
HAL Id: hal-03132512
https://hal.science/hal-03132512v1

Preprint submitted on 5 Feb 2021 (v1), last revised 16 Feb 2022 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bilevel Learning of Deep Representations
Jordan Frecon, Saverio Salzo, Massimiliano Pontil

To cite this version:
Jordan Frecon, Saverio Salzo, Massimiliano Pontil. Bilevel Learning of Deep Representations. 2021.
�hal-03132512v1�

https://hal.science/hal-03132512v1
https://hal.archives-ouvertes.fr

Bilevel Learning of Deep Representations

Jordan Frecon 1 Saverio Salzo 2 Massimiliano Pontil 2 3

Abstract

We present a framework based on bilevel opti-
mization for learning multilayer, deep data rep-
resentations. While the lower-level problem im-
plicitly defines the representation through the crit-
ical point of a learnable objective, the upper-level
problem optimizes the representation mapping.
We reformulate the problem via a majorization-
minimization algorithm. On one hand, for some
quadratic majorants, we show that the bilevel
problem reduces down to the training of a feed-
forward neural network. On the other hand, for
majorants based on Bregman distances, we intro-
duce a new neural network architecture involv-
ing the inverse of the activation function. We
argue theoretically that the novel architecture may
have better mathematical properties than standard
networks. Numerical experiments show that the
proposed variant benefits from better training be-
haviors, resulting in more accurate prediction.

1. Introduction
The past decades have seen an overwhelming interest in
neural networks due to their empirical success in numer-
ous and disparate applications, ranging from medical imag-
ing (Zhou et al., 2019; Lassau et al., 2021) to self driving
vehicles (Blin et al., 2019), among others. Consequently,
they have received a great interest from the machine learn-
ing community (see e.g. Goodfellow et al., 2016; 2013;
Maggu et al., 2020, and references therein). However, to
date, research in deep learning has mostly been application
driven. A large body of work have proposed increasingly
complex architectures for specific tasks, but much fewer
attempts have been made to elucidate the reasons behind
their success.

1Normandie Univ, INSA Rouen, UNIROUEN, UNIHAVRE,
LITIS. Saint-Etienne-du-Rouvray, France 2Computational Statis-
tics and Machine Learning, Istituto Italiano di Tecnologia. Gen-
ova, Italy 3Department of Computer Science, University College.
London, United Kingdom. Correspondence to: Jordan Frecon
<jordan.frecon@insa-rouen.fr>.

A key aspect of deep neural networks is their ability to learn
a representation from raw inputs. In this paper, rather than
directly writing the representation mapping as a prescribed
compositional form, our framework looks the representation
from the perspective of bilevel optimization (see Franceschi
et al., 2018; Grazzi et al., 2020, and references therein).
Within this framework, the lower-level problem performs
feature representation while the upper-level problem op-
timizes the representation mapping. A main insight is to
introduce a constraint on the representation as the inclusion
to the critical points of a learnable objective function. It is
formed by summing a parametric function and a prescribed
function which may be nonconvex.
To overcome the difficulty behind the bilevel problem we
convert it into a sequence of simpler ones, via a general
majorization-minimization (MM) approximation scheme.
Learning the representation can be seen as optimizing the
majorant functions used in the MM algorithm. We show
how this iterative scheme naturally gives rise to novel multi-
layer networks for which we establish basic mathematical
properties. In particular, we argue that under certain con-
ditions they may yield converging sequences resulting in a
more stable and effective model to train.

Contributions and Organization In Sec. 2, we present
the proposed framework and in particular the class of MM
algorithms and their associated majorants. From this per-
spective, we show in Sec. 3 that, for some quadratic majo-
rants, we recover standard feed-forward neural networks.
By elaborating on other classes of majorants, we propose
in Sec. 4 a new type of neural network layer, namely the
Bregman feed-forward layer, which additionally involves
the inverse of the activation operator. This setting provides
a novel view on neural networks which allows us to inter-
pret activation operators as Bregman projection of convex
functions as opposed to proximity operator of nonconvex
functions. Within this framework we devise theoretical guar-
antees as described in Sec. 5. The practical benefits of this
new type of feed-forward networks are assessed on both
synthetic and real datasets in Sec. 6.

Previous Work Bilevel optimization formulations have
recently been devised in the setting of meta-learning and hy-
perparameter optimization (Grazzi et al., 2020; Franceschi
et al., 2018). Probably most related to our work is (Com-
bettes & Pesquet, 2020) where the authors have shown that

Bilevel Learning of Deep Representations

a wide range of activation operators are actually proximity
operators of possibly nonconvex functions. In addition, the
authors have provided a thorough analysis with tools from
monotone operator theory in order to study a class of neural
networks and their asymptotic properties. In addition, feed-
forward networks have been studied in (Bibi et al., 2019),
where the authors have shown that the forward pass through
one feed-forward layer is equivalent to a single step of a
forward-backward algorithm. In addition, recent studies
have built deep models by unrolling particular optimization
algorithms (Monga et al., 2020; Bertocchi et al., 2020).

Notations Let X and Y be two Hilbert spaces. For ev-
ery lower semicontinuous extended real-valued function
f : X →R∪ {±∞} we denote by ∂f the subdifferential of
f and set critf = {x ∈ X |0 ∈ ∂f (x)}. In addition, we let
Γ0(X) be the space of functions h : X →]−∞,+∞] closed
proper and convex, B(X ,Y) be the space of bounded op-
erators from X to Y , and F (X) be the space of locally
Lipschitz continuous, subdifferentially regular and semi-
algebraic functions from X to R. For N ∈ N

∗
+, we let

[N] = {1, . . . ,N }. For every set C we denote by int C the
interior of C.

