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ABSTRACT. The paper shows how to take advantage of a possible existing linear relationship in an
optimization problem to address the issue of robust design and backward uncertainty propagation
lowering as much as possible the computational effort.

RÉSUMÉ. L’article montre comment tirer parti de la présence de linéarité dans un problème d’optimisation
et proposer une solution à faible complexité pour une optimisation robuste ainsi que la propagation
rétrograde des incertitudes avec un faible coût calculatoire.
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1. Introduction

The performance of a system designed for given functioning conditions often seriously
degrades when these conditions are modified. Today’s industrial robust design mainly
relies on reduced-order modeling and intelligent sampling [21, 2, 22, 25] which either
does not use high-fidelity simulations during design or uses lower accuracy than what
would be affordable in a single-point optimization.

By robust design we mean a proposition which ensures similar performances over
a given operation range. We will discuss the implication of this requirement on the mo-
ments of the performance functional. Our aim is to propose a methodology which permits
to design a system having similar performances over a given range of its operating con-
dition or functioning parameters. From a practical point of view, we would like this to
be achieved modifying as less as possible an existing single-point optimization platform.
In particular, we would like to avoid replacing the high-fidelity ingredients of the plat-
form by low-complexity solvers. Finally, we would like the parallel time-to-solution to
remain comparable to the single-point situation. We will show that our direct optimization
algorithm permits to achieve such a task.

We address the solution of robust moment-based optimization problems after a multi-
point reformulation. The first four moments are considered (i.e. mean, variance, skewness
and kurtosis) going beyond classical engineering optimization based on the control of the
mean and variance. In particular, the impact on the design of a control of the third and
fourth moments is discussed. The multi-point formulation leads to discrete expressions
for the moments. linking moment-based and multi-point optimizations. The linearity
of the sums in the discrete moments permits an easy evaluation of their gradients with
respect to the design variables. Optimal sampling issues are analyzed and a procedure is
proposed to quantify the confidence level on the robustness of the design. The proposed
formulation is fully parallel and the parallel time-to-solution is comparable to single-point
situations.

The literature on multi-point optimization is vast and exhaustive referencing is out of
our scope. This formulation has been used, in particular, to extend single-point optimiza-
tion to account for additional operating conditions.

Forward and backward uncertainty propagation are obviously of great importance with
a huge literature dedicated to uncertainty quantification (UQ) [1, 3, 12]. Forward propa-
gation aims at defining, for instance, a probability density function (PDF) for a functional
j knowing those of optimization variables [10, 19, 13]. This can be done, for instance,
through Monte Carlo simulations or a separation between deterministic and stochastic
features using Karhunen-Loeve theory (polynomial chaos theory belongs to this class)
[7, 8, 25, 26]. Backward propagation aims at reducing models bias or calibrating models
parameters knowing the PDF of j [4, 9, 24]. This can be seen as a minimization prob-
lem and Kalman filters [11] give, for instance, an elegant framework for this inversion
assimilating the uncertainties on the observations.

We particularly discuss one aspect of UQ where the target state u∗ used in an inverse
problem is uncertain. This is the case, for instance, minimizing j(u(x), u∗) = ‖u(x) −
u∗‖ to reduce the distance between a model state u(x) and observations or target u∗.

Targeting uncertain data is a realistic situation as the acquired data are usually uncer-
tain. It is therefore interesting to be able to quantify the impact of this uncertainty on the
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Low-complexity moment-based robust design and uncertainty back-propagation 3

inversion results. An important information will be the sensitivity of the design to a given
level of uncertainty on the data at some location. Indeed, if this sensitivity is low, this
would be an indication that a more accurate acquisition there is unnecessary.

Considering the target as uncertain is also interesting because we do not always have
existence of a solution for an inversion problem as u∗ is not necessary solution of the
state equation making an exact or deterministic inversion pointless. Also, the approach
permits to go beyond inversions based on least-squares minimization involving a mean
state target.

The uncertainty in measurements is also an interesting way to account for the presence
of variability in the state. More generally, as a model or numerical procedure is by nature
imperfect and partial, we can consider this uncertainty as a representation and estimation
of these imperfections. These imperfections are even more present in inverse problems
where one cannot afford the same level of resolution than for a single simulation. We
therefore need to be able to quantify the impact of these weaknesses. Being able to han-
dle uncertain targets in inverse design is therefore also useful to account for epistemic
uncertainties related to possible model or solution procedures deficiencies.

