Greg Henning

A python reimplementation of A. Sierk's BARFIT

Sierk developped the BARFIT routine to compute fission barrier, ground state energy, maximum angular momentum and moments of inertia in the framework of the liquid drop model for a large range of nuclei. The routine used fitted value over a wide range of A, Z and L and is still available today from the RIPL-3 website 1 . In this paper, I will decribe the re-implementation of the routine in python. This work is motivated by the difficulty to compile 1986's FORTRAN code on modern computers, the advantage of easily deploying python code over a wide range of infrastucture (personnal computers, computing grid, containers, …) and the preservation of A. Sierk's work for future use.

History and motivation

In the 1980's, A. Sierk did publish a FORTRAN routine to calculate, on demand, liquid drop fission barriers (𝐵 𝑓), along with ground state energy (𝐸 𝑔𝑠), maximum angular momentum (𝐿 𝑚𝑎𝑥) and moments of inertia (𝐼 𝑚𝑖𝑛,𝑚𝑖𝑑,𝑚𝑎𝑥 , given as a multiple of the moment of inertia for a rigid sphere (𝐼 rigid sphere = 2/5𝑀 0 𝑅 02 with 𝑅 0 = 1.16𝐴1/3 fm and 𝑀 0 = 913.5016 × 𝐴 -0.511004 × 𝑍 MeV) for a wide range of nuclei (19 < Z < 111). The values were obtained by a multi dimensionnal fit 2 .

One has to remember that at the time, there were no solution to either re-calculate the values on demand (microprocessors were usually 16 bits with clock frequency rarely above 50 MHz), or store and retrieve a large amount of data (the HD floppy disk introduced in 1986 had a capacity of 1.44 MB). Therefore, A. Sierk went for an elegant an efficient solution: finding the parameters for a global fit and having the value recalculated when needed. The FORTRAN code if very clear and is an impressive routine. Today, one would be using a "machine learning" model using an external dependency acting as a black box, but this routine lays the logic bare and clear. For that reason alone, it is important to preserve the work of A. Sierk and continue to make it available.

In addition, one has to note that old FORTRAN code is not easy to compile on modern 2020's computers. The unmodified code returns errors when trying to compile it and it uses a lot of function defined as archaic when looking them up in a documentation. In today's context when a code maybe executed on a personal computer, on a computing grid or in a container instance, having a python code that can be executed without any modification whatever the Operating System or machine characteristic is an advantage.

Of course, the base calculation of the liquid drop values3 could be performed easily and quickly by modern computers. However, the implementation of this routine would be tedious (with integration, multiple parameters, …)4 to obtain values that are already available via this routine.

Reimplementation into python

The FORTRAN code is easily translated into Python5 ,6 . The reimplementation is therefore an almost line for line transcription of the original code. This makes it by some respect nonpythonic7 , but that ensures the accurate re-implemantation. The reimplementation is actually done on a 1996 version of the code by A. Sierk, with improved Lmax parameters and calculation of moments of inertia8 .

The global fit routine uses Legendre Polynomials 9 values to increase the number of parameters from 3 (Z, A, L) to 23 (via values up to the 7th, 7th and 9th order Legendre polynomials). The lpoly function from the FORTRAN code was the trickiest to transcribe as FORTRAN's array are indexed from 1 and not 0 and the recursive relation with Legendre polynomials include the order of the polynomials. Initially, the output of the Python lpoly were compared to the values calculated with the numpy library 10 . Once the values by lpoly were correct, the dependence to numpy was removed. The rest of the implementation was easy and straightforward. The choice of keeping multi-dimensional arrays flatten instead of folding them back on their dimensions has been made for the sake of transcription simplicity. Future versions may include reformatted arrays and more pythonic expressions once the accuracy of the transcribed code is established and improved.

Study of differences

With some little modification and compiler options [START_REF]Modification of some arrays definition and use of -std=legacy option for the compiler. 12[END_REF]

 on the GNU FORTRAN compiler12 , one can get the code to compile and compare the results over a wide range of values. For this purpose, in addition to the 3 nuclei 2858 Ni, 65 139 Tb and 93 229 Np for which A. Sierk gives reference values in the comments of is code, 37 additionnal nuclei with significant natural abundance or of interest when it comes to fission has been studied:

	21 45 Sc, 22 48 Ti, 23 51 V, 24 52 Cr, 25 55 Mn, 26 56 Fe, 127 I, 55 103 Rh, 53 93 Nb, 45 89 Y, 41 81 Br, 39 79 Br, 35 75 As, 35 60 Ni, 33 58 Ni, 28 59 Co, 28 27 133 Cs, 59 141 Pr, 63 151 Eu, 63 153 Tb, 153 Eu, 65 65 159 Tb, 67 165 Ho, 69 169 Tm, 71 175 Lu, 73 181 Ta, 79 197 Au, 82 208 Pb, 83 209 Bi, 90 232 Th, 91 230 Pa, 92 233 U, 92 235 U, 92 229 Np, 238 U, 93 93 235 Np, 94 239 Pu, 94 241 Pu, 95 242 Am, 102 254 No 13 .