2. Bilevel Framework
In this section, we present our bilevel framework for repre-
sentation learning.

Given some training data set {xi , yi}Ni=1 made of N samples,
we propose to learn a representation mapping h such that,
for every i ∈ [N], the learned features h(xi) from the input
data xi ∈ R

d are more amenable for predicting yi ∈ R
K .

In other words, this means that the predicted target ŷi can
be written as a simple transformation ψ of h(xi), i.e., ŷi =
ψ(h(xi)). The transformation ψ can model a large variety of
operations popularly used such that a simple linear layer or
a linear layer followed by a softmax operator. The closeness
between ŷi and the true target yi is measured by a given
function ` such as the mean squared error or the cross-
entropy. A key feature of our framework is to implicitly
define the learned representation h(xi) through the critical
points of some objective function. We consider that the
objective can be written as fθ + g where g ∈ F (Rd) is
a known simple1 function and fθ ∈ F (Rd) is a possibly
nonconvex function depending on parameters θ. Hence,
here g acts as a regularizer while the choice of θ permits to
tune fθ and therefore also the representation h. In order to
highlight the dependency, we denote h(xi ,θ). We provide
a one-dimensional illustration in Figure 1 where g is the
indicator function of the [0,1] interval and the set of critical
points is {0,1/2,1}. To learn both ψ and θ, we consider the

1Simple is meant in the sense that its proximity operator has a
closed-form expression.

0.0 0.5 1.0
x

0.0

0.5

1.0

y

{xi, yi}N
i = 1

0.0 0.5 1.0
z

0.00

0.02

0.04

0.06

0.08

f
g

Figure 1. One dimensional example. Left: illustration of the
dataset {xi , yi }Ni=1. Right: suggestion of f and g = ı[0,1] so that
crit(f + g) = {0,1/2,1}.

following bilevel problem.

Problem 2.1 (Original Bilevel Problem). Given a training
data set {xi , yi}Ni=1 where {xi , yi} ∈ Rd ×RK for every i ∈
[N], a function g ∈ F (Rd), a mapping h : Rd ×Θ → R

d

and a family of functions fθ ∈ F (Rd), solve

minimize
ψ∈B(Rd ,RK)

θ∈Θ

N∑
i=1

`(ψ(h(xi ;θ)), yi)

s.t. (∀i ∈ [N]), h(xi ;θ) ∈ crit(fθ + g). (1)

Here h(xi ,θ) represents the limit point of a converging al-
gorithm having parameter θ and initial point xi . Moreover,
fθ + g is the function on which the algorithm (with parame-
ter θ) is applied. In order to specify a class Θ for which the
N constraints of (1) are satisfied, we consider an abstract
algorithm A(xi ,θ) which aims at solving

0 ∈ ∂(fθ + g)(zi) (2)

and takes as initial point xi . Note that (2) is reminiscent of
the deep equilibrium model (Bai et al., 2019), for which the
inclusion in (1) is replaced by a fixed point equation (see
Grazzi et al., 2020; Miller & Hardt, 2019, for a discussion).

To overcome the difficulty due to the non-convexity of
fθ , we propose to build a sequence by resorting to a
majorization-minimization (MM) strategy. The underlying
idea behind the MM algorithm is to convert a hard optimiza-
tion problem into a sequence of simpler ones. Its principle
relies on iteratively minimizing an majorizing surrogate of
the objective function (Lange et al., 2000; Bolte & Pauwels,
2016). To do so, at the l-th iteration, we design a surrogate
function Fl(·, z

(l)
i) of fθ anchored at the current point z(l)i . In

the traditional MM algorithm, the surrogate function must
satisfy the following conditions.

Definition 2.1 (MM Surrogate Conditions). Given some
function f ∈ F (Rd), we letM(f) be the class of functions
F ∈ F (Rd) which satisfy, for every zi ∈Rd ,

• F(zi ;zi) = f (zi) (touching constraint)
• ∇1F(zi ;zi) = ∇f (zi) (tangency constraint)

Bilevel Learning of Deep Representations

• F(z;zi) ≥ f (zi), ∀z ∈Rd (globally majorant)
• F(·, zi) is µ-strongly convex for some µ > 0

We are now ready to define the MM algorithm with initial
point xi .

Definition 2.2 (MM Algorithm). Given xi ∈ R
d , f ∈

F (Rd), g ∈ F (Rd) and some majorants θ = {Fl}l∈N, where
every Fl ∈ M(f), the MM algorithm reads AMM (xi ,θ) =
{z(l)}l∈N where

z(0) = xi
for l = 0,1, . . .⌊
z(l+1) = argmin

z∈Rd
Fl(z;z(l)) + g(z)

(3)

In the rest of the paper, we specify Problem 2.1 for the class
of MM algorithms, i.e.,

Θ =
{
{Fl}l∈N | ∃f ∈ F (Rd) , (∀l ∈N), Fl ∈M(f)

}
. (4)

Then, we note that if θ = {Fl}l∈N ∈ Θ, a function fθ is
uniquely defined through the conditions in Definition 2.1
(indeed, e.g., fθ(x) = F0(x,x)). If the sequence {z(l)}l∈N
defined in Definition 2.2 is convergent, then h(xi ,θ) =
liml→∞ z

(l). We thus propose to approximate h(xi ,θ) in
Problem 2.1 by hL(xi ,θ) = z(L) which is the output of the
algorithm in (3) truncated after L iterations, hence giving
rise to the following approximate bilevel problem.