The paper also addresses the issue of backward uncertainty propagation through the
estimation of the covariance matrix of the optimization variables. Two procedures for the
estimation of this matrix are presented taking advantage of the existence of local linear
relations between the target state u∗ and the optimization variables x.

We present the different ingredients of the paper in the context of a linear problem
for load distribution optimization with the objective of achieving a target deformation or
displacement of a shape. The state equations we consider are those of linear elasticity and
we would like to take advantage, as much as possible, of the linear relationship between
the optimization variables (e.g loads) and the state variables (e.g the displacements) in the
solution of the problem and the different uncertainty quantifications.

The paper starts with the description of our single-point optimization problem to illus-
trate the situation where the solution of the inverse problem can be explicitly expressed
thanks to the mentioned linearity. Then we address robust parametric optimization and its
solution through moment-based and multi-point formulations. The paper ends with two
low-complexity approaches for backward uncertainty propagation and estimation of the
covariance matrix of the optimization variables.

2. State equations and single-point optimization problem

Let us start with the single-point optimization problem of interest. We are interested
by inverse problem where the functional typically measures a distance to a target solution.

We consider a generic state equation with a linear state equation and also linear depen-
dency between the optimization variables x (controlling in our case the loads distribution)
and the state variable u: F (u) = f(x), where u is therefore a function of x.

Our single-point optimization problem reads:

min
x∈Oad

j(u(x), α) under the constraint that F (u) = f(x). (1)

X



4 X – Volume 0 – 2021

Where α represents the other independent variables of the problem such as geometry en-
tities or operating conditions. Here, for simplicity we do not mentioned all dependencies
in u. For instance, we do not indicate the spatial dependency and so forth.

In single-point optimization α is fixed in opposition to multi-point or robust optimiza-
tions where α components will no longer be fixed but given either through intervals or
more sophisticated probability density functions.

The source term f(x) contains N loads expressed as xiδ(si) where δ(si) is a spatial
localization function in space variable s. One would like to optimize:

f(x) =

N∑
i=1

xiδ(si). (2)

The optimization variable is then x = (x1, ..., xN ) ∈ (IR+)N .

The inverse problem of interest aims at making the solution u as close as a target u∗

over the calculation domain Ω, or some subset of it. Using a least-squares formulation
over the domain with spatial integration, this reads:

j(u(x), α) =
1

2

∫
Ω

(u(x)− u∗)2ds. (3)

Taking advantage of the linear dependency between x and the solution u and using the
superposition principle, the solution can be expressed through projections over N + 1
elementary solutions:

u = u0 +

N∑
i=1

xiui,

In this decomposition, u0 is the homogeneous solution (the zero load situation together
with non-homogeneous boundary conditions) and the other elementary solutions ui=1,...,N

are obtained respectively with x = (0, ..., 0, 1, 0, ..., 0) with 1 at the ith position. The el-
ementary solutions are obtained with homogeneous Dirichlet boundary conditions.

Once the homogeneous and elementary solutions known, the optimization variable x
is solution of a linear system:

Ax = b(α), (4)

of size N derived from first order optimality condition for j,∇xj(u(x), α) = 0, with:

Ai,j =< ui , uj > and bi(α) =< (u0 − u∗) , ui >, for i, j = 1, ..., N,

where < v , w >=
∫

Ω
v(s)w(s) ds.

A fundamental remark now is that the cost of this inversion is negligible compared to
the cost of calculating the elementary solutions. Also, it is important to notice that the
matrix A does not depend on α. Therefore, any numerical transformation necessary for
its inversion is made only once. Uncertainty quantification is situation where the target
solution u∗ is uncertain becomes therefore feasible at low cost as it will not require any
extra solution of the state equations. In the sequel we will discuss different ways to handle
this problem.
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2.1. 3D elasticity

We will illustrate the ingredients of the paper on a 3D problem where the state equa-
tion F (u) = f(x) is the elasticity system whose solution is given using the Cast3M [5]
industrial solver on tetrahedral meshes which we consider as a black-box. Something
which is made possible thanks to the formulation of the optimization problem and this is
one strength of the approach.

Briefly speaking, Cast3M is a finite element software for structural and fluid mechan-
ics developed by the French Alternative Energies and Atomic Energy Commission (CEA).
Cast3M provides a mesh generation tool, partial differential equations simulation modules
coupled with visualization tools.

