,0)	2.3	2.0	1.9	1.8	1.6	1.1
	(0,0,1.75,1.75,0)	2.8	2.5	2.4	2.3	3.0	1.5
	(1.5,1.5,1,1,0)	1.9	1.7	1.5	1.5	1.2	1.0
	(2,2,1,1,0)	1.3	1.1	1.1	1	1	1
	(0,0,1.5,1,0.2)	7.3	7.0	7.6	8.2	7.1	2.8
	(0.2,0,1.5,1,0.2)	6.9	6.7	7	7.5	41.4	24.3
	(0.2,0.2,1.5,1,0.2)	6.5	6.2	6.6	7.1	37.3	21.2
	(0.5,0,1.5,1,0.2)	5.5	5.1	5.1	5.5	24.6	12.1
	(0.5,0.5,1.5,1,0.2)	4.6	4.1	4.1	4.1	14.5	6.0
	(0.5,0.2,1.5,1.2,0.2)	5.0	4.5	4.5	4.7	11.6	4.7
	(0,0,1.5,1.5,0.2)	4.5	4.1	4.2	4.3	7.4	2.9
	(0.2,0,1.5,1.5,0.2)	4.4	3.9	4.0	4.1	7.2	2.8