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Cumulative learning enables convolutional neural
network representations for small mass
spectrometry data classification

Khawla Seddiki2, Philippe Saudemont?, Frédéric Precioso?, Nina Ogrinc® 2, Maxence Wisztorski® 2,

Michel Salzet?, Isabelle Fournier® 2* & Arnaud Droit® '®

Rapid and accurate clinical diagnosis remains challenging. A component of diagnosis tool
development is the design of effective classification models with Mass spectrometry (MS)
data. Some Machine Learning approaches have been investigated but these models require
time-consuming preprocessing steps to remove artifacts, making them unsuitable for rapid
analysis. Convolutional Neural Networks (CNNs) have been found to perform well under
such circumstances since they can learn representations from raw data. However, their
effectiveness decreases when the number of available training samples is small, which is a
common situation in medicine. In this work, we investigate transfer learning on 1D-CNNs,
then we develop a cumulative learning method when transfer learning is not powerful
enough. We propose to train the same model through several classification tasks over various
small datasets to accumulate knowledge in the resulting representation. By using rat brain as
the initial training dataset, a cumulative learning approach can have a classification accuracy
exceeding 98% for 1D clinical MS-data. We show the use of cumulative learning using
datasets generated in different biological contexts, on different organisms, and acquired by
different instruments. Here we show a promising strategy for improving MS data classifi-
cation accuracy when only small numbers of samples are available.
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ccurate and rapid identification of cancer tissues has a

crucial impact on medical decisions. Conventional histo-

pathological examinations are resource intensive and
time-consuming, requiring 30-45 min per sample to be processed
and the presence of skilled pathologists!. A similar need exists in
the treatment of infections, where accurate identification of
microorganisms responsible for human infection is important to
ensure the most appropriate and effective treatment for a patient,
in the shortest possible time2. In this context, it is essential to use
methods which provide accurate identification of the analyzed
samples. Mass spectrometry (MS) is particularly useful for such
purposes since it provides non-targeted molecular information on
the millisecond time scales. Its sensitivity, reproducibility, and
suitability for analyzing complex mixtures are well established.
New analysis methods of crude samples are making diagnosis
even faster and easier. Simultaneously, the development of MS-
based bacterial biotyping illustrates the value of MS in rapid
clinical applications?.

For cancer-related diagnosis and microbial pathogen identifi-
cations, many popular classification machine learning (ML)
models, such as support vector machine (SVM)%, random forest
(RF)?, and linear discriminant analysis (LDA)® have been already
used and compared’-10, These ML methods are applied to pre-
processed MS data, but differences in preprocessing pose a major
challenge to any comparison analysis. Classification model design
for rapid applications thus becomes a highly complex task, since
it must follow a workflow involving several interdependent pre-
processing steps. Data preprocessing is used to improve the
robustness of subsequent multivariate analysis and to increase
data interpretability by correcting issues associated with MS sig-
nal acquisition!!. Preprocessing quality is important, and if
inadequate, can lead to biased or biologically irrelevant conclu-
sions!2, Several factors, often related to the experimental condi-
tions including sample heterogeneity, sample processing, MS
analysis (e.g. electronic noise, instrument calibration stability,
temperature stability, etc.), and other experimental conditions can
contribute to spectral variations including shifts in peak location,
fluctuating intensities, and signal distortion!3. In other words,
peaks corresponding to the same molecule in different samples
can be shifted and their signal intensity can vary from one
spectrum to another!%15. Signals of lower intensity are in general
more affected by such variations because they can become buried
in the baseline noise in certain cases. Since these include many
markers of interest, this may lead to a loss of important biological
information!®. Corrections on peak position variations are
required in order to align different spectra properly and thus
ensure consistency in downstream analysis. This alignment con-
stitutes a significant hindrance to achieving reproducibility
especially in today’s complex datasets, and remains a challenging
problem since it is neither linear nor uniform across the whole
collection of MS spectral®. In addition to peak shifts, other
spectral fluctuations must be corrected in order to minimize
background, serious intensity distortion due to noise and baseline
drift caused by instrument electronics, ion saturation, or con-
taminants within the samples!3. To overcome batch effects,
peak intensities must be equalized to reduce overall signal
variation between acquisitions using intensity calibration or
normalization!718. Log-intensity transformation is one of the
methods most commonly used to attenuate large differences in
variability differences between peaks across the spectrum!s.
Another preprocessing step that is crucial to subsequent analysis
is the peak detection, also known as peak picking. This consists of
identifying informative peaks that correspond to a true biological
signal by finding all local maxima in the spectrum, it corresponds
to the conversion of spectra from a profile to a centroid mode!®.
Finally, the curse of dimensionality, must be avoided. This is a