The 3D problem we consider consists of a geometry of an elastic piece represented
in a (10m × 10m × 1m) concrete slab with hollow bodies [23] , supported by point
supports at the four corners modeled by homogeneous Dirichlet boundary conditions for
the displacement. The mechanical characteristics of the concrete considered are E =
30GPa for Young’s modulus and ν = 0.2 for Poisson’s ratio. This is a complex problem
and a full 3D calculation is quite time consuming. The present solution based on the use of
elementary 3D solution is therefore quite adapted for the optimization of load distributions
for such a cases as the state equations calculations can be carried out independently from
the optimization problem and in a fully parallel way. The hollow bodies involve complex
mesh generation issues as shown in Figure 2.1. The 3D mesh has about 14400 grid points.

Figure 1. Example of a complex mesh generated by Gmsh [6] taking into account the pres-
ence of hollow bodies.

We assume negligible volume forces and consider a situation with a relatively small
number of loads to ease the comparison between the different approaches. Considering
higher number of loads does not pose any supplementary difficulty and only requires
parallel calculations of additional independent elementary solutions.
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2.2. Illustration using N = 5 optimization variables

We apply an arbitrary five point loads distribution (i.e. N = 5). Any other combi-
nation can be considered, five is suitable as enough large to illustrate the approach and
enough low to show images of all elementary contributions.

We calculate the elementary displacements ui=1,...,5 obtained after application of unit
forces xi. The total displacement is the sum of these elementary displacements u =

u0+

N=5∑
i=1

xiui where u0 is the displacement without any forces applied but in the presence

of Dirichlet boundary conditions. In our problem we consider u0 = 0.

Figure 2 shows the elementary and total structural displacements which will be consid-
ered as target deterministic displacement u∗. Uncertainty analysis will take place around
this target displacement.

3. Robust parametric optimization

Consider a cost function involving the optimization variables x in an admissible en-
semble Oad and another parameter α, not considered as a design variable:

min
x∈Oad

j(x, α), α ∈ I ⊂ IRn,Oad ⊂ IRN . (5)

As mentioned, α can be an operating condition or in an inverse problem [20, 24] the target
solution u∗ in a functional of the form j(x, α = u∗) = ‖u(x)− u∗‖. Both the operating
conditions and the target solution can be uncertain and given only through probability
density functions. Handling the uncertainty on the operating conditions is necessary to
achieve robust design and usually requires a multi-point formulation. The number of
operating condition parameters is usually small compared to the size of the optimization
problem. This is a very general context and we previously visited it to address robustness
issues in optimization with respect to x and α in general frameworks [17, 15, 16, 18].
In this work, we mainly focus on handling the uncertainty on α = u∗ using the facility
offered by the linear dependency between the optimization variables and the state variable.

3.1. Moment-based optimization

Multi-point optimization can be used to address such optimization problem [14]. The
aim is to remove the dependency in α during optimization. This can be done, for instance,
minimizing a functional J(x) encapsulating this dependency under a constraint on the
higher moments of j:

J = µ = IE[j(x, α)], such that σ = IE[(j(x, α)− µ)2] ≤ σ0, (6)

where IE[.] is the expectation operator.

We can go beyond the first two moments and use also the third and the fourth moments.
Going beyond the first two moments is important when the PDF of j deviates from a pure
Gaussian distribution. Indeed, even with interval-based (with uniform PDF) or Gaussian
entries there is no reason for the PDF of the solution of a simulation to remain uniform or
Gaussian.
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u1 u2

u3 u4

u5 u

Figure 2. The 5 first pictures represent elementary displacements ui=1,...,5 and the bottom

right picture shows the total structural displacement u = u0+

N=5∑
i=1

xiui, where u0 = 0 in this

case. The elementary displacements cannot be retrieved using symmetry considerations
from each other.
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The third and fourth moments, the skewness γ and the kurtosis κ, are defined as:

γ = IE[(
j(x, α)− µ

σ
)3], κ = IE[(

j(x, α)− µ
σ

)4]. (7)

The skewness is an indication of the deviation from symmetry of the PDF and the kurtosis
permits to quantify if it is tall and skinny or short and squat.

One can consider that a robust design should favor symmetry in the distribution which
means a lower absolute value of skewness. This is an assumption and other non-zero
values can be targeted for the absolute value of the skewness. However, the assumption of
symmetry appears reasonable. Indeed, when driving a car on a straight line, one expects
the car to have the same behavior for small and symmetrical disruptions in holding the
steering wheel by the driver. In a Gaussian distribution we have γ = 0. Also, in a normal
distribution the mean and median coincide and if a PDF is not too far from a normal
distribution, the median will be near µ − γσ/6. Therefore, if |γ| → 0 the PDF tends
toward a normal distribution. This provides an inequality constraint on |γ| as γ can be
either positive or negative. For an uni-modal PDF a reduction of the skewness comes
when the mean and the mode of the distribution converge toward each other at given
standard deviation.

