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We experimentally study the propagating of an optical intensity jump discontinuity in a non-local
stochastic Kerr focusing nematic liquid crystal (LC) cell. We show both theoretically and experi-
mentally that non-locality opens a novel route towards beam steering in our system. Indeed, the
discontinuity trajectory follows a curve that bends with the injected power. Despite the stochastic
nature of the medium and the constant presence of transverse instabilities, the development of a
focusing dam-break shock dynamics is shown to survive. The distance Zs for the focusing shock to
occur follows a power law with the beam power P according to Zs ∝ Pχ, with χ = 4/3, as for shock
dynamics in self-defocusing media.

Any physics student from wave optics class has heard
about the phenomenon of diffraction, i.e. varying when
wave envelope varies during propagation. They also know
that this effect is embedded in Maxwell’s equations and
the necessary condition for this phenomenon to occur is
for the field envelope to depend on the spatial coordi-
nates. This is linear diffraction. However an additional
term appears in the wave propagation equation if the
wave propagates in nonlinear media. This term accounts
for the medium polarization and contains the nonlinear
part of the index of the medium. If the wave envelope
injected into the medium has no transverse spatial depen-
dence (ideal plane wave), no linear diffraction is observed,
but diffraction can still occur providing that the nonlin-
earity varies with space. This is nonlinear diffraction.
Notion that every physics student has not heard of un-
less they have pursued a course in nonlinear optics. Thus,
there are two cases where an optical beam propagating
through a nonlinear medium experiences diffraction, ei-
ther (i) the initial beam has a structured profile (ampli-
tude or/and phase varying with space) and the nonlinear
medium is spatially homogeneous, then the beam linearly
diffracts through the nonlinear medium, or (ii) the ini-
tial beam is assimilated to a plane wave but the nonlinear
medium is spatially structured so that nonlinear diffrac-
tion is achieved during propagation (a combination of
these two cases is also possible but it is out of the scopes
of this study). The nonlinear diffraction was first intro-
duced and evidenced by Isaac Freud in a seminal work
using the spatially periodic modulation of the dielectric
susceptibility of NH4CL [1]. Such material structuring
will be later implemented for the realization of photonic
lattices [2] and lead to novel nonlinear phenomena [3–
6]. The most documented studies on nonlinear optical
propagation deal with the above-mentioned first situa-
tion, that is, an initial beam linearly diffracting along
the propagation through a spatially homogeneous non-
linear medium. This is the main core of nonlinear optics
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for beam propagation and this article belongs to this cat-
egory.

Competition or rather ”cohabitation” between linear
diffraction and nonlinearity has been the subject of an
extensive amount of publications. Localization through
solitary waves [7–9] or self-similar structures [10–12],
modulational instability (also called filamentation) [13–
15], wave singularities such as vortices [16], shock waves
[17–19] or else wave collapse [20, 21] are some of the mani-
festations of such dynamics. We are interested in the non-
linear propagation of an optical amplitude jump discon-
tinuity (between two uniform values of the initial data)
through nonlinear focusing media. This problem belongs
to the class of Riemann problems [22, 23]. A Riemann
problem [24] classically refers to the initial value problem
for a transverse uni-dimensional system associated with
hyperbolic equations consisting of two constant states
with a step at the origin. When the initial wave am-
plitude is step-like, the terminology dam break (or dam
break Riemann problem) is used, in analogy with dam
break flows in hydrodynamics. This situation has been
extensively studied in shallow water for the regularization
of initial discontinuities via the emergence of dispersive
shock waves (also known as undular bores) when dissi-
pation is negligible compared to dispersion [25]. These
behaviors were later evidenced in nonlinear optics, when
the nonlinearity is of defocusing type, in temporal sys-
tems [26, 27] as well as in spatial ones [18]. However, that
dynamics radically changes when the nonlinearity is of fo-
cusing nature. The equations become elliptic so a shock
boundary condition is ill posed, associated with no long-
term undular bore solution but modulational instability.
In optics, it is predicted that, for a focusing nonlinear-
ity, whose response is non-local, the shock prevails over
modulational instability [19] and focusing dispersive dam
break flows emerge in the form of an oscillatory structures
endowed with characteristics similar to dispersive shock
waves [28]. Wan et al. experimentally demonstrated in
local focusing media that using a partially-coherent beam
suppresses modulational instability but leads to modu-
lations as spatial dispersive shock waves with negative



2

pressure [29]. Thus, there is scant publications and al-
most no experimental study of the focusing dam break
problem for an optical beam propagating through focus-
ing nonlinear nonlocal media. This is the motivation of
this study.