Problem 2.2 (Approximate Bilevel Problem). Given L ∈N
and some training data set {xi , yi}Ni=1 made of N samples,
where {xi , yi} ∈Rd ×RK for every i ∈ {1, . . . ,N }, solve

minimize
ψ∈B(Rd ,RK)

θ∈Θ

N∑
i=1

`(ψ(hL(xi ;θ), yi)

with (∀i ∈ [N]), hL(xi ;θ) = z
(L)
i (5)

where {z(l)i }l∈N = AMM (xi ,θ) and we assume that
hL(xi ,θ)→ h(xi ,θ) as L→∞
Remark 2.1. We will show that, for MM algorithms and
convex functions g, the sequence hL(xi ,θ) converges to a
critical point of fθ + g. Therefore, in this situation, Prob-
lem 2.1 can be approximated by Problem 2.2 for sufficiently
large L.

3. Connection to Deep Multilayer Networks
In this section, we explore more in depth the setting of
MM algorithms defined in (4). In particular, we show that
for a specific class Θ of quadratic majorants {Fl}l∈N, the
Problem 2.2 boils down to the training of feed-forward
neural networks. For simplicity we consider that each layer
has the same number of neurons.

3.1. Quadratic majorant

We start by introducing the following class of majorants.
Definition 3.1 (Common Quadratic Majorant). Given f ∈
F (Rd), we let Q(f) be the family of quadratic majorants
Ql ∈M(f) of the form

Ql(z;z
(l)
i) ,

1
2
z>Alz+

1
2
z
(l)>
i Blz

(l)
i + z(l)>i Clz

+ d>l z+ e
>
l z

(l)
i + δl , (6)

where Al ∈Rd×d is symmetric positive definite, Bl ∈Rd×d ,
Cl ∈ Rd×d , dl ∈ Rd , el ∈ Rd and δl ∈ R. Hence, Ql(·, z

(l)
i)

is µl-smooth with µl = ‖Al‖2.

By elaborating on this collection of quadratic majorants, we
define the following proposed majorant Fl as follows.
Proposition 3.1 (Quadratic Majorant). Let f ∈ F (Rd) and
Ql ∈ Q(f). Then, for every zi ∈Rd ,

z 7→ Fl(z;z
(l)
i) ,Ql(z

(l)
i ;z(l)i) +∇1Ql(z

(l)
i ;z(l)i)>(z − z(l)i)

+
1
2τl
‖z − z(l)i ‖

2, (7)

belongs toM(f) if τl < 2/µl .

An illustration is provided in Figure 2 (left). We consider
the following class of majorants throughout the section.
Definition 3.2 (Class of Quadratic Majorants). We let

ΘQ =
{
{Fl}l∈N | ∃f ∈ F (Rd) , (∀l ∈N), Fl is as in (7)

}
.

Hence, it results that each of theN lower-level minimization
problems in Problem 2.2 leads to one step of the forward-
backward algorithm (Chen & Rockafellar, 1997; Combettes
& Wajs, 2005). By hinging on the form of Ql stated in
Definition 3.1, it then yields that

argmin
z∈Rd

Fl(z;z
(l)
i) + g(z) (8)

= proxτlg

(
z
(l)
i − τl∇1Ql(z

(l)
i ;z(l)i)

)
(9)

= proxτlg

[
Id − τl(Al +Cl)>

]
︸ ︷︷ ︸

,Wl

z
(l)
i −τldl︸︷︷︸

,bl

 , (10)

where we have introduced the variablesWl and bl . Note that
they both incorporate the step-size τl while it still appears
in the proximity operator. Now, we note that, as Al and
Cl varies in the space of symmetric matrices and the space
of matrices, Wl covers the entire space of Rd×d . Similarly,
bl spans the entire space of R

d as dl varies. Therefore,
Problem 2.2 can be equivalently rewritten as follows.

Bilevel Learning of Deep Representations

0 z(l)
i

0.5 1
z

0.00

0.02

0.04

0.06

0.08
f
g

Fl(, z(l)
i)

0 z(l)
i

0.5 1
z

0.00

0.02

0.04

0.06

0.08
f
g

Fl(, z(l)
i)

Figure 2. Illustration of the proposed majorant Fl (·, z
(l)
i) with Eu-

clidean distance (left, see Proposition 3.1) or Bregman distance
(right, see Proposition 4.1). The Bregman distance is chosen so

that the domain of Fl (·, z
(l)
i) lies within domg = [0,1].

Problem 3.1 (Training of FFNN). Given some training data
set {xi , yi}Ni=1 made of N samples, where {xi , yi} ∈Rd ×RK
for every i ∈ {1, . . . ,N }, solve

minimize
ψ∈B(Rd ,RK)

{Wl ,bl }L−1l=0 ∈(R
d×d×Rd)L

N∑
i=1

`(ψ(z(L)i), yi)

s.t. (∀i ∈ [N]),

z
(0)
i = xi

for l = 0,1, . . . ,L− 1⌊
z
(l+1)
i = proxτlg (Wlz

(l)
i + bl)

.

(11)

3.2. Connection with neural networks

Problem 3.1 yields similarities with the training of feed-
forward neural networks made of L layers. Here {Wl}L−1l=0
and {bl}L−1l=0 represent the weights and biases of neural net-
works, respectively. We highlight that the case where Wl
is symmetric (Hu et al., 2019) corresponds to the scenario
where Cl , appearing in (10), is symmetric as well. In addi-
tion, as shown in (Combettes & Pesquet, 2020), the prox-
imity operator proxτlg can match a variety of activation
functions depending on the choice of the function g by set-
ting the step-size τl = 1. Below, we recall two of such
examples.

