
HAL Id: hal-03132426
https://hal.science/hal-03132426v1

Preprint submitted on 5 Feb 2021 (v1), last revised 29 Sep 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A python reimplementation of A. Sierk’s BARFIT
G. Henning

To cite this version:

G. Henning. A python reimplementation of A. Sierk’s BARFIT. 2021. �hal-03132426v1�

https://hal.science/hal-03132426v1
https://hal.archives-ouvertes.fr

A python reimplementation of A. Sierk’s BARFIT

Greg Henning (Université de Strasbourg, CNRS, IPHC UMR 7178)

February 5th, 2021

Abstract: Between 1984 and 1986, A. J. Sierk developped the BARFIT routine to compute
fission barrier, ground state energy, maximum angular momentum and moments of inertia in
the framework of the liquid drop model for a large range of nuclei. The routine used fitted
value over a wide range of A, Z and L and is still available today from the RIPL-3 website1. In
this paper, I will decribe the re-implementation of the routine in python. This work is
motivated by the difficulty to compile 1986’s FORTRAN code on modern computers, the
advantage of easily deploying python code over a wide range of infrastucture (personnal
computers, computing grid, containers, …) and the preservation of A. Sierk’s work for future
use.

History and motivation

In the 1980’s, A. Sierk did publish a FORTRAN routine to calculate, on demand, liquid drop
fission barriers (𝐵𝑓), along with ground state energy (𝐸𝑔𝑠), maximum angular momentum

(𝐿𝑚𝑎𝑥) and moments of inertia (𝐼𝑚𝑖𝑛,𝑚𝑖𝑑,𝑚𝑎𝑥, given as a multiple of the moment of inertia for

a rigid sphere (𝐼rigid sphere = 2/5𝑀0𝑅0
2 with 𝑅0 = 1.16𝐴1/3 fm and 𝑀0 = 913.5016 × 𝐴 −

0.511004 × 𝑍 MeV) for a wide range of nuclei (19 < Z < 111). The value were obtained by
a multi dimensionnal fit from calculated values2.

One has to remember that at the time, there were no solution to either re-calculate the
values on demand (microprocessors were usually 16 bits with clock frequency rarely above
50 MHz), or store and retrieve a large amount of data (the HD floppy disk introduced in
1986 had a capacity of 1.44 MB). Therefore, A. Sierk went for an elegant an efficient
solution: finding the parameters for a global fit and having the value recalculated when
needed. The FORTRAN code if very clear and is an impressive routine. Today, one would be
using a “machine learning” model using an external dependecy acting as a black box, but
this routine lays the logic bare and clear. For that reason alone, it is important to preserve
the work of A. Sierk and continue to make it avaiblable.

1 https://www-nds.iaea.org/RIPL-3/

2 Macroscopic model of rotating nuclei, Arnold J. Sierk, Phys. Rev. C 33, 2039
(https://doi.org/10.1103/PhysRevC.33.2039)

In addition, one has to note that old FORTRAN code is not easy to compile on modern
2020’s computers. The unmodified code returns errors when trying to compile it and it uses
a lot of function defined as archaic when looking them up in a documentation. In today’s
context when a code maybe executde on a personnal computer, on a computing grid or in a
container instance, having a python code that can be executed without any modification
whatever the Operating System or machine characteristic is an advantage.

Of course, the base calculation of the liquid drop values 3 could be performed easily and
quickly by modern computers . However, the implementation of this routine would be
tedious (with integration, multiple parameters, …) 4 to obtain values that are alray
available via this routine.

Reimplementation into python

The FORTRAN code is easily translated into Python 5,6. The reimplementation is therefore
an almost line for line transcription of the original code. This makes it by some respect non-
pythonic7, but that ensures the accurate re-implemantation. The reimplemtation is actually
done on a 1996 version of the code by A. Sierk, with improved Lmax parameters and
calculation of moments of inertia 8.

The global fit routine uses Legendre Polynomials 9 values to increase the number of
parameters from 3 (Z, A, L) to 23 (via values up to the 7th, 7th and 9th order Legendre
polynomials). The lpoly function from the FORTRAN code was the trickiest to transcribe as
FORTRAN’s array are indexed from 1 and not 0 and the recursive relation with Legendre

3 Cohen, S., Plasil, F., & Swiatecki, W. J. (1974). Equilibrium configurations of rotating
charged or gravitating liquid masses with surface tension. II. Annals of Physics, 82(2), 557–
596. doi:10.1016/0003-4916(74)90126-2

4 Modern implementations that I am not aware of probaly exist. Additionally, calculations
beyond the liquid drop model are available too (for example see also
(e.g. https://t2.lanl.gov/nis/data/astro/molnix96/molnix.html).

