Girum Demisse 
email: girumdemisse@gmail.com.
  
Matt Feiszli 
  
Approximately Covariant Convolutional Neural Networks

Data symmetries have been used to successfully learn robust and optimal representation either via augmentation or explicitly defined regularization terms. In most cases, however, a network is trained to be invariant to generic transformations of data regardless of label difference. As a result, robustness is emphasized over retaining discriminative representations. To overcome such a compromise, we introduce a training approach for Convolutional Neural Networks (CNN), such that a robust model is estimated while preserving discriminative features. Our approach adds neither new parameters nor entails specialized architectural design. Hence, it can directly be integrated with any CNN based models. It, however, requires an additional compute in comparison to conventional CNN training. As a result, we introduce a hyperparameter that can be tuned slowly to sidestep the compute overhead during inference. Using four publicly available datasets, we show our method consistently improves performance across different network architectures, model capacity, label, and data space.

Introduction

Problem specific priors have proven to be valuable information in constraining the search space of a learning system [START_REF] Yaser | Hints and the vc dimension[END_REF]. Among many types of apriori imposed constraints, symmetry transformations are ubiquitous-we consider the transformation of a sample data as its symmetry if it preserves the label. Symmetries are mainly enforced either by augmenting the input data [START_REF] Simard | Transformation invariance in pattern recognition-tangent distance and tangent propagation[END_REF][START_REF] Dc Ciresan | Deep big simple neural nets excel on handwritten digit recognition[END_REF] or by imposing specialized regularization terms or objective function on the estimated representations [START_REF] Rifai | Contractive auto-encoders: Explicit invariance during feature extraction[END_REF][START_REF] Olivier | Data-efficient image recognition with contrastive predictive coding[END_REF]. Thus far, both approaches have been reliably used to enhance a model's performance or reduce data sample complexity. Nonetheless, both approaches rely on questionable assumptions.

First, apriori defined transformations are assumed to be equally applicable across labels. This is not necessarily true. For instance, in handwritten digit classification task zero is invariant under all possible rotations while six is not; it changes to nine when rotated by -180 0 . As a result, particularly in hierarchical models, computational pathways that are excited by differently labeled samples are expected to subscribe to different transformations as their symmetry. Second, a set of transformations that is defined for training a particular model with a particular dataset is often repeatedly used for training different models with a different dataset. Although in [START_REF] Xie | Unsupervised data augmentation for consistency training[END_REF][START_REF] Ekin D Cubuk | Autoaugment: Learning augmentation strategies from data[END_REF] automated search for problem-specific transformation sets is introduced, it does not address the assumption on label-specific symmetries. Finally, particular to data augmentation methods, a model is expected to spontaneously learn invariant properties of data from a large amount of observations. In most cases, it is often true that high capacity models learn redundant feature detectors that specialize to each data-transformation pair [START_REF] Lenc | Understanding image representations by measuring their equivariance and equivalence[END_REF][START_REF] Denil | Predicting parameters in deep learning[END_REF]. It is, however, not clear if data augmentation can effectively lead to robustness in low capacity models.
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In this paper, we propose a network training approach that attempts to address the label and task agnostic nature of earlier methods. Our approach relies on the observation that a convolution operator can be selectively covariant with respect to a set of global and invertible transformations. Moreover, such selectivity can be framed as the filter's property entirely, see Figure 1. Given this observation, we propose a training approach that encourages the estimation of invariant filters so that the convolution operator can covary with respect to a predefined set of transformations. Consequently, our approach localizes covariance to each filter and attempts to bias the system into estimating a filter, driven by data, that has the maximal set of symmetry set. To that end, we minimize an objective loss with respect to weighted-average outputs, which are computed by convoluting the input signal under all possible transformations from a predefined set. The weighted-averaging, however, is not computed over the transformations, as was done in [START_REF] Bruna | Invariant scattering convolution networks[END_REF][START_REF] Cohen | Group equivariant convolutional networks[END_REF]-we average what would be an intersection response of all possible transformations of the input signal if the filter is invariant with respect to the set of transformations. We refer to such kind of output response as Approximately Covariant (AC), see Algorithm 1. Subsequently, a convolution operator is replaced entirely with AC-module without adding any free parameters or alternating the overall network architecture. Nevertheless, AC modules incur a significant compute overhead in comparison to a conventional convolution operator-AC scales at least linearly with the cardinality of the predefined transformation set. To mitigate the compute overhead, we introduce a scheduled tuning procedure that makes the averaging obsolete once the network converges. Thereby eradicating the compute overhead during inference. We validate our approach using five publicly available datasets and show that the approach does indeed improve accuracy and retention of discriminative features while being robust to symmetry transformations. The rest of the paper is organized as follows: a general overview of a covariant model and convolutional operator is discussed in Section 2 and Section 3. The proposed learning approach is presented in Section 4 followed by the presentation of experimental results in Section 5 and related works in Section 6. The paper ends with concluding remarks in Section 7.