Example 3.1 (ISRU). The inverse square root unit function
ρ : t ∈R 7→ t/

√
1+ t2 ∈R can be expressed as the proxim-

ity operator proxg of the function g : R→]−∞,+∞]

g : t 7→

−t2/2−
√
1− t2, if |t| ≤ 1;

+∞, otherwise.

Example 3.2 (Arctan). The arctangent activation function
ρ : t ∈R 7→ (2/π)arctan(t) is the proximity operator of

g : t ∈R 7→

− 2
π log(cos

πt
2)− t2/2, if |t| < 1;

+∞, otherwise.

These examples of activation functions ρ will be revisited
in the next section for convex functions g.

4. Bregman Feed-Forward Neural Network
While in the previous section we have considered the class
ΘQ of quadratic majorants {Fl}l∈N, we now investigate a
more general class involving the use of Bregman distances.
In addition, we show that, for such class and for some regu-
larizer g, the lower-level of Problem 2.2 yields a new type of
neural network. An extension to varying number of neurons
per layer is provided in the supplementary material.

4.1. Majorant with Bregman distances

We start by recalling the definition of Bregman dis-
tances (Bauschke et al., 2018).

Definition 4.1 (Bregman distance). Given some Legendre
function Φ ∈ Γ0(Rd), the Bregman distance associated to Φ

reads

(∀u ∈ domΦ ,v ∈ intdomΦ)

DΦ (u,v) = Φ(u)−Φ(v)− 〈∇Φ(v),u − v〉. (12)

In particular, we recover the Euclidean distance for Φ =
1
2‖ · ‖

2, i.e., D 1
2 ‖·‖2

(u,v) = 1
2‖u − v‖

2.

Equipped with this definition, we generalize the majorants
of Proposition 3.1 by considering Bregman distances in
place of the Euclidean distance.

Proposition 4.1 (Majorant with Bregman distances). Let
f ∈ F (Rd), Ql ∈ Q(f) and Φ be a strongly convex Legen-
dre function. Then, for every zi ∈Rd ,

z ∈ domΦ 7→ Fl(z;z
(l)
i) ,Ql(z

(l)
i ;z(l)i)

+∇1Ql(z
(l)
i ;z(l)i)>(z − z(l)i) + τ−1l DΦ (z,z

(l)
i), (13)

is a majorant of f on domΦ for every τl < 1/µl .

The proof is given in the supplementary material. An illus-
tration of the majorant is reported in Figure 2 (right). We
now define the corresponding class of Bregman majorants.

Definition 4.2 (Class of Bregman majorants). We let

ΘB =
{
{Fl}l∈N | ∃f ∈ F (Rd) , (∀l ∈N), Fl is as in (13)

}
.

It follows that, for this class, each of the N lower-level
minimization problems in Problem 2.2 reads

argmin
z∈Rd

Fl(z;z
(l)
i) + g(z) (14)

= proxΦτlg

(
∇Φ(z(l)i)− τl∇1Ql(z

(l)
i ;z(l)i)

)
(15)

Bilevel Learning of Deep Representations

z
(l)
1

Wl,j,1

Weights

...
... Σ ρ

Activation
function

z
(l+1)
j

Output

z
(l)
d

Wl,j,d

Bias
bl,j

Non-linear offset
ρ−1(z(l)j)

Input

z(l)

Figure 3. Bregman feed-forward neuron. Illustration of the j-th
neuron at the l-th layer. The major difference lies in the presence
of an additional non-linear function ρ−1. With such scheme, if the

weights and the bias are zero then z(l+1)j = z
(l)
j .

which leads to one step of the forward-backward algorithm
with Bregman distances (Van Nguyen, 2017; Bolte et al.,
2018). We recall that the Bregman proximity operator (in
Van Nguyen sense) of τlg with respect to Φ reads

proxΦτlg (v) = argmin
u∈Rd

τlg(u) +Φ(u)− 〈u,v〉. (16)

Finally, by specifying the form of Ql , it then yields that

argmin
z∈Rd

Fl(z;z
(l)
i) + g(z)

= proxΦτlg

∇Φ(z(l)i)−τl(Al +Cl)>︸ ︷︷ ︸
,Wl

z
(l)
i −τldl︸︷︷︸

,bl

 . (17)

Once again, by using the same arguments as in Sec. 3, Prob-
lem 2.2 boils down to:

Problem 4.1 (Training of Bregman FFNN). Given some
training data set {xi , yi}Ni=1 made of N samples, where
{xi , yi} ∈ Rd ×RK for every i ∈ {1, . . . ,N }, and a strongly
convex Legendre function Φ : Rd →R, solve

minimize
ψ∈B(Rd ,RK)

{Wl ,bl }L−1l=0 ∈(R
d×d×Rd)L

N∑
i=1

`(ψ(z(L)i), yi)

s.t. (∀i ∈ [N]),

z
(0)
i = xi

for l = 0,1, . . . ,L− 1⌊
z
(l+1)
i = proxΦτlg (∇Φ(z(l)i) +Wlz

(l)
i + bl)

.

4.2. Proposed architecture

Similarly to the comparisons drawn in Sec. 3.2, we argue
that the lower-level algorithm in Problem 4.1 bears some

similarities to feed-forward neural networks made of L lay-
ers. Indeed, we also identify {Wl}Ll=1 and {bl}Ll=1 to the
weights and biases, respectively. In the remaining of the
section, we will show that, when proxΦτg is an activation
operator, then ∇Φ is the inverse activation operator.