well-known problem that arises when processing MS data having
a large number of dimensions, and is lessened using data
dimensionality reduction techniques to remove irrelevant or
redundant features?0. Various MS classification workflows have
been developed so far, but there are no golden standards for the
optimal choice of parameters at each individual step, for their
quality evaluation or for their best combination?!. It has been
shown that the choice of preprocessing parameters for a specific
dataset can decrease the performance of the classification model
and that preprocessing may be effective only for that dataset and
not for any new others generated from different instruments or
with different settings?2. A standard pipeline for MS classification
using SVM, RF, or LDA must include these preprocessing steps
and must consider aforementioned constraints, which makes
such algorithms unsuitable for rapid analysis.

Convolutional neural networks (CNNs) are one of the most
successful deep learning architectures designed to learn repre-
sentation from an input signal with different levels of abstrac-
tion23, A typical CNN includes convolutional layers which learn
spatially invariant features from input (i.e. invariance to trans-
lation, invariance to scale, etc.) stored in feature maps, pooling
operators that extract the most prominent structures, and fully
connected layers for classification?*. To address rapid clinical MS
data classification tasks, CNNs represent an attractive approach
offering various advantages over conventional ML algorithms.
These include significantly higher accuracy, effectiveness on raw
spectra even in presence of signal artifacts and hence discards the
need for data preprocessing before classification?. Besides the
integration of features extraction with classification and without a
feature-engineering step since all layers are trained together.
Finally, the exploitation of spatially stable local correlations by
enforcing the local connectivity patterns, where the output of
each layer of these networks is directly related to small regions of
the input spectrum. However, CNNs classification efficiency
trained using a small number of spectra drops rapidly?>. Unfor-
tunately, many real-world applications do not have access to big
training sets because of data scarcity, or because of the difficulty
and expense in labeling data2®. In medicine, it is often the case
that some samples are only accessible in limited amounts, espe-
cially for rare diseases (e.g. biopsies). Therefore the size of clinical
datasets is constrained by data availability and by the experiments
complexity and high cost?’. For such applications, transfer
learning has emerged as an interesting approach?8. This techni-
que is applicable to small datasets and therefore requires fewer
computational resources while increasing the classification accu-
racy as compared to CNNs models built from scratch. Transfer
learning is a two-step process. An accurate data representation is
first learned by training a model on a dataset containing a large
amount of annotated data covering many categories. This
representation (i.e. its model weights) is then reused to build a
new model based on a smaller annotated dataset containing fewer
categories, by training only the final decision layer(s) or by also
fine-tuning the whole model with the reduced set of categories.
Transfer learning has proven useful in many engineering areas
including computer vision, robotics, image classification, and
natural language processing (NLP) applications?®. Adapting this
principle to MS data, basic similarities between spectral profiles
gathered from different datasets would be used to address new
classification problems. Most of MS classification works based on
CNNs focus on MS 2D-imaging analysis’®3!. Thus Transfer
learning has yet to be explored for 1D spectral data, since no 1D
spectral dataset as large as the largest 2D image dataset, Ima-
geNet32, is available. Only few studies of input signal classification
or regression using 1D-CNNs with vibrational spectroscopy
data33, near-infrared (NIR) spectroscopy data34-3¢ or Raman
spectroscopy data®® have been published. As far as we know,
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Table 1 Overall accuracies of SpiderMass spectra classification using three CNN architectures.