Covariant model

Let f : v → i be a function, where v ∈ Z 2 denotes a coordinate vector of a 2D grid and i ∈ R be intensity value. Different variations of the 2D signal can be generated by the action of a transformation map either on the domain space or co-domain space of f (•). We study a global linear transformation on the domain as geometric, and the transformation on the codomain as intensity, see Figure 2. Geometric variations of the signal, for a transformation g, are defined as

f g (v) = f (g -1 v), (1) 
while intensity variations for K are defined as Kf (v) = K -1 i. We say transformation g or K is a symmetry of f (•) if the transformations preserve the label of the input signal under a label mapping model. Hence, the challenge of estimating a robust model can be framed as the estimation of a model that preserves label under geometric and intensity transformation of training data.

There are two main challenges to be addressed here. First, both the label mapping model and the symmetry-set of each labeled dataset are not known and need to be estimated, which can effectively lead to "chicken-egg" like problem [START_REF] Memisevic | Learning to represent spatial transformations with factored higher-order boltzmann machines[END_REF]. In this work, we sidestep this challenge by fixing a plausible subset of transformations apriori of training. The second challenge, which is the main subject of this paper, is to learn filters that are selectively invariant with respect to a set of transformations. Selectively is important to preserve discriminative filters while maintaining robustness to data symmetries. In particular, selectively invariant filters are important in hierarchical and composing models like Convolutional Neural Networks (CNN). In such models, where most of the computational units are shared, images that are labeled differently are expected to excite computational pathways that share some components while differing in others. In effect, computational pathways might subscribe to shared and differing symmetries at different levels of the hierarchy. Thus, one needs to devise a mechanism for learning symmetries locally. Consequently, we refer to a data labeling model that is composed of selectively invariant filters as covariant model. In essence, a covariant model is one that is composed of equivariant convolutions, with respect to a symmetry set, such that data labels remain invariant to symmetry transformations under its mapping.

Covariant convolution

We define a 2D input signal f and filter h as multidimensional maps defined as

f, h : Z 2 → R n .
Subsequently, a convolution1 operator defines a scalar field over the grid defined as

[f h] : Z 2 → R.
In the context of deep learning, an output feature of a layer can generally be computed as a linear combination of these scalar fields, forming a feature map per output channel. The feature maps are further stacked together to form n-channel output features, from which what are called fibers are defined at a particular position Z2 [START_REF] Taco | Steerable cnns[END_REF]. In this section, we study how the scalar fields vary with respect to a linear global action on the signal domain.

Convolution under change in domain: Consider the representation of a pixel position by vector v with respect to a canonical basis B as p = Bv; these are depicted in Figure 2. Since the pixel position p is invariant to an arbitrarily selected set of basis, the position vector's coefficients v transform contravariant to the transformation of basis. Hence for a linear transformation of the basis Bg, the vector representation of p in the new basis is written as g -1 v so that p remains invariant 2 . As such, a 2D signal with respect to transformation of the basis is written as f (g -1 v). Meanwhile, the convolution of a transformed image at a lag position vector r is written as

[f g h](r) = v f (g -1 v)h(r -v) = v f (ṽ)h(r -gṽ) = v f (ṽ)h(g(g -1 r -ṽ)) = [f h g -1 ] g . (2) 
The equality given at (2) was first shown in [START_REF] Cohen | Group equivariant convolutional networks[END_REF]. The equation shows that the scalar field generated by a convolution operator does not transform freely with respect to change of basis or coordinate system. This is mainly because the filter itself is defined on a lag vector x = g -1 r -ṽ, which itself transforms as g. Hence, a sufficient condition, for a covariant convolutuion, is to have a lag vector that is invariant to g or an invariant filter, see Figure 1. This is, however, a sufficient condition and not a necessary one. There are alternative and elaborate possibilities for having a covariant convolution operator without having an invariant filter to g.

