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Abstract

Partial, or set-valued classification assigns instances to sets of classes, making it possible
to reduce the probability of misclassification while still providing useful information. This
paper reviews approaches to partial classification based on the Dempster-Shafer theory of
belief functions. To define the utility of set-valued predictions, we propose to extend the
utility matrix using an Ordered Weighted Average operator, allowing us to model the decision
maker’s attitude towards imprecision using a single parameter. Various decision criteria are
analyzed comprehensively. In particular, two main strategies are distinguished: partial
classification based on complete preorders among partial assignments, and partial preorders
among complete assignments. Experiments with UCI and simulated Gaussian data sets show
the superiority of partial classification in terms of average utility, as compared to single-class
assignment and classification with rejection.
Keywords: Dempster-Shafer theory, evidence theory, supervised classification,
decision-making, set-valued classification, OWA operator

1. Introduction1

In machine learning, classification involves identifying which category a new observation2

belongs to, based on a training set. Traditionally, when learning a classification model,3

the input space is divided into as many decision regions as classes, separated by decision4

boundaries. Given a set of n possible labels, an instance is assigned to one and only one of the5

n classes. However, such a hard partitioning of the input space often leads to misclassification6

in case of high uncertainty. For example, ambiguity occurs for observations lying near the7

boundaries of decision regions, where multiple classes have similar probabilities. Also, when8

the training set is small, the estimated decision boundaries may significantly differ from the9

optimal ones, resulting in poor classifier reliability.10

Rejection is a classical way to deal with this problem [4][22][20]. Basically, it consists in11

abstaining from making a decision (i.e., assigning the pattern to a class) when the uncertainty12

Email addresses: cse_maly@ujn.edu.cn (Liyao Ma), thierry.denoeux@utc.fr (Thierry Denœux)

Preprint submitted to Knowledge-Based Systems January 4, 2021



<latexit sha1_base64="ewRzZomHu3knyetOC0wKJPQ41/s="></latexit>!1

<latexit sha1_base64="5mkngrCMl8tG7Rya/gjfqbPt3z4="></latexit>!2

<latexit sha1_base64="aZrX/+AuetwX+D0lZan5dSPyqoo="></latexit>!3

<latexit sha1_base64="UFHeFNVzQdJkqMFRhqOgCVt47fY="></latexit>x

Figure 1: A situation of classification uncertainty with three decision regions. Pattern x cannot be reliably
assigned to classes ω1 or ω2, but it almost certainly does not belong to ω3. The set-valued prediction {ω1, ω2}
is a reliable option in this case.

too high, making it possible to reduce the probability of misclassification. However, there13

are cases where, although the risk of misclassification is high, a subset of labels can still be14

considered as very plausible. For instance, in the example illustrated in Figure 1, pattern15

x cannot be classified with high certainty, but it almost certainly does not belong to class16

ω3. In such a case, assigning x to the set of classes {ω1, ω2} seems to be a more reasonable17

option than outright rejection. Such partial1, or set-valued classification makes it possible18

to better reflect uncertainty and increase the reliability of classifiers. Classification with a19

reject option can be seen as a special case of partial classification, rejection being equivalent20

to assigning the pattern to the entire set of possible labels. Compared to rejection, partial21

classification makes it possible to provide more informative decisions while still minimizing22

the risk of misclassification.23

In this paper, we propose to tackle partial classification in the framework of the Dempster-24

Shafer (DS) theory of belief functions [7][37][15][11], a general framework for reasoning and25

making decisions under uncertainty2. Classifiers based on DS theory, called evidential clas-26

sifiers, quantify prediction uncertainty using belief functions, which provide a more flexible27

representation of uncertainty than probabilities [8][10][14]. In the early days of DS theory, it28

was not clear how to make rational decisions based on belief functions, but many approaches29

have been proposed in the last 20 years, as recently reviewed in [13]. The aim of this paper30

is to carry out a systematic theoretical and experimental investigation of decision rules for31

partial classification in the belief function framework.32

An important step to implement partial classification is to define the value, or utility of33

set-valued predictions. For instance, consider a three-class problem. If the utility of correct34

1In this paper, “partial classification” refers to making set-valued predictions in classification tasks. It
should not be confused with partial classification (also called “nugget discovery”) [1, 34] in the context of
descriptive knowledge discovery, which involves mining rules for target classes of interest.

2This paper is a revised and extended version of the short paper [30] presented at the ISIPTA 2019
conference, Ghent, Belgium, 3-6 July, 2019.
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classification is 1 and the utility of misclassification is 0, what is the utility of predicting the35

set {ω1, ω2} if the true class is, say, ω1? It should be strictly greater than 0, as the classifier36

correctly eliminated class ω3, but strictly less than 1, as a correct but imprecise prediction is37

arguably less valuable than a prediction that is both correct and precise. Here, we propose38

a method to define the utilities of set-valued predictions based on the utility of precise ones39

and a single control parameter, using Ordered Weighted Average (OWA) operators [46].40

Having defined an extended utility matrix, a generalized Maximum Expected Utility (MEU)41

principle allows us to make set-valued predictions based on different notions of expectation42

with respect to a belief function. In the following, we briefly review previous approaches to43

partial classification.44

Related work45

Learning set-valued classifiers has been implemented with various approaches. Vovk et46

al. [44] propose conformal prediction, an approach for learning set-valued classifiers with47

finite sample confidence guarantees. In the same vein, Sadinle et al. [35] design classifiers48

that guarantee user-defined levels of coverage while minimizing ambiguity. This research49

direction is representative of the statistical approach, in which set-valued predictions are50

viewed as generalizations of confidence or credible intervals.51

Another research direction, more rooted in decision theory, involves utility (or, equiva-52

lently, loss) functions. In the probabilistic framework, Ha [21] introduces a simple model in53

which the loss of making a set-valued prediction is the sum of two terms, one reflecting the54

loss of missing the true class, and the other one penalizing imprecision. He then proposes55

an efficient algorithm to minimize the expected loss with respect to conditional class prob-56

abilities. Mortier et al. [31] also assume uncertainty to be quantified by conditional class57

probabilities, and the quality of a predicted set to be measured by a utility function. They,58

then, address the problem of finding the Bayes-optimal prediction, i.e., the subset of class59

labels with highest expected utility. Following a different approach, del Coz et al. [6] make a60

parallel between partial (or “nondeterministic”) classification and information retrieval, and61

propose a loss function inspired by the Fβ measure for aggregating precision and recall. In62

this utility-based approach, the definition of the utility (or loss) of a set-valued prediction is63

essential. Yang et al. [49] list some properties losses of set-valued predictions should meet,64

and they measure the loss of predicting a set of classes as a generalized mean of the losses65

of predicting each individual class in that set.66

In the imprecise probability framework, Zaffalon [50] introduces the naive credal classifier,67

in which prior ignorance about the distribution of classes is modeled by means of a set of prior68

densities (also called the prior credal set). This credal set is turned into a set of posterior69

probabilities by element-wise application of Bayes’ rule. The classifier returns all the classes70

that are non-dominated by any other class according to the posterior credal set. As we will71

see in Section 3.4, a similar approach can be implemented with evidential classifiers. Zaffalon72

et al. [51] propose a metric to evaluate the predictions of credal classifiers, considering the73

{0, 1} reward case and taking the decision maker’s degree of risk aversion into account.74

In the DS framework, most authors only consider precise assignment to the class with75

maximum plausibility [2][16] or maximum pignistic probability [39][33][42]. Denœux [9] pro-76
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poses several decision rules based on the maximization of upper, lower or pignistic expected77

utility; however, he only considers precise class assignment and rejection. Several authors78

propose heuristic decision strategies for partial classification. As an evidential classifier typ-79

ically outputs a mass function, i.e., a mapping that assigns each set of classes a number80

between 0 and 1, a simple approach is to select the set of classes with maximal mass [29].81