Datasets # classes variant_Lecun variant_LeNet variant_VGG9
Canine sarcoma 2 0.98 £ 0.00 0.96+0.01 0.96 £ 0.01
12 0.88+£0.03 0.88+£0.02 0.90 £ 0.01
Microorganisms 3 0.91+0.03 0.52+0Mm 0.67+0.09
5 0.89 +0.02 0.68+0.03 0.61+£0.13

The best result for each task (accuracy + standard variation over 10 independent iterations) is indicated in boldface.

none of these works have led to transfer learning approaches on
1D-MS data.

The aim of this study is to challenge CNN models for classi-
fication tasks of 1D mass spectra when the training set is very
small, to evaluate the weaknesses of transfer learning in such a
context, and finally to design an approach: cumulative learning,
Pattern recognition models are built using small clinical datasets
generated for the diagnosis of cancers or infections.

Our proposed approach differs from standard transfer learning
by different aspects:

e The number of output classes: Because of its abundant
categories and large number of images, ImageNet is used
widely as the source dataset in transfer learning cases. The
typical transfer learning operation consists of using a pre-
trained model, for instance on 1000 different ImageNet dataset
classes and applying it to a new classification problem
(possibly after fine-tuning to adapt to the new problem),
which usually involves a much smaller number of classes to be
predicted. In this study, the transfer learning approach
comprised training a model on a dataset with only two output
categories and efficient transfer of this model to classification
problems with 2, 3, 5, and even 12 output categories.

e The diversity of the target tasks: In standard transfer learning,
the target tasks are similar and thus rely on similar input data
features (i.e. image classification task). In this study, transfer
and cumulative learning are applied to different biological
contexts (ie. diseases) that are unlikely to share common
features. Our results show that CNNs are powerful tools for
learning “potentially generic” representations from spectra
having no intuitive relationship to the medical target or
sensitivity to acquisition instrument diversity.

e The accumulation of learning representations through several
phases of representation model training up to the final
decision level (fully connected layers and softmax/sigmoid
layer): Standard transfer approaches to learn generic repre-
sentations require the initial model to be trained with as much
data as possible integrating all the essential features from the
input data. This leads to poor results with small datasets. In
this study, instead of considering only transfer learning (which
would be a one-shot representation model), the same
representation model is trained for several tasks successively
to converge to an optimal model. It thus learns cross-
classification tasks and cross-instrument representations and
thereby becomes capable of smoothing fluctuations in
instruments performance, which leads to a significant
improvement in classification accuracy.

This work details our CNNs framework and its application on
small clinical datasets classification. The approach is fully
applicable to other domains where the lack of training data is still
a hindrance.

Results
CNN architectures performances. Three CNN architectures are
compared using cancer and microorganism datasets. In order to

evaluate the effect of varying the number of CNN layers on
classification performance, CNNs containing four (var-
iant_Lecun, model 1), five (variant_LeNet, model 2), or nine
layers (variant_ VGGY9, model 3) are evaluated and compared
(Supplementary Fig. 3). The statistical significance in classifica-
tion accuracies between the first and the second best results is
computed with a t-test over 10 independent iterations (p-values <
0.001). For canine sarcoma classification, binary (2 classes) clas-
sification of tissues as healthy or cancerous is sought first, fol-
lowed by differentiation of sarcoma types (12 classes). For the
microorganism dataset, two multi-class classifications based on
standard classification for clinical purposes are considered. The
first is a 3-class model intended to identify the sample as yeast,
Gram-positive bacteria, or Gram-negative bacteria. The second
model is intended to allow identification of each of the five
microorganisms. Table 1 lists the classification accuracy for each
dataset. All sensitivities, specificities, and confusion matrix
metrics associated with each dataset are described in the Sup-
plementary Tables 3-10.