We start by showing that a large variety of activation oper-
ators can be put in the form of a proximity operator with
Bregman distances. To do so, we recall that, at a given
layer, the activation operator is commonly written as an
activation function separately applied to each neuron. In
our context, this amounts choosing a separable function
g : z = [z1 · · ·zd] ∈ Rd 7→

∑d
j=1 g̃(zj) and a separable Leg-

endre function Φ as well, i.e., Φ : z ∈ R
d 7→

∑d
j=1φ(zj)

where φ is a Legendre function on R. Thus, it follows that
proxΦτg is also separable, i.e., for every z ∈Rd ,

proxΦτg (z) = [proxφτg̃ (z1) · · ·prox
φ
τg̃ (zd)]. (18)

We now show that many activation functions ρ can be writ-
ten as Bregman projections.

Proposition 4.2 (Informal connection). Many activations
functions ρ can be written as Bregman proximity operators
of some indicator functions g̃ = ıI , where I ⊆ R, for a
Legendre function φ such that domφ = I , i.e,

ρ , proxφτıI = proxφıI where domφ = I (19)

We report in Table 1 how the most common activation func-
tions can be recovered for various choice of (I ,φ).

As a consequence, a large variety of activations can be
equivalently written in the form of a proximity with respect
to the Euclidean metric (see (Combettes & Pesquet, 2020))
or in the form of a Bregman projection with respect to an
appropriate Legendre function. However, in the first case
the step-size appears in the proximity (and should be set to
1) while, in the proposed framework, it does not impact the
proximity anymore since g is an indicator function. Hence,
the step-size is solely captured in the weights and biases
(see (17)).

We now turn to the term ∇Φ(z(l)) = [∇φ(z(l)1) · · ·∇φ(z(l)d)]
appearing in Problem 4.1 which was absent in Problem 3.1.

Proposition 4.3. If an activation function ρ can be written
in the form of Proposition 4.2, then ρ−1 = ∇φ.

Proof. If domφ = I then proxφıI = ∇φ−1 by applying the
definition of the Bregman proximity operator given in (16).

Thus, in our framework, ∇Φ is the inverse activation oper-
ator and the lower-level algorithm in Problem 4.1 can be
rewritten in terms of Bregman feed-forward layers.

Bilevel Learning of Deep Representations

I Legendre function φ Activation function ρ , proxφıI = ∇φ−1 ρ−1 , ∇φ
[−1,1] t 7→ −

√
1− t2 ISRU: t 7→ λt√

1+t2
t 7→ t√

1−t2
[0,1] t 7→ t log t + (1− t) log(1− t) Sigmoid: t 7→ 1

1+e−t t 7→ log(t
1−t)

R>0 t 7→ t log(e
t−1
1−et)−Li2(e

t) SoftPlus t 7→ log(et +1) t 7→ log(et − 1)
[−π/2,π/2] t 7→ − log(cos(t)) t 7→ arctan(t) t 7→ tan(t)

[−1,1] t 7→ 1
2 log(1− t

2) + t arctanh(t) t 7→ tanh(t) t 7→ arctanh(t)
[−1,1] t 7→

√
1− t2 + t arcsin(t) t 7→ sin(t) t 7→ arcsin(t)

R t 7→ cosh(t) t 7→ arcsinh(t) t 7→ sinh(t)

Table 1. Connection between activation functions ρ and Bregman proximity operators prox
φ
ıI for specific choice of sets I and Legendre

functions φ. Here Lin(x) =
∑∞
k=1

xk
kn is the polylogarithm function.

Definition 4.3 (Bregman feed-forward layer). Let ρ be
some activation function written as a Bregman proximity
operator (see Proposition 4.2). Then, the Bregman feed-
forward layer reads:

z(l+1) = ρ(ρ−1(z(l)) +Wlz
(l) + bl). (20)

A sketch of the proposed neuron is displayed in Figure 3.

Intuitively, the added term ρ−1(z(l)) plays a similar role
as the shortcut term present in ResNet (He et al., 2016)
since it will connect one layer to all previous ones. Another
particularity is that, whenever Wl = 0 and bl = 0, then

z(l+1) = ρ(ρ−1(z(l))+Wlz
(l)+bl) = ρ(ρ

−1(z(l)) = z(l). (21)

In other words, the neuron is the identity. Note that, when
designing an activation, a special attention is usually given
to the property that the activation function should approxi-
mates the identity near the origin in order to reproduce (21).

5. Theoretical Analysis
In the previous section, we saw that the lower-level algo-
rithms in Problem 3.1 and Problem 4.1 can be interpreted as
appropriate MM algorithms. Indeed, the weights and biases
(W,b) comes from majorants F as defined in Proposition 3.1
and Proposition 4.1. Then, the question of the convergence
of those algorithms is fundamental in order to connect the
above problems to Problem 2.1 (see Remark 2.1).

In this respect, we first note that state-of-the-art results con-
cerning MM algorithms, in the setting of nonconvex and
nonsmooth functions, assume that the involved majorizing
functions are strongly convex (Bolte & Pauwels, 2016). Sec-
ond, we saw that, in both problems, the proximity operator
of g can be interpreted as an activation function. For in-
stance, the arctan activation can be equivalently given in
the form of a proximity with respect to the Euclidean metric
(see Example 3.2) or in the form of a Bregman projection
with respect to an appropriate Legendre function (see Ta-
ble 1). However, in the first case, since g is nonconvex,

the overall majorizing function F + g is nonconvex as well,
while, in the second case, it is strongly convex, since g is ac-
tually the indicator function of a convex set. Therefore, we
see that the theory of convergence of MM algorithms devel-
oped in (Bolte & Pauwels, 2016) can be fully applied (only)
to the Bregman Feed-Forward networks, which ultimately
gives the following result

Theorem 5.1 (Convergence of the MM sequence). Let g =
ıC , for some convex set C ⊆R

d , and the family of majorants
F of f , given in Proposition 4.1 where Φ satisfy domΦ = C.
Then, the sequence {z(l)}l∈N defined in (3) converges to a
critical point of f + g.