This approach, however, can be criticized because the mass assigned to a subset does not82

measure its credibility or plausibility. For instance, in a four-class problem, if we have a83

mass 0.4 on the set composed of classes ω1 and ω2, a mass 0.3 on class ω3, and a mass 0.384

on class ω4, it would be paradoxical to select the set {ω1, ω2}, as the set {ω3, ω4} is actually85

more supported by the evidence. Other authors develop more sophisticated strategies. For86

instance, Liu et al. [28] propose to select the classes ω such that the pignistic probability87

p(ω) is larger than some constant ε times the maximum pignistic probability. Parameter ε88

is tuned to maximize a “benefit value” that depends on the cardinality of the sets. Liu et89

al. use a similar approach in [27] but implement a strategy that selects either a single class,90

or a pair of classes.91

From the above review of related work, it appears that no systematic study of principled92

decision-theoretic approaches to partial classification in the Dempster-Shafer framework has93

been undertaken so far, a gap that we aim to fill in this work. The rest of this paper94

is organized as follows. Section 2 makes the paper self-contained by providing a brief re-95

minder of basic definitions and notations used later on. Our approach is introduced in96

Section 3: after proposing a method for defining the utility of set-valued predictions, we97

review decision criteria for partial classification, and we address the evaluation of classifi-98

cation performance. Extensive experimental comparisons of different decision criteria are99

then presented in Section 4 using UCI and artificial Gaussian data sets. Finally, the main100

conclusions are summarized in Section 5.101

2. Background102

In this section, we review background notions and define the notations. The theory of103

belief functions is first reviewed in Section 2.1 and the OWA operators are recalled in Section104

2.2. The decision framework is defined in Section 2.3.105

2.1. Theory of belief functions106

As a generalization of both set and probabilistic uncertainty, the theory of belief func-107

tions [7, 37] provides a general framework for modelling and reasoning with uncertainty.108

Here only a few definitions needed in the rest of the paper are recalled. More complete109

descriptions can be found in Shafer’s book [37] and in the recent survey [15].110

Let Ω = {ω1, · · · , ωn} be a finite set, called the frame of discernment, assumed to contain111

all the possible exclusive values that a variable (in the classification problem, the label of112

an instance) can take. When the true value of the variable is ill-known, partial information113

about it can be modeled by a mass function m : 2Ω → [0, 1] such that m(∅) = 0 and114 ∑
A⊆Ω

m(A) = 1. (1)
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A subset A of Ω with positive mass is called a focal set of m. The quantity m(A) can then be115

interpreted as the amount of evidence indicating that the true value is specifically in A (and116

in no strict subset). This formalism extends both probabilistic and set-valued uncertainty117

models. In particular, the vacuous mass function verifies m(Ω) = 1 and represents total118

ignorance. A Bayesian mass function is such that all its focal sets are singletons; it is119

equivalent to a probability distribution. A mass function such that m(A) = 1 for some120

subset A ⊆ Ω is said to be logical; it is equivalent to A.121

The belief and plausibility functions corresponding to mass function m are defined, re-122

spectively, as123

Bel(A) =
∑
B⊆A

m(B) (2)

and124

Pl(A) =
∑

B∩A 6=∅
m(B) = 1−Bel(A), (3)

for all A ⊆ Ω. The belief function sums up the masses assigned to subsets of A and measures125

how much event A is supported by the evidence, while the plausibility measures how much126

event A is consistent with the evidence. These two functions define the lower and upper127

bounds of the set P of probability measures P compatible with mass m, i.e, such that128

Bel(A) ≤ P (A) ≤ Pl(A) for all A ⊆ Ω.129

Two mass functions m1 and m2 representing independent items of evidence can be com-130

bined using Dempster’s rule [37] as follows,131

(m1 ⊕m2)(A) =
∑
B∩C=Am1(B)m2(C)∑
B∩C 6=∅m1(B)m2(C) , (4)

for all A ⊆ Ω, A 6= ∅ and (m1⊕m2)(∅) = 0. Dempster’s rule is commutative and associative.132

In the Transferable Belief Model (TBM) [40], Smets proposed to make decisions based on133

the pignistic probability distribution [39], which is obtained by distributing masses equally134

among the sets of A,135

BetP (ω) =
∑

{A⊆Ω:ω∈A}

m(A)
|A|

, (5)

where |A| denotes the cardinality of A ⊆ Ω. Other decision criteria are reviewed in [13].136

2.2. Ordered Weighted Average operators137

The OWA operators proposed by Yager [46] are a parametrized class of mean type138

aggregation operators, including common operators such as the maximum, the arithmetic139

average and the minimum. An OWA operator of dimension n is formally defined as a140

mapping Fw from Rn to R with associated collection of positive weights w = (w1, · · · , wn)141

summing up to one, such that142

Fw(a1, · · · , an) =
n∑
i=1

wibi, (6)
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where bi is the i-th largest element in a1, · · · , an. Different aggregating operators can be143

implemented by using different weights. Yager [46] defined the measure of orness as144

orness(w) = 1
n− 1

n∑
i=1

(n− i)wi, (7)

which describes the behavior of the operator. The maximum, the arithmetic average and145

the minimum correspond, respectively, to orness measures of 1, 0.5 and 0.146

O’Hagan [32] proposed to determine the weights by fixing the orness measure to some147

value γ ∈ [0, 1], and searching for the weight vector w∗ that maximizes the entropy148

H(w) = −
n∑
i=1

wi logwi (8)

under the constraint orness(w) = γ. Filev and Yager [18] showed that the optimal weights149

w∗1, . . . , w
∗
n form a geometric sequence, which is strictly decreasing if γ > 0.5 and strictly150

increasing if γ < 0.5. Liu and Chen [26] showed that, for all (a1, . . . , an) ∈ Rn,151

Fw∗(a1, · · · , an) ≥ 1
n

n∑
i=1

ai (9a)

if γ ≥ 0.5 and152

Fw∗(a1, · · · , an) ≤ 1
n

n∑
i=1

ai (9b)

if γ ≤ 0.5.153

2.3. Decision-making framework154

The purpose of classification is to build a model (called a classifier) that maps feature155

vectors (or attributes) to class labels representing the object category. Once a classifier has156

been trained, it is used to make predictions for new instances whose classes are unknown.157

Throughout the paper, we will consider the common model of finite decision theory, i.e., we158

assume that the set Ω = {ω1, · · · , ωn} of classes (or “states of nature” using the terminology159

of decision theory) is finite. This set will constitute the frame of discernment on which belief160

functions will be defined.161

To make decisions on label prediction (instance assignment), the decision maker (DM)162

needs to choose an act f from a finite set F . Generally, precise predictions are required,163

so that we consider only acts assigning an instance to one and only one of the n classes164

ωi ∈ Ω; such acts are called precise assignments. The set of available acts is then a finite set165

containing n elements, denoted as F = {f1, · · · , fn}, where fi represents the act of assigning166

the instance to class ωi. Formally, an act is defined as a mapping from Ω to a set C of167

consequences (or outcomes). In classification problems, consequences are of the form cij,168

defined as the consequence of assigning an instance to class ωi when it actually belongs to169

class ωj. Therefore, act fi maps each state ωj to consequence cij.170
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To measure the desirability of consequences, we usually define a utility function U from171

C to [0, 1]. The utilities uij = U(cij) can be arranged in a utility matrix U of size n×n. The172

general term uij of U represents the utility of selecting act fi (predicting the label as ωi)173

when the true class is ωj. In practice, matrix U is often assumed to be the identity matrix,174

in which case the utility is equal to 1 for a correct decision, and 0 for a misclassification.175

However, the DM can also assign different utilities to different types of misclassification,176

making U different from the identity matrix, and possibly asymmetric3.177

Given the set F of acts, utility matrix U, and some measure of uncertainty over Ω,178

the DM’s preference over acts is denoted by <, where f < g means that act f is at least179

as desirable as g. The strict preference and indifference relations are denoted in the usual180

manner, respectively, as f � g (f is strictly more desirable than g) and f ∼ g (f and g181

are equally desirable). Relation < is usually assumed to be reflexive (for any f , f < f)182

and transitive (for any f, g, h, if f < g and g < h, then f < h). A reflexive and transitive183

preference relation is a preorder. If, furthermore, < is antisymmetric (for any f, g, if f < g184

and g < f , then f = g), then it is an order. If for any two acts f and g, f < g or g < f ,185

the preference relation is complete, otherwise, it is partial. Most decision rules induce a186

complete or partial preorder on F . An act f is a greatest element of relation < if it is at187

least as desirable as any other act, i.e., for any f ′ ∈ F , f < f ′. A complete preorder always188

has at least one greatest element, and it has only one if it is a complete order. An act f189

is a maximal (or non-dominated) element of the strict preference relation if no other act is190

strictly preferred to f , i.e., if for any f ′ ∈ F , ¬(f ′ � f). A greatest element is a maximal191

element, but the converse is not true in general [13].192

In the case of partial classification, prediction is not limited to precise labels, but can193

take the form of any non-empty subset of Ω. The act of assigning an instance to a subset194