All three CNNGs architectures perform badly on 3 of the 4 tasks,
which is not surprising because of the low number of spectra used
for the training. Variant Lecun is the best at binary classification
of canine sarcoma, but when the number of classes is expanded to
12, variant_VGG9 is slightly better. Errors in the confusion
matrix are distributed uniformly across classes (Supplementary
Table 6). Variant_Lecun is the best at classifying microorganisms,
using the 3-class or the 5-class model. Accuracies suffer quickly
from over-fitting when a deep architecture such as variant_LeNet
and variant_VGG9 are used on data of this size. The only
classification that could be described as accurate is for canine
sarcoma versus healthy tissue (binary classification) by varian-
t_Lecun with an average accuracy of 0.98. Based on this result, we
focus our subsequent efforts on the canine sarcoma and
microorganism multi-class classifications.

Transfer learning performances. In order to improve the clas-
sification performance, we use CNN architectures trained on the
large MALDI-MSI rat brain dataset and test them on small
clinical datasets. We obtain nearly (0.99 +0.00) for the rat brain
dataset binary classification with the three CNN architectures.
Transfer learning allows the model to learn and detect generic
representations of MS peaks. By freezing the lower CNN levels,
we assume that the model extracts the right patterns from the
MALDI-MSI spectra, and that only the high level is needed to
take into account specific SpiderMass peak features. As shown in
Table 2, transfer learning clearly improves the classification
accuracies of both small SpiderMass datasets compared to CNN
models trained from scratch (without transfer learning).

Gains in the accuracy of canine sarcoma differentiation are
somewhat obtained for all three architectures, although improve-
ments are still needed. Variant_LeNet and variant VGG9 predict
the correct classes with almost equal success, but both fail to
separate some classes, as shown in the confusion matrix in
Supplementary Table 12. The 3-class microorganisms classifica-
tion is improved for all three architectures. Improvements are
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Table 2 Overall accuracies of SpiderMass spectra classification using three CNN architectures after transfer learning.

Datasets # classes variant_Lecun variant_LeNet variant_VGG9

Canine sarcoma 12 0.90 +0.01 (02%) 0.92 £ 0.01 (04%) 0.9310.02 (03%)

Microorganisms 3 0.99 £ 0.00 (08%) 0.96 £0.01 (84%) 0.95£0.02 (41%)
5 0.99 £ 0.00 (11%) 0.99 £ 0.00 (45%) 0.96£0.02 (57%)

The best result for each task (accuracy + standard variation over 10 independent iterations) is indicated in boldface. The improvement in performance from scratch is expressed as a percentage.

Table 3 Overall accuracies of canine sarcoma spectra classification by the three CNN architectures.

Protocol variant_Lecun variant_LeNet variant_VGG9
Scenario A 0.92 £0.01 (04%2 02%P) 0.95 £ 0.01 (08%2 03%P) 0.94 £ 0.01 (04%2 01%b)
Scenario B 0.95+0.02 (08%2 05%P 03%°) 0.99 £ 0.00 (12%? 07% 04%C) 0.96 +0.00 (06%2 03%P 02%C)

aThe improvement is expressed as a percentage relative to learning from scratch.
bThe improvement is expressed as a percentage relative to transfer learning.
CThe improvement is expressed as a percentage relative to Scenario A.

The best result for each task (accuracy + standard variation over 10 independent iterations) is indicated in boldface.

considerable also for the 5-class task. Transfer learning by
variant_Lecun leads to the best performances in the experiment.
These results suggest that training a CNN model with extracted
spectral features transferred even from an unrelated field is better
than training it with spectral features learned from scratch with a
small dataset. The aim of the following experiments is to improve
the canine sarcoma multi-class classification performance.

Cumulative learning performances. To improve further the
accuracy of the canine sarcoma multi-classification, CNNs are
trained using the large MALDI-MSI rat brain dataset and then
fine-tuned using the SpiderMass datasets. Two scenarios are
tested: (Scenario A) training on intermediate beef liver and then
canine sarcoma dataset. We obtain nearly (0.98 +0.00) for beef
liver dataset binary classification with the three CNN archi-
tectures. Although not biologically related to the sarcoma context,
beef liver recognition allows the model to appropriate the clinical
data and their specific characteristics to improve its generalization
capability in the second step; (Scenario B) training on beef liver,
then on microorganisms and lastly on canine sarcoma dataset.

