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Abstract: Complete and textured 3D reconstruction of dynamic scenes has been facilitated by
mapped RGB and depth information acquired by RGB-D cameras based multi-view systems. One
of the most critical steps in such multi-view systems is to determine the relative poses of all cameras
via a process known as extrinsic calibration. In this work, we propose a sensor fusion framework
based on a weighted bi-objective optimization for refinement of extrinsic calibration tailored for
RGB-D multi-view systems. The weighted bi-objective cost function, which makes use of 2D in-
formation from RGB images and 3D information from depth images, is analytically derived via
the Maximum Likelihood (ML) method. The weighting factor appears as a function of noise in 2D
and 3D measurements and takes into account the affect of residual errors on the optimization. We
propose an iterative scheme to estimate noise variances in 2D and 3D measurements, for simulta-
neously computing the weighting factor together with the camera poses. An extensive quantitative
and qualitative evaluation of the proposed approach shows improved calibration performance as
compared to refinement schemes which use only 2D or 3D measurement information.

1. Introduction

RGB-D cameras provide simultaneous image and range data of the environment, offering enhanced
sensing capabilities when compared to using single sensor modality. A non-exhaustive list of
applications includes 3D telepresence systems [20], creation of viewpoint free 3D videos [19],
simultaneous localization and mapping [17], or the acquisition of textured 3D surface models of
static and dynamic scenes [26, 18, 34, 11].

The acquisition of complete and textured 3D models of scenes required in domains such as
security and surveillance, health, and entertainment, can be accomplished by using two different
approaches. The first consists of using a single moving RGB-D camera with its location constantly
being tracked [17, 26, 34]. This solution is simple and attractive, however, has the drawback of
not allowing to fully reconstruct dynamic scenes at each time-step. As an example, Dou et al. [13]
presented a 3D scanning system for deformable objects using a single Kinect sensor. The scanning
results are promising, remark that, however, the obtained 3D reconstructions are rigid, even if the
objects in the environment were constantly moving and deforming. This issue can be solved by
using multiple fixed RGB-D cameras covering the entire scene [18, 20, 11, 28]. In this case, the
relative poses of all RGB-D cameras are required for aligning the partial 3D reconstructions. The
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problem of estimating the relative poses of cameras in a multi-view system is known as extrinsic
calibration.

Most of the works for extrinsic calibration of RGB-D multi-view systems rely on well estab-
lished 2D camera based calibration routines [40, 10] and pose refinement procedures, e.g. Bundle
Adjustment (BA) [36, 5, 11], using 2D feature points extracted from the RGB images [20, 8, 7].
The 3D information from the depth sensor has mainly been used in subsequent refinement steps
using, e.g., the Iterative Closest Point (ICP) algorithm [32, 29, 38]. In this regard, the following
question arises: how to optimally use both sources of complementary information.

In this paper, we investigate a strategy for RGB-D sensor fusion for the extrinsic calibration
of multiple cameras. Instead of using 2D data from RGB images and 3D data from depth images
independently, we propose a weighted bi-objective optimization scheme. We analytically derive a
Least Squares (LS) based cost function, via the Maximum Likelihood (ML) method, that optimally
combines the BA based 2D cost function with the ICP based 3D cost function. The sensor fusion
is achieved by using a weighting factor that depends on two types of noise, one contaminating the
2D feature locations in the RGB images, and the second one contaminating the 3D point positions
provided by the depth sensor. The experiments suggest that using the proposed joint cost for
relative pose refinement provides more accurate results than the refinement schemes using 2D and
3D information separately.

In the absence of information regarding noise levels in the 2D and 3D feature points we propose
an iterative scheme which simultaneously estimates the noise along with the estimation of calibra-
tion parameters. The proposed scheme is completely automated requiring no manual intervention
and no heuristic parameter setting. The quantitative and qualitative experiments show that the pro-
posed scheme is able to perform sensor fusion for accurate camera calibration without any prior
information about noise characteristics.

The present work extends and consolidates our previous work called BAICP+ [3], which ex-
perimentally showed that in many cases, using a heuristically constructed weighted bi-objective
refinement approach that combines 2D and 3D information provides better results than refinement
approaches based on cost functions using only 2D or 3D information.

1.1. Contributions

• We present a sensor fusion framework based on weighted bi-objective optimization for re-
finement of extrinsic calibration of an RGB-D multi-view system. We derive an analytic
expression for the weighting factor, in the bi-objective optimization, in terms of noise in
measurements of RGB and depth sensors.

• We propose an iterative scheme for extrinsic calibration of an RGB-D multi-view system,
which alternates between camera pose estimation, and the computation of measurement noise
levels.

• We perform a thorough experimental evaluation on synthetic and real data, and show that
fusing the RGB-D information using the proposed bi-objective optimization provides superior
results when compared to refinement schemes that only use 2D or 3D feature information.

1.2. Article Overview

We start by giving a brief overview of state-of-the-art methods for extrinsic calibration used in
RGB-D multi-view systems, as well as of bi-objective pose estimation approaches in Section 2. In
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(a) RGB-D Multi-View System (4 cameras) (b) Full 3D Scene Reconstruction

Fig. 1. RGB-D Multi-View System with full scene 3D reconstruction in a simulated setup. (a)
RGB-D Multi-View System (4 cameras) with field of view (FOV) of each camera. The highlighted
region represents overlapping FOVs of all cameras. The global reference frame w is aligned with
camera C1. (b) Steps required for Full 3D Scene Reconstruction using an RGB-D Multi-View
System. Each camera acquires a RGB image and a depth image, which are used to estimate the
relative pose of each camera with respect to w. After extrinsic calibration, estimated poses are
used to put all acquisitions in w to get complete reconstruction.

Section 3, the extrinsic calibration problem is formally presented. Section 4 gives a brief introduc-
tion of BA and ICP together with our previous work i.e., BAICP+ [3], in which BA and ICP are
heuristically combined. Section 5 analytically derives the expression for the weighted bi-objective
cost function for refinement of extrinsic calibration parameters. Section 6 presents an automated
iterative approach for camera pose estimation and estimation of the measurement noise parame-
ters. In Section 7 and Section 8, we analyze and illustrate the benefits of the proposed approach via
extensive experiments using synthetic and real data respectively. This is followed by a conclusion
in Section 9.

2. Related Work

In this section we review state-of-the-art techniques for extrinsic calibration in an RGB-D multi-
view system with a focus on the modality of data used. We also briefly overview the sensor fusion
approaches, based on bi-objective optimization, for solving the pair-wise pose estimation problem.

