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Abstract: Between 1984 and 1986, A. J. Sierk developped the BARFIT routine to compute 
fission barrier, ground state energy, maximum angular momentum and moments of inertia in 
the framework of the liquid drop model for a large range of nuclei. The routine used fitted 
value over a wide range of A, Z and L and is still available today from the RIPL-3 website1. In 
this paper, I will decribe the re-implementation of the routine in python. This work is 
motivated by the difficulty to compile 1986’s FORTRAN code on modern computers, the 
advantage of easily deploying python code over a wide range of infrastucture (personnal 
computers, computing grid, containers, …) and the preservation of A. Sierk’s work for future 
use. 

History and motivation 

In the 1980’s, A. Sierk did publish a FORTRAN routine to calculate, on demand, liquid drop 
fission barriers (𝐵𝑓), along with ground state energy (𝐸𝑔𝑠), maximum angular momentum 

(𝐿𝑚𝑎𝑥) and moments of inertia (𝐼𝑚𝑖𝑛,𝑚𝑖𝑑,𝑚𝑎𝑥, given as a multiple of the moment of inertia for 

a rigid sphere (𝐼rigid sphere = 2/5𝑀0𝑅0
2 with 𝑅0 = 1.16𝐴1/3 fm and 𝑀0 = 913.5016 × 𝐴 −

0.511004 × 𝑍 MeV) for a wide range of nuclei (19 < Z < 111). The value were obtained by 
a multi dimensionnal fit from calculated values2. 

One has to remember that at the time, there were no solution to either re-calculate the 
values on demand (microprocessors were usually 16 bits with clock frequency rarely above 
50 MHz), or store and retrieve a large amount of data (the HD floppy disk introduced in 
1986 had a capacity of 1.44 MB). Therefore, A. Sierk went for an elegant an efficient 
solution: finding the parameters for a global fit and having the value recalculated when 
needed. The FORTRAN code if very clear and is an impressive routine. Today, one would be 
using a “machine learning” model using an external dependecy acting as a black box, but 
this routine lays the logic bare and clear. For that reason alone, it is important to preserve 
the work of A. Sierk and continue to make it avaiblable. 

                                                        

1 https://www-nds.iaea.org/RIPL-3/ 

2 Macroscopic model of rotating nuclei, Arnold J. Sierk, Phys. Rev. C 33, 2039 
(https://doi.org/10.1103/PhysRevC.33.2039) 



In addition, one has to note that old FORTRAN code is not easy to compile on modern 
2020’s computers. The unmodified code returns errors when trying to compile it and it uses 
a lot of function defined as archaic when looking them up in a documentation. In today’s 
context when a code maybe executde on a personnal computer, on a computing grid or in a 
container instance, having a python code that can be executed without any modification 
whatever the Operating System or machine characteristic is an advantage. 

Of course, the base calculation of the liquid drop values 3 could be performed easily and 
quickly by modern computers . However, the implementation of this routine would be 
tedious (with integration, multiple parameters, … ) 4 to obtain values that are alray 
available via this routine. 

Reimplementation into python 

The FORTRAN code is easily translated into Python 5,6. The reimplementation is therefore 
an almost line for line transcription of the original code. This makes it by some respect non-
pythonic7, but that ensures the accurate re-implemantation. The reimplemtation is actually 
done on a 1996 version of the code by A. Sierk, with improved Lmax parameters and 
calculation of moments of inertia 8. 

The global fit routine uses Legendre Polynomials 9 values to increase the number of 
parameters from 3 (Z, A, L) to 23 (via values up to the 7th, 7th and 9th order Legendre 
polynomials). The lpoly function from the FORTRAN code was the trickiest to transcribe as 
FORTRAN’s array are indexed from 1 and not 0 and the recursive relation with Legendre 

                                                        

3 Cohen, S., Plasil, F., & Swiatecki, W. J. (1974). Equilibrium configurations of rotating 
charged or gravitating liquid masses with surface tension. II. Annals of Physics, 82(2), 557–
596. doi:10.1016/0003-4916(74)90126-2 

4 Modern implementations that I am not aware of probaly exist. Additionally, calculations 
beyond the liquid drop model are available too (for example see also 
(e.g. https://t2.lanl.gov/nis/data/astro/molnix96/molnix.html). 

5 Python Software Foundation. Python Language Reference, version 3.6. Available at 
http://www.python.org 

6 “G. van Rossum, Python tutorial, Technical Report CS-R9526, Centrum voor Wiskunde en 
Informatica (CWI), Amsterdam, May 1995.” 