As shown in Table 3, Scenario A improves the classification
accuracies considerably relative to learning from scratch and
slightly relative to transfer learning, the best improvement is
obtained for variant_LeNet. Scenario B provides a slight
additional improvement over Scenario A, and the greatest
accuracy is achieved also with variant_LeNet architecture. The
effectiveness of the cumulative knowledge method is thus
apparent, enabling the CNNs to distinguish not only cancerous
versus healthy tissues (binary classification), but also the different
cancer types (see confusion matrices in Supplementary Table 18
for Scenario A and in Supplementary Table 20 for Scenario B)
despite the large number of classes, the small size, and the
heterogeneity of the dataset.

We test CNNs configured with different numbers of frozen
layers using transfer and cumulative learning in order to evaluate
the trade-off between freezing and fine-tuning. Freezing all
convolutional layers (i.e. the representation portion) and re-
training all fully connected layers (ie. the decisional portion)
gives a configuration that outperforms the others. Except for
Scenario B where the best architecture is obtained by freezing all
convolutional layers barring the last one. We test the same
protocols on datasets with a smallest bin (binned at 1 instead of
0.1, see Supplementary Tables 50-52). Similar improvements in
accuracy are observed, except that the variant_VGG9 architecture

outperforms other networks on the canine sarcoma dataset. This
may suggest that an architecture with three convolutional layers
performs well with data binned at 0.1 (15,000 features), while a
deep architecture such as variant_VGG9 performs well in case of
a more compressed data (1500 features).

Cumulative learning strategy brings new questions: how
generalizable is the final representation after several steps of
cumulative learning? Is the final representation more specifically
adapted to the last dataset used to accumulate MS knowledge? Let
us first remind that the classification accuracy obtained by CNNs
from scratch on data used for training (rat brain and beef liver)
and after transfer learning for microorganisms (Table 2) is
between 0.98 and 0.99. Testing the final cumulative representa-
tion of variant_LeNet (purple arrows from Scenario B in Fig. 1)
on rat brain, beef liver, and microorganism datasets separately
preserved a classification accuracy between 0.98 and 0.99. This
indicates that the CNN model accumulates MS knowledge
through the successive training phases without any loss of
generalization. It suggests that a “generic” representation of MS
data for classification tasks might exist and that the resulting
cumulative representation is robust to the organism, to the tissue
phenotype, and to the instrument variability.

External public datasets results. The classification accuracy on
the two human ovary datasets were compared previously to
explain how the choice of the MS instrument, its resolution or
preprocessing steps become an obstacle to the reproducibility and
reliability of pattern recognition. The aim of this experiment is
not to compare our results to the reported results in the original
paper analyzing these datasets, because the use of a commercial
software for the classification, and then the preprocessing strategy
is different in the original paper3’. Our purpose is to demonstrate
the efficiency of our learning methodology capable of handling
multiple MS features: ionization sources (from WALDI to
SELDI), resolutions (from high to low), and mass ranges (from
lipids to proteins). We assess CNNs performance using the same
training and evaluation approach, only with variant LeNet
architecture because of its superior performance with SpiderMass
datasets and its low computational resources needed. Var-
iant_LeNet is thus trained on the rat brain dataset as the source
dataset, followed by the transfer learning protocol using the high-
resolution dataset and cumulative learning Scenario A using the
low-resolution dataset.
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Canine sarcoma

Final representation

Canine sarcoma Microorganisms Beef liver

Cumulative learning Scenario B

Human ovary 1

Transfer learning

Microorganisms

Beef liver Canine sarcoma

Cumulative learning Scenario A

Human ovary 1

Transfer learning

Human ovary 2

Cumulative learning Scenario A

Fig. 1 Workflow of CNNs classification: by transfer learning (in gray for canine sarcoma, microorganisms, and in green for human ovary 1). By
cumulative learning Scenario A (in blue for canine sarcoma and in green for human ovary 2). By cumulative learning Scenario B (in orange for canine
sarcoma). Final representation of Scenario B is tested on the datasets used during the training (in purple arrows).