A considerable amount of research has been, and is still being, carried out in the domain of
RGB-D cameras based multi-view systems [6]. We are interested in analyzing the extrinsic cal-
ibration method used in such multi-view systems. Extrinsic calibration in a multi-view system
requires information about the same points (feature points), in 3D space, to be acquired in differ-
ent views. This information can be extracted from 2D or 3D camera acquisitions of objects with,
e.g., known textural and/or geometrical properties [8, 18, 4, 22, 28]. A planar checkerboard pattern
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first proposed by Zhang [40] is one of the most widely used objects for this purpose. Assuming
correct mapping of RGB and depth sensors, Maimone and Fuchs [20], and Yang et al. [38] make
use of such an object, with corners extracted from RGB and IR images respectively, to calibrate
their systems with the help of Bougouet’s calibration toolbox [10]. Berger et al. [7, 8], on the other
hand, try to improve accuracy by calibrating all RGB and depth sensors together by extracting
2D feature points from both RGB and IR images with the help of a special checkerboard pattern
consisting of diffuse and mirroring patches.

A major drawback of 2D only calibration approaches is their inability to tackle noise specific
to depth sensors which causes problems in alignment of 3D data from multiple cameras. Various
methods try to tackle this problem with the help of an explicit depth correction step based on com-
paring known and measured depths for each camera, e.g., [20, 18, 25, 11] etc. There are other
methods, such as [38], which add a final refinement step based on the ICP algorithm, using 3D
data only, which tries to mitigate the pose misalignment due to depth specific sensor noise. Penelle
et al. [29] propose to use only 3D points, corresponding to 2D feature points (from checkerboard)
extracted from RGB images, in the ICP based calibration scheme where initial estimates are pro-
vided via the RANSAC algorithm. Nakazawa et al. [25], on the other hand, use 2D feature points
in the BA algorithm for pose refinement but perform corrections using alignment of 3D data as
well. Miller et al. [22] propose to use 3D information related to foreground objects to obtain an
occlusion aware energy minimization scheme for auto-calibration. Deng et al. [35], use 3D feature
points observed at different locations in the scene to compute a smooth field of rigid transformation
instead of a single rigid transformation to align the measurements of two RGB-D cameras.

Dou and Fuchs [11], in their work on multi-view 3D reconstruction, proposed to combine 2D
and 3D information in a weighted bi-objective optimization scheme derived from their previous
work on pair-wise pose tracking for mono-view 3D reconstruction [12]. They propose to use
matching feature points extracted via Scale-Invariant Feature Transform (SIFT) from RGB images
with matching planes extracted from 3D/depth images in a weighted bi-objective BA scheme.
The weighting factor is selected empirically for all experiments. A similar approach is proposed
by Henry et al. [17], using a global ICP scheme to align 2D visual feature points and 3D/depth
measurements from multiple views but the weights are, again, selected empirically. Tykkala et
al. [37] use what they call an image based direct ICP approach for pairwise pose estimation. They
propose to compute the weighting factor via a heuristic measure using ratio of the median intensity
and the depth values of selected points. Michot et al. [21] propose to use a weighted bi-objective
BA scheme for the multi-sensor Simultaneous Localization and Matching (SLAM) problem. They
discuss the dependence of the weighting factor on the ratio of the noise variance for each sensor’s
measurement and formulate their bi-objective optimization by using a Mean Squared Error (MSE)
based cost function from individual sensors. They investigate three methods for automatic weight
computation namely L-Curve, L-Tangent Norm and cross validation with experiments showing
that the L-Curve based method performs better than the others.

This brief survey shows that most work done on extrinsic calibration of RGB-D multi-view
systems is based on calibration schemes which use 2D or 3D information independently. These
methods do not take into account the relative accuracy of 2D and 3D measurement in a systematic
manner to, e.g., give more importance to less noisy measurements.

In this work, we perform sensor fusion by formulating a weighted bi-objective optimization
scheme based on 2D and 3D cost functions for performing global refinement of poses in RGB-D
multi-view systems. We draw upon work in the Robotics domain [21, 37, 15, 12], where several
sensor modalities are exploited for pair-wise pose estimation. The proposed bi-objective optimiza-
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tion uses cost functions from both the BA and ICP algorithms, based on 2D and 3D measurements,
in a single unified cost function. The key to combining the two cost functions is the information
about noise in the 2D and 3D measurements which is reflected in the weighting factor. In the ab-
sence of this information we propose to use a simple approach which iteratively estimates the noise
parameters given the current camera poses and vice versa. We show the validity of the proposed
approach by achieving improved results in the experiments performed under different conditions.

3. Extrinsic Calibration Problem of Multiple RGB-D Sensors

Notation: The following notation will be adopted. Subscripts indicate camera or reference frame
indexes and superscripts indicate point indexes:

w : world reference frame.
A : matrix.
p : vector.
l,M : scalars.
tr(A) : trace of matrix A.
Aᵀ : transpose of matrix A.
ψ(·), : w to image plane projection.
p̂, T̂l: estimates of p and Tl, respectively.
In : identity matrix of dimension n× n.
0n : null vector of dimension n× 1.

In this section, we will formulate the extrinsic calibration problem for an RGB-D multi-view
system. Let us consider a multi-view system composed of N , intrinsically calibrated, RGB-D
cameras with intersecting FOVs, as shown in Fig. 1. Every RGB-D camera l, with l = 1, · · · , N ,
acquires an RGB image Cl and a 3D vertex map Vl, with associated known matrix of intrinsic
parameters Kl.

In order to correctly align the partial 3D reconstructions {Vl}, where l = 1, · · · , N , acquired
byN RGB-D cameras, it is necessary to accurately estimate their positions with respect to a global
reference frame, referred to as world and denoted by w, as shown in Fig. 1. Each camera’s relative
position with respect to w is defined by:

Tl =

(
Rl tl
0ᵀ
3 1

)
, (1)

where Tl ∈ SE(3) represents the rigid transformation, from camera l to w. The matrix Rl is
rotation matrix in SO(3) and tl ∈ R3 is translation vector. Therefore the same point p ∈ R3 in w

viewed by camera l as pl and by cameras k as pk can be related to the cameras’ reference frames
as follows:

Rlpl + tl = Rkpk + tk. (2)

Similarly, for a given point x ∈ R3 in w, its projection on each camera’s image plane results in 2D
pixel coordinates ql, such that:

ql = ψ (Kl,Tl,x) , ∀l, (3)

where ψ(.) is world to image plane projection function.
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Let us assume that all cameras are of resolution M . The color pixel positions in Cl may be
represented by the points qil ∈ [q1

l , · · · ,qMl ] where i ∈ {1, · · · ,M}. Similarly, the 3D coordinates
in Vl may be represented by points pkl ∈ [p1

l , · · · ,pMl ] where k ∈ {1, · · · ,M}.
The problem at hand may therefore be stated as follows. Given N RGB-D cameras in a multi-

view system with acquired RGB images {C1, · · · ,CN} and 3D vertex maps {V1, · · · ,VN}, we
assume knowledge of H ≤ M matching points in each camera’s RGB image plane referred to as
2D feature points and denoted as [q1

l , · · · ,qHl ]. Similarly, we assume knowledge of J ≤M match-
ing 3D points in each camera’s 3D vertex map called 3D feature points and denoted as [p1

l , · · · ,pJl ].
Moreover we assume knowledge of each camera’s intrinsic parameters, K = [K1, · · · ,KN ]. Us-
ing this information, we want to find the estimates of the parameters T = [T1, · · · ,TN ].