K of Ω (with cardinality |K| > 1) is called a partial assignment and is denoted as fK . To195

achieve a preorder among available acts F̃ = {fK , K ⊆ Ω, K 6= ∅}, the utility for each196

set-valued prediction must be defined. This problem is addressed in the next section.197

3. Decision-making for evidential classification198

Assuming the DM’s information concerning the possible states of nature to be represented199

by a mass function m on Ω, we now carry out a thorough analysis and comparison of different200

decision-making criteria to obtain label predictions, especially set-valued ones. A method201

for computing the utility of set-valued predictions is first introduced in Section 3.1. Precise202

classification with and without rejection is then recalled in Section 3.2, after which two203

main approaches to partial classification are studied: via complete preorder among partial204

assignments (Section 3.3) and via partial preorder among complete assignments (Section205

3.4). In Section 3.5, the time complexity issue is considered. Finally, the evaluation of206

set-based predictions is discussed in Section 3.6.207

3Especially in cost-sensitive problems such as ordinal classification [19] and imbalanced classification [23],
where different prediction errors are assumed to be treated differently.
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3.1. Generating utilities of partial assignments via an OWA operator208

Given the set of classes Ω = {ω1, · · · , ωn}, we have a utility matrix U = (uij)n×n speci-209

fying the utilities of precise assignments. Without loss of generality, we assume the utilities210

to be defined on the scale [0, 1], with the diagonal terms of U equal to 1 (the assignment to211

the correct class has maximum utility). When partial assignments are considered, U must212

be extended to a (2n − 1) × n matrix Ũ, whose general term ũK,j represents the utility of213

assigning an instance to the set K of possible classes when the true class is ωj. In some214

applications, it might be possible to elicit the extended matrix by asking the DM to assess215

utilities of set-valued predictions. In the following, we discuss a general way to construct216

the extended utility matrix Ũ directly from the original one U of size n × n using a single217

parameter.218

Before describing our proposal, we start with a discussion on the extended utilities.219

Intuitively, given a state of nature ωj, the utility ũK,j of assigning an instance to set K220

should be a function of the utilities of each precise assignments within the set (i.e., utilities221

uij such that ωi ∈ K). A DM totally indifferent to imprecision would set ũK,j = maxωi∈K uij.222

In this case, as long as the true label is included in K, the partial assignment fK achieves223

utility 1 no matter how imprecise K is, so that imprecision is not penalized. A more224

imprecision-averse attitude would be to define the utility of a partial assignment as the225

average of utilities of precise assignments within that set, i.e., ũK,j = uK,j with226

uK,j = 1
|K|

∑
ωi∈K

uij.

We note that uK,j is equal to the expected utility of picking one label uniformly at random227

from set K. It would be irrational to set ũK,j to a lower value, because given a set K of228

labels, we can always pick one label at random and adopt it as our precise assignment, in229

which case the expected utility would be equal to uK,j. In general, we can thus reasonably230

assume the following inequalities to hold:231

uK,j ≤ ũK,j ≤ max
ωi∈K

uij (10)

for all non empty subset K of Ω and all ωj ∈ Ω.232

As a general model, we can further assume ũK,j to result from the aggregation of utilities233

uij for states ωi in K using some OWA operator (see Section 2.2) with weight vector w of234

length |K|:235

ũK,j = Fw ({uij : ωi ∈ K}) =
|K|∑
k=1

wku
K
(k)j, (11)

where uK(k)j denotes the k-th largest element in the set {uij, ωi ∈ K}. In (11), each weight236

wk can be interpreted as measuring the DM’s preference to choose uK(k)j if forced to select237

a single value in {uij : ωi ∈ K}. Similar to Yager’s definition of the orness degree (7), we238
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Table 1: Utility matrices Ũ extended by OWA operators with γ = 0.8 and γ = 0.6 (Example 1).

act γ = 0.8 γ = 0.6
ω1 ω2 ω3 ω1 ω2 ω3

f{ω1} 1.0000 0.2000 0.1000 1.0000 0.2000 0.1000
f{ω2} 0.2000 1.0000 0.2000 0.2000 1.0000 0.2000
f{ω3} 0.1000 0.2000 1.0000 0.1000 0.2000 1.0000
f{ω1,ω2} 0.8400 0.8400 0.1800 0.6800 0.6800 0.1600
f{ω1,ω3} 0.8200 0.2800 0.8200 0.6400 0.2000 0.6400
f{ω2,ω3} 0.1800 0.8400 0.8400 0.1600 0.6800 0.6800
f{ω1,ω2,ω3} 0.7373 0.7455 0.7373 0.5269 0.5507 0.5269

define the DM’s imprecision tolerance degree as239

tol(w) =
|K|∑
k=1

|K| − k
|K| − 1wk = γ. (12)

Given γ, the weights corresponds to the OWA operator can be obtained by maximizing the240

entropy (8), subject to tol(w) = γ and ∑|K|k=1wk = 1.241

The OWA-based approach makes it possible to parameterize the DM’s tolerance to impre-242

cision by a single parameter γ. The higher the value of γ, the more imprecision is tolerated.243

Setting γ = 1 gives us the maximum operator, and γ = 0.5 gives us the average. From (9),244

setting γ in the range [0.5, 1] is a necessary and sufficient condition for the equalities (10)245

to be satisfied. Example 1 below illustrates the process of aggregating utilities via OWA246

operators.247

Example 1. Let Ω = {ω1, ω2, ω3} and consider the utility matrix248

U =

 1 0.2 0.1
0.2 1 0.2
0.1 0.2 1

 .
Assuming that the true label is ω1, Figure 2 shows the aggregated utilities for sets {ω1, ω2},249

{ω1, ω3} and {ω1, ω2, ω3} for different values of γ. The aggregated utility is only related to250

the utilities of elements within the set. As γ ranges from 0 to 1, the extended utility for each251

set varies from the minimal utility in this set to the maximal one. When γ = 0.5, the average252

utility is obtained. As mentioned above, we only need to consider values of γ > 0.5, since253

when γ ≤ 0.5 precise predictions are always more preferable. Table 1 shows the extended254

utility matrices obtained by OWA operators with γ = 0.8 and γ = 0.6.255

3.2. Precise classification with and without rejection256

Given utility matrix U, precise predictions are based on a complete preorder among257

precise assignments in F = {f1, . . . , fn}. In [9], Denœux considered the following three258
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Figure 2: Aggregated utilities vs. imprecision tolerance degree γ.

decision criteria:259

Generalized maximin criterion. The complete preorder among precise assignments is260

defined by the lower expected utility261

Em(fi) =
∑
B⊆Ω

m(B) min
ωj∈B

uij, (13)

for all fi ∈ F . For two arbitrary precise assignments, we obtain the preference relation262

fi <∗ fj ⇐⇒ Em(fi) ≥ Em(fj). Relation <∗ corresponds to a pessimistic attitude of263

the DM, as he considers the least desirable consequence within each focal set B.264

Generalized maximax criterion. Taking an optimistic point of view, a complete pre-265

order can be defined from the upper expected utility266

Em(fi) =
∑
B⊆Ω

m(B) max
ωj∈B

uij, (14)

with fi <∗ fj ⇐⇒ Em(fi) ≥ Em(fj). This criterion reflects an optimistic, or267

ambiguity-seeking attitude of the DM.268

Pignistic criterion. This criterion averages the utilities within each focal set. The act269

with higher average utility will be more preferred, which means that fi <p fj ⇐⇒270

Ep(fi) ≥ Ep(fj), where271

Ep(fi) =
n∑
i=1

BetP (ωj)uij =
n∑
i=1

 ∑
B3ωj

m(B)
|B|

uij =
∑
B⊆Ω

m(B)
 1
|B|

∑
ωj∈B

uij

 . (15)
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In [9], Denœux also proposed decision rules with rejection. Instances likely to be mis-272

classified are rejected. Rejection can be identified with an additional act fΩ that consists in273

assigning the instance to the whole set of classes. In [9], it was proposed to set uΩ,j to some274

fixed value λ0 for all j.275

In the next two sections, we extend the notion of rejection by allowing partial assignment276

not only to Ω, but also to any subset of Ω.277

3.3. Partial classification via complete preorders among partial assignments278

As explained in Section 2.3, when considering partial assignments, the set of available279

acts is F̃ = {fK , K ⊆ Ω, K 6= ∅}. A mass function m on Ω and an extended utility280

matrix Ũ(2n−1)×n constructed, e.g., using the approach described in Section 3.1, are used for281

decision-making. In addition to the previous three decision criteria, the following additional282

criteria reviewed in [13] will be investigated:283

Generalized Hurwicz criterion. This criterion considers a convex combination of the
minimum and maximum utility, with a pessimism index α ∈ [0, 1] adjusting the com-
bination [41]. The generalized maximin and maximax criteria are special cases corre-
sponding, respectively, to α = 1 and α = 0. For two acts fK and fG corresponding to
nonempty subsets of classes K and G, we have fK <α fG ⇐⇒ Em,α(fK) ≥ Em,α(fG)
with