Our experimental setup follows the same strategy as
presented in [14]. A step-like intensity beam profile is in-
jected into a transverse unidimensional LC cell (Fig. 1).
Such a Heaviside-like profile is prepared by focusing the
Gaussian beam by a cylindrical lens (CYL) onto a thin
metallic blade with a sharp edge. A 4f imaging system
is constructed via two f = 100 mm lenses (L) to image
the light profile from the plane Σ of the cutter (C) to the
entrance plane Σ′ of the LC cell. The cell is mounted
on a 3D stage and additional rotating stages allowing for
precise adjustments via translations and rotations in any
direction. To ensure that there is no pre-propagation
in air at the cell entrance, a series of videos of the in-
jected probe beam are recorded for different locations z
of the cell. These videos are averaged over 20 s acqui-
sition time to reveal the possible air diffraction pattern
and adjust the entrance of the cell Σ′ with the plane
Σ of the cutter. The single-mode frequency doubled
Nd+3 : Y V O4 (λ0 = 532nm) laser with electric field A is
linearly polarized along the x-axis initially perpendicular
to the extraordinary axis of LC molecules. The input
laser beam radii at the entrance of the cell, measured via
a camera beam profiler (Thorlabs BC106N-VIS/M), are
ωx ≈ 11.5 µm and ωy ≈ 960 µm (in the cutter plane).
Thus, no more than one filament can form in the vertical
x direction. The nonlinear medium is a E7 nematic LC of
75µm thickness sandwiched between two glass substrates
with planar (parallel to the walls) anchoring conditions.
The entrance of the cell is closed by a glass substrate
with a planar anchoring condition to avoid depolarizing
effects during beam injection. A white light imaging sys-
tem (WL+IS1 on Fig. 1) is constructed to image the
plane Σ′ along with the injected one-dimensional beam
profile insuring that the latter is parallel to the walls of
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FIG. 1. Experimental setup: CYL - cylindrical lens with f =
75mm focal length, C - light cutter, L - plano-concave lenses
with f = 100mm focal length, BS1,BS2 - beam splitters. IS1
- imaging system composed of a 10X, NA = 0.25 microscope
objective (Olympus) and a camera (Thorlabs CMOS camera,
10bit). BS2 - an imaging system composed of a 5X, NA =
0.1 microscope objective (Mitutoyo) mounted on a lens tube
with f = 200mm focal length and a camera (Thorlabs).

the LC cell. The propagation evolution of the beam is
tracked via imaging system IS2 using the scattered light
in the x direction. The propagating optical field is scat-
tered by LC molecule fluctuations depending on director
axis orientation, input field polarization and observation
direction [30, 31]. It is not a direct image of the optical
field but of its scattering by the refractive index profile.
However, as in all studies on optical beam propagation
through nematic LCs, it allows for qualitative analysis of
the dynamics.

The model describing the nonlinear propagation dy-
namics in such complex media is governed by a system
of coupled equations for the optical reorientation angle θ
of the LC molecules and the light envelope amplitude A
[32], such as

γ
∂θ

∂t
= K2

∂2θ

∂y2
+ C1TA

2sin(2θ) +
√
εξ (1)

0 = −2ik0n⊥
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+
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2
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where γ is viscosity, K2 is the Frank’s twist elastic con-
stant, na = n‖−n⊥ is the optical anisotropy with n‖/n⊥
being the extraordinary/ordinary indices, C1T = ε0n

2
a/4,

k0 is the laser wavenumber and β are losses. ε is the inten-
sity of the thermal noise source term ξ which is Gaussian
and delta correlated [33]. At third order in θ, dimension-
less form of Eqs.(1,2) is{
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where following scalings are introduced: optical field A
with respect to the optical Fredericksz threshold is scaled
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FIG. 2. (a) Step-like Gaussian intensity profile injected in
the LC cell. Spatiotemporal evolution of the beam transverse
profile after z = 1.2mm propagation for (b) the local (K2 = 0)
and (c) non-local (K2 = 6.57 10−12 N) cases. Both profiles
are normalized to their maximum values. (b) A = 5000 and
(c) A = 31250. ε = 0, β = 0, n‖ = 1.7589, n⊥ = 1.5269,

λ0 = 532 10−9 m and ωy ≈ 960 µm.
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gree of non-locality.
It is worth to mention that such a system of equations

Eq. (3), even for stationary, deterministic and lossless
conditions, is fundamentally different from the local non-
linear Schrdinger equation usually referred to study dam
break problems in optics [23, 29] as well as in hydrody-
namics [22], hence, different dynamics is anticipated.