4. Background

In this section, we introduce the two pose refinement algorithms namely BA and ICP, from which
we derive the 2D and 3D cost functions used in our proposed bi-objective cost function. We also
introduce BAICP+ [3], in which we proposed a bi-objective pose refinement scheme, but, with
heuristically defined weight and scaling parameters.

4.1. Bundle Adjustment (BA)

For refinement of extrinsic calibration parameters using 2D feature points only, we use a cost
function from the Bundle Adjustment (BA) algorithm [36]. It has been the method of choice for
problems related to multi-view 3D reconstruction and pose refinement based on 2D feature points
extracted from RGB images [36]. Bundle Adjustment (BA) requires an initial estimate of the pose
parameters. Moreover, it also requires an estimate of 3D points i.e., [x1, · · · ,xH ], corresponding to
available 2D feature points [q1

l , · · · ,qHl ]. These estimates are then refined by computing the error
of projection of estimate of each 3D point xh, h = 1, · · · , H , corresponding to the 2D feature point
qhl to camera l via:

ahl (S
h
l ) = qhl − ψ

(
Kl,Tl,x

h
)
, (4)

where ahl (S
h
l ) ∈ R2 and Shl =

(
Tl,x

h
)

1. Therefore, the total BA cost to be minimized for the
refinement of estimates of each camera’s pose parameters together with the estimates of 3D points
corresponding to 2D feature points is given as:

VBA(S) =
N∑
l=1

tr(Aᵀ
l (Sl)Al(Sl)), (5)

where S = (T,X), Sl = (Tl,X), X = [x1, · · · ,xH ] and Al(Sl) = [a1
l (S

1
l ), · · · , aHl (SHl )].

4.2. Iterative Closest Point (ICP)

For refinement of the extrinsic calibration parameters using 3D feature points only, we use the cost
function from the global Iterative Closest Points (ICP) algorithm [9]. ICP algorithm has been the de
facto solution for pose refinement problems when only 3D feature points are available [27, 9]. ICP
algorithm also uses initial estimates of the pose parameters and minimizes the Euclidean distance

1BA can also refine the estimate of intrinsics Kl if required
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between corresponding 3D feature points from different views, such that:

bjl,k(Tl,Tk) = (Rlp
j
l + tl)− (Rkp

j
k + tk), (6)

where bjl,k(Tl,Tk) ∈ R3 and j ∈ [1, · · · , J ]. Therefore, the total ICP cost to be minimized for
refinement of each camera’s pose parameters is given as:

VICP (T) =
∑

1<l,k<N
l 6=k

tr(Bᵀ
l,k(Tl,Tk)Bl,k(Tl,Tk)), (7)

where Bl,k(Tl,Tk) = [b1
l,k(Tl,Tk), · · · ,bJl,k(Tl,Tk)].

4.3. BAICP+

In our previous work [3], we used the information provided by RGB-D cameras in a bi-objective
optimization scheme for extrinsic calibration refinement. It combines the BA and ICP cost func-
tions based on 2D and 3D feature points respectively resulting in the cost function for BAICP+:

VBAICP (S) =
(1− c)
a

VICP (T) +
sc

b
VBA(S), (8)

where c ∈ [0, 1] is the weighting factor and s = (avgDepth
avgFocal

)2 is a heuristic scaling factor, based
on the ratio of the average depth of points in x versus average focal length across all views. The
parameters a and b denote the total number of 3D point correspondences and 2D feature points
points across all views.

5. Bi-Objective Extrinsic Calibration

In this section, we present the bi-objective optimization for refinement of the extrinsic calibration
parameters in an RGB-D multi-view system. We use cost functions defined in the previous section
which use 2D and 3D feature points extracted from RGB images and vertex maps, respectively.

In this work, we propose to formally analyze and derive an expression for the cost function,
based on ML estimations, of the bi-objective optimization taking into account the noise affecting
both 2D and 3D measurement/feature points. We assume the presence of independent additive
Gaussian noise in each coordinate of the 3D feature points such that:

p̃jl ∼ N
(
pjl , σ

2
3DI3

)
, (9)

where p̃jl is the noisy 3D point and pjl is the noise free point. Similarly for 2D feature points we
have:

q̃hl ∼ N (qhl , σ
2
2DI2), (10)

where q̃hl is the noisy 2D point and qhl is the noise free point. This means that we have to use the
noisy 2D and 3D feature points to estimate the pose parameters. This leads to redefining the 3D
error function bjl,m(Tl,Tm), given in (6), such that it computes the error between noisy points p̃jl
and p̃ml projected to w, from camera l and m, using the pose parameters Tl and Tm, respectively.
Similarly the 2D error function ahl (S

h
l ), given in (4) where Shl = (Tl,xh), is redefined such that it
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computes the 2D error between back projection of the estimated 3D point xh to camera l, using Tl

and Kl, and the corresponding noisy 2D feature point q̃hl .
Now, we can define the distribution the 3D error bjl,m(Tl,Tm) is drawn from by considering

the noise free 3D points pjl and pjm in (2) such that [32]:

bjl,m(Tl, Tm) ∼ N
(
(Rlp

j
l + tl)− (Rmpjm + tm),Rlσ

2
3DI3R

ᵀ
l + Rmσ

2
3DI3R

ᵀ
m

)
= N (03, 2σ

2
3DI3). (11)

Similarly, considering the noise free 2D measurements in (3), we have ahl (S
h
l ) ∼ N (02, σ

2
2DI2).

It is clear from (11) that since bjl,m(Tl,Tm), which is based on the ICP algorithm, uses two noisy
3D feature points, hence, the variance of the corresponding distribution is two times the variance
of noise in each 3D feature point. This is in contrast to the variance of distribution corresponding
to ahl (S

h
l ), which is based on the BA algorithm and uses only one noisy 2D feature point [21].

Using bjl,m(Tl,Tm) and ahl (S
h
l ), we want to find the likelihood cost function, maximum of

which gives the Maximum Likelihood Estimate (MLE) of the parameters S = (T,x). Since the
MLE with Gaussian model is equivalent to the Least Squares Estimate (LSE) [30], we can directly
get:

Ŝ = arg min
S

∑
1<l,m<N
l 6=m

1

2σ2
3D

tr
(
Bᵀ
l,m(Tl,Tm)Bl,m(Tl,Tm)

)
+

N∑
l=1

1

σ2
2D

tr (Aᵀ
l (Sl)Al(Sl)) . (12)

Therefore, the total cost to be minimized is:

V (S) = VICP (T) + wVBA(S), (13)

where w =
2σ2

3D

σ2
2D

is the weighting factor. The cost function in (12) optimally combines information
from RGB and depth sensors, to be used in the pose refinement scheme, by taking into account the
noise levels in the 2D and 3D points. It formally defines the the relationship of measurement noise
in the 2D and 3D feature points with the weighting factor w. In case the assumption of noise with
same variances affecting all 2D and 3D points respectively, does not hold and information about the
noise variances affecting each point is available, it can be incorporated in the proposed framework.
Moreover, the use of the ICP based cost also allows the use of all the 3D points acquired by each
sensor (with the help of nearest neighbor correspondence) in the optimization scheme when only
2D feature points are available.