Ideally one would like to prove that Problem 2.2 converges
to the exact Problem 2.1 when L tends to infinity, at least
in terms of infima. This would provide a full justification
for the interpretation of the training of feed-forward deep
neural network as a bilevel problem as the number of layers
goes to infinity. As noted in other works (see Frecon et al.,
2018; Franceschi et al., 2018) this would require proving
the uniform convergence of the MM algorithm on Θ. Un-
fortunately we were not able to prove this statement and
we leave this as a future work. Also extending the results
in (Bolte & Pauwels, 2016) to handle majorizing functions
that may depend on l is another important open issue.

6. Numerical Experiments
The purpose of the numerical experiments is to compare the
standard feed-forward architecture against two variants com-
ing from the observations that the activation operator can
be expressed as both a Euclidean proximity operator (Com-
bettes & Pesquet, 2020) and a Bregman projection.

6.1. Architectures Compared

Given an activation operator ρ, we consider the standard
layer update

• Standard FFNN: z(l+1) = ρ(Wlz
(l) + bl),

Bilevel Learning of Deep Representations

−1.0 −0.5 0.0 0.5 1.0

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

Training dataset

−1.0 −0.5 0.0 0.5 1.0
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
Output of layer 1

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Output of layer 2

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
Output of layer 3

Figure 4. Illustration of two-spiral dataset (top left) and the outputs
of each layer of the proposed Bregman FFNN

and two variants resulting from the point of view of the
proposed bilevel Problem 4.1

• Euclidean FFNN: z(l+1) = ρ(z(l) +Wlz
(l) + bl),

• Bregman FFNN: z(l+1) = ρ(ρ−1(z(l)) +Wlz
(l) + bl).

The first variant corresponds to φ = ‖ · ‖2/2, hence ∇φ = Id
and ρ = proxφg is expressed as the Euclidean proximity
operator of some carefully chosen function g. Note that we
recover the update of standard feed-forward neural networks
by reparametrizing the linear term, i.e., by replacing Wl
with Wl + Id. The second variant is obtained by choosing a
Legendre function φ so that the activation operator can be
expressed as a Bregman proximity of the form ρ = proxφıC
where C is some convex set. Henceforth, ∇φ = ρ−1.
All networks are optimized using a mini-batch gradient
descent algorithm2.

6.2. Performance on Two-spiral Dataset

In this section, we compare all three methods on a 2 dimen-
sional yet challenging binary classification task.

Two-spiral dataset. The two-spiral dataset is a widely used
benchmark for binary classification (Chalup & Wiklendt,
2007). The data consist of points on two intertwined spi-
rals which cannot be linearly separated. An illustration is
reported in Figure 4 (top left).

Goal and setting. The purpose of the experiment is to train
each architecture so that the learned representation of the
two-spiral dataset can be linearly separated. To do so, we
consider 3 layers with arctan activations and 2 neurons per
layer, followed by a linear layer.

2A Pytorch package will be made publicly available at the time
of publication.

0 200 400 600 800 1000
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

Lo
ss

Bregman FFNN
Euclidean FFNN
Standard FFNN

0 200 400 600 800 1000
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

Lo
ss

Bregman FFNN
Euclidean FFNN
Standard FFNN

Figure 5. Comparison of training losses as functions of epochs.
The mean is reported in bold while the standard deviation is il-
lustrated by the surrounding envelope. Left: initialization with
random weights. Right: initialization with deterministic weights.

Comparison of Learning Behavior. In order to compare
the learning behavior of all three architectures, we report in
Figure 5 (left) the training losses (averaged over 10 realiza-
tions) as a functions of the number of epochs. For all three
methods the batch-size is set to 10, the learning rate to 0.1
and the number of epochs to 1000. First of all, we observe
that the training loss corresponding to the Euclidean FFNN
decreases more rapidly than that of the Standard FFNN. This
is interesting because it means that a simple reparametriza-
tion of the weights Wl by Id +Wl improves the learning
of the model. In addition, we see that the training loss can
be decreased even more by choosing the Bregman FFNN
architecture. For illustration purposes, we report in Figure 4
the outputs at each layer of the learned Bregman FFNN.
We observe that the output at the third layer can indeed be
linearly separated.
However, it should be noted that the way the weights are
initialized drastically impacts the learning behavior. In
practice the weights and biases are initialized randomly.
In order to evaluate the impact of the initial weights, we
have reproduced the experiment with deterministic and non-
informative weights. For Standard FFNN and Euclidean
FFNN we set Wl = Id and Wl = 0d , respectively, while for
Bregman FFNN we set Wl = 0d . For all methods we set the
initial biases to 0. The corresponding results are displayed
in Figure 5 (right). Once again we see an improvement
of Bregman FFNN over Standard FFNN. However, we ob-
serve that in this setting both Standard FFNN and Euclidean
FFNN behaves equally. For all methods, we see that such
initialization, in this specific example, yields a lower train-
ing loss.

Impact on training accuracy. In order to further inves-
tigate how the learning behavior impact the final training
accuracy, we perform the following experiment. For each of
the three architectures, we investigate various learning rates
while the batch-size is set to 10 and number of epochs to
104 in order to reach convergence at a reasonable running
time. Results are reported in Figure 6 (left plot) and show
that the Bregman variant yields better training accuracy with
a higher learning rate than its standard counterparts.