Em,α(fK) =
∑
B⊆Ω

m(B)
(
α min
ωj∈B

ũK,j + (1− α) max
ωj∈B

ũK,j

)
= αEm(fK) + (1− α)Em(fK). (16)

Generalized OWA criterion. Another generalization of the maximin and maximax cri-284

teria consists in aggregating the utilities within each focal set K ⊆ Ω using OWA285

operators [47]. We have286

Eowam,β(fK) =
∑
B⊆Ω

m(B)Fβ({ũK,j : ωj ∈ B}), (17)

where Fβ is the maximum entropy OWA operator with degree of orness (or optimism)287

β. We have fK <β fG ⇐⇒ Eowam,β(fK) ≥ Eowam,β(fG). The pignistic criterion is recovered288

when β = 0.5.289

Generalized minimax regret criterion This criterion extends Savage’s minimax regret290

criterion [36] to decision-making with belief functions [48]. Defining the regret that act291

fK is selected when the true state ωj occurs as rK,j = maxG ũG,j − ũK,j, the expected292

maximal regret for act fK is293

R(fK) =
∑
B⊆Ω

m(B) max
wj∈B

rK,j. (18)

For two partial assignments fG and fK , we have fK <r fG ⇐⇒ R(fK) ≤ R(fG).294
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Table 2: Extended utility matrix and expected utilities for Example 2.

acts ω1 ω2 Em(fK) Em(fK) Ep(fK) Em,α(fK) Eowam,β(fK) RK

f{ω1} 1 0.2 0.7600 0.9200 0.8400 0.8080 0.8880 0.2400
f{ω2} 0.3 1 0.3700 0.5100 0.4400 0.4120 0.4820 0.6300
f{ω1,ω2} 0.79 0.76 0.7810 0.7870 0.7840 0.7828 0.7858 0.2190

Given a decision criterion, ranking the acts according to their expected utility yields a295

complete preorder. The best acts are the greatest elements of this preorder. Usually, there296

is a unique greatest element fK∗ , which predicts that the class of the instance belongs to set297

of labels K∗. It is remarkable that this approach can produce set-valued predictions even298

with precise probabilities of states of nature. The MEU principle works as a special case to299

provide complete preorder among partial assignments when uncertainty about the decision300

is captured by probabilities p1, · · · , pn on Ω rather than a mass function m. The act with301

greatest expected utility is then the most desirable: fK <u fG ⇐⇒ EU(fK) ≥ EU(fG),302

where EU(fK) =
n∑
j=1

ũK,jpj.303

Example 2. To develop an intuitive understanding of the proposed approach, consider the304

simple case of binary classification with Ω = {ω1, ω2}. Given the asymmetric utility matrix305

U =
[

1 0.2
0.3 1

]
,

the utility matrix Ũ extended by an OWA operator with γ = 0.7 and expected utilities cal-306

culated with mass function m(ω1) = 0.7, m(ω2) = 0.1, m({ω1, ω2}) = 0.2 are summarized307

in Table 2. According to the results, different decision criteria yield the following strict308

preference relations:309

• Generalized maximin criterion: f{ω1,ω2} �∗ f{ω1} �∗ f{ω2}310

• Generalized maximax criterion: f{ω1} �∗ f{ω1,ω2} �∗ f{ω2}311

• Pignistic criterion: f{ω1} �p f{ω1,ω2} �p f{ω2}312

• Generalized Hurwicz criterion (α = 0.7): f{ω1} �α f{ω1,ω2} �α f{ω2}313

• Generalized OWA criterion (β = 0.8): f{ω1} �β f{ω1,ω2} �β f{ω2}314

• Generalized minimax regret criterion: f{ω1,ω2} �r f{ω1} �r f{ω2}315

It can be seen that with the same mass function, various criteria yield different predictions.316

It is also worthwhile to notice the general relation between the generalized maximin and317

minimax regret criteria shown in Proposition 1.318

Proposition 1. Given a set Ω of classes, a mass function m on Ω, a utility matrix U and319

its extension Ũ, the maximin and minimax regret criteria always yield the same complete320

preorder of partial assignments, as long as correct classifications have the same utility value321

in U.322
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Proof. Assume that all the correct precise predictions have the maximum utility M . We
have max∅6=G⊆Ω ũG,j = M . Then,

Em(fK) +R(fK) =
∑
∅6=B⊆Ω

m(B) min
ωj∈B

ũK,j +
∑
∅6=B⊆Ω

m(B) max
ωj∈B

rK(ωj)

=
∑
∅6=B⊆Ω

m(B) min
ωj∈B

ũK,j +
∑
∅6=B⊆Ω

m(B) max
ωj∈B

(
max
∅6=G⊆Ω

ũG,j − ũK,j
)

=
∑
∅6=B⊆Ω

m(B)
[

min
ωj∈B

ũK,j + max
ωj∈B

(M − ũK,j)
]

=
∑
∅6=B⊆Ω

m(B)
[

min
ωj∈B

ũK,j +M − min
ωj∈B

ũK,j

]

= M
∑
∅6=B⊆Ω

m(B) = M.

Since fK <∗ fG ⇐⇒ Em(fK) ≥ Em(fG) and fK <r fG ⇐⇒ R(fK) ≤ R(fG), the complete323

preference relations induced by the lower expectation and by the expected maximal regret324

are identical. Therefore, these two decision criteria always reach the same decision.325

3.4. Partial classification via partial preorders among precise assignments326

Set-valued predictions can also be induced by considering partial preorders among precise327

assignments [13]. In this case, the set of available acts F = {f1, · · · , fn}, a mass function328

m on Ω and the utility matrix Un×n are used for decision-making. Based on a partial329

preorder among acts, the choice operator returns an optimal subset F∗ ⊆ F consisting all330

the maximal (non-dominated) elements, leading to a set-valued prediction corresponding to331

F∗.332

The decision-making criteria involved in this approach are more rooted in the imprecise333

probability view of belief functions [43, 13]. With insufficient information about states of na-334

ture, each precise assignment fi corresponds to an expected utility interval [Em(fi),Em(fi)],335

where Em(fi) and Em(fi) are calculated by Equations (13) and (14). This interval can also336

be viewed as the range of expectations EP (f) with respect to all probability measures P337

compatible with mass function m. By comparing the acts in F based on the lower and338

upper expected utilities, partial preorders of precise assignments are obtained using the fol-339

lowing decision criteria. (The reader is referred to [13] for more a detailed presentation and340

discussion of these criteria).341

Strong dominance criterion. This criterion [43] is based on the strong dominance (also342

called interval dominance) relation stating that, for two precise assignments corre-343

sponding to ωi and ωj, we have fi <SD fj iff Em(fi) ≥ Em(fj). The non-dominated344

elements then form the choice set F∗SD = {f ∈ F : @f ′ ∈ F , s.t.f <SD f ′}. With the345

strong condition of interval dominance, many pairs of acts may be not comparable,346

even making F∗SD = F .347
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Weak dominance criterion. According to this less conservative criterion [13], fi <WD fj348

iff
(
Em(fi) ≥ Em(fj)

)
and

(
Em(fi) ≥ Em(fj)

)
. It is clear that fi <SD fj implies349

fi <WD fj. The set of non-dominated elements of <WD is included in that of <SD,350

i.e., F∗WD ⊆ F∗SD.351

Maximality criterion. Developed in the imprecise probability framework [45], this crite-352

rion can also be used in the belief function framework. The preference between two353

acts is defined as fi <max fj ⇐⇒ Em(fi − fj) ≥ 0. We still have F∗max ⊆ F∗SD, which354

comes at the price of higher computational costs.355

Interval-valued utility criterion. Denoeux and Shenoy [17] define interval-valued utili-356

ties and propose a two-coefficient practical model for utility elicitation. For each focal357

element of m, utility bounds are defined by convex combinations of utilities of its worst358

and best outcomes:359

Em,αu,βu
(fi) =

∑
B⊆Ω

m(B)
[
αu min

ωj∈B
uij + (1− αu) max

ωj∈B
uij

]
, (19a)

360

Em,αu,βu(fi) =
∑
B⊆Ω

m(B)
[
βu min

ωj∈B
uij + (1− βu) max

ωj∈B
uij

]
, (19b)

where αu and βu are two local pessimism indices reflecting the DM’s attitude towards
ambiguity and indeterminacy, with 0 ≤ βu ≤ αu ≤ 1. The preference relation is then
defined as

fi <IV U fj ⇐⇒
(
Em,αu,βu

(fi) ≥ Em,αu,βu
(fj)

)
and

(
Em,αu,βu(fi) ≥ Em,αu,βu(fj)

)
.