5 Python Software Foundation. Python Language Reference, version 3.6. Available at
http://www.python.org

6 “G. van Rossum, Python tutorial, Technical Report CS-R9526, Centrum voor Wiskunde en
Informatica (CWI), Amsterdam, May 1995.”

7 Style Guide for Python Code https://www.python.org/dev/peps/pep-0008/

8 T. L. Khoo, private communication.

9 Legendre, A.-M. (1782). “Recherches sur l’attraction des sphéroïdes homogènes” (PDF).
Mémoires de Mathématiques et de Physique, présentés à l’Académie Royale des Sciences,
par divers savans, et lus dans ses Assemblées (in French). X. Paris. pp. 411–435.

polynomials include the order of the polynomials. Initially, the output of the Python lpoly
were compared to the values calculated with the numpy library10. Once the values by lpoly
were correct, the dependence to numpy was removed. The rest of the implementation was
easy and straighforward. The choice of keeping multi-dimensionnal arrays flatten instead of
folding them back on their dimensions has been made for the sake of transcription
simplicity. Future versions may include reformatted arrays and more pythonic expressions
once the accuracy of the transcribed code is established and improved.

Study of differences

With some little modification and compiler options11 on the GNU FORTRAN compiler 12, one
can get the code to compile and compare the results over a wide range of values. . For this
purpose, in addition to the 3 nuclei 28

58Ni, 65
139Tb and 93

229Np for which A. Sierk gives reference
values in the comments of is code, 37 additionnal nuclei with significant natural abundance
or of interest when it comes to fission has been studied: 21

45Sc, 22
48Ti, 23

51V, 24
52Cr, 25

55Mn, 26
56Fe,

27
59Co, 28

58Ni, 28
60Ni, 33

75As, 35
79Br, 35

81Br, 39
89Y, 41

93Nb, 45
103Rh, 53

127I, 55
133Cs, 59

141Pr, 63
151Eu, 63

153Eu, 65
153Tb,

65
159Tb, 67

165Ho, 69
169Tm, 71

175Lu, 73
181Ta, 79

197Au, 82
208Pb, 83

209Bi, 90
232Th, 91

230Pa, 92
233U, 92

235U, 92
238U, 93

229Np,

93
235Np, 94

239Pu, 94
241Pu, 95

242Am, 102
254No 13.

For each of these isotopes, the original fortan code and the Python implemtation were used
to computer all the properties (𝐵𝑓, 𝐸𝑔𝑠, 𝐿𝑚𝑎𝑥 , 𝐼𝑚𝑖𝑛,𝑚𝑖𝑑,𝑚𝑎𝑥) from angular momentum 0 ℏ to

𝐿𝑚𝑎𝑥 . The result are then compared in groups for 𝐿 = 0 ℏ and 𝐿 > 0 ℏ (using a Pandas data

frame14). In each group, we look at the mean and maximum relative ((𝑉𝐹𝑂𝑅𝑇𝑅𝐴𝑁 − 𝑉𝑝𝑦𝑡ℎ𝑜𝑛)/

𝑉𝐹𝑂𝑅𝑇𝑅𝐴𝑁) and absolute (|𝑉𝐹𝑂𝑅𝑇𝑅𝐴𝑁 − 𝑉𝑝𝑦𝑡ℎ𝑜𝑛|). Also, we look at the fraction of results that

present differences above the stated uncertainties of the code given by A. Sierk in the
FORTRAN code. In particular, 𝑈𝐵𝑓 = 0.5 MeV, 𝑈𝐸𝑔𝑠 = 0.5 MeV, 𝑈𝐿𝑚𝑎𝑥 < 0.5 ℏ and 𝑈𝑀𝑜𝐼 =

1 %.

10 Harris, Charles R., K. Jarrod Millman, Stefan J. van der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, et al. 2020. “Array Programming with NumPy.” Nature 585
(7825): 357–62. https://doi.org/10.1038/s41586-020-2649-2.