Robust design means higher density near the mean which means higher kurtosis, but
this is more subtle. Indeed, despite higher kurtosis means concentration of the probability
mass around the mean, it could also imply thicker tails in the PDF. This means that more
of the variance is the result of infrequent extreme deviations. We need therefore to define
what we mean by robust design: acceptance of frequent modest deviations or acceptance
of infrequent extreme ones. If operational security is a major concern the latter should
be definitely avoided. We therefore consider that a reasonable requirement would be to
have a design reducing the initial kurtosis value: κ ≤ κ0 together with a constraint on the
variance σ.

To summarize, robust moment-based optimization can be seen through the following
constrained minimization problem:

min
x∈Oad

J(x) = µ(x) such that

σ(x)− σ0 ≤ 0, |γ(x)| − |γ0| ≤ 0, κ(x)− κ0 ≤ 0.
(8)

Equality constraints on the moments are particular cases of these. In cases, higher kurtosis
are targeted (see discussion above), the last constraint becomes −κ(x) + κ0 ≤ 0.

3.2. Discrete expressions

Monte Carlo simulations permit to recover these moments with an error decreasing
as σ/

√
M with M the number of functional evaluations and this with a convergence rate

independent ofN . But, for smallN , classical numerical integration over-performs Monte
Carlo simulations in term of complexity based on the number of functional evaluations to
recover the moments at a given accuracy. As we are interested by small values of N , this
latter may therefore be preferred.
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Both Monte Carlo trials and numerical integration lead to the introduction of weighted
sums [14] over a M -point sampling IM as estimators of the previous moments (denoted
with the same notation):

µ =
∑

αk∈IM

ωkj(x, αk), σ2 =
∑

αk∈IM

ωk(j(x, αk)− µ)2, (9)

γ =
∑

αk∈IM

ωk(j(x, αk)− µ)3, κ =
∑

αk∈IM

ωk(j(x, αk)− µ)4. (10)

A major difference between Monte Carlo and numerical integration is that in the former
the sampling IM and the weights are chosen according to the PDF of α. In this paper we
consider uniform PDF. We have therefore uniform sampling in each of the dimension of α
and ωk ∼ 1/M . Unbiased estimates use slightly different coefficients and also introduce
corrections. For instance, one should consider ωk = 1/(M − 1) for σ, ωk = M/((M −
1)(M − 2)) for γ and κ. However, because we are interested by the gradients of these
quantities with respect to x and gradient-based minimization algorithms, these changes
will only have slight impacts on the amplitude of the gradient with no real incidence on
the optimization history, especially if optimal descent step sizes are used. This discussion
also shows that moment-based and multipoint optimization can be seen as a whole. If
different PDFs are targeted than uniform, we need to redefine the sampling IM and the
weights ωk accordingly. But, this is beyond the scope of this paper.

3.3. Gradients of the moments

The linearity in the sums permits to access to the gradients of the moments with respect
to the optimization variables x from the gradient of the functional at the sampling point
αk. We recall that we took σ = 1 in Equation (7) to ease this linearization. The different
gradients read:

∇xµ =
∑

αk∈IM

ωk∇xj(x, αk),

∇xσ
2 =

∑
αk∈IM

2ωk(j(x, αk)− µ)∇x(j(x, αk)− µ),

∇xγ =
∑

αk∈IM

3ωk(j(x, αk)− µ)2∇x(j(x, αk)− µ),

∇xκ =
∑

αk∈IM

4ωk(j(x, αk)− µ)3∇x(j(x, αk)− µ).

(11)

Knowing the elementary gradients ∇xj(x, αk) at sampling points αk brings interest-
ing information on the geometry of the problem. Indeed, they can be used to build a vector
space and the analysis of this space provides important information on the complexity of
the problem [14, 15, 16].

The natural presence of parallelism due to the M independent evaluations of the state,
functional and its gradient is interesting to monitor computational complexity. In addition,
as mentioned earlier for our problem, we notice that only the right-hand-sides bi=1,...,N
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need to be assembled after each perturbation of u∗. Therefore, the optimality condition
mentioned in section 2 for j can be extended to µ writing:

∇xµ =
∑

αk∈IM

ωk∇xj(x, αk) = 0,

which gives the following linear system to solve:

Ax−
∑

αk∈IM

ωkbαk
= Ax−

∑
αk∈IM

ωk < (u0 − u∗) , u >= 0,

with the matrix Ai,j =< ui , uj > unchanged.