These four criteria induce partial preorders of precise assignments, resulting in a choice361

set F∗ consisting possibly several greatest elements. In contrast, the e-admissibility criterion362

defines a choice set immediately without defining a partial preorder.363

E-admissibility criterion. E-admissibility labels an act optimal when it dominates any364

other available acts in expectation with respect to every probability measure, a stronger365

condition than maximality (with respect to at least one probability measure). An act366

can be decided to be e-admissible or not by solving the following linear programming367

problem [24]:368

min
a,p,λ

∑
` 6=i

λ` (20a)

subject to369 ∑
{k :ωk∈Fj}

akj = m(Fj), j = 1, · · · , q (20b)

370

akj ≥ 0 ∀(k, j) : ∃(ωk, Fj), ωk ∈ Fj (20c)
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371

pk =
q∑
j=1

akj, k = 1, · · · , n (20d)

372
n∑
k=1

pk(uik − u`k) + λ` ≥ 0, ` 6= i (20e)

373

λ` ≥ 0, ` 6= i, (20f)

where F1, · · · , Fq are the focal elements of m, vector a contains all the allocations4
374

akj = a(ωk, Fj) such that ωk ∈ Fj, λ = (λ1, · · · , λi−1, λi+1, · · · , λn) are n − 1 slack375

variable vectors, and the vector p = (p1, · · · , pn) corresponds to the compatible proba-376

bilities. We get the solution λ = 0 iff act fi is e-admissible. Obviously, this criterion is377

much more costly to compute than the others. Thanks to the set relation of different378

choice sets F∗ead ⊆ F∗max ⊆ F∗SD, to reduce computational cost, we can solve the linear379

program (20) only for those acts within the choice set of the Maximality criterion.380

All the criteria reviewed in this section provide a choice set F∗ = {f ∈ F : ∀f ′ ∈381

F ,¬(f ′ � f)} ⊆ F , which contains the non-dominated precise assignments. The acts within382

set F∗ are not comparable, making the prediction set-valued, as illustrated in Example 3.383

In general, partial preorders result from lack of information. With sufficient knowledge,384

the expected utility interval [Em(f),Em(f)] is reduced to a point, making the set-valued385

prediction a precise one. This is clearly an important difference as compared to the ap-386

proaches described in Section 3.3, which can yield set-valued predictions with even precise387

probabilities of states of nature.388

Example 3. Consider again the binary classification problem in Example 2. Take m({ω1}) =389

0.5, m({ω2}) = 0.3, m({ω1, ω2}) = 0.2 as an example. Since only precise assignments390

are considered, we calculate the expected utility intervals [Em(f1),Em(f1)] = [0.60 0.76]391

and [Em(f2),Em(f2)] = [0.51 0.65]. According to the strong dominance, maximality, e-392

admissibility and weak dominance criteria, we obtain, respectively, the choice sets F∗SD =393

{f1, f2}, F∗max = {f1, f2}, F∗ead = {f1, f2} and F∗WD = {f1}. The first three criteria pro-394

vide a set-valued prediction. For the interval-valued utility criterion with αu = 0.7 and395

βu = 0.3, we obtain the expected utility intervals [Em,αu,βu
(f1),Em,αu,βu(f1)] = [0.648 0.712]396

and [Em,αu,βu
(f2),Em,αu,βu(f2)] = [0.552 0.608]. Therefore, this criterion induces a precise397

prediction F∗IV U = {f1}. We can remark that the interval [Em,αu,βu
(fi),Em,αu,βu(fi)] is nar-398

rower than [Em(fi),Em(fi)], as the latter corresponds to the bounds of interval obtained with399

αu = 1 and βu = 0.400

When the mass function is Bayesian, such as m({ω1}) = 0.8 and m({ω2}) = 0.2, there401

is no uncertainty in the states of nature. In this case, Em(f1) = Em(f1) = Em,αu,βu
(f1) =402

Em,αu,βu(f1) = 0.84, Em(f2) = Em(f2) = Em,αu,βu
(f2) = Em,αu,βu(f2) = 0.44. We then obtain403

a complete preorder f1 � f2 and a precise prediction f1 with all the five criteria.404

4An allocation of a mass function m is defined as a mapping a : Ω × (2Ω \ {∅}) → [0, 1], such that∑
ω∈K a(ω,K) = m(K), ∀K ⊆ Ω.
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3.5. Discussion on time complexity405

In this section, we discuss the time complexity of the proposed approach. The discussion406

involves both generating the extended utility matrix Ũ = (ũK,j)(2n−1)×n from U = (uij)n×n407

and classifying a new instance.408

The computation of the extended utility matrix needs to be performed only once for409

a given classification problem. To extend the utility matrix based on the OWA approach,410

we need to determine the OWA weights by optimization and then calculate each ũK,j by411

weighted sum operation (vector multiplication). The OWA-related nonlinear optimization412

problem can only be solved by an iterative algorithm, making its time complexity difficult413

to characterize. However, the determination of the OWA weights only depends on γ and the414

cardinality of set K. So we can compute weights in advance and tabulate for different values415

of γ (such as 0.5,0.55,0.6,. . ., 0.95,1) and different cardinalities (like 2,3,. . .). Therefore, the416

complexity of the optimization part does not really matter.417

Given the OWA weights, basically, to calculate the aggregated utilities ũK,j for each418

nonempty subset K given each state of nature ωj using Equation (11), we need to compute419

n(2n − 1 − n) weighted sums. However, we do not need to consider all subsets of Ω every420

time, as it will obviously become infeasible for large n. When n is large, we can consider421

only the pairs and Ω, which brings the number of subsets to n(n − 1)/2 + 1. Considering422

each state of nature, we need to compute n[n(n− 1)/2 + 1] weighted sums in total, with a423

time cost of O(n3). It should be noticed that the base utility matrix U will be the identity424

matrix most of the time. In this case, the time complexity can be reduced to O(n2), as we425

only need to fill in non-zero elements 2× n(n− 1)/2 + n times.426

Considering the classification of each instance, the time complexity depends on the deci-427

sion criterion. For partial classification via complete preorders among partial assignments,428

we need to compute a certain kind of expected utility for each of the 2n − 1 (for small429

n) or n + n(n−1)
2 + 1 (for large n) acts and find the maximum one, which leads to a time430

complexity of O(n2). For partial classification via partial preorders among precise assign-431

ments, the E-admissibility criterion involves a linear programming for each act, which makes432

it much more time-consuming. Weak dominance and interval-valued utility criteria have a433

time complexity of O(n). Strong dominance and maximality criteria compare the expected434

utility intervals for each pair of acts, with time complexity O(n2).435

3.6. Evaluation of set-valued predictions436

In classification applications, a test set T is typically used to assess the performance of437

a trained classifier. To choose a proper criterion, a standard is needed to evaluate different438

decisions. Traditional accuracy becomes improper when set-valued predictions are allowed.439

Zaffalon [51] proposes a utility-discounted predictive accuracy under the {0, 1} reward
assumption to evaluate set-valued predictions made by credal classifiers. For a set-valued
prediction K ⊆ Ω consisting of k classes, the discounted accuracy is defined as 1

k
I(ω ∈ K),

where I(·) is the indicator function and ω its true label. A utility function then maps
discounted accuracy to utility. For instance, the utility function u65 is defined as

u65(x) = −0.6x2 + 1.6x,
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where x is the discounted accuracy of the issued prediction. This quadratic function is
specified by three points: u(1) = 1 (the utility of a correct and precise prediction should
be fixed at one), u(0) = 0 (the utility of wrong classification is zero), and u(0.5) = 0.65
(a certain utility of x = 0.5 is given to reveal the DM’s attitude of risk aversion). The
utility-discounted accuracy, which is biased considering personal preferences, is selected as a
predictive accuracy in the test set:

Acc(T ) = 1
|T |

∑
i∈T

u65

(
1

|K(i)|I(ω(i) ∈ K(i))
)
,

where K(i) is the predicted set of classes for test instance i, and ω(i) is its true class. This440

approach works well with the {0, 1} reward case, but it cannot be generalized straightfor-441

wardly to more general cases.442

In this paper, we consider the case of utilities in [0, 1]. We aim to evaluate precise or443

set-valued predictions by a single number (rather than a vector of parameters as proposed in444

[5]), with the requirement that the better the prediction, the larger the performance measure.445

In Section 3.1, we have seen how to extend a utility matrix so as to compute the utility of446

partial assignments. Accordingly, we propose to evaluate the classification performance by447

the averaged utility of the decisions made for the instances in test set T :448

AvU(T ) = 1
|T |

∑
i∈T

ũK(i),ω(i). (21)

The calculation of ũK(i),ω(i) can be done using an OWA operator as proposed in Section 3.1,449

with an imprecision tolerance degree γ that models the DM’s attitude.450

4. Experiments and discussions451

Classification experiments were carried out to compare the different decision strategies452

discussed in Section 3: precise classification with and without rejection, as well as partial453

classification based on complete or partial preorders. Section 4.1 first provides an intuitive454

comparison of decision criteria based on the UCI Iris data set. In Section 4.2, taking different455

values of γ to extend the utility matrix, we present and discuss the classification performances456

on UCI data sets. Considering simulated Gaussian data sets, the performances with noisy457

test sets are demonstrated in Section 4.3. Finally, Section 4.4 is dedicated to parameter458

selection in the generalized Hurwicz, OWA and interval-valued utility criteria.459

The mass functions concerning the states of nature were generated by the evidential neu-460

ral network [10] recalled in Appendix A. The network was set with six prototypes per class,461

each prototype having full membership to only one class. The initial prototype locations462

were determined by the k-means clustering algorithm started from random initial conditions.463

We set the parameters with initial values αi = 0.5 and γi = 0.1 for i = 1, · · · , k. A regular-464

ization parameter tuning the imprecision of the network output was fixed at ρ = 0.99 (with465

mi(Ω) = 1 − ραi exp(−γi(di)2), ∀i ∈ {1, · · · , k}). Note that the mass functions generated466

by this classifier have the property that their focal sets include only singletons and Ω, which467
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makes calculations easier. However, more general mass functions such as those generated by468

a multilayer perception [14] or the contextual discounted k-nearest neighbor rule [16] could469

be considered as well.470

4.1. Iris data set471

The UCI Iris data set was first taken as an illustrative example to visualize the behavior472

of different decision criteria. Considering that there are n = 3 classes, the utility matrix was473

assumed to be the 3 × 3 identity matrix. Mass functions were generated by the evidential474

neural network classifier. The mass function for each instance thus contained the masses475

given to each singleton and the frame of discernment, i.e., m({ωi}) = mi, i = 1, · · · , n and476

m(Ω) = 1−∑n
i=1mi (see Figures 3a-3b).477

Given this specific form of mass functions, all the three precise classification criteria478

discussed in Section 3.2 (Generalized maximin/maximax criteria and Pignistic criterion)479

result in the same hard partition of the instance space as shown in Figure 3c. The x-axis480

and y-axis correspond, respectively, to the first and second principal components of Iris481

instances. For any new pattern, its label is predicted based on the space partition. From482

Figure 3c, it can be seen that for some areas near the decision boundaries and areas far from483

the training instances, a precise prediction has a high probability of misclassification.484

(a) m({ωi}) (b) m(Ω) (c) Decision regions

Figure 3: Iris data set: contours of mass functions provided by the evidential neural networks (a,b) and
decision regions for the decision rules with precise assignment (c).

Figure 4 displays the decisions according to three criteria with rejection in Section 3.2485

(λ0 = 0.8). These figures share the same colorbar as Figure 3c, similarly for the Iris figures486

hereafter. Compared to Figure 3c, patterns situated close to the boundaries tend to be487

rejected, making it possible to achieve lower error rates. Moreover, the more cautious488

Maximin and Pignistic criteria reject patterns that are far away from any training instances.489

Compared to mere rejection, partial classification can provide more informative results.490

Consider the criteria via complete preorders among partial assignments in Section 3.3. The491

utility matrix is extended via an OWA operator with γ = 0.8. Parameters of decision criteria492

are set to be α = 0.6 (Hurwicz criterion) and β = 0.6 (OWA criterion). Figure 5 shows the493

decision regions induced by the different criteria.494
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(a) Maximin (b) Maximax (c) Pignistic

Figure 4: Iris data set: decision regions with rejection (obtained for λ0 = 0.8).

(a) Maximin (Hurwicz α = 1) (b) Maximax (Hurwicz α = 0) (c) Pignistic (OWA β = 0.5)

(d) Minimax regret (e) Hurwicz (α = 0.6) (f) OWA (β = 0.6)

Figure 5: Iris data set: partial classification (complete preorder case) with the six decision criteria.

As compared to precise predictions without or with rejection, more reasonable decisions495

can be reached by partial classification. Generally speaking, partial classification can make496

a distinction between information conflict (appearing in areas near the decision boundaries)497

and lack of knowledge (areas far from the training instances). As shown in Figures 5a and 5d,498

the maximin and minimax regret criteria do give the same results, as Proposition 1 stated.499

Different from other criteria, the maximax criterion yields much more precise predictions500

(Figure 5b). Yet as compared to Figure 4b, partial classification allows us to provide specific501

information about the class label (say, class 2 or class 3), rather than plain rejection: more502
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informative predictions are made by our approach.503

Figure 6 shows the decision boundaries for the Iris data set obtained with partial pre-504

orders among precise assignments (Sction 3.4). For the interval-valued utility criterion, we505

set αu = 0.7 and βu = 0.3. For this data set, there is no difference among some criteria. The506

weak dominance and interval-valued utility criteria always give precise predictions, while the507

other three criteria can differentiate conflict from lack of information. Compared to previ-508

ous results based on complete preorders of partial assignments (Figure 5), fewer set-valued509

predictions are made here, taking less advantage of uncertain information.510

(a) Strong dominance, maximality, e-admissibility (b) Weak dominance, interval-valued utility

Figure 6: Iris data set: partial classification (partial preorder case) with the five decision criteria.

4.2. Classification performances with varying γ511

We then checked the averaged utilities obtained from utility matrices extended with512

varying imprecision tolerance degree γ. Experiments were carried out using 22 data sets513

from the UCI repository [25] with characteristics summarized in Table 3. The original514

utility matrix U was assumed to be the identity matrix of size n (the number of classes). The515

evidential neural network was set with six prototypes per class, expect for Lung cancer and516

Annealing data sets with three prototypes per class. Attributes or instances with more than517

30% missing values were removed. To evaluate the performances, five-fold cross-validation518

was performed, and all experiments were repeated five times to compute an average result.519

In addition to precise classification with and without rejection, several representative520

criteria were selected for partial classification. Considering complete preorders among par-521

tial assignments, we focussed on three decision criteria: Maximin (Hurwicz with α = 0),522

Maximax (Hurwicz with α = 1) and Pignistic (OWA with β = 0.5). Performances with523

other values of α and β are discussed in Section 4.4. The strong dominance, maximality524

and e-admissibility criteria yield similar results. Also, the interval-valued utility criterion525

performs similarly to weak dominance (as will be discussed in Section 4.4). Consequently,526

for partial classification via partial preorders among precise assignments, results obtained527

with only two criteria (strong and weak dominance) are reported.528

The averaged utilities and corresponding percentages of precise prediction for the Wine529

and Breast tissue data sets are shown, respectively, in Figures 7 and 8. In general, partial530

classification methods based on complete preorder (red curves) work better than those based531
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Table 3: UCI data sets for validation.