Measuring covariance

In general, a covariant-form of a convolution operator is one that satisfies

[f g h](r) = v f (v)h(g -1 r -v) = [f h] g . (3) 
Note that, given the input signal and the transformations, ( 3) is completely determined by the characteristics of the filter. Meanwhile, given a filter, set of transformations, and the input signal we can measure the degree of covariance using a cosine similarity measure as

Ω(h, g) = V 1 , V 2 V 1 V 2 , (4) 
where •, • denote dot product, V 1 and V 2 denote the vectorized versions of the right and left side of (3). We can use the above measure to define the probability of covariance, conditioned on the filter, over a given set of transformations T . In our case, we use softmax with hyperparameter λ ∈ [0, ∞] defined as

τ (h, g k ) = exp(λ • Ω(h, g k ))
∀gi∈T exp(λ • Ω(h, g i ))

.
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The hyperparameter is mainly used to control the entropy of the distribution; its importance will be discussed in a later section.

Learning approximately covariant responses

A straight forward approach to estimating an approximately covariant convolution, with respect to a given transformation, is to add the measure (5) as regularizer. However, the regularizer will penalize small covariance measures with respect to all transformations and filters. In order for such a general penalty term to work, it requires a very specific apriori knowledge about the symmetry sets of the data and the model to be estimated. Hence, in this work, we will only assume knowledge of a possible set of transformations and devise a learning approach that estimates filters that are invariant with as much possible set of transformations as possible.

Approximately covariant response

Consider a given set of transformations T with which an input signal can be transformed. Subsequently, for a given filter h we define a set of output responses with a fixed frame of reference as

E = {[f h g -1 k ] : ∀g k ∈ T }. (6) 
From (2), we can see that a covariant convolution can be defined by transforming each element of the set E with their corresponding transformation, see Figure 3. More importantly, however, the set E is a singleton if h is invariant with respect to the transformation set T ; we can measure the degree of invariance for each g k ∈ T using [START_REF] Claudiu Cireşan | Deep, big, simple neural nets for handwritten digit recognition[END_REF]. Consequently, we approximate a covariant response of a filter (what would be the singleton set E) with respect to a transformation set T as a weighted-average of E

AC(f, h) = ∀g k ∈T [f h g -1 k ] τ (h, g k ), (7) 
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The diagram shows possible variations of the convolution operator with respect to a transformation. The input image is denoted with a square round box as f (v). The red broken arrow is used to denote the measure of covariance [START_REF] Claudiu Cireşan | Deep, big, simple neural nets for handwritten digit recognition[END_REF]. While the element of E for a g ∈ T is denoted by a circle with red filling-this is the quantity that is averaged over in [START_REF] Bruna | Invariant scattering convolution networks[END_REF].

where denotes multiplication; note that ( 7) is with respect to the input signal frame of reference, see Figure 8 for visualization of AC response. A particularly important character of ( 7) is the averaging which is done over the filters and not over the input signal or over the transformations. Hence, it is the learning system that is being forced to learn approximately covariant detectors while preserving the input information.

The final credit of a filter h under AC response, with respect to a given loss , is described as follows using backpropagation algorithm [START_REF] David E Rumelhart | Learning representations by back-propagating errors[END_REF],

∂ ∂h = g k ∈T v ∂ ∂AC(f, h) τ (h, g k ) • ∂[f h g -1 k ] ∂h + [f h g -1 k ] • ∂τ (h, g k ) ∂h . (8) 
In the limiting case of a non-covariant convolution with respect to some g k ∈ T , that is τ (h, g k ) = 0, the change of the filter weights with respect to it is zero, ∂ /∂h g k = 0. On the contrary, for a transformation g j ∈ T that leaves the filter invariant, the gradient is equivalent to conventional convolution's gradient. Consequently, for a given equivalent optimal set of filters h we can see that ( 8) is minimized by h ∈ h that is invariant to a transformation subset of T with maximum cardinality. More importantly, however, the averaging in ( 8) is computed over the filters and not the input, hence avoids blurring information to achieve invariance; this is in direct contrast to generic pooling based methods. As a result learning via (8) tends to preserve discriminative features, see Figure 5.