11 Modification of some arrays definition and and use of -std=legacy option for the compiler.

12 “GFORTRAN, Gnu compiler collection (gcc)” Version 9.3.0

13 J.K. Tuli, Nuclear Wallet Cards (NNDC, Brookhaven National Laboratory), 2005.

14 Jeff Reback, Wes McKinney, jbrockmendel, Joris Van den Bossche, Tom Augspurger,
Phillip Cloud, … Mortada Mehyar. (2020, March 18). pandas-dev/pandas: Pandas 1.0.3
(Version v1.0.3). Zenodo. http://doi.org/10.5281/zenodo.3715232

Lmax Bf Egs

Moments of Inertia

 Imin Imid Imax

Ground
state

(𝐿 = 0 ℏ)

Mean relative
difference

0.000 0.000

0.000 0.000 0.000

Maximum relative
difference

0.003 0.001 0.001 0.000 0.000

Mean absolute
difference

0.027 ℏ
0.000
MeV

 0.000
𝐼𝑟𝑠

0.000
𝐼𝑟𝑠

0.000
𝐼𝑟𝑠

Maximum absolute
difference

0.141 ℏ
0.005
MeV

 0.000
𝐼𝑟𝑠

0.000
𝐼𝑟𝑠

0.000
𝐼𝑟𝑠

Fraction above
expected uncertainty

0.000 0.000 0.000 0.000 0.000

High L

(𝐿 > 0 ℏ)

Mean relative
difference

0.091 0.019 0.000 0.000 0.000

Maximum relative
difference

0.979 0.484 0.050 0.024 0.079

Mean absolute
difference

 0.484
MeV

0.048
MeV

0.000
𝐼𝑟𝑠

0.001
𝐼𝑟𝑠

0.000
𝐼𝑟𝑠

Maximum absolute
difference

 3.050
MeV

3.411
MeV

0.030
𝐼𝑟𝑠

0.041
𝐼𝑟𝑠

0.257
𝐼𝑟𝑠

Fraction above
expected uncertainty

 32.0 % 8.57 % 0.037 % 0.074 % 0.037 %

(𝐿𝑚𝑎𝑥 does not depend on the angular momentum, 𝐸𝑔𝑠 at 𝐿 = 0 ℏ is always 0, 𝐼𝑟𝑠 stands for

the Moment of Inertia of a rigid sphere.)

We notice that 𝐵𝑓 and 𝐸𝑔𝑠 has significant discrepancy at higher momentum. This is not

directly clear why. They are the variables most dependant on complex calculations and
therefore, any divergence in floating point precision will have an impact. Additionnal study
showed that it’s value for 𝐿 > 𝐿𝑚𝑎𝑥/2 that are the most affected. To this day, there is no
eveident way to resolve the differences and they should be attributed to being at the limits
in Z, A and L of the fit region. However, they concern only a small fraction of outputs.

Publication and availability

The code is hosted as a git repository on gitlab.in2p3.fr and published on hal.archives-
ouvertes.fr with a DOI number15. For convenience, the module is made available on Pypi,
and can be installed using the command pip install fisbar.

Additionnaly, a simple way to run the code for a given Z, A, and 𝐿 is available via a notebook

hosted on binder: Click on the link and once the notebook is started, run the
only cell at the top with the Execute ▶ button (or the Cell menu and Execute All). The
interface to enter your input Z, A and L will appear. Put in your parameters of interest and
click the Go button. The result will be displayed below. If the calculation failed, the shown
values will be 0, NaN or “**”

Conclusions

Althought the interest of a routine to compute liquid drop fission barriers (and some
associated values) from a mutli-fit performed in 1986 is of limited impact, the continued
availability of such a function is important. First, because this value is a good starting point
for the study of a nucleus, and the BARFIT routine by A. Sierk performs such calculation for a
very wide range of Z. Second, the transcription to Python make this routine work on any
platform that support python (so… almost everywhere) without modification. This makes it
more portable than a FORTRAN code. Finally, it allows the preservation of an elegant piece
of code. The general agreement between Fortan and Python implementation is good, in
particular for low angular momentum. In some cases, the deviation can be significant,
without a clear idea why. In the future, the Python code might be upgraded to be more
pythonic and easier to understand and maintain.

Finally, the author wants to add a general comment: there might be a prejudice against old
code that does not compile easily on modern system. However, there is value in it, despite
the difficulties to make it run. Preserving past work via transcription in a more modern
language (such as, for example, Python, julia16, go17 or even modern implementation of long
time language like C++: C++17 with large use of iterators and such is quite different from
the C++98 standart) is a good thing.

15 Python implementation of A. Sierk’s BARFIT https://hal.archives-ouvertes.fr/hal-
03052073

16 Julia: A Fresh Approach to Numerical Computing. Jeff Bezanson, Alan Edelman, Stefan
Karpinski, Viral B. Shah. (2017) SIAM Review, 59: 65–98. doi: 10.1137/141000671. pdf.

17 The Go Authors. The Go Programming Language Specification.
https://golang.org/ref/spec, November 2016

https://gitlab.in2p3.fr/gregoire.henning/fisbar-python/-/tree/version2
https://hal.archives-ouvertes.fr/hal-03052073
https://hal.archives-ouvertes.fr/hal-03052073
https://pypi.org/
https://mybinder.org/