Fig. 2(b) depicts the spatio-temporal evolution of
the y-transverse profile of the optical intensity |A|2 af-
ter z = 1.2 mm propagation for Eqs.(1,2) in the local
limit, that is K2 = 0, without noise nor losses (ε = 0 and
β = 0) and for an initial amplitude value of the optical
field at z = 0 leading to focusing dam break shock. An
oscillatory wave regularizing the discontinuity is clearly
evidenced. Its evolution with time stays stationary even
at the early stage of the dam break (as also visible in
[29]). On the contrary, taking into account for the non-
local response of the nonlinearity (K2 = 6.57 10−12 N)
gives a radically different dynamics [Fig. 2(c)]. The os-
cillatory wave regularizing the discontinuity still remains
but its leading edge drifts with time to the highest in-
tensity side. The whole transverse structure is steered
during the propagation to the highest intensity value by
more than 50 µm in the example of Fig. 2(c). Thus, all-
optical beam-steering is observed owing to the non-local
nature of our system.

Experimentally, (i) the intrinsic thermal fluctuations
are known to affect the dynamics [33] and (ii) the scatter-
ing losses are relatively high (β ∼ 600m−1), so we expect
competition between shock dynamics and filamentation
(absent in the ideal case of simulations depicted in Fig.
2) as pointed out in [19, 28] and wonder if shock dy-
namics can still survive in our stochastic system. Since
diffraction and dissipation (scattering losses) are present,
we also question on the type of regularization mechanism
for shock dynamics that can occur.

Typical experimental propagation evolution of the ini-
tial optical intensity jump discontinuity with increasing
nonlinearity is displayed on Fig. 3(a-c). The dynamics
exhibits a continuous evolution of the fine structure of the
propagating optical pattern due to the stochastic nature
of the nonlinear medium as described in [34]. However,
its global shape remains quasi-stationary after a transient
set up time. Thus, videos of the dynamics are recorded
(20 s duration at 5 fps) with a 10 bit depth dynamic range
to extract corresponding averaged images representative
of the global shape of the propagating structure as pre-
sented on Fig. 3(a-c). The acquisition time of the camera
is automatically adjusted by the software to get unsatu-
rated videos taking into account eventual light pinning or
saturated pixels due to cell impurities. The first 200 µm
of propagation are not reported on experimental plots (i)

to avoid scattered signals from the optical field injection
at the entrance of the cell and mainly (ii) to allow for
the input light to transfer its boundary condition dis-
continuity on the LC molecule distribution, that is to
the medium refractive index. This latter point is cru-
cial since our system is described by a set of two coupled
equations [Eqs.(1,2)] and the initial boundary condition
is only applied to the light envelope amplitude A, not
to the optical reorientation angle θ of the LC molecules.
In usual setups where the dam break Riemann problem
is studied, only one variable accounts for the propaga-
tion dynamics of the system (e.g. nonlinear Schrdinger
equation or Kortewegde Vries equation) and the initial
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FIG. 3. Spatial evolution of the initial intensity jump dis-
continuity versus propagating distance z for increasing laser
power measured before the sample entrance, namely (a) P =
17.5 mW , (b) P = 73.8 mW and (c) P = 193.5 mW . The
intensity profiles are normalized to their maximum values.
(d) Transverse intensity profiles at z = 354 µm propagat-
ing distance [dotted lines on (a), (b) and (c)] for the three
power values of diagrams (a), (b) and (c). Black circles on
(d) locate the scattered light intensity discontinuity YS (see
text for definition). (e) Evolution of the intensity profile at
z = 1200µm versus the injected light power P ; the transverse
profiles collected for each value of P are normalized to 1 in
order the render the image readable. All data are averaged
over 20 seconds of dynamics.
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condition is applied to this variable [27, 35, 36]. Also,
the scattered light recorded by the camera IS2 is a result
of the LC index distribution that has no initial jump dis-
continuity at z = 0 but will only acquire it over the early
stage of propagation ( 100− 200 µm).