Table 4 Overall accuracies of variant_LeNet architecture at classifying ovarian spectra.

Dataset # classes CNN from scratch Transfer learning Cumulative learning
Human ovary 1 2 0.78+0.02 0.98 + 0.00 (25%2) -
Human ovary 2 2 0.80 £ 0.00 0.83+0.02 (03%?) 0.99 £ 0.00 (23%2 19%b)

aThe improvement is expressed as a percentage relative to learning from scratch.
bThe improvement is expressed as a percentage relative to transfer learning.

The best result for each task (accuracy + standard variation over 10 independent iterations) is indicated in boldface.

Table 5 Overall accuracies of raw and preprocessed clinical spectra classification by SVM, RF, and LDA.

Datasets # classes Applied to raw datasets Applied to preprocessed datasets
Best CNNs SVM RF LDA SVM RF LDA

Canine sarcoma 2 0.98+0.002 0.77+£0.02 0.96 £ 0.01 0.71£0.02 0.76 £0.16 0.96 £ 0.01 0.93+£0.02
12 0.99 +0.00b 0.61+0.00 0.65 £ 0.04 0.41+0.01 0.52+0.19 0.65 £ 0.01 0.60£0.04
Microorganisms 3 0.99+0.00¢ 0.45+0.03 0.77 £0.03 0.90 + 0.01 0.87+0.02 0.95 +0.02 0.88+0.02
5 0.99+0.00¢ 0.54+0.35 0.86 £ 0.01 0.67+£0.13 0.19£0.09 0.87 £0.02 0.85+0.03
Human ovary 1 2 0.98+0.00¢ 0.53+0.04 0.84 £ 0.05 0.65+0.04 0.66+0.24 0.91+£0.02 0.93+0.02
Human ovary 2 2 0.99 +0.00b 0.60+0.06 0.81+0.01 0.71+£0.03 0.60 £ 0.05 0.88+0.03 0.96 £ 0.00

aThe best CNNs from scratch.
bThe best CNNs after cumulative learning.
€The best CNNs after transfer learning.

The best result for each task (accuracy + standard variation over 10 independent iterations) is indicated in boldface.

Transfer learning improves classification accuracy from 0.78
for training from scratch to 0.98 for the high-resolution dataset as
shown in Table 4. With the low-resolution dataset, accuracy is
improved from 0.80 to 0.83 by transfer learning and up to 0.99 by
cumulative learning. Our CNN representation model allows a
very high classification accuracy without the need for spectral
preprocessing steps in contrast with the previously reported lack
of sensitivity and specificity of low-resolution MS datasets.

Comparison of our 1D-CNNs models against ML approaches.
The performance of the best 1D-CNN, that is, of all models and
approaches combined, from scratch for binary canine sarcoma
classification, from transfer learning for microorganisms and
human ovary 1 classification, from cumulative learning for
human ovary 2 (Scenario A), and for multi-class canine sarcoma
(Scenario B) are compared to SVM, RF, and LDA. The

comparisons are made both on raw data without feature selection
and on data that has gone through preprocessing followed by a
feature selection step.

The experimental results in Table 5 show that ML classification
algorithms perform poorly on raw datasets as it is expected. Our
CNNs models outperform the three conventional ML models
(SVM, RF, and LDA) on all six datasets in terms of accuracy. The
second best performance is from RF model for 5 of the 6 datasets
and is from LDA for 3-class microorganism dataset. For the
preprocessed datasets experiment, spectra are corrected using a
sequential preprocessing of five steps as described in the
“Experimental design” section. As shown in Table 5, RF gives
the best result and outperforms the two other methods in
SpiderMass datasets classification, especially in canine binary
task, where the classification is the more accurate. LDA outper-
forms the two other methods for the human ovary 1 and
human ovary 2 datasets classification. The computing time of
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conventional algorithms is much higher than CNNG, first because
the Scikit-learn library does not support GPU-based computing,
and also because a few more minutes are needed to carry out the
necessary preprocessing steps. Note that we test only one subset
of all possible preprocessing methods that exist. In addition, some
inter-spectra steps such as normalization and alignment are
applied only when the signal acquisition process is completed.
While our CNN models can be applied even during spectra
acquisition since each test spectra could be analyzed separately.