The cost function (13) is a non-linear function of the parameters S and we resort to numerical
search methods [24] to optimize the criterion. Please refer to Appendix 11 for further discussion.

6. Weighting Factor Estimation

In this section we discuss the automatic and simultaneous estimation of the weighting factor w in
(13), together with the camera poses in the absence of information regarding noise affecting both
the 2D and 3D measurements. We propose an approach which alternates between camera pose
estimation and estimation of the 2D and the 3D noise variances to arrive at a suitable solution.

In the previous section, the estimates of camera pose parameters and 3D points in w correspond-
ing to 2D feature points, were computed based on known 2D and 3D feature points and the noise
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Fig. 2. RGB-D Multi-View System (2 cameras) with field of view (FOV) of each camera. The
highlighted region represents overlapping FOVs of all cameras. The global reference frame w is
aligned with camera C1.

affecting them. We assumed the presence of Gaussian noise with zero mean and variances of σ2
2D

and σ2
3D in 2D and 3D measurements, respectively. These parameters, in turn, define the weighting

factor w which is instrumental in constructing the sensor fusion framework by optimally combin-
ing the 2D and 3D cost functions to estimate the camera poses. In real-world scenarios, however,
information about the noise affecting one or both sensor measurements is often unavailable. This
makes the computation of a correctw difficult. As mentioned in Section 2, researchers have tried to
estimate the optimal weighting factor, for their proposed bi-objective schemes, for solving mainly
the pair-wise pose estimation problem. The commonly used used methods range from using sim-
ple heuristic measures such as in the case of [37] to more complex methods, based on analysis of
trade-off between residuals of two cost functions and based on learning via cross-validation, such
as in the case of [21].

In this work, we propose to use a simple method for automatic estimation of the weighting
factor w which finds its basis in finding the MLE of noise variances, σ2

2D and σ2
3D, using the 2D

and 3D feature points together with the current estimates of camera poses and 3D points in Ŝ. The
MLE of the variance σ2

3D is given as [30]:

σ̂2
3D =

∑
1<l,m<N
l 6=m

tr(Bᵀ
l,m(Tl,Tm)Bl,m(Tl,Tm))

2a
, (14)

where a is the total number of 3D feature correspondences across all views. Similarly, the MLE of
the variance σ2

2D is computed via:

σ̂2
2D =

N∑
l=1

tr(Aᵀ
l (Sl)Al(Sl))

b
, (15)

where b is the total number of 2D feature points found across all views.
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(a) Features extracted from RGB image (b) Features extracted from depth image

Fig. 3. Features extracted from RGB and depth images of camera C1 in the multi-view system
composed of 2 cameras as shown in Fig. 2. The extracted feature points are also visible to camera
C2.

We follow an iterative approach whereby using 2D and 3D feature points and an initial estimate
Ŝ, the MLE estimates of noise variances and hence of w are obtained via (14) and (15). This initial
estimate of w is then used to find an updated estimate of S using (13) via non-linear optimization
which, in turn, is used to update the estimate of w. This process is repeated for a fixed number of
iterations until the estimates of S and w converge.

7. Experiments with Synthetic Data

In this section, we carry out a quantitative performance analysis of the proposed bi-objective re-
finement with a known and an unknown weighting factor.

7.1. Evaluation Methodology and Parameters

We use V-REP [1] to simulate 2 and 4 cameras based RGB-D multi-view systems, with overlapping
FOVs, as shown in Fig. 2 and Fig. 1, respectively. In both cases, the global reference frame w lies
in camera C1. We simulate a scene containing several objects such as chairs, a table, sofas etc. The
acquired noise-free data, in the form of RGB and depth images, is assumed to be perfectly mapped
in each camera’s RGB sensor’s reference frame with known intrinsics. After data acquisition,
random points, visible to all cameras, are extracted as feature points in both RGB and depth images
as shown in Fig. 3 (points on the floor are discarded). Features extracted from depth maps are
converted to the corresponding 3D points via known intrinsics.

In the next step, noise is added to the extracted 2D and 3D feature points. We assume the
presence of independent Gaussian noise in each coordinate of position of 2D feature points with
zero mean and standard deviation σ2D similar to [39]. The value of σ2D is varied between 0.2 to
1.8 pixels with a step size of 0.4 pixels. Depth sensor measurements in RGB-D cameras suffer
from different types of systematic and non-systematic errors as investigated in [33, 14]. For our
scheme we propose to counter, beforehand, the systematic errors in depth measurements of each
camera via a correction step, based on comparing known and measured depths [20, 25]. Therefore,
for all remaining errors we assume the presence of additive independent Gaussian noise in each
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(a) Rotation error (b) Relative translation error

Fig. 4. Error distribution of pose estimates for camera C2 in a two camera setup. 100 2D and
100 3D feature points are used. The following methods are compared: Init. - Initial pose obtained
using a DLT like approach (2D feature points and corresponding 3D points are used) [10, 16];
ICP - refinement of Init. using Iterative Closest Point (only 3D feature points are used); Our -
refinement of Init. using our bi-objective optimization with known w (2D and 3D feature points
are used); OurAuto - refinement of Init. using our bi-objective optimization with unknown w (2D
and 3D feature points are used); BA - refinement of Init. using Bundle adjustment (only 2D feature
points are used). Gaussian noise is added to the data, being the variance of the 3D noise fixed
(σ3D = 18mm), and the 2D noise σ2D is varied between 0.2 and 1.8 pixels (horizontal axes).

coordinate of 3D feature points in each view with zero mean and standard deviation σ3D. The
value of σ3D is varied between 6 to 30 mm with a step size of 6 mm to keep it in the range of errors
computed in [14]. We test the performance of the proposed scheme under various conditions by
varying the number of cameras and their positions as shown in Fig. 2 and Fig. ??, by varying the
noise magnitude in 2D and 3D feature points as explained above, and by varying the number of 2D
and 3D feature points. For each configuration, 50 noise realizations are generated. For each noise
realization, 2D feature points and their corresponding noisy 3D measurements from vertex maps
are used to initialize the pose estimates via a Direct Linear Transform (DLT) based approach [10,
16]. Using the initial pose estimates, optimization is carried out via the proposed scheme, with
known noise parameters as explained in Section 5, and with unknown noise parameters using the
automatic iterative estimation scheme as explained in Section 6 (required 3 iterations to converge
in most cases). Furthermore, optimization is also carried out via ICP algorithm using 3D feature
points only, and via BA algorithm using 2D feature points only.