Data set # of attributes # of classes # of instances
Adult 14 2 32526
Annealing 38 5 798
Balance Scale 4 3 625
Breast Tissue 9 6 106
Car Evaluation 6 4 1728
Contraceptive Method Choice 9 3 1473
Dermatology 34 6 358
Drug Consumption (Cannabis) 12 7 1885
Ecoli 8 7 336
Forest Mapping 27 4 523
Harberman’s Survival 3 2 306
Hayes-Roth 4 3 160
Hepatitis 19 2 155
Image Segmentation 19 7 2310
Ionosphere 34 2 351
Iris 4 3 150
Lung Cancer 56 3 32
Mushroom 22 2 8124
SPECT Heart 22 2 267
Wine 13 3 178
Wine Quality (Red) 11 5 1599
Wireless Indoor Localization 7 4 2000
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Figure 7: Experimental results with varying γ (Wine Data set).
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Figure 8: Experimental results with varying γ (Breast tissue data set).
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on partial preorder. They also perform better than rejection (blue curves). Compared to532

precise classifications, rejection methods have lower averaged utilities for small γ and higher533

ones for large γ. This general tendency can be explained as follows.534

As we used the approach described in Section 3.1 to extend the utility matrix, the utility535

of a given set-valued prediction increases with γ. In our experiments, performance evaluation536

and partial classification via complete order of partial assignments shared the same γ. For537

full classification, neither the predicting procedure nor utilities of precise predictions are538

influenced by γ. For precise classification with rejection (λ0 = 0.8), the vacuous predictions539

for some instances remain unchanged as γ varies from 0.5 to 1, but their utilities do grow540

from 1/n to 1, resulting in a higher averaged utility. A similar observation can be made for541

partial classification based on partial preorders, except that vacuous predictions are replaced542

by set-valued ones. It can be noted that the average utility of the weak dominance criterion543

increases mildly as γ grows, since it makes precise predictions most of the time.544

For partial classification based on complete preorders among partial assignments, given545

a fixed γ, the averaged utilities of different criteria vary in a small range, as shown by the546

red lines in Figures 7a and 8a. Among the Maximin, Maximax and Pignistic criteria, we can547

hardly conclude generally which criterion is the best. When γ increases, decisions change548

as set-valued predictions are more preferred. Averaged utilities increase monotonically with549

γ. We can also comparing a partial classification criterion with its corresponding one with550

rejection (such as the red and blue dotted lines in Figure 7a). It can be known from the Ũ551

that the more imprecise is the prediction, the lower utility it achieves. When γ is relatively552

small, say γ ≤ 0.8, partial classification outperforms rejection, as it provides imprecise553

predictions rather than vacuous ones. When γ is close to 1, partial classification makes554

much more imprecise predictions. Together with the fact that utility of vacuous prediction555

increases to 1, partial classification achieves an averaged utility approaching 1.556

For the other data sets, as shown in Figures 9-12, partial classification with complete557

preorders generally outperforms the rejection approach (although, for some sets such as the558

Adult (Figure 9a) and Balance scale (Figure 9c) data sets, this is only true for small γ). The559

strong dominance criterion works the best for Dermatology (Figure 9f) and Wireless indoor560

localization (Figure 12b) data sets. The weak dominance criterion, which usually produces561

precise predictions, yields quite similar result as precise classification for most data sets.562

Strong dominance may outperform weak dominance for all γ (as with the Adult (Figure 9a)563

and Car evaluation (Figure 9d) data sets), or only for large γ (as with the Drug consumption564

(Figure 10a) and Hayes-roth (Figure 10e) data sets). For some datasets such as Balance565

scale (Figure 9c) and Iris (Figure 11c), strong dominance and weak dominance can also have566

the same performance for any γ. Overall, the main finding is that partial classification with567

complete preorders (with the maximin, maximax of pignistic criterion) outperform the other568

criteria for most of the datasets.569

There is something special for some data sets such as Balance scale, Dermatology and Iris:570

Considering partial classification based on complete preorders (red curves in Figures 9c, 9f571

and 11c), the averaged utility curves have a U-shape (they first decrease when γ increases,572

before increasing again). Consider the Iris data set as an example. Here in Figure 11c, only573

the given 150 instances marked with +, × and ◦ in Figure 3c are used for training and test.574

24



0.5 0.6 0.7 0.8 0.9 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

a
v
e
ra

g
e
d
 u

ti
lit

y

Maximin(partial)

Maximax(partial)

Pignistic(partial)

Maximin(rejection)

Maximax(rejection)

Pignistic(rejection)

Precise

Strong dominance

Weak dominance

(a) Adult data set

0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a
v
e
ra

g
e
d
 u

ti
lit

y

Maximin(partial)

Maximax(partial)

Pignistic(partial)

Maximin(rejection)

Maximax(rejection)

Pignistic(rejection)

Precise

Strong dominance

Weak dominance

(b) Annealing data set
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(c) Balance scale data set
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(d) Car evaluation data set
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(e) Contraceptive method choice data set
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(f) Dermatology data set

Figure 9: Averaged utilities with varying γ (part 1).
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(a) Drug consumption data set
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(b) Ecoli data set
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(c) Forest mapping data set

0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

a
v
e
ra

g
e
d
 u

ti
lit

y

Maximin(partial)

Maximax(partial)

Pignistic(partial)

Maximin(rejection)

Maximax(rejection)

Pignistic(rejection)

Precise

Strong dominance

Weak dominance

(d) Harberman’s survival data set
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(e) Hayes-roth data set
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(f) Hepatitis data set

Figure 10: Averaged utilities with varying γ (part 2).
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(a) Image segmentation data set
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(b) Ionosphere data set
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(c) Iris data set
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(d) Lung cancer data set
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(e) Mushroom data set
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(f) SPECT heart data set

Figure 11: Averaged utilities with varying γ (part 3).
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(a) Wine quality data set (normalized)
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(b) Wireless indoor localization data set

Figure 12: Averaged utilities with varying γ (part 4).

Although partial classification does induce a better partition of the input space, it has little575

effect on the 150 training instances which are well separated in different classes. In such576

a case, hard partitioning of the input space guarantees a good classification performance.577

When we perform partial classification with complete preorders among partial assignments,578

we obtain some correct but imprecise predictions, which have lower utilities than the precise579

and correct ones. In general, partial classification is more beneficial when different classes580

overlap in the selected training set. Taking the Breast tissue data set as an illustration581

(Figure 8), partial classification yields a particular advantage over other decision methods582

due to their cautiousness. They provide larger sets (but not vacuous ones) including the583

true label ω∗ rather than smaller sets excluding ω∗.584

4.3. Performances with Noisy Test Sets585

In many situations, a classifier is trained with “good” data (acquired and preprocessed in586

controlled conditions) and then used in a real environment where, for instance, sensors may587

not be well calibrated. In such a case, the test data do not have the same distribution as the588

learning data. Cautious decision rules making set-valued predictions can be expected to be589

particular beneficial in such an environment, and discrepancies between the performances590

of different decisions rules may be more apparent than they are in the case of “clean” data591

considered in previous experiments.592

To validate this hypothesis, we performed the experiments on an artificial Gaussian data
set. Considering a three-class problem with data set of two attributes, the training set was
simulated from three Gaussian distributions with the following characteristics:

µ1 = [−1, 0]T , µ2 = [1, 0]T , µ3 = [2, 1]T ,

σ1 = 0.25I, σ2 = 0.75I, σ3 = 0.5I,

28



where I is the identity matrix. Figure 13 visualizes a particular data set of 600 instances593

generated in this way.594
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Figure 13: A Gaussian data set of 600 instances.