In the presence of constraints on moments, we can proceed in the same way to get the
gradients of the moments, again using the nullity of the gradient of the first moment at the
optimum:

∇xσ
2 =

∑
αk∈IM

2ωk(j(x, αk)− µ)∇xj(x, αk)

= C1(x)Ax−
∑

αk∈IM

2ωk(j(x, αk)− µ)bαk
,

∇xγ =
∑

αk∈IM

3ωk(j(x, αk)− µ)2∇xj(x, αk)

= C2(x)Ax−
∑

αk∈IM

3ωk(j(x, αk)− µ)2bαk
,

∇xκ =
∑

αk∈IM

4ωk(j(x, αk)− µ)3∇xj(x, αk)

= C3(x)Ax−
∑

αk∈IM

4ωk(j(x, αk)− µ)3bαk
.

We see that these are four vectors involving a same matrix A and elementary con-
tributions bαk

with different weightings and scaling C1, C2 and C3 which are defined
by:

C1(x) =
∑

αk∈IM

2ωk(j(x, αk)− µ),

C2(x) =
∑

αk∈IM

3ωk(j(x, αk)− µ)2,

C3(x) =
∑

αk∈IM

4ωk(j(x, αk)− µ)3.

X
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3.4. Controlling the moments

A classical approach to improve robust design in engineering is to control the first mo-
ment under the constraint of leaving unchanged or even reduce the second one. An easy
way to adapt this concept to our situation is to consider the following descent direction
orthogonal to the gradient of the variance:

d = −
(
∇µ− < ∇µ, ∇σ

‖ ∇σ ‖
>
∇σ
‖ ∇σ ‖

)
,

where∇σ/ ‖ ∇σ ‖ is the unit vector along∇σ. Unfortunately, this formulation does not
permit anymore to get the optimal solution directly inverting a linear system as it is the
case in the single-point or even when minimizing solely the first moment. An iterative
procedure is then necessary using some descent algorithm. We will see examples of these
below.

One can generalize the previous construction to the case of more than two moments
using a Gram-Schmidt orthonormalization procedure. Let us organize the four vectors in
the following order:

(∇xκ,∇xγ,∇xσ
2,∇xµ). (12)

To reduce the impact of the solution of the first order optimality condition on the second,
third and fourth moments, we require the descent direction to be orthogonal to the sub-
space generated by the the gradients of these moments. This can be easily achieved using
a Gram-Schmidt orthonormalization which extracts from the set of the vectors above a
new set of orthonormal vectors vi=1,...,4:

(v1, v2, v3, v4).

The descent direction we use in minimization is defined by:

d = −‖∇xµ‖ v4.

In this way, we make sure the descent direction is orthogonal to the subspace generated
by moments 2, 3 and 4. The organization of the vectors as given in (12) is important
to make sure the direction monitoring optimization is the one given by the first moment.
Once this is achieved, this descent direction can be used in an iterative procedure which
is again necessary as the constrained optimality condition cannot simply be cast into a
single linear system.

3.5. Multi-point optimization for a quadratic functional

Let us illustrate our ingredients on a simple example. The functional involves a least-
squares minimization:

j(x, α) =
1

2

N∑
i=1

(xi − α)2, −0.5 ≤ α ≤ 0.5, −5 ≤ xi=1,...,N ≤ 5, N = 40. (13)

Let us solve problem (8) with a gradient method. Here, α is a scalar and for a given α
the optimality condition for j(x, α) gives obviously x∗ = (α, ..., α) ∈ IRN . This would
be the solution of a single-point optimization. Here α has a uniform PDF and we use
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j (x*,α)

α

j (x*,α) j (x*,α)

Figure 3. Upper: functional j(x∗, α) given by Equation (13) vs. α for single-point optimiza-
tion, mean-based and with constraints on moments two, three and four. Lower: histograms
of j(x∗, αk=1,...,M ) for a single-point minimization and when controlling one and then all
first four moments.

a uniform sampling IM with M = 40. Minimizing the mean µ without any constraint
on the other moments still produces a non robust optimum as the performance has large
variability over the range of the operating condition α. On the other hand, asking for the
first moments to decrease under constraints on the other three produces a much flatter
functional over the range of α. Figure 3 shows the histograms of j(x∗, αk=1,...,M ) for
these minimization. In particular, one sees how controlling more moments affects the left
peak and the distribution of the frequencies.