Complexity

In Section 4.1, we presented a computational approach for estimating filters that are covariant with respect to a set of transformation which we call Approximately Covariant (AC) response. AC can be used to replace a conventional convolutional unit without adding new learnable parameters or altering the network architecture. It, however, adds a considerable compute overhead as it requires the computation of the covariance Algorithm 1: Approximately covariant response: The pseudocode describes the complete AC training approach for a one channel filter estimation.

Data: f (v), h(v), T , λ Result: AC response if train then E = {} , τ = {} ; Update λ ; for g k ∈ T do [f h g -1 k ] → E; exp(λ • Ω(h, g k )) → τ ; end normalize τ ; return τ k E k ; else return [f h]
; end measure for each transformation, which grows linearly (at least) with respect to the cardinality of the set T .

In this section, we suggest an approach that makes the averaging required in (7) obsolete for inference time. In other words, we show that the averaging is important for training only. To show this, consider an optimal filter h that is invariant with respect to a subset of the transformations T * ⊂ T with high degree of certainty, i.e., Ω(h, g k ) = 1, ∀g k ∈ T * . Subsequently, [START_REF] Cohen | Group equivariant convolutional networks[END_REF] for T * is given as

∀g k ∈T * [f h g -1 k ] τ (h, g k ) = [f h]. (9) 
Note that Ω(h, g k ) = 1 is the same as h g -1 k = h. As a result, we can train a network to estimate filters that are invariant with high certainty so that we can avoid the averaged approximation. To that end, we slowly increase the hyperparameter λ in [START_REF] Claudiu Cireşan | Deep, big, simple neural nets for handwritten digit recognition[END_REF] during training time to decrease the entropy of the probability measure, since from (9) we have the following for the general set T

lim λ→∞ ∀g k ∈T [f h g -1 k ] τ (h, g k ) = [f h]. (10) 
It is, however, important to have an appropriate tuning mechanism for λ; if we increase it too fast we might converge to a suboptimal solution as will be shown in the following section.

Evaluation

In this section, we discuss the baseline models, datasets, and evaluation protocols that are used to validate the proposed training approach.

Baseline models: As a general framework, we use the ResNet architecture proposed in [START_REF] He | Deep residual learning for image recognition[END_REF]. The framework is made of an input layer -a Conv3x3 convolution layer followed by BatchNorm(BN) and ReLU units -and layers of residual blocks. We use these building blocks to define low and high capacity models. We define a low capacity model which we refer to as ResNet8; it has an input layer with 30 output channels, two residual blocks each with 20 output channels, and a last residual block with 30 output channels which strides with 2. Overall the model has 8 layers. In the case of large-capacity models, we use variations of ResNet models; ResNet18 and ResNet50 as described in [START_REF] He | Deep residual learning for image recognition[END_REF]. In all cases, however, we define a dual model where all the convolution operations are replaced by approximately covariant (AC) modules [START_REF] Cohen | Group equivariant convolutional networks[END_REF] to estimate approximately invariant filters. For instance, the dual model for ResNet18 has the prefix AC and is referred to as AC-ResNet18; note that there are exactly the same number of parameters in a model and its dual counterpart. We define a set of dilation of the domain basis by uniformly scaling both basis (width and height) by factors s = {0.75, 1.0, 1.37, 1.68}. Note that, these are pure scaling without aspect ratio correction and addition of shearing, see Figure 4. We, however, pad the filters with zeros to accommodate expanding coordinates. Given size n expansion, we pad the signals with h w /2+n zeros, where h w denotes the width of a square signal. We can use the above padding procedure to maintain output feature dimensions across different layers and architectures.

In the case of using the direct product of transformations, we treat the composition as non-separable following [START_REF] Sifre | Rotation, scaling and deformation invariant scattering for texture discrimination[END_REF]; for instance, composition of scaling and reflection. Furthermore, we use bilinear interpolation to approximate the transformation of continuous signals.

Experiments

We use four publicly available datasets to validate and compare our approach: MNIST [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF], Rotated MNIST [START_REF] Larochelle | An empirical evaluation of deep architectures on problems with many factors of variation[END_REF], CIFAR-10 and CIFAR-100 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF] and ImageNet [START_REF] Russakovsky | Imagenet large scale visual recognition challenge[END_REF].