Algorithm 1: Algorithm to generate a noisy test set.
Input: test set T = {(x,y), C}, noise standard deviation σ
Output: noisy test set T̃ = {(x̃,y), C}

1 for 1 ≤ i ≤ |T | do
2 Draw ε(i) from N (0, σ2);
3 x̃(i) = x(i) + ε(i);

To simulate a different distribution, random noise was added to the features of the595

test instances using Algorithm 1. We set γ = 0.8 and let the noise standard deviation σ596

vary from 0 to 5 to simulate different levels of noise. The experiments were repeated 20597

times to compute an average result. In each experiment, the training and test sets contain,598

respectively, 600 and 300 instances. With higher noise level, the distribution of the test599

set becomes more different from that of the training set. The averaged utilities are plotted600

against the noise level according to various decision criteria in Figure 14a. Similar to the601

previous experiments, the percentage of precise predictions shown in Figure 14b helps to602

analyze the performances.603

For σ = 0, the test and training sets have the same distribution; partial classification604

via complete preorders among partial assignments (Section 3.3) outperforms other partial605

classification approaches (Section 3.4) as well as precise classifications with and without606

rejection slightly. When σ increases, the averaged utilities for all criteria drop quickly607

and the performances of different criteria in each approach start to differ. As the test608
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Figure 14: Results of different criteria as a function of noise level.
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set distribution becomes more different, the precise approach yields the worst performance.609

Weak dominance makes precise predictions in almost all the cases, performing quite similarly610

to the precise approach.611

Basically, when uncertainty increases, the decision criteria (except Maximax) assign more612

instances to sets. As different classes overlap more with larger σ, imprecise predictions are613

more likely to contain the true labels, achieving a higher averaged utility. The Maximax in614

both settings and strong dominance make more precise predictions than others, leading to615

a worse performance (but still better than the precise approach and weak dominance). For616

Maximin and Pignistic in both partial classification and rejection settings, when σ grows617

from 2.5 to 5, the averaged utilities remain steady or even increase slightly. The Maximin618

criterion is the most conservative one in both settings, resulting in the highest averaged619

utility.620

Comparing the two approaches of partial classification, generally the family considering621

complete preorders among partial assignments is more suitable for noisy environments. We622

can further compare the complete preorder-based approach with the rejection strategy (the623

Maximin and Pignistic). The partial criteria always make less imprecise predictions than the624

rejection approaches. When σ is small, partial classification performs better as it provides625

correct and more accurate predictions; When σ is large, rejection is a better choice since626

vacuous prediction yields higher utility than wrong set-valued predictions.627

4.4. Parameter selection of decision criteria628

In the fourth experiment, we study the problem of parameter selection in several decision629

criteria. Consider again the simulated Gaussian data set, we kept the same data setting as630

in Section 4.3 and we set γ = 0.8. Figures 15a and 15b show, respectively, the decisions631

made by the generalized Hurwicz and OWA criteria with different values of α and β.632

When the test and training sets have similar distributions, the value of the parameter633

in the two decision criteria has little effect on the classification performance. Differences634

become obvious as σ grows. We mainly analyze the case of high uncertainty (say, σ ≥ 2.5).635

For the Hurwicz criterion, given a fixed σ, the averaged utility increases monotonically as636

α grows (as a reminder, we have Maximin when α = 1 and Maximax when α = 0). When637

α ≤ 0.3, most predictions are precise, leading to massive misclassifications. When α ≥ 0.7,638

the variation of α does not change averaged utility much.639

For the OWA decision criterion, the averaged utility decreases monotonically as β grows.640

When β = 0.5 (pignistic criterion), the performance is quite acceptable. The further decrease641

of β leads to little improvement of performance. On the other side, the averaged utility drops642

quickly with β > 0.8, as the partitions of instance space tend to be hard ones. It can also643

be noted that both α = 1 (α = 0) for the Hurwicz criterion and β = 0 (β = 1) for the644

OWA criterion correspond exactly the Maximin (Maximax) criterion. By choosing α or β,645

performances can fall in between those of the Maximax and Maximin criteria.646

We also investigated the interval-valued utility criterion by varying the two indices αu647

and βu. Consider the Gaussian data set with σ = 0, the experiments were repeated 20 times648

for an average result. Recall the preference relation that fi <IV U fj ⇐⇒
(
Em,αu,βu

(fi) ≥649
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Figure 15: Averaged utilities with changing criterion parameter for the Hurwicz (a) and OWA (b) criteria.
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Figure 16: Averaged utilities with changing αu and βu.

Em,αu,βu
(fj)

)
and

(
Em,αu,βu(fi) ≥ Em,αu,βu(fj)

)
, the underlying weak dominance leads to650

the averaged utility of 0.9052 for any 0 ≤ βu ≤ αu ≤ 1. However, if we consider the strong651

dominance and let fi <IV U fj ⇐⇒ Em,αu,βu
(fi) ≥ Em,αu,βu(fj), the resulted averaged652

utilities can vary between 0.9052 and 0.9244 with different αu and βu, as shown in Figure 16.653

When αu = βu, the utility interval is reduced to a point, making the averaged utilities equal654

to that of precise prediction without rejection. As the interval [βu, αu] becomes wider, more655

set-valued predictions will be made, yielding a higher averaged utility.656

5. Conclusion657

Modelling uncertainty in the belief function framework, we have carried out a thorough658

analysis of various decision-making criteria for evidential partial classification. By allowing659

for imprecision in certain regions of the input space, partial classification has been shown660

to yield a higher averaged utility as compared to precise classification with and without661

rejection. The extended utility matrix is instrumental in obtaining the complete preorder of662

partial assignments in decision-making, as well as evaluating the performances of different663

decision criteria. Therefore, we have proposed to generate utilities of partial assignments via664

an OWA operator, with one parameter γ controlling the DM’s attitude towards imprecision.665

Partial classification can be implemented via complete preorders among partial assignments666

or via partial preorders among complete assignments. Both approaches have been analyzed667

theoretically and experimentally. Based on 22 UCI and simulated Gaussian data sets, ex-668

perimental results suggest some guidelines for criteria choosing in classification problems:669

In general, partial classification via complete preorder among partial assignments achieves670
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a more reasonable partition of the instance space, leading to better performances. With671

regard to partial classification, the best decision criterion has to be decided depending on672

the data set. In noisy environments, more cautious rules should be preferred, such as the673

Maximin criterion among partial classification methods. In case of a very noisy test set,674

classification with rejection works best as the most conservative approach.675

It should be noted that partial classification ideas in the Dempster-Shafer setting can676

also be carried out similarly in other settings such as the imprecise probability framework [3].677

In future work, we will also consider Shafer’s constructive decision theory [38], which does678

not rely on utility, and study its performance in classification tasks.679
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Appendix A. Evidential neural network classifier685

The evidential neural network classifier [10] is an adaptive classifier based on DS theory5.686

The classification procedure can be implemented in a specific neural network architecture687

with one input layer, two hidden layers and one output layer. Assessing the similarity688

of a pattern with a limited number of prototypes, items of evidence regarding the class689

membership are represented by mass functions and combined by Dempster’s rule (4).690

The evidential neural network classifier is similar to the evidential k nearest neighbor
rule [8][16] but k prototypes p1, · · · ,pk are considered instead of the nearest neighbors of
a pattern x to reduce the computational complexity. Each prototype pi provides a mass
function mi based on the Euclidean distance di = ‖x− pi‖ between x and pi, i = 1, · · · , k.
The unit mass is distributed among the singleton {ωq} and Ω:

mi({ωq}) = αiuiq exp(−γi(di)2), q = 1, . . . , n (A.1a)
mi(Ω) = 1− αi exp(−γi(di)2), (A.1b)

where γi is a scale parameter for prototype pi, uiq is the membership degree of prototype pi691

to class ωq (with ∑n
q=1 u

i
q = 1), and αi is a parameter indicating the relative importance of692

prototype pi in classifying new patterns. Combining the k mass functions mi, i = 1, · · · , k693

by Dempster’s rule (4), the resulted mass function describes the uncertainty pertaining to694

the class of a pattern.695

Parameters in the model are trained by minimizing the mean squared differences between696

model outputs and target values. Once the neural network has been trained, an output697

5This method is implemented in the R package evclass [12] available at https://cran.r-project.org.
Matlab code can also be downloaded from https://www.hds.utc.fr/˜tdenoeux/dokuwiki/en/software/
belief_nn.
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mass function can be computed for each test pattern, which conveys more information than698

does a probability distribution. Based on this mass function, we can further implement699

various decision strategies to make more reasonable predictions, such as classification with700

rejection [10] and partial classification discussed in Section 3.701
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[51] M. Zaffalon, G. Corani, and D. Mauá. Evaluating credal classifiers by utility-discounted predictive808

accuracy. International Journal of Approximate Reasoning, 53(8):1282–1301, 2012.809

37


	Introduction
	Background
	Theory of belief functions
	Ordered Weighted Average operators
	Decision-making framework

	Decision-making for evidential classification
	Generating utilities of partial assignments via an OWA operator
	Precise classification with and without rejection
	Partial classification via complete preorders among partial assignments
	Partial classification via partial preorders among precise assignments
	Discussion on time complexity
	Evaluation of set-valued predictions

	Experiments and discussions
	Iris data set
	Classification performances with varying 
	Performances with Noisy Test Sets
	Parameter selection of decision criteria

	Conclusion
	Evidential neural network classifier