Three values of the injected optical power P , repre-
sentative of the dynamics of interest, are shown on Fig.
3(a-c), namely P = 17.5 mW , P = 193.5 mW , and
P = 286.7 mW . For the lowest power [Fig. 3(a)] the
regime is dominated by linear diffraction and observed
small deviation experienced by the discontinuity is at-
tributed to linear Fresnel diffraction. The dynamics dras-
tically changes when increasing the laser power with a
transverse shift of the sharp edge [Fig. 3(b,c)]. The edge
steering is clearly evidenced on Fig. 3(d) through the
transverse intensity profiles plotted at a fixed propaga-
tion distance, namely z = 354 µm, for the three powers
of Fig. 3(a-c). A shift of ∼ 20 µm is obtained after
only 354 µm propagation. The 0 reference of the trans-
verse y-axis is fixed by the location of the discontinuity at
z = 200 µm in the linear regime (that is P = 17.5mW ).
Fig. 3(d) also evidences the steepening of the edge with
increasing the power. For the highest depicted power
[Fig. 3(c)], the reached transverse steering at 1.2 mm
propagation distance from the cell entrance is at least
40 µm, that is a larger than 33 mrad. The amount of
steering obtained after 1.2mm propagation versus the in-
put beam power P is plotted on Fig. 3(e) clearly demon-
strating a power dependence of the sharp edge position
shift. For a quantitative analysis of this nonlinear beam
deviation, the transverse position Ys of the intensity dis-
continuity is tracked. As an example, Ys is marked by a
black circle on profiles of Fig. 3(d). At a given propa-
gating distance z, Ys corresponds to the abscissa of the
maximum of the transverse intensity steepness calculated
as Sz(y) = (∂|A|2/∂y)|z . The measurement of this de-
pendence brings out a power law for Ys as depicted on
Fig. 4(d), namely Ys ∝ P

1
25 .

Experimental results of Fig. 3 show that the beam
steering predicted in Fig. 2 is a robust phenomenon with
respect to noise and scattering losses. On the other hand,
Fig. 3 does not allow for the evidence of focusing disper-
sive dam break flows in the form of an oscillatory struc-
ture as evidenced in Fig. 2(b,c). A numerical study
would be necessary to identify the effects of noise, losses
and e.g. nonlinearity saturation effects on the emergence
of the focusing dispersive oscillating structure. This is
out of the scope of this letter since the high transverse
spatial resolution required to perform numerical simula-
tions on a such wide beam profile requires many weeks
of computing to reach the stationary state in the de-
terministic case. This is why in this letter we do not
directly contrast our experimental results with numeri-
cal ones, based on Eqs.(1,2). Transverse instabilities, in
the form of modulational instabilities, starting from the
early stage of propagation (so not the focusing disper-
sive dam break flows expected as a result of the regu-
larization of the discontinuity) are always present even

for the ”linear regime” of Fig. 3(a) as mentioned in [37].
The averaged pictures of Fig. 3(a-c) do not emphasize
them since their transverse location and periodicity are
wandering with time [34] and are washed out by the av-
eraging process. Further study would be necessary to
identify these short wavelength instabilities with noise
sustained modulational instability [14] or other stochas-
tic resonance behavior [38]. Although no focusing disper-
sive dam break flows are experimentally observed in our
stochastic nonlinear medium, shock-like dynamics is still
observable. Focusing dam-break shock results from the
underlying mechanism of the wave steepening driven by
the nonlinearity which leads to a gradient catastrophe.
The self-steepening dynamics of our experimental refrac-
tive index discontinuity is analyzed versus the propaga-
tion using the previously defined steepness Sz(y) . For
each z, the maximum value Smaxz

of Sz(y) is extracted.
The typical experimental evolution, during the propaga-
tion, of the maximum transverse steepening Smaxz

(z) for
the discontinuity between the ground and high intensity
regions, versus power injection P is illustrated in Fig.
4(a). The plotted Smaxz

(z) profiles correspond to the
average of the 100 instantaneous steepness profiles ex-
tracted from each frame of the video. In order to avoid
noise-induced hot spots and small scale transverse insta-
bilities in the calculation of S, Savitzky-Golay algorithm
is applied to smooth the signal. It is observed that above
P ≈ 135 mW power, the evolution of Smaxz

(z) always
reveals the occurrence of a maximum (Fig. 4(a)). It
indicates that the jump distribution of the index pro-
file self-steepens during the propagation distance z be-
fore ”relaxing” or being ”regularized” by the dispersive
and dissipative medium. This is the characteristics of a
shock-like dynamics. Such observation is also reported
by Wan et al. [29] for the diffraction from an edge but in
a local self-focusing medium.