MNIST and Rotated MNIST

MNIST is a well-known dataset of handwritten numbers as a 28x28 pixel image. It contains 50000 sample points for training and 10000 sample points for testing. Meanwhile, Rotated MNIST is a dataset derived from subsamples of MNIST. The subsamples are randomly rotated and split into training and test sets; it has 12000 training and 50000 test sample points. We train a low capacity model (ResNet8) using Adam [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] with a learning rate of 0.001 and set the decay rates of the mean and (uncentered) variance to 0.9 and 0.99 respectively. Furthermore, we extend the effective gradient memory-window of Adam as is suggested in [START_REF] Sashank | On the convergence of adam and beyond[END_REF]. Moreover, we use the not-normalized covariance mea- sure (4) in the case of small models like ResNet8. This is mainly because it facilitates the optimization. In all experiments with Rotated MNIST data, we use 32 as mini-batch size per GPU and train for 200 epochs with cross-entropy as a final loss function. In all batch normalization, we don't use statistics computed during training time for inference [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF]. Instead, we compute data statistics from the current mini-batch. We use both rotated-MNIST and MNIST to evaluate our apparoch's robustness and effectiveness in preserving discriminative features.

Robustness: One of the main advantages of invariance is robustness towards symmetry transformations. As such, we evaluate the robustness of the proposed approach using rotated MNIST dataset following [START_REF] Cohen | Group equivariant convolutional networks[END_REF]. Since both the training and testing data points are rotated with transformations that are selected from a fixed distribution, the scenario simulates effective data augmentation. We train and evaluate on ResNet8 and compare the results with AC-ResNet8. In all cases the training hyperparameters and model initalizations are kept fixed. As a result, we expect any difference in performance to be due to the introduced training approach. As shown in Table 1, there is a significant performance gain in using the AC training procedure models as opposed to the conventional one. The gain is a direct attribute of [START_REF] Cohen | Group equivariant convolutional networks[END_REF], since the number of parameters, model architecture, initalization, and training hyperparameters are fixed in both the model and its dual AC counterpart. Moreover, we have observed that performance can be improved by simply expanding the symmetry set. We've also reported the FLOP counts for processing a 28x28 image in a single forward pass. As reported in Table 1, when using the AC procedure, a single forward pass can be considerably compute intensive. Meanwhile, those that are trained with tuning the parameter λ in ( 5), as discussed in Section 4.2, were able to achieve a similar gain while having the same FLOP count during inference-detailed study into a tuning procedure is discussed later in this section.

Discriminativness: Here, we compare the capacity of ResNet8 and AC-ResNet8 to learn robust filters while retaining label-specific discriminative features. To that end, we train both models on Rotated MNIST training dataset and evaluate it on MNIST testing set. In order not to introduce unwanted bias, both the training and test dataset are normalized with MNIST statistics. Furthermore, in all batch normalization we don't use statistics computed during training time for inference [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF]. Instead, we compute data statistics from the current mini-batch. In the case of AC-ResNet8, we have used {θ : mod(θ, 45 0 ) = 0} to estimates filters that are invariant so that we can have a covariant model. In such a setting, AC-ResNet8 achieved an error rate of 24.1%, while in the case of ResNet8 error rate increased to 60.3%, see Figure 5. Note that, in the case of ResNet8, the error increased significantly on the MNIST test dataset as the model gets better in classifying Rotated MNIST training data. This shows that robustness to symmetry comes at the cost of discriminative feature erosion in the general case of data augmentation. Meanwhile, the proposed approach, i.e., to localize symmetries through AC-convolutions, is shown to estimate robust features without a significant erosion to discriminativness.

Efficient Inference: One of the main drawbacks of the proposed approach is computational latency due to [START_REF] Cohen | Group equivariant convolutional networks[END_REF]. As discussed in Section 4.2, however, once a network is trained, with low entropy probability measure, we can equivalently perform inference with direct convolution. Here, we evaluate this approach on the discriminative scenarios using ResNet18. The hyperparameters are kept as discussed in earlier setups. However, we train the model for 100 epoch and test different scheduling strategies for tuning λ. We primarily explore three startegies. 1) No slow tuning but setting λ = 100 from the beginning. 2) Slow scheduled tuning. 3) A relatively slower scheduled tuning. As shown in Figure 6, the three different strategies gave three different results for the discriminative task. The results shows slow tuning is a particularly important strategy to achieve convergence to optimal network configuration. This is also true for the robustness task see Table 1. In all cases, performance shows that once an optimal covariant network is trained, there is no need to compute (3) to retain the performance gain, hence alleviating the computational latency, at least in inference time. We emphasize, however, the importance of a scheduled slow increase in λ. We observed this in both robustness and reflection transformations as discussed in Section 5; we stress that the composite transformations are treated as non-separable see [START_REF] Sifre | Rotation, scaling and deformation invariant scattering for texture discrimination[END_REF]. Results are shown in Table 2 and Figure 7. Although the observed performance gain is not as large as was seen in the Rotated MNIST dataset, AC based training showed performance gain on both CIFAR-10 and CIFAR-100, and in both top-1 and top-5 accuracy measures.