3.6. Application to our 3D elastic problem

We now illustrate the multi-point discussion with moments on our 3D elasticity prob-
lem presented in section 2.1 where target displacement u∗ is assumed uncertain with its

X
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Probability Density Function (PDF) known. The target is a large vector with a size given
by the number of the 3D mesh points. We consider centered Gaussian perturbations of u∗

with a standard deviation of 10%.

In our elasticity optimization problem, Oad = (IR+)N . This means that each of the
optimization variable needs to be positive. This brings additional constraints to those
expressed earlier on the moments. This also means that one cannot solve anymore the
single-point optimization by a sole inversion of a linear system and that, for instance, a
projected gradient algorithm is necessary. This can be easily included during the iterations
when minimizing the first moment under constraints on the other three.

Figure 4 shows the distribution of the ratio of the functional j(x∗, αk) to the Young
modulus for M = 1000. One sees that the uncertainty on u∗ brings large variations
in j. This variability shows the importance of a robust optimization approach for this
problem. The impact of considering the variability during minimization through moment
based functional can be easily demonstrated looking at the moment-based solutions of the
minimization versus the solution of the single-point optimization for the target u∗ which
corresponds to the deterministic situation. Table 1 features the solution of the optimization
variables for this comparison. We see that the results are clearly different. Also the his-
tograms in Figure 4 show that controlling all four moments greatly reduces the variability
of the functional and therefore improves the robustness of the design. This can be con-
firmed considering the 4 moments showing the variability of the functional induced by the
variability of the target displacement, considered as uncertain, for the single-point optimal
solution and for the different optimal solutions obtained when controlling respectively the
first, second and eventually all four moments. The first column in Table 2 show the first
moment for j(x, α)/E and the other columns show the second, third and fourth moments
for (j(x, α)− µ)/E. By extension, we denote these µ(j(x, α)/E), σ((j(x, α)− µ)/E),
γ((j(x, α)−µ)/E) and κ((j(x, α)−µ)/E). The first column indicates that the third first
designs give about the same average behavior while controlling all four moments clearly
provide a different, and actually better, solution. Robustness improvements can be seen
from the evolution of the second and fourth moments where again controlling all four mo-
ments is recommended. Also, the final density functions are slightly less symmetric when
controlling more moments. However, one regain symmetry when controlling 4 moments
instead of only two. As we expressed in section 3.1, symmetric distributions should be
preferred in robust designs.
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Single-point 1 moment 2 moments 4 moments

x1 (KN) 5500 5496 5266 7035

x2 (kN) 4000 4000 3917 9262

x3 (KN) 6000 5994 5518 6834

x4 (KN) 4500 4503 4330 0

x5 (KN) 4999 5005 5594 1772

Table 1. Optimization variables for minimization using the deterministic target u∗ (the
single-point case) and when controlling 1, 2 and all 4 moments of j. The solutions
are clearly different showing the impact of moment-based optimization. The robustness
achieved with more moments accounted for in the design is well illustrated through the
histograms in Figure 4.

µ(j/E) σ((j − µ)/E) γ((j − µ)/E) κ((j − µ)/E)

single point 74.980 0.938 -0.005 2.422

1 moment 74.940 0.865 -0.018 2.180

2 moments 74.144 0.840 0.094 2.146

4 moments 64.138 0.765 0.032 1.685

Table 2. Distributions of the different moments for the optimal solutions obtained after a
single-point optimization and when controlling first, second and eventually all four mo-
ments. This final design is superior both in performance and robustness.
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(j(x*,αk) � μ)/E  (j(x*,αk) � μ)/E  

(j(x*,αk) � μ)/E  (j(x*,αk) � μ)/E  

Figure 4. Relative frequency histogram of (j(x∗, αk=1,...,M )− µ)/E with M = 1000. Con-
trolling all four moments reduces the variability of the functional and therefore improves the
robustness of the design.

X



16 X – Volume 0 – 2021

4. Linear models and backward uncertainty propagation:
covariance matrix of the optimization variables

We showed how to quantify the impact of target state uncertainties in inverse design
through multi-point analysis and showed how it can be monitored through the moments
of the functional. But the multi-point analysis requires a sampling of a large dimensional
space. Something which is a burden when this dimension is large. To avoid a sampling
we would like to see if an alternative low-complexity approach based on the existence of a
local linear relationship between the target state u∗ and the optimization variables x can be
applied to estimate the covariance matrixCov2

x of the optimization variables. We compare
this construction to a reference Cov1

x construction where a sampling is necessary.

As previously, we assume the PDF of the target solution u∗ known and therefore its
covariance matrix Covu∗ . Also, we assume u∗ is admissible and that there exists a set of
optimization variables realizing the target.