Overall, almost all of the standard classification models,
specially LDA, see notable accuracy improvement when pre-
processing and feature selection methods are used. Our results
show that our end-to-end CNN models outperform standard ML
classification methods whether preprocessing followed by feature
selection is used or not.

Discussion

CNN s have become common tools in several research areas. They
are designed to extract spatial features from input signals with
different levels of abstraction. Many challenges remain fully
exploiting CNNs on biomedical data, owing to data high-
dimensionality, heterogeneity, and irregularity. Following their
success in computer vision, the first results of deep learning
methods applied to clinical data are obtained on clinical imaging
(e.g. classification, segmentation, etc.). Medical images are dif-
ferent from ImageNet object scenes, persons, and plants, among
others. Nevertheless®3-4! demonstrated that we could classify and
predict outcomes from medical images using a CNN model
trained on ImageNet. Authors show that the features extracted
from the ImageNet database are generalizable and can be applied
to alternative tasks and datasets. Our paper is inspired by these
efforts on transfer learning, transferring the representation learnt
on one dataset to another that intuitively do not seem to share
common features, but goes beyond by accumulating the knowl-
edge of MS data space through learning a representation on
several datasets, more than two and more diverse too. We
investigate here the performance of CNNs in the classification of
1D mass spectra generated for a variety of classification purposes.
This study shows the use of cumulative learning for spectrum
classification as a solution when the number of available samples
is small. Using MALDI-MSI and other types of datasets generated
in vastly different biological contexts, on different organisms,
acquired by a variety of instruments, with a variety of MS ioni-
zation technologies, in different mass ranges at different resolu-
tions, and with or without a chromatography phase. In addition,
infection diagnosis can be conducted on a limited amount of cells
without the need for the time-consuming bacterial culturing.

It is well known that the success of CNNis is strongly dependent
on the amount of available data for its training. To overcome the
limitations inherent in small numbers of training samples, we test
dataset augmentation (as detailed in the Supplementary 1D-MS
Data augmentation section). To the best of our knowledge, bio-
logical 1D data augmentation has not been described elsewhere,
and this may be because it is not sufficient to reproduce technical
variability by adding noise, baseline, and peak misalignment.
Biological variability (difference between individuals) must
also be introduced, in the form of relevant peak presence/
absence and intensity changes. All classification accuracies on
augmented SpiderMass data are below 60% (results not shown).
This indicates that better understanding of biological variability is
still required in order to deal with data augmentation and
increase the number of samples without compromising biological
information.

Preprocessing is an integral part of the multivariate analysis.
However, no consensus exists on how to find the optimal

preprocessing pipeline. It can be time-consuming owing to the
large number of available methods and difficult to choose the best
order for these methods. Since one experimenter can use different
measurement devices and different measuring processes, it
becomes quickly difficult to define an efficient preprocessing
pipeline. For instance, normalization is based on the assumption
that there are comparable numbers of ions in each spectrum,
which is true in homogeneous samples, where only a few indi-
vidual peak intensities change. However, in a sample, different
tissues or organs may be present and express a heterogeneous set
of entities having therefore different ion distributions. In such
cases, normalization may not be relevant. Alignment is also a
critical step for the subsequent analysis. It may be dangerous
since it deforms the peak shapes (shifting, over-stretching, over-
compression, etc.) to maximize the correlation between the
spectra. Another limitation of the preprocessing pipeline is the
step of peak picking. This step may result in a different total
number of data points from one spectrum to another. It is well-
known that biological information is better conserved with less
manipulation, especially when dealing with clinical data (e.g.
diagnosis, biomarker identification, etc.). Aligning spectra per
class could positively have affected the ML results and that these
results using a different alignment procedure could result in lower
accuracies for the ML methods. This however will not affect the
conclusions.