Accuracy of the estimated poses is computed by comparison with the ground truth poses as
done in [39]. Two measures of accuracy are computed. First is the angular magnitude of residual
rotation computed via R̂T

l Rl, and second is the relative translation error which is computed via
‖t̂l−tl‖
‖tl‖

. The results of 50 realizations showing the accuracy, of each initialization and of each
refinement approach, for each configuration are plotted by using the function boxplot in MATLAB
as shown in Fig. 4 - 12. The horizontal line inside each box marks the median, the edges mark
the 25th and the 75th percentiles, the whisker edges show most extreme data points with outliers
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(a) Rotation error (b) Relative translation error

Fig. 5. Error distribution of pose estimates for camera C2 in a two camera setup. 100 2D and 100
3D feature points are used. Gaussian noise is added to the data, being the variance of the 2D noise
fixed (σ2D = 1pix), and the 3D noise σ3D is varied between 8mm and 30mm (horizontal axes).

plotted separately as red crosses.
The implementation of the proposed bi-objective optimization scheme and ICP is based on

the non-linear optimization via Levenberg Marquardt (LM) algorithm [23], while the implemen-
tation of BA is based on a sparse variant of the LM algorithm called Sparse Bundle Adjustment
(SBA) [31, 36].

7.2. System Composed of Two Sensors

This section compares the performance of the proposed bi-objective optimization scheme, with
known and unknown weighting factor, ICP and BA for refinement of camera pose parameters in a
two camera setup shown in Fig. 2. The pose of camera C2 with respect to camera C1 is estimated.
After initialization, pose refinement is carried out using the four refinement methods and results
are plotted in Fig. 4 - 8.

7.2.1. Varying Noise Levels: In this experiment, the extrinsic calibration is carried out using
100 2D feature points and 100 3D feature points. Fig. 4 shows the error distribution for fixed 3D
noise and varying 2D noise, while Fig. 5 shows the distribution in case the 2D noise is kept fixed,
and the 3D noise is varied.

As expected, the accuracy of the extrinsic calibration decreases with increasing noise levels.
Also, all pose refinement approaches are able to improve the initial pose estimates, explained by
the fact that only inlier data points are generated (no wrong matching feature points are included).
A careful analysis of the results shows that our bi-objective optimization scheme with known w,
which uses simultaneously the 2D and 3D data, provides better pose estimations when compared
to ICP and BA, where only 3D feature points and 2D feature points are used, respectively. The
weighting factor based on the noise variance information in (13) automatically gives prominence
to more reliable data, decreasing the impact of the other sensor modality. Moreover, it shows that
our proposed automatic iterative estimation scheme used in the absence of information regarding
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(a) Rotation error (b) Relative translation error

Fig. 6. Error distribution of pose estimates for camera C2 in a two camera setup. Gaussian noise
is added to the data (σ2D = 1pix, σ3D = 18mm), 250 3D feature points and a varying number of
2D feature points (horizontal axes) is considered.

(a) Rotation error (b) Relative translation error

Fig. 7. Error distribution of pose estimates for camera C2 in a two camera setup. Gaussian noise
is added to the data (σ2D = 1pix),σ3D = 18mm), 250 2D feature points and a varying number of
3D feature points (horizontal axes) is considered.

noise parameters, and hence unknown w, is robust and also more accurate when compared to BA
and ICP, and in most cases nearly as accurate as the method with known w.

7.2.2. Varying Data Ratio: In this experiment, the extrinsic calibration is carried out using
fixed noise variance (σ2D = 1pix, σ3D = 18mm). Fig. 6 shows the error distribution for a fixed
number of 3D points and a varying number of 2D points, while Fig. 7 shows the distribution in

13



(a) Mean rotation error (b) Mean relative translation error

Fig. 8. Mean error distribution, of pose estimates for cameras C2, C3 and C4. in a four camera
setup. 100 2D and 100 3D feature points are used. Gaussian noise is added to the data, being the
variance of the 3D noise fixed (σ3D = 18mm), and the 2D noise σ2D is varied between 0.2 and 1.8
pixels (horizontal axes).

case the 2D points are kept fixed, and the number of 3D points is varied. Since the initial poses
are obtained by using 2D feature points and their corresponding 3D points, the initialization varies
in Fig. 6 as number of 2D feature points vary but stays approximately the same in Fig. 7 as the
number of 2D feature points remain fixed. The conclusions drawn in the previous section regarding
improved accuracy of the proposed approaches hold, and these results show that the proposed
scheme generalizes for different ratios between the number of 2D and 3D points. Increasing the
number of data points of one of the sensor modalities always improves the extrinsic calibration
accuracy for the algorithms using those modalities. Moreover, the results in Fig. 4, Fig. 5, Fig. 6,
and Fig. 7 show the increased robustness of the proposed approach and ICP to bad initialization as
compared to BA.

7.3. System Composed of Four Sensors

This section compares performance of the proposed bi-objective optimization scheme with ICP
and BA for refinement of camera pose parameters in a four camera setup shown in Fig. ??. The
poses of cameras C2, C3 and C4 are aligned with camera C1. After initialization, pose refinement
is carried out using the four refinement methods and results are plotted.

7.3.1. Varying Noise Levels: In this experiment, the extrinsic calibration is carried out using
100 2D feature points and 100 3D feature points. Fig. 8 shows the mean error distribution for
computed poses of all cameras, for fixed 3D noise and varying 2D noise. Fig. 9 shows the mean
distribution in case the 2D noise is fixed. These results again show the improved performance of
the proposed approaches due to the use of both 2D and 3D information together, with the help of
correct weighting factor. The performance of all methods gets affected as the noise in 2D and 3D
data increases. These results also show improvement in performance of all methods as compared
to the multi-view system composed of two cameras due to increased number of 2D and 3D points
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(a) Mean Rotation Error (b) Mean Relative Translation Error

Fig. 9. Mean Error distribution, of pose estimates for cameras C2, C3 and C4. in a four camera
setup. 100 2D and 100 3D feature points are used. Gaussian noise is added to the data, being the
variance of the 2D noise fixed (σ2D = 1pix), and the 3D noise σ3D is varied between 8mm and
30mm (horizontal axes).

available. Moreover, these results show that the proposed scheme generalizes for different numbers
of cameras used in the multi-view system.

We also notice an interesting behavior where in some cases the proposed automatic iterative
scheme based on alternative computation of camera poses and w gives better results compared to
the scheme with known w. Apart from increase in the number of measurements per feature point,
a reason for this can be that for the case of known w we are assuming that for all the 2D and
3D feature points the variances of noise affecting them are the same and constant; but depending
on a particular realization, the noise will be a bit higher or lower than the fixed value. Therefore
the automatic procedure which tries to compute the variances directly from the noisy data is, in
many cases, better able to capture the noise characteristics. For BA, Fig. 9 shows a decrease in its
performance as the 3D noise increases. The reason being that apart from its dependence on the
initial camera poses, the initial guess of the 3D points corresponding to 2D feature points also gets
worse due to increased 3D noise.