As mentioned in (1), in our problem of interest the state equation is linear and to
simplify the notation, and without any loss of generality, we consider the source term
f(x) = x considering that x and u have a same dimension. In our implementation,
however, we use spatial localization terms given in (2) in order to reduce the size of x.

The construction can be applied in several useful situations. Let us describe two of
them.

4.1. Cov1x when a linear model Lu = x is available

This is typically our case, for instance, with the elasticity equation and the optimiza-
tion variables acting on the right-hand-side of the equation. In this case, we can express
Cov1

x with u ∼ u∗, through:

Cov1
x = IE

(
(x− x)(x− x)>

)
= L IE

(
(u∗ − u∗)(u∗ − u∗)>

)
L>

= L Covu∗ L
>.

But, in our case, the solver is a black-box and we do not have L in hand. In these cases,
a linear model can be built through a machine learning approach using a database of
simulation scenarios (U−X) generated by this code. This, actually, can also be done in a
nonlinear situation. As the uncertainty analysis is aimed to take place around an optimal
solution, it is enough for this surrogate model to have a local domain of validity. In this
case, L is solution of the first-order optimality condition for a functional J(L):

∇LJ(L) = 0⇔ UU>L> = UX>,

where U and X gather the scenarios of simulations available in the database for u and
x and we look for the best linear relation X> = U>L> linking the scenarios in U to
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those in X and, actually, vice versa. L>, and therefore L, can be found as solution of a
least-squares problem:

J(L) = (X> − U>L>, X> − U>L>) = (X,X)− 2(XU>, L) + (L,L)UU> .

The only requirement is for U to have full rank in order for UU> to be positive definite
such that the scalar product (L,L)UU> ≥ 0. The formulation presented in section 2
presents, however, a way to avoid the previous development, taking advantage of the lin-
earity to derive the expression of the form x = A−1b(u∗). We recall that the components
of A and b for i, j = 1, ..., N are given by:

Ai,j =< ui , uj > and bi(u
∗) =< (u0 − u∗) , ui > .

Again, the covariance matrix of the optimization variables reads:

Cov1
x = IE

(
(x− x)(x− x)>

)
= A−1 IE

(
(b(u∗)− b(u∗))(b(u∗)− b(u∗))>

)
A−>

= A−1 Covb(u∗) A
−>, (14)

where it is easy to estimate Covb(u∗) knowing Covu∗ . The elementary ui and the homo-
geneous solutions are deterministic. The covariance matrix of b(u∗) measures the covari-
ance of the projection of the deviation between the uncertain target function u∗ from the
homogeneous solution u0 on the elementary solutions ui:

(Covb(u∗))ij = IE
(
(bi(u

∗)− bi(u∗)) (bj(u
∗)− bj(u∗))>

)
= IE

(
(< (u∗ − u∗) , ui >) (< (u∗ − u∗) , uj >)>

)
.

One interest of this formulation is that the size of this matrix is now five, the number of the
optimization variables, instead of 14400, the number of the mesh grid points for Covu∗ .
Also, if the perturbation on u∗ are centered, u∗ is the deterministic target solution.

4.2. Cov2x when a linear model Lx = u is available

This is not directly the situation in this paper as the optimization variables intervene
in the left-hand-side. However, this analysis is powerful when the state equation is linear,
or if the Jacobian of the state with respect to the optimization can be estimated which is
our situation where indeed the Jacobian is explicitly available knowing the elementary
solutions as described in section (2).

After a deterministic optimization when the state is close to the target (u ∼ u∗), we
assume the covariance matrix of u close to the covariance matrix of u∗. Using the linear
relationship Lx = u we can write:

Covu∗ = IE
(

(u∗ − u∗)(u∗ − u∗)>
)

= IE
(
L (x− x)(x− x)> L>

)
= L IE

(
(x− x)(x− x)>

)
L>

= L Cov2
x L>.
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Unlike the previous situation, to get Cov2
x we need to invert this expression. In cases

where exact inversion is impossible a least-squares formulation can be used looking for
Cov2

x minimizing:

1

2
< L Cov2

x L>, L Cov2
x L> > − < Covu∗ , L Cov2

x L> > .