Steepness oscillations Smaxz along the propagation di-
rection are linked to the corresponding transverse oscil-
lations on the intensity profiles [Fig. 3(d)]. This fea-
ture is found in the numerical simulations carried out
without noise nor losses (ε = 0 and β = 0) but tak-
ing into account for the non-local response of the non-
linearity (K2 = 6.57 10−12 N) [Fig. 4(b)]. These oscil-
lations come from the transverse modulations previously
discussed [Fig. 3(a-c)] and their interactions due to the
non-locality. The location of S(z) maximum never occurs
above approximately 600 µm propagating distance. The
reason is certainly due to losses that overcome nonlinear-
ity for this distance. Such a limitation in the nonlinear
effects was already reported in [34]. We extract the lon-
gitudinal coordinate Zs corresponding to the maximum
value of Smaxz

(z) that measures the propagating distance
needed for the focusing shock-like to occur. This distance
Zs moves towards the cell entrance when increasing the
initial beam power P as reported for shocks in optical
defocusing media (see e.g. [39]) and in hydrodynamics
[19, 20]). Indeed, it is known that the shock distance Zs
scales with power P according to the law Zs ∝ Pχ, with
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FIG. 4. (a) Typical experimental maximum transverse steep-
ening Smaxz (z) (see text for definition) evolution with in-
creasing power, P = 137.18 mW (black), 193.5 mW (blue),
and 279.7 mW (red); the dot indicates the location ZS and
refers to the maximum of Smaxz (z). (b) Numerical maximum
transverse steepening Smaxz (z) evolution with increasing in-
tensity values |A|2 = 5.64 106 (black), |A|2 = 7.98 106 (blue)
and|A|2 = 9.76 106 V 2/m2 (red) correspondingly. (c) Exper-
imental evolution of the focusing shock-like distance Zs (see
text for definition) versus injected power P in logarithmic
scales showing a power law Zs ∝ Pχ, with χ = −4/3 coeffi-
cient. (d) Experimental evolution of the transverse position
Ys of the intensity discontinuity (see text for definition) at
z = 1.2 mm versus injected power P in logarithmic scales
showing a power law Ys ∝ Pχ, with χ = 1/25 coefficient. All
experimental values are averaged over 20 seconds of dynamics.

χ = 0.5 in the hydrodynamic limit. The evolution plot of
Zs versus P for our experimental recordings is drawn on
Fig. 4(c). It clearly evidences a power law Zs ∝ P 4/3 for
powers larger than P ≈ 135mW (ln(P ) ≈ −4.9). Thus,
as for shocks in defocusing media a power law in the form
of Zs ∝ Pχ is found. Our χ = 4/3 value is related to the
non-local nature of our system as shown by Conti et al.
and Ghofrahina et al. in [20, 39]. A numerical study
would state on the influence of the level of non-locality
on the χ parameter in our system.

In conclusion, we experimentally show that the prop-
agation of an optical intensity jump discontinuity (dam
beak problem) in a non-local focusing Kerr medium fol-
lows a trajectory that bends with the injected beam
power P due to the non-local nature of the nonlinearity.
The transverse beam nonlinear deviation/shift Ys follows

a power law with Ys ∝ P
1
25 . This opens a novel all-

optical route towards beam steering. We also evidenced
that the profile of the refractive index self-steepens along
propagation and leads to a focusing shock dynamics. It
is characterized by a power law, as for self-defocusing
local Kerr media, for the shock distance to occur ver-
sus the injected beam power P , namely P−4/3. Focus-
ing dispersive dam break oscillatory structure, that re-
sults from the regularization of the shock, is not observed
due to the intrinsic noise that sustains wandering small
scale transverse instabilities. Further investigations are
in progress to blackuce the stochasticity level in order to
evidence experimentally focusing dispersive dam break
flow or maybe dissipative one due to losses.
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