Imagenet: Here we report the evaluation of our approach on a larger dataset, Ima-geNet [START_REF] Russakovsky | Imagenet large scale visual recognition challenge[END_REF]. Imagenet has 1000 different classes of objects for a classification task. The dataset contains 1.28 million training data points and we used the 50 thousand validation set for evaluation. We follow the same data augmentation and hyperparameter setting discussed in the CIFAR dataset evaluation, except in this case we use the data-specific statistics for normalization and randomly crop to 224x244 size. Similarly, we observed performance gain when using AC trained models as opposed to the conventional one, see Table 3.

Related works

The importance of robustness to data-symmetry has been studied extensively in the deep learning framework. One of the earlier and widely successful approache is data augmentation [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF][START_REF] Claudiu Cireşan | Deep, big, simple neural nets for handwritten digit recognition[END_REF]. Although exceptionally effective, general augmentation is often not tailored to task and data specific problems until recently-in [START_REF] Ekin D Cubuk | Autoaugment: Learning augmentation strategies from data[END_REF][START_REF] Xie | Unsupervised data augmentation for consistency training[END_REF] a learning-based approach is shown to search and identify an effective set of transformations for task and data-specific problems. Alternatively, the construction of group-convolution networks gained significant at- tention with recent works [START_REF] Gens | Deep symmetry networks[END_REF][START_REF] Cohen | Group equivariant convolutional networks[END_REF][START_REF] Sander Dieleman | Exploiting cyclic symmetry in convolutional neural networks[END_REF][START_REF] Kondor | N-body networks: a covariant hierarchical neural network architecture for learning atomic potentials[END_REF][START_REF] Diaconu | Learning to convolve: A generalized weighttying approach[END_REF]. Although there are several variations, the general approach of group-convolution is to compute the orbit of the group action at each position and use pooling. These networks are further generalized for analyzing signals defined on non-planar domain [START_REF] Taco S Cohen | Spherical cnns[END_REF], and for general local symmetries [START_REF] Miranda Cn Cheng | Covariance in physics and convolutional neural networks[END_REF]. Similarly, in [START_REF] Daniel E Worrall | Harmonic networks: Deep translation and rotation equivariance[END_REF][START_REF] Taco | Steerable cnns[END_REF] filters from a restricted type of family (steerable filters) are estimated to achieve equivariance. In a more extreme case, in [START_REF] Sifre | Rotation, scaling and deformation invariant scattering for texture discrimination[END_REF][START_REF] Bruna | Invariant scattering convolution networks[END_REF] fixed and localized waveforms are used for achieving stability with respect to a group action via hierarchical reconstruction and subsampling. In all of the above approaches, however, the set of transformations to be invariant to are biases induced into the system model-transformations are apriori fixed and not estimated from data. There is, however, a significant body of work that considers estimating the symmetry transformations directly from data [START_REF] Bruno A Olshausen | Bilinear models of natural images[END_REF][START_REF] Memisevic | Learning to represent spatial transformations with factored higher-order boltzmann machines[END_REF][START_REF] Simard | An efficient algorithm for learning invariance in adaptive classifiers[END_REF][START_REF] Lenc | Learning covariant feature detectors[END_REF][START_REF] Rajesh | Learning lie groups for invariant visual perception[END_REF]. Learning-based approaches can potentially estimate feature detectors that are selectively invariant to a specific set of transformations [START_REF] Simard | An efficient algorithm for learning invariance in adaptive classifiers[END_REF]. On the downside, these approaches need to estimate two unknowns, the relevant feature detector and its symmetry set, which can lead to a "chicken-egg" like problem [START_REF] Memisevic | Learning to represent spatial transformations with factored higher-order boltzmann machines[END_REF]. In [START_REF] Simard | An efficient algorithm for learning invariance in adaptive classifiers[END_REF][START_REF] Lenc | Learning covariant feature detectors[END_REF] a measure of covariance/invariance is used as a regularizer or objective loss for the learning. Meanwhile, factorization and higherorder tensor fields (capsules) are introduced as alternative symmetry learning procedures in [START_REF] Memisevic | Learning to represent spatial transformations with factored higher-order boltzmann machines[END_REF][START_REF] Hinton | Transforming autoencoders[END_REF].