In Fig. 10, we compare the mean error distribution with error distributions of individual cameras
for the single case of 2D and 3D noise variance (σ2D = 1pix, σ3D = 18mm). These results show
that while the initial guess for camera C3 is comparatively worse, the performance of optimization
schemes is comparable across all views.

7.3.2. Varying Number of Points: In this experiment, the extrinsic calibration is carried out
using a fixed noise variance (σ2D = 1pix, σ3D = 18mm). Fig. 11 shows the mean error distribution
for a fixed number of 3D points and a varying number of 2D points. Fig. 12, on the other hand,
shows the mean distribution in case the 2D points are kept fixed, and the number of 3D points are
varied. Here, again, the conclusions drawn in the previous sections hold, while also showing that
increasing the number of data points of one of the sensor modalities always improves the extrinsic
calibration accuracy for the methods using those modalities.
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(a) Rotation Error (b) Relative Translation Error

Fig. 10. Comparison of error distributions, of the extrinsic calibration of a four camera setup,
using 100 2D and 100 3D feature points. The results are based on mean error distribution and
error distribution for camera C2, camera C3 and camera C4. Gaussian noise is added to the data,
being the variance of the both 2D noise and 3D noise fixed (σ2D = 1pix, σ3D = 18mm).

(a) Mean rotation error (b) Mean relative translation error

Fig. 11. Mean error distribution, of pose estimates for cameras C2, C3 and C4. in a four camera
setup. Gaussian noise is added to the data (σ2D = 1pix), σ3D = 18mm), 250 3D feature points
and a varying number of 2D feature points (horizontal axes) is considered.

8. Experiments with Real Data

In this section, we carry out a qualitative performance analysis of the proposed bi-objective refine-
ment scheme using a real setup. Our setup consists of 4 Asus Xtion Pro Live cameras [2] with
their positions shown in Fig. 13. Each camera acquires an RGB image and a depth image which
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(a) Mean rotation error (b) Mean relative translation Error

Fig. 12. Mean error distribution, of pose estimates for cameras C2, C3 and C4. in a four camera
setup. Gaussian noise is added to the data (σ2D = 1pix), σ3D = 18mm), 250 2D feature points
and a varying number of 3D feature points (horizontal axes) is considered.

is mapped to the RGB image. The first step is to perform intrinsic calibration to find the intrin-
sic and distortion parameters for each camera. For this purpose, we use the method proposed by
Zhang [40] which uses 2D corners extracted from RGB images of a checkerboard pattern viewed
at different poses to compute these parameters [10]. As mentioned before, the measurements of
these RGB-D cameras suffer from inherent depth bias. Therefore, we perform a depth bias cor-
rection procedure, similar to the one used in [25], for each camera separately. This procedure
requires placing the camera at known distances away from an object (a plane in our case). Using
known and measured depth values, we estimate the coefficients of a polynomial which computes
the depth correction as a function of measured depth value. These coefficients are unique to each
camera and, hence, are used to correct the depth measurements acquired by that camera.

After intrinsic calibration and depth bias correction, the next step is to perform the extrinsic
calibration using the proposed bi-objective scheme. We first need to extract matching 2D and 3D
feature points using RGB and depth images acquired by all 4 cameras. We again use different views
of a (two-sided) planar checkerboard pattern as shown in Fig. 13 and extract matching corners
from RGB images to be used as 2D feature points and use the corresponding depth values from
depth images to get the 3D feature points. The 3D feature points are filtered via a plane detection
approach based on RANSAC algorithm to remove outliers if any exist. For this experiment, only 59
2D and 3D feature points were used. The initial pose estimates are generated in the same manner as
explained in Section 7, via a Direct Linear Transform (DLT) based approach [10, 16]. These initial
poses are then refined via the proposed iterative pose estimation and weight estimation approach
explained in Section 6, BA and ICP. Once the refined poses are obtained, they can be used to
produce full, textured, 3D reconstructions using data acquired by all 4 cameras as shown in Fig. 14.
A qualitative comparison of 3D reconstructions obtained via different calibration methods is shown
in Fig. 15. It can be seen that the partial reconstructions are better aligned using the proposed
method, which means that the quality of the extrinsic calibration is superior when compared to the
other approaches. Note that we are only showing the alignment of the partial point clouds, and no
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Fig. 13. Multi-view system consisting of 4 Asus Xtion Pro Live Cameras C1, C2, C3 and C4
mounted on a ceiling lift. This system is used to acquire measurements of a real scene. A two-sided
planar checkerboard calibration pattern used to extract feature points is also shown.

post-processing step such as smoothing or meshing are applied. We chose to do so to better assess,
visually, the accuracy of the extrinsic calibration.

9. Conclusion

In this paper we have proposed a framework for RGB and depth sensor fusion based on bi-
objective optimization, for refinement of extrinsic calibration in RGB-D multi-view systems. Our
bi-objective optimization scheme makes use of a cost function from the BA algorithm for 2D fea-
ture points extracted from RGB images and a cost function from the ICP algorithm for 3D feature
points extracted from depth images. We analytically derive an expression for the weighted bi-
objective cost function. It also analytically relates the weighing factor to the noise in the 2D and
3D measurements, thus making the cost function free of any parameter that needs to be tuned.
In case the information regarding measurement noise in 2D and 3D data is not available, we pro-
pose an iterative scheme which alternates between estimation of noise parameters assuming known
poses, and estimation of camera poses assuming known noise parameters. Thus, it enables us to
automatically compute the correct weighting factor when information about measurement noise is
not available. A thorough investigation of the performance of the proposed approach for both syn-
thetic and real data showed improved accuracy compared to refinement schemes which only use
2D or 3D information, and comparative performance of proposed approaches with known and un-
known noise parameters. These experiments also showed the invariance of the proposed approach
under various conditions which include varying the number and position of cameras, varying the
2D and 3D noise and varying the number of the 2D and 3D feature points.
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Fig. 14. 3D reconstruction of a human using a real scene acquired from the multi-view system
shown in Fig. 13. Acquisition: Each of the 4 cameras acquire an RGB image and a depth image.
3D Reconstruction: Point clouds based 3D reconstruction using pose estimates refined by the
proposed bi-objective scheme with the help of automated weighting.