7 Style Guide for Python Code https://www.python.org/dev/peps/pep-0008/ 

8 T. L. Khoo, private communication. 

9 Legendre, A.-M. (1782). “Recherches sur l’attraction des sphéroïdes homogènes” (PDF). 
Mémoires de Mathématiques et de Physique, présentés à l’Académie Royale des Sciences, 
par divers savans, et lus dans ses Assemblées (in French). X. Paris. pp. 411–435. 



polynomials include the order of the polynomials. Initially, the output of the Python lpoly 
were compared to the values calculated with the numpy library10. Once the values by lpoly 
were correct, the dependence to numpy was removed. The rest of the implementation was 
easy and straighforward. The choice of keeping multi-dimensionnal arrays flatten instead of 
folding them back on their dimensions has been made for the sake of transcription 
simplicity. Future versions may include reformatted arrays and more pythonic expressions 
once the accuracy of the transcribed code is established and improved. 

Study of differences 

With some little modification and compiler options11 on the GNU FORTRAN compiler 12, one 
can get the code to compile and compare the results over a wide range of values. . For this 
purpose, in addition to the 3 nuclei 28

58Ni, 65
139Tb and 93

229Np for which A. Sierk gives reference 
values in the comments of is code, 37 additionnal nuclei with significant natural abundance 
or of interest when it comes to fission has been studied: 21

45Sc, 22
48Ti, 23

51V, 24
52Cr, 25

55Mn, 26
56Fe, 

27
59Co, 28

58Ni, 28
60Ni, 33

75As, 35
79Br, 35

81Br, 39
89Y, 41

93Nb, 45
103Rh, 53

127I, 55
133Cs, 59

141Pr, 63
151Eu, 63

153Eu, 65
153Tb, 

65
159Tb, 67

165Ho, 69
169Tm, 71

175Lu, 73
181Ta, 79

197Au, 82
208Pb, 83

209Bi, 90
232Th, 91

230Pa, 92
233U, 92

235U, 92
238U, 93

229Np, 

93
235Np, 94

239Pu, 94
241Pu, 95

242Am, 102
254No 13. 

 

For each of these isotopes, the original fortan code and the Python implemtation were used 
to computer all the properties (𝐵𝑓, 𝐸𝑔𝑠, 𝐿𝑚𝑎𝑥 , 𝐼𝑚𝑖𝑛,𝑚𝑖𝑑,𝑚𝑎𝑥) from angular momentum 0 ℏ to 

𝐿𝑚𝑎𝑥 . The result are then compared in groups for 𝐿 = 0 ℏ and 𝐿 > 0 ℏ (using a Pandas data 

frame14). In each group, we look at the mean and maximum relative ((𝑉𝐹𝑂𝑅𝑇𝑅𝐴𝑁 − 𝑉𝑝𝑦𝑡ℎ𝑜𝑛)/

𝑉𝐹𝑂𝑅𝑇𝑅𝐴𝑁) and absolute (|𝑉𝐹𝑂𝑅𝑇𝑅𝐴𝑁 − 𝑉𝑝𝑦𝑡ℎ𝑜𝑛|). Also, we look at the fraction of results that 

present differences above the stated uncertainties of the code given by A. Sierk in the 
FORTRAN code. In particular, 𝑈𝐵𝑓 = 0.5 MeV, 𝑈𝐸𝑔𝑠 = 0.5 MeV, 𝑈𝐿𝑚𝑎𝑥 < 0.5 ℏ and 𝑈𝑀𝑜𝐼 =

1 %. 

 

                                                        

10 Harris, Charles R., K. Jarrod Millman, Stefan J. van der Walt, Ralf Gommers, Pauli Virtanen, 
David Cournapeau, Eric Wieser, et al. 2020. “Array Programming with NumPy.” Nature 585 
(7825): 357–62. https://doi.org/10.1038/s41586-020-2649-2. 

11 Modification of some arrays definition and and use of -std=legacy option for the compiler. 

12 “GFORTRAN, Gnu compiler collection (gcc)” Version 9.3.0 

13 J.K. Tuli, Nuclear Wallet Cards (NNDC, Brookhaven National Laboratory), 2005. 

14 Jeff Reback, Wes McKinney, jbrockmendel, Joris Van den Bossche, Tom Augspurger, 
Phillip Cloud, … Mortada Mehyar. (2020, March 18). pandas-dev/pandas: Pandas 1.0.3 
(Version v1.0.3). Zenodo. http://doi.org/10.5281/zenodo.3715232 



 

  

Lmax Bf Egs 

Moments of Inertia 

  Imin Imid Imax 

Ground 
state 

(𝐿 = 0 ℏ) 