Our work draws motivation from both learning-based and group-convolution directions. However, we neither introduce group-convolution nor add a regularizer or specialized objective to estimate a covariant network. Instead, we define a sufficient condition on the unknown filter weights and train the network to estimate filters that approximately satisfy the condition for a maximal subset of transformations. which is a set predefined apriori of training. It is, however, important to note that we do not enforce invariance over the predefined subset but estimate filters that minimize an objective loss with a maximal symmetry subset.

Conclusion

In this paper, we have presented a novel training approach that approximates selectively invariant filters to estimate a covariant data labeling model. Although the approach introduced a compute overhead, it added neither additional parameters nor altered the network architecture. Moreover, we have presented a slow hyperparameter tuning procedure to overcome the compute overhead for the inference time. Nevertheless, the work could be extended in several directions. The first and straightforward extension is to consider transformations on a signal codomain space which are often referred to as color augmentations. Color augmentation has proven to be an equally important source of signal variation, hence gain in performance is to be expected. The second direction is to consider the integration of a continuous set of transformations which can be summarized by a generating set of a group. Such an extension would enable the approach to capture more symmetries from the training dataset. In a related direction, one could also consider locally linear transformations of the coordinate system which leads to the processing of signals defined on a non-planar domain. The last and perhaps more practical and generalizing direction is an extension of the method to modelling approaches that are not necessarily based on convolution; dot product based units in sequential and attention-based models are accessible candidates for such an extension.
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Figure 1 :

 1 Figure 1: Example of a selectively invariant filter: The figure shows the convolution of an input signal f (v) with a filter h(v) under different geometric transformations. The figures at (d) and (e) show the result when using transformation g on the input signal and the feature map, respectively-g is rotation by 90 0 on the first row and 180 0 on the second row. The images at column (f) show the absolute difference between figures on (d) and (e), for each row; the difference is also observable, qualitatively. In general, convolution by h(v) is selectively covariant to inputs that are rotated by Θ ∈ {θ : mod(θ, 180) = 0}, since h(v) is invariant to rotation by 180 0 and not by 90 0 .

Figure 2 :

 2 Figure 2: Illustration of 2D signal geometric transformation. (a) shows the domain and codomain space of input signal f (•) and filter h(•). (b) shows the gradient flow of the position vectors v under the action of a 45 0 inverse counter-clockwise rotation. (c) shows the input signal over the transformed position vectors.

  Transformation sets: Here, we define a general set of apriori defined transformations for the training procedure. Below we describe each transformation set. 1) Rotation: these are a discrete set of counterclockwise rotation matrices with a fixed period-these sets also have a group structure and are orthonormal. In these work we use two sets: {θ : mod(θ, 90) = 0} and {θ : mod(θ, 45) = 0}, where mod represents the modulo operation. 2) Reflection: is a horizontal flipping of the position vector v coefficients as (x, y) → (-x, y); this is a singleton transformation set.3) Scaling : is one of the common data transformations used in data augmentation.

Figure 4 :

 4 Figure 4: Filter Scaling: Illustration of domain scaling on a random 3x3 filter with padding.

  AC-ResNet8: Confusion.

Figure 5 :

 5 Figure 5: Discriminative feature retention: The figure shows the error, precisionrecall (per label), and the confusion of both ResNet8 and AC-ResNet8; the horizontal axis is the true label in the confusion matrix. Results show robustness to symmetry transformation comes at the cost of losing discriminative features in the case of ResNet8. Discriminativness is relatively well-preserved in the case of AC-ResNet8.

Figure 7 :

 7 Figure 7: Error with different precision cutoff : The figure shows comparison of accuracy using ResNet18 (conv) and AC-ResNet18 ("covar"). The bold plots are over training accuracy, while the thin plots are test accuracy. The error plots show consistent gain for different precision cutoffs indicating the importance of AC-based training even when strict precision is not required.