Bilevel Learning of Deep Representations

Standard Euclidean Bregman
MNIST (FFNN 1 hidden layer) 95.27% 93.98% 97.40%
MNIST (FFNN 3 hidden layers) 97.89% 98.32% 98.41%
MNIST (CNN + FFNN 1 hidden layer) 99.39% 99.35% 99.40%
FashionMNIST (FFNN 1 hidden layer) 89.11% 89.01% 89.39%
FashionMNIST (FFNN 3 hidden layers) 88.61% 89.38% 89.95%
FashionMNIST (CNN + FFNN 1 hidden layer) 92.47% 92.55% 93.19%
Cifar10 (CNN + FFNN 1 hidden layer) 78.02% 78.00% 79.95%

Table 2. Mean test accuracy over 5 realizations on benchmark datasets.

10 3 10 2 10 1

Learning rate

75

80

85

90

95

100

Tr
ai

ni
ng

 a
cc

ur
ac

y

Bregman FFNN
Euclidean FFNN
Standard FFNN

0 10 20 30 40 50
Layers l

0

1

2

||z
(l

+
1)

z(l)
||

Bregman FFNN
Euclidean FFNN
Standard FFNN

Figure 6. Results on two-spiral dataset. Left: Impact of the learn-
ing rate on the training accuracy. Right: Norm difference between
the output of two consecutive layers.

Deep architecture comparison. We now consider the case
that the number of layers is large by setting L = 50. Once
the model is learned, we report in Figure 6 the mean norm
difference between the output of two consecutive layers as
a function of the layer. Contrary to Euclidean and Standard,
we observe that for Bregman the norm differences goes to
0, supporting the result of Theorem 5.1.

6.3. Performance on Real-World Datasets

In this section, we conduct two type of experiments on real
world images. The purpose of these experiments is not to
improve on the accuracy of state-of-the-art neural networks
but to assess, on simple architectures, the added benefit.

Datasets. We consider the MNIST, FashionMNIST and
Cifar10 images datasets. Each image is pre-processed such
that the pixels intensity lie within]0,1[. For each dataset,
the goal is to assign each image to one of the K = 10 labels.

First experiment. In this first experiment, we flatten each
p × p pixels images into d = p2 dimensional vectors. Even
though this non-spatial representation is not appropriate for
vision tasks, we embrace it in order to compare solely each
of the three architectures stated in Sec. 6.1. Here, we restrict
to the simplest architectures made of L hidden layers with d
neurons each, followed by a linear layer combined with a
softmax operator in order to map to one the K labels.

Second experiment. We now embed each of the three mod-
els in the final classification layer of convolutional neural
networks whose architectures are detailed in the supplemen-
tary material.

The mean test accuracies are reported in Table 2. Firstly, we
notice that Euclidean improves over Standard when the num-
ber of layers L > 2, otherwise performance are comparable.
Interestingly, this suggests that solely reparametrizing the
weights can help in achieving better prediction performance.
Secondly, we observe that in all scenarios, the Bregman
variant yields a higher test accuracy or at least the same
accuracy (see the 3rd setting).

7. Discussion
The present paper framed the learning of a representation
mapping as a bilevel optimization which we addressed by a
majorization-minimization algorithm. We have shown that
for some quadratic majorant, the bilevel problem boils down
to the training of a feed-forward neural network. In addition,
by elaborating on more general majorants, we proposed the
Bregman feed-forward layer which includes an additional
term defined as the inverse of the activation function. Intu-
itively, this term plays a similar role as the skip connections
introduced in the ResNet (He et al., 2016) by linking one
layer to the previous ones.
We advocate that replacing the standard feed-forward layers
in state-of-the-art architectures by the proposed Bregman
layers could additionally improve prediction. By doing so,
one can make sure that the output of a layer is equal to
its input whenever the weights and biases are zero. We
believe, this may reduce the memory needed in very deep
architectures. In addition, they are two interesting aspects
encountered in practice when optimizing deep Bregman
feed-forward networks. First, we are able to learn the model
for significantly larger learning rates than its standard coun-
terpart. Second, from a sufficiently deep layer, all weights
and biases are zero until the last layer.
Future works should further study both aspects in very deep
architectures. For instance, one could investigate if the pres-
ence of the inverse activation mitigates both vanishing and
exploding gradients issues commonly encountered when
optimization standard neural networks. In addition, proving
that the infima of Problem 2.2 converge to Problem 2.1 as
the number of layers goes to infinity is an important problem
left for future work.

Bilevel Learning of Deep Representations

References
Bai, S., Kolter, J. Z., and Koltun, V. Deep equilibrium

models. In Wallach, H., Larochelle, H., Beygelzimer, A.,
d'Alché-Buc, F., Fox, E., and Garnett, R. (eds.), Advances
in Neural Information Processing Systems, volume 32,
pp. 690–701. Curran Associates, Inc., 2019.

Bauschke, H. H., Dao, M. N., and Lindstrom, S. B. Reg-
ularizing with bregman–moreau envelopes. SIAM Jour-
nal on Optimization, 28(4):3208–3228, jan 2018. doi:
10.1137/17m1130745.

Bertocchi, C., Chouzenoux, E., Corbineau, M.-C., Pesquet,
J.-C., and Prato, M. Deep unfolding of a proximal interior
point method for image restoration. Inverse Problems, 36
(3):034005, feb 2020. doi: 10.1088/1361-6420/ab460a.
URL https://doi.org/10.1088/1361-6420/
ab460a.

Bibi, A., Ghanem, B., Koltun, V., and Ranftl, R. Deep layers
as stochastic solvers. In 7th International Conference on
Learning Representations, New Orleans, LA, USA,, May
2019.

Blin, R., Ainouz, S., Canu, S., and Meriaudeau, F.
Road scenes analysis in adverse weather conditions by
polarization-encoded images and adapted deep learning.
In 2019 IEEE Intelligent Transportation Systems Confer-
ence (ITSC), pp. 27–32. IEEE, 2019.