First-order optimality condition with respect to Covx gives:

L>L Cov2
x L>L− L> Covu∗ L = 0,

which leads to
Cov2

x = (L>L)−1 L> Covu L (L>L)−1,

and eventually, to

Cov2
x = L−1 Covu∗ L

−> =
(
L> Covu∗

−1 L
)−1

. (15)

Therefore, knowing Covu∗ one can access Cov2
x if a linear relationship, even locally

valid, is available between x and u. In practice, Covu∗ is diagonal as the target uncertain-
ties are often assumed independent. The inversion of Covu∗ is therefore straightforward.
The second expression only requires the inversion of a N × N matrix in our case. This
expression in (15) is also interesting because it involves the inversion of a square ma-
trix giving a least-squares sense to the inversion of rectangular matrix. An interesting
application of this construction is using the state sensitivity with respect to optimization
variables or the Jacobian J = (∂u/∂x) in a first-order linear relationship J δx = δu.
This permits to estimate the covariance matrix of the optimization variables perturbations
even in the absence of a direct linear model linking x and u. Actually, in situations where
the state equation is linear (our case) we have L = J . In situations where there are only
a few optimization variables, the Jacobian can simply be estimated by a finite differences
approach approximating the ith line of the Jacobian by:

Ji=1,...,N =∼ (u(xei + ε)− u(xei − ε))
2ε

,

with ei=1,...,N the canonical basis of IRN in our case and 0 < ε << 1. But, we have seen
in section 2 that u has a direct expression with respect to x components xi through:

u = u0 +

N∑
i=1

xiui.

Therefore, the finite difference formula reduces to:

Ji=1,...,N ∼
(u(xei + ε)− u(xei − ε))

2ε
= ui.

This is another advantage of our direct formulation for the inversion as it makes evaluating
J straightforward, not requiring any extra calculation. In addition, the Jacobian is exact
in this case and is not affected by the finite differences approximation and the choice of
ε. Actually, the Jacobian would be exact even using first order finite differences. This
is because we recover the exact gradient expression in this case. Therefore, this second
covariance estimation is well adapted to our situation and would be interesting if it gives
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Figure 5. Covariance Matrix Cov1x and Cov2x (in Newton2) Visualization, left: Cov1xfrom
(14), right: Cov2x from (15).

nearly the same answer than the first construction where a sampling of the state variable
variation domain is necessary.

Figure 5 shows the comparison of this two estimations of Covx. We see that the
matrices are very close and especially the signs of all components agree.

Further comparisons are given in Table 3 through different distances between the two
covariance matrices versus the distance between the covariance matrices and a diagonal
matrix with the diagonal given by mean values of the covariance matrices components
(i.e. 1

2N2

∑N
i,j=1(Cov1

x + Cov2
x)i,j). This is to provide an estimation of how close the

two covariance matrices are versus a third fixed one.

Distance d d(Cov1
x, Cov

2
x) d(Cov1

x, CIN ) d(Cov2
x, CIN )

Kullback distance 0.334 165.589 166.682

Euclidean distance 1.674 17.020 16.123

Log Euclidean distance 0.737 7.193 7.469

Riemannian distance 0.811 7.193 7.469

Log-det distance 0.286 2.00 2.086

Wasserstein distance 0.389 4.098 4.097

Table 3. Different estimations of distances between the two covariance matrices. where
C = 1

2N2

∑N
i,j=1(Cov

1
x + Cov2x)i,j is the mean value of the covariance matrices compo-

nents and IN is the N th identity matrix.
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5. Concluding remarks

Robust parametric optimization has been addressed through the control of the mo-
ments of the functional. Moments have been estimated using a multi-point formulation.
This permits to address situations where operating parameters are not anymore single val-
ued but defined through their PDF. Hence, the first four moments of the functional have
been considered to go beyond the classical mean-variance based optimization. Subtleties
of what should be the target for the skewness and the kurtosis of the probability density
function of the performance of the system for a robust design have been discussed.

It has been shown that controlling second, third and fourth moments drastically im-
proves the design while the time to the solution remains comparable to the single-point
situation as all the extra calculations can be carried out in a fully parallel and indepen-
dent manner. The cost is also reduced thanks to our construction of the optimal solution
taking advantage of the presence of the linearity between the optimization variables and
the solution of the state equation. As a consequence, the approach requires quite small
additional coding and computational effort.

Low-complexity solutions for backward propagation of aleatory uncertain target data
has also been presented. Derivation of the covariance matrix of the optimization parame-
ters has been discussed through two formulations. These provide uncertainty quantifica-
tion analysis for the inversion solution with confidence margins on the design parameters
in very large design spaces. It has been shown that taking again advantage of existing
linear relationships between the target state u∗ and the optimization variables x, sam-
plings of the design and the target solution spaces can be avoided drastically reducing the
computational cost of the approach.
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