References

[1] V-REP http://www.coppeliarobotics.com/. URL http://www.
primesense.com/

[2] Xtion PRO LIVE https://www.asus.com/3D-Sensor/Xtion_PRO_LIVE/.
URL https://www.asus.com/3D-Sensor/Xtion_PRO_LIVE/

[3] Afzal, H., Aouada, D., Fofi, D., Mirbach, B., Ottersten, B.: RGB-D Multi-view System
Calibration for Full 3D Scene Reconstruction. In: Pattern Recognition (ICPR), 2014 22nd
International Conference on, pp. 2459–2464 (2014). DOI 10.1109/ICPR.2014.425

[4] Alexiadis, D., Kordelas, G., Apostolakis, K., Agapito, J., Vegas, J., Izquierdo, E., Daras, P.:
Reconstruction for 3D immersive virtual environments. In: Image Analysis for Multimedia
Interactive Services (WIAMIS), 2012 13th International Workshop on, pp. 1–4 (2012). DOI
10.1109/WIAMIS.2012.6226760

[5] Amplianitis, K., Adduci, M., Reulke, R.: Calibration of a Multiple Stereo and Rgb-D Camera
System for 3d Human Tracking. ISPRS - International Archives of the Photogrammetry, Re-
mote Sensing and Spatial Information Sciences (1), 7–14 (2014). DOI 10.5194/isprsarchives-
XL-3-W1-7-2014

[6] Berger, K.: A State of the Art Report on Multiple RGB-D Sensor Research and on Publicly
Available RGB-D Datasets. In: L. Shao, J. Han, P. Kohli, Z. Zhang (eds.) Computer Vi-
sion and Machine Learning with RGB-D Sensors, Advances in Computer Vision and Pattern
Recognition, pp. 27–44. Springer International Publishing (2014). DOI 10.1007/978-3-319-
08651-4_2. URL http://dx.doi.org/10.1007/978-3-319-08651-4_2

19

http://www.coppeliarobotics.com/
http://www.primesense.com/
http://www.primesense.com/
https://www.asus.com/3D-Sensor/Xtion_PRO_LIVE/
https://www.asus.com/3D-Sensor/Xtion_PRO_LIVE/
http://dx.doi.org/10.1007/978-3-319-08651-4_2


Fig. 15. Comparison of 3D reconstructions of a human using a real scene as shown in Fig. 13,
via different calibration methods namely Init., ICP, BA and OurAuto described in Fig. 5. The ac-
quisitions from cameras C1, C2, C3 and C4 are assigned the colors red, green, blue and magenta,
respectively. Misalignments are highlighted via black boxes. Top Row shows side view of the 3D
reconstruction and misalignment of views in the results of Init. and BA can be seen clearly, while
Bottom Row shows the frontal view and misalignment of views in the results of Init., ICP and BA
are visible. It can also be seen that OurAuto gives better results compared to the other methods.

[7] Berger, K., Ruhl, K., Albers, M., Schroder, Y., Scholz, A., Kokemuller, J., Guthe, S., Magnor,
M.: The capturing of turbulent gas flows using multiple Kinects. In: Computer Vision Work-
shops (ICCV Workshops), 2011 IEEE International Conference on, pp. 1108–1113 (2011).
DOI 10.1109/ICCVW.2011.6130374

[8] Berger, K., Ruhl, K., Brümmer, C., Schröder, Y., Scholz, A., Magnor, M.: Markerless Motion
Capture using multiple Color-Depth Sensors. In: Proc. Vision, Modeling and Visualization
(VMV) 2011, pp. 317–324 (2011)

[9] Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal.
Mach. Intell. 14(2)

[10] Bougouet, J.: http://www.vision.caltech.edu/bouguetj/calib doc/
(2007)

[11] Dou, M., Fuchs, H.: Temporally enhanced 3D capture of room-sized dynamic scenes with

20

http://www.vision.caltech.edu/bouguetj/calib doc/


commodity depth cameras. In: Virtual Reality (VR), 2014 iEEE, pp. 39–44 (2014). DOI
10.1109/VR.2014.6802048

[12] Dou, M., Guan, L., Frahm, J., Fuchs, H.: Exploring High-Level Plane Primitives for Indoor
3D Reconstruction with a Hand-held RGB-D Camera. In: Computer Vision - ACCV 2012
Workshops, ACCV 2012 International Workshops, Daejeon, Korea, November 5-6, 2012,
Revised Selected Papers, Part II, pp. 94–108 (2012). DOI 10.1007/978-3-642-37484-5_9.
URL http://dx.doi.org/10.1007/978-3-642-37484-5_9

[13] Dou, M., Taylor, J., Fuchs, H., Fitzgibbon, A., Izadi, S.: 3D Scanning Deformable Objects
With a Single RGBD Sensor (2015)

[14] Fankhauser, P., Bloesch, M., Rodriguez, D., , Kaestner, R., Hutter, M., Siegwart, R.: Kinect
v2 for Mobile Robot Navigation: Evaluation and Modeling. In: IEEE International Confer-
ence on Advanced Robotics (ICAR) (2015)

[15] Han, T., Xu, C., Loxton, R., Xie, L.: Bi-objective optimization for robust RGB-D visual
odometry. In: Control and Decision Conference (CCDC), 2015 27th Chinese, pp. 1837–
1844 (2015). DOI 10.1109/CCDC.2015.7162218

[16] Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, second edn. Cam-
bridge University Press, ISBN: 0521540518 (2004)

[17] Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: Using kinect-style
depth cameras for dense 3D modeling of indoor environments. International Journal of
Robotics Research (IJRR) 31(5), 647–663 (2012)

[18] Kainz, B., Hauswiesner, S., Reitmayr, G., Steinberger, M., Grasset, R., Gruber, L., Veas,
E., Kalkofen, D., Seichter, H., Schmalstieg, D.: OmniKinect: real-time dense volumetric
data acquisition and applications. In: Proceedings of the 18th ACM symposium on Virtual
reality software and technology, VRST ’12, pp. 25–32. ACM, New York, NY, USA (2012).
DOI 10.1145/2407336.2407342. URL http://doi.acm.org/10.1145/2407336.
2407342

[19] Kuster, C., Popa, T., Zach, C., Gotsman, C., Gross, M.: FreeCam: A Hybrid Camera System
for Interactive Free-Viewpoint Video. In: Proceedings of Vision, Modeling, and Visualization
(VMV) (2011)

[20] Maimone, A., Fuchs, H.: Encumbrance-free telepresence system with real-time 3D capture
and display using commodity depth cameras. In: Mixed and Augmented Reality (ISMAR),
2011 10th IEEE International Symposium on, pp. 137–146 (Oct.). DOI 10.1109/ISMAR.
2011.6092379

[21] Michot, J., Bartoli, A., Gaspard, F.: Bi-Objective Bundle Adjustment With Application to
Multi-Sensor SLAM. In: 3DPVT’10 – Int’l Symp. on 3D Data Processing, Visualization and
Transmission. Paris, France (2010)

[22] Miller, S., Teichman, A., Thrun, S.: Unsupervised extrinsic calibration of depth sensors in
dynamic scenes. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference on, pp. 2695–2702 (2013). DOI 10.1109/IROS.2013.6696737

21

http://dx.doi.org/10.1007/978-3-642-37484-5_9
http://doi.acm.org/10.1145/2407336.2407342
http://doi.acm.org/10.1145/2407336.2407342


[23] Moré, J.: The Levenberg-Marquardt algorithm: Implementation and theory. In: G.A. Watson
(ed.) Numerical Analysis, Lecture Notes in Mathematics, vol. 630, chap. 10, pp. 105–116–
116. Springer Berlin / Heidelberg (1978). DOI 10.1007/bfb0067700. URL http://dx.
doi.org/10.1007/bfb0067700