Bolte, J. and Pauwels, E. Majorization-minimization pro-
cedures and convergence of SQP methods for semi-
algebraic and tame programs. Mathematics of Operations
Research, 41(2):442–465, may 2016. doi: 10.1287/moor.
2015.0735.

Bolte, J., Sabach, S., Teboulle, M., and Vaisbourd, Y. First
order methods beyond convexity and lipschitz gradient
continuity with applications to quadratic inverse prob-
lems. SIAM Journal on Optimization, 28(3):2131–2151,
jan 2018. doi: 10.1137/17m1138558.

Chalup, S. and Wiklendt, L. Variations of the two-spiral
task. Connect. Sci., 19:183–199, 06 2007. doi: 10.1080/
09540090701398017.

Chen, G. H.-G. and Rockafellar, R. T. Convergence rates
in forward–backward splitting. SIAM J. on Optimization,
7(2):421–444, February 1997. ISSN 1052-6234. doi:
10.1137/S1052623495290179. URL https://doi.
org/10.1137/S1052623495290179.

Combettes, P. L. and Pesquet, J.-C. Deep neural net-
work structures solving variational inequalities. Set-
Valued and Variational Analysis, feb 2020. doi: 10.1007/
s11228-019-00526-z.

Combettes, P. L. and Wajs, V. R. Signal recovery by proxi-
mal forward-backward splitting. Multiscale Modeling &
Simulation, 4(4):1168–1200, 2005.

Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., and Pontil,
M. Bilevel programming for hyperparameter optimiza-
tion and meta-learning. In Dy, J. and Krause, A. (eds.),
Proceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 1568–1577, Stockholmsmässan,
Stockholm Sweden, 10–15 Jul 2018. PMLR.

Frecon, J., Salzo, S., and Pontil, M. Bilevel learning of
the group lasso structure. In Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Gar-
nett, R. (eds.), Advances in Neural Information Process-
ing Systems, volume 31, pp. 8301–8311. Curran Asso-
ciates, Inc., 2018.

Goodfellow, I., Warde-Farley, D., Mirza, M., Courville,
A., and Bengio, Y. Maxout networks. In Dasgupta,
S. and McAllester, D. (eds.), Proceedings of the 30th
International Conference on Machine Learning, vol-
ume 28 of Proceedings of Machine Learning Research,
pp. 1319–1327, Atlanta, Georgia, USA, 17–19 Jun
2013. PMLR. URL http://proceedings.mlr.
press/v28/goodfellow13.html.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y.
Deep learning, volume 1. MIT press Cambridge, 2016.

Grazzi, R., Franceschi, L., Pontil, M., and Salzo, S. On
the iteration complexity of hypergradient computation.
In International Conference on Machine Learning, pp.
3748–3758. PMLR, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hu, S. X., Zagoruyko, S., and Komodakis, N. Exploring
weight symmetry in deep neural networks. Computer
Vision and Image Understanding, 187:102786, oct 2019.
doi: 10.1016/j.cviu.2019.07.006.

Lange, K., Hunter, D. R., and Yang, I. Optimization transfer
using surrogate objective functions. Journal of Compu-
tational and Graphical Statistics, 9(1):1, mar 2000. doi:
10.2307/1390605.

Lassau, N., Ammari, S., Chouzenoux, E., Gortais, H., Her-
ent, P., Devilder, M., Soliman, S., Meyrignac, O., Tal-
abard, M.-P., Lamarque, J.-P., Dubois, R., Loiseau, N.,
Trichelair, P., Bendjebbar, E., Garcia, G., Balleyguier, C.,
Merad, M., Stoclin, A., Jegou, S., Griscelli, F., Tetelboum,
N., Li, Y., Verma, S., Terris, M., Dardouri, T., Gupta, K.,

https://doi.org/10.1088/1361-6420/ab460a
https://doi.org/10.1088/1361-6420/ab460a
https://doi.org/10.1137/S1052623495290179
https://doi.org/10.1137/S1052623495290179
http://proceedings.mlr.press/v28/goodfellow13.html
http://proceedings.mlr.press/v28/goodfellow13.html

Bilevel Learning of Deep Representations

Neacsu, A., Chemouni, F., Sefta, M., Jehanno, P., Bou-
said, I., Boursin, Y., Planchet, E., Azoulay, M., Dachary,
J., Brulport, F., Gonzalez, A., Dehaene, O., Schiratti, J.-
B., Schutte, K., Pesquet, J.-C., Talbot, H., Pronier, E.,
Wainrib, G., Clozel, T., Barlesi, F., Bellin, M.-F., and
Blum, M. G. B. Integrating deep learning CT-scan model,
biological and clinical variables to predict severity of
COVID-19 patients. Nature Communications, 12(1), jan
2021. doi: 10.1038/s41467-020-20657-4.

Maggu, J., Majumdar, A., Chouzenoux, E., and Chierchia,
G. Deep convolutional transform learning. In Com-
munications in Computer and Information Science, pp.
300–307. Springer International Publishing, 2020. doi:
10.1007/978-3-030-63823-8 35.

Miller, J. and Hardt, M. Stable recurrent models. In 7th
International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

Monga, V., Li, Y., and Eldar, Y. C. Algorithm unrolling:
Interpretable, efficient deep learning for signal and image
processing, 2020.

Van Nguyen, Q. Forward-backward splitting with bregman
distances. Vietnam Journal of Mathematics, 45(3):519–
539, 2017.

Zhou, T., Ruan, S., and Canu, S. A review: Deep learning
for medical image segmentation using multi-modality
fusion. Array, 3:100004, 2019.