Table 1 :

 1 Result on Rotated MNIST: Results show the improvement of the ResNet8 model when trained using AC-based training procedure, without the addition of new parameters. The table also shows equally good performance improvement with the λtuning procedure, while sidestepping the compute overhead.

	Method	Err.(%)	Param. FLOPs (G)	Sym.set
	Z2CNN [cohen et.al.2016]	5.03	22k	-	-
	P4CNN [cohen et al. 2016]	2.28	22k	-	-
	H-Net [worrall et al. 2017]	1.69	33k	-	-
	ResNet8	5.87	27k	0.01	-
	AC-ResNet8	3.85 (-2.02)	27k	0.17	mod(θ, 90 0 ) = 0
	AC-ResNet8	2.54 (-3.33)	27k	0.34	mod(θ, 45 0 ) = 0
	(Efficient) AC-ResNet8	2.74 (-3.13)	27k	0.01	mod(θ, 45 0 ) = 0

  Different tuning schedules for λ: The figure shows different approaches for setting λ to achieve efficient inference using ResNet18 as a base model, in the Discriminative task. (a) λ is not slowly tuned but set to maximum value from the beginning. As a result the method converged to sub-optimal solution, which in this case is equivalent to results in conventional convolution training. (b) λ is scheduled to three value at Epoch= {0, 50, 100}. Here, we see that Efficient AC based training is distinctively better than conventional approach, confirming the importance of slow tuning. (c) λ is scheduled to different values at Epoch= {0, 25, 50, 100}. This is the best scheduling strategy and amongst the three which also supports the importance of slow tuning.
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	Figure 6: Method			CIFAR10(1%)	CIFAR100(1%)	FLOPs(G)
	Resnet18				94.34			75.24			0.56
	Resnet50				93.43			75.52			1.31
	AC-Resnet18		95.24 (0.89)	76.31 (1.1)	8.24
	AC-Resnet50		94.01 (0.57)	76.01 (0.5)	9.79
	Efficient AC-Resnet18	95.04 (0.7)	76.11 (0.81)	0.56
	Efficient AC-Resnet50	93.82 (0.38)	75.73 (0.21)	1.31

Table 2 :

 2 Results on CIFAR10 and CIFAR100: The table shows performance gains, due to AC-based training, using different capacity models. Note that performance gains are preserved under efficient inference in both ResNet18 and ResNet50 models. epoch × 0.3, epoch × 0.6, epoch × 0.8}; epoch is set to 200. We use a mini-batch of 32 samples per GPU, the learning rate should be adjusted appropriately in case of distributed training[START_REF] Goyal | Accurate, large minibatch sgd: Training imagenet in 1 hour[END_REF]. In the case of AC, we used a direct product of scaling and

	discriminative tasks.
	5.1.2 CIFAR-10, CIFAR-100, and ImageNet
	Efficient AC-Resnet18 95.04 (0.7) CIFAR-10 and CIFAR-100: These are a col-
	lection of data points with 10 major categories; CIFAR-100 further splits each category
	into 10. We train ResNet18 and ResNet50 with thier dual AC models. In all cases,
	the training dataset is augmented with random horizontal flipping and random crop-
	ping to 32x32 size. The cropping is randomly scaled using a scaling factor from the
	range [0.5, 1.0] and zero padding. The scaling, however, is done without adjusting the
	aspect ratio. Furthermore, intensity values of data are normalized with dataset spe-
	cific statistics. We use Stochastic Gradient Descent (SGD) [2] for optimization with
	a scheduled learning rate of {0.1, 0.02, 0.004, 0.0008} whenever the iteration exceeds
	{0,

Table 3 :

 3 Results on ImageNet:The table shows accuracy of ResNet50 and AC-ResNet50 on ImageNet dataset. As the results show, a similar performance gain is observed as was shown in other datasets.

	Method	Top 1%	Top 5%	FLOPs (G)
	ResNet50	75.13	92.3	4.12
	AC-ResNet50	75.84 (0.71)	92.91 (0.6)	32.41
	Efficient AC-ResNet50	75.77 (0.64)	92.88 (0.58)	4.12

What is refereed to as convolution in the deep learning community is what is known as correlation in mathematics and signal processing.

A similar argument can be constructed for change in a coordinate system, in which case the position vector transforms covariantly.