https://www-nds.iaea.org/RIPL-3/

Macroscopic model of rotating nuclei, Arnold J. Sierk, Phys. Rev. C

33, 2039 (https://doi.org/10.1103/PhysRevC.33.2039)

Cohen, S., Plasil, F., & Swiatecki, W. J.(1974). Equilibrium configurations of rotating charged or gravitating liquid masses with surface tension. II. Annals of Physics, 82(2), 557-596. doi:10.1016/0003-4916(74)90126-2

 4 Modern implementations that I am not aware of probaly exist. Additionally, calculations beyond the liquid drop model are available too (for example see also (e.g. https://t2.lanl.gov/nis/data/astro/molnix96/molnix.html)

.5 Python Software Foundation. Python Language Reference, version 3.6. Available at http://www.python.

org 6 "G. van Rossum, Python tutorial, Technical Report CS-R9526, Centrum voor Wiskunde en Informatica (CWI), Amsterdam, May

1995."7 Style Guide for Python Code https://www.python.org/dev/peps/

pep-0008/ 8 T. L. Khoo, private

communication. 9 Legendre, A.-M. (1782). "Recherches sur l'attraction des sphéroïdes homogènes" (PDF). Mémoires de Mathématiques et de Physique, présentés à l'Académie Royale des Sciences, par divers savants, et lus dans ses Assemblées (in French). X.

Paris. pp. 411-435. 10 Harris, Charles R., K. Jarrod Millman, Stefan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, et al. 2020. "Array Programming with NumPy." Nature 585 (7825): 357-62. https://doi.org/10.1038/s41586-020-2649-2.

Python implementation of A. Sierk's BARFIT https://hal.archives-ouvertes.fr/hal-03052073

Julia: A Fresh Approach to Numerical Computing. Jeff Bezanson, Alan Edelman, Stefan Karpinski, Viral B. Shah. (2017) SIAM Review, 59: 65-98. doi: 10.1137/141000671. pdf.

The Go Authors. The Go Programming Language Specification. https://golang.org/ref/spec, November 2016

Lmax

(𝐿 𝑚𝑎𝑥 does not depend on the angular momentum, 𝐸 𝑔𝑠 at 𝐿 = 0 ℏ is always 0, 𝐼 𝑟𝑠 stands for the Moment of Inertia of a rigid sphere.)

We notice that 𝐵 𝑓 and 𝐸 𝑔𝑠 has significant discrepancy at higher momentum. This is not directly clear why. They are the variables most dependent on complex calculations and therefore, any divergence in floating point precision will have an impact. Additional study showed that it's value for 𝐿 > 𝐿 𝑚𝑎𝑥 /2 that are the most affected. To this day, there is no evident way to resolve the differences and they should be attributed to being at the limits in Z, A and L of the fit region. However, they concern only a small fraction of outputs.

Publication and availability

The code is hosted as a git repository on gitlab.in2p3.fr and published on hal.archivesouvertes.fr with a DOI number 15 . For convenience, the module is made available on Pypi, and can be installed using the command pip install fisbar.

Additionnally, a simple way to run the code for a given Z, A, and 𝐿 is available via a notebook hosted on binder: Click on the link and once the notebook is started, run the only cell at the top with the Execute ▶ button (or the Cell menu and Execute All). The interface to enter your input Z, A and L will appear. Put in your parameters of interest and click the Go button. The result will be displayed below. If the calculation failed, the shown values will be 0, NaN or "**"

Conclusions

Although the interest of a routine to compute liquid drop fission barriers (and some associated values) from a mutli-fit performed in 1986 is of limited impact, the continued availability of such a function is important. First, because this value is a good starting point for the study of a nucleus, and the BARFIT routine by A. Sierk performs such calculation for a very wide range of Z. Second, the transcription to Python makes this routine work on any platform that support python (so… almost everywhere) without modification. This makes it more portable than a FORTRAN code. Finally, it allows the preservation of an elegant piece of code. The general agreement between Fortran and Python implementation is good, in particular for low angular momentum. In some cases, the deviation can be significant, and the user should remember that. In the future, the Python code might be upgraded to be more pythonic and easier to understand and maintain.

Finally, the author wants to add a general comment: there might be a prejudice against old code that does not compile easily on modern systems. However, there is value in it, despite the difficulties to make it run. Preserving past works via transcription in a more modern language (such as, for example, Python, Julia 16 , Go 17 or even modern implementation of long-time language like C++: C++17 with large use of iterators and such is quite different from the C++98 standard) is a good thing.