Mean relative 
difference 

0.000 0.000 
 

0.000 0.000 0.000 

Maximum relative 
difference 

0.003 0.001  0.001 0.000 0.000 

Mean absolute 
difference 

0.027 ℏ 
0.000 
MeV 

 0.000 
𝐼𝑟𝑠 

0.000 
𝐼𝑟𝑠 

0.000 
𝐼𝑟𝑠 

Maximum absolute 
difference 

0.141 ℏ 
0.005 
MeV 

 0.000 
𝐼𝑟𝑠 

0.000 
𝐼𝑟𝑠 

0.000 
𝐼𝑟𝑠 

Fraction above 
expected uncertainty 

0.000 0.000  0.000 0.000 0.000 

High L 

(𝐿 > 0 ℏ) 

Mean relative 
difference 

 
0.091 0.019 0.000 0.000 0.000 

Maximum relative 
difference 

 
0.979 0.484 0.050 0.024 0.079 

Mean absolute 
difference 

 0.484 
MeV 

0.048 
MeV 

0.000 
𝐼𝑟𝑠 

0.001 
𝐼𝑟𝑠 

0.000 
𝐼𝑟𝑠 

Maximum absolute 
difference 

 3.050 
MeV 

3.411 
MeV 

0.030 
𝐼𝑟𝑠 

0.041 
𝐼𝑟𝑠 

0.257 
𝐼𝑟𝑠 

Fraction above 
expected uncertainty  

 32.0 % 8.57 % 0.037 % 0.074 % 0.037 % 

(𝐿𝑚𝑎𝑥  does not depend on the angular momentum, 𝐸𝑔𝑠 at 𝐿 = 0 ℏ is always 0, 𝐼𝑟𝑠 stands for 

the Moment of Inertia of a rigid sphere.) 

We notice that 𝐵𝑓 and 𝐸𝑔𝑠 has significant discrepancy at higher momentum. This is not 

directly clear why. They are the variables most dependant on complex calculations and 
therefore, any divergence in floating point precision will have an impact. Additionnal study 
showed that it’s value for 𝐿 > 𝐿𝑚𝑎𝑥/2 that are the most affected. To this day, there is no 
eveident way to resolve the differences and they should be attributed to being at the limits 
in Z, A and L of the fit region. However, they concern only a small fraction of outputs. 



Publication and availability 

The code is hosted as a git repository on gitlab.in2p3.fr and published on hal.archives-
ouvertes.fr with a DOI number15. For convenience, the module is made available on Pypi, 
and can be installed using the command pip install fisbar. 

Additionnaly, a simple way to run the code for a given Z, A, and 𝐿 is available via a notebook 

hosted on binder: Click on the  link and once the notebook is started, run the 
only cell at the top with the Execute ▶ button (or the Cell menu and Execute All). The 
interface to enter your input Z, A and L will appear. Put in your parameters of interest and 
click the Go button. The result will be displayed below. If the calculation failed, the shown 
values will be 0, NaN or “**” 

Conclusions 

Althought the interest of a routine to compute liquid drop fission barriers (and some 
associated values) from a mutli-fit performed in 1986 is of limited impact, the continued 
availability of such a function is important. First, because this value is a good starting point 
for the study of a nucleus, and the BARFIT routine by A. Sierk performs such calculation for a 
very wide range of Z. Second, the transcription to Python make this routine work on any 
platform that support python (so… almost everywhere) without modification. This makes it 
more portable than a FORTRAN code. Finally, it allows the preservation of an elegant piece 
of code. The general agreement between Fortan and Python implementation is good, in 
particular for low angular momentum. In some cases, the deviation can be significant, 
without a clear idea why. In the future, the Python code might be upgraded to be more 
pythonic and easier to understand and maintain. 

Finally, the author wants to add a general comment: there might be a prejudice against old 
code that does not compile easily on modern system. However, there is value in it, despite 
the difficulties to make it run. Preserving past work via transcription in a more modern 
language (such as, for example, Python, julia16, go17 or even modern implementation of long 
time language like C++: C++17 with large use of iterators and such is quite different from 
the C++98 standart) is a good thing. 

                                                        

15 Python implementation of A. Sierk’s BARFIT https://hal.archives-ouvertes.fr/hal-
03052073 

16 Julia: A Fresh Approach to Numerical Computing. Jeff Bezanson, Alan Edelman, Stefan 
Karpinski, Viral B. Shah. (2017) SIAM Review, 59: 65–98. doi: 10.1137/141000671. pdf. 

17 The Go Authors. The Go Programming Language Specification. 
https://golang.org/ref/spec, November 2016 

https://gitlab.in2p3.fr/gregoire.henning/fisbar-python/-/tree/version2
https://hal.archives-ouvertes.fr/hal-03052073
https://hal.archives-ouvertes.fr/hal-03052073
https://pypi.org/
https://mybinder.org/