[24] Myung, I.J.: Tutorial on maximum likelihood estimation. Journal of Mathematical Psychol-
ogy 47(1), 90–100 (2003)

[25] Nakazawa, M., Mitsugami, I., Makihara, Y., Nakajima, H., Habe, H., Yamazoe, H., Yagi, Y.:
Dynamic scene reconstruction using asynchronous multiple Kinects. In: Pattern Recognition
(ICPR), 2012 21st International Conference on, pp. 469–472 (2012)

[26] Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohli, P.,
Shotton, J., Hodges, S., Fitzgibbon, A.: KinectFusion: Real-time Dense Surface Mapping
and Tracking. In: Proceedings of the 2011 10th IEEE International Symposium on Mixed
and Augmented Reality, ISMAR ’11, pp. 127–136. IEEE Computer Society, Washington,
DC, USA (2011). DOI 10.1109/ISMAR.2011.6092378. URL http://dx.doi.org/
10.1109/ISMAR.2011.6092378

[27] Nüchter, A., Elseberg, J., Schneider, P., Paulus, D.: Study of parameterizations for the rigid
body transformations of the scan registration problem. Computer Vision and Image Under-
standing 114(8), 963–980 (2010)

[28] Palasek, P., Yang, H., Xu, Z., Hajimirza, N., Izquierdo, E., Patras, I.: A flexible calibration
method of multiple Kinects for 3D human reconstruction. In: Multimedia Expo Workshops
(ICMEW), 2015 IEEE International Conference on, pp. 1–4 (2015). DOI 10.1109/ICMEW.
2015.7169829

[29] Penelle, B., Schenkel, A., Warzee, N.: Geometrical 3D reconstruction using real-time RGB-
D cameras. In: 3D Imaging (IC3D), 2011 International Conference on, pp. 1–8 (2011).
DOI 10.1109/IC3D.2011.6584368

[30] Prince, S.J.D.: Computer Vision: Models, Learning, and Inference, 1st edn. Cambridge
University Press, New York, NY, USA (2012)

[31] Rabaud, V.: Vincent’s Structure from Motion Toolbox. http://github.com/
vrabaud/sfm_toolbox

[32] Segal, A., Haehnel, D., Thrun, S.: Generalized-ICP. In: Proceedings of Robotics: Science
and Systems. Seattle, USA (2009)

[33] Smisek, J., Jancosek, M., Pajdla, T.: 3D with Kinect. In: ICCV Workshops, pp.
1154–1160. IEEE (2011). URL http://dblp.uni-trier.de/db/conf/iccvw/
iccvw2011.html#SmisekJP11

[34] Sturm, J., Bylow, E., Kahl, F., Cremers, D.: CopyMe3D: Scanning and printing persons in
3D. In: German Conference on Pattern Recognition (GCPR). Saarbrücken, Germany (2013)

[35] Teng, D., Bazin, J.C., Martin, T., Kuster, C., Cai, J., Popa, T., Gross, M.: Registration of
Multiple RGBD Cameras via Local Rigid Transformations. IEEE International Conference
on Multimedia & Expo (2014)

22

http://dx.doi.org/10.1007/bfb0067700
http://dx.doi.org/10.1007/bfb0067700
http://dx.doi.org/10.1109/ISMAR.2011.6092378
http://dx.doi.org/10.1109/ISMAR.2011.6092378
http://github.com/vrabaud/sfm_toolbox
http://github.com/vrabaud/sfm_toolbox
http://dblp.uni-trier.de/db/conf/iccvw/iccvw2011.html#SmisekJP11
http://dblp.uni-trier.de/db/conf/iccvw/iccvw2011.html#SmisekJP11


[36] Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle Adjustment – A Modern
Synthesis. In: VISION ALGORITHMS: THEORY AND PRACTICE, LNCS, pp. 298–375.
Springer Verlag (2000)

[37] Tykkala, T., Audras, C., Comport, A.: Direct Iterative Closest Point for real-time visual
odometry. In: Computer Vision Workshops (ICCV Workshops), 2011 IEEE International
Conference on, pp. 2050–2056 (2011). DOI 10.1109/ICCVW.2011.6130500

[38] Yang, R., Chan, Y.H., Gong, R., Nguyen, M., Strozzi, A., Delmas, P., Gimel’farb, G., Ababou,
R.: Multi-Kinect scene reconstruction: Calibration and depth inconsistencies. In: Image and
Vision Computing New Zealand (IVCNZ), 2013 28th International Conference of, pp. 47–52
(2013). DOI 10.1109/IVCNZ.2013.6726991

[39] Zhang, Q.: Extrinsic calibration of a camera and laser range finder. In: In IEEE International
Conference on Intelligent Robots and Systems (IROS, p. 2004 (2004)

[40] Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In:
Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on,
vol. 1, pp. 666–673 vol.1 (1999). DOI 10.1109/ICCV.1999.791289

11. Appendix

11.1. Non-linear Optimization for Proposed Bi-Objective Framework

Due to the non-linear dependence of cost function in (13) on parameters in S, the MLE Ŝ is to
be computed via a numerical scheme based on non-linear optimization. In this scheme at every
iteration a small change is introduced in the current set of parameters leading to comparatively
improved performance or lower residual [24]. First step in this scheme is to linearize bjl,m(Tl,Tm)

and ahl (S
h
l ) about current estimate Ŝ assuming very small error ∆S using Taylor expansion to get:

bjl,m(Tl,Tm) ≈ bjl,m(T̂l, T̂m) + Jbj
l,m

∆S, (16)

and:

ahl (S
h
l ) ≈ ahl (Ŝ

h
l ) + Jah

l
∆S, (17)

where Jbj
l,m

and Jah
l

are Jacobians of bjl,m(Tl,Tm) and ahl (S
h
l ), with respect to S, respectively.

Replacing (16) and (17) in (13) and concatenating bjl,m, ahl , ∆S and corresponding Jacobians we
have:

V (S) ≈ (B + JB∆S)T (B + JB∆S)+

w(A + JA∆S)T (A + JA∆S)

= (BTB + 2∆STJTBB + ∆STJTBJB∆S)

+ w(ATA + 2∆STJTAA + ∆STJTAJA∆S). (18)

After that we take the derivative of V (S) with respect to S and equate it to zero to get:

∂V (S)

∂S
≈JTBB + JTBJB∆S + wJTAA + wJTAJA∆S = 0. (19)
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Rearranging (19), we get the parameter update rule as:

∆S = −(JTBJB + wJTAJA)−1(JTBB + wJTAA). (20)

We can also rearrange (20) according to Levenberg-Marquardt LM [23] algorithm get the parame-
ter update rule as:

((
1

2σ2
3D

JTBJB +
1

σ2
2D

JTAJA)+

λdiag(
1

2σ2
3D

JTBJB +
1

σ2
2D

JTAJA))∆S

= −(
1

2σ2
3D

JTBB +
1

σ2
2D

JTAA), (21)

where λ is the damping factor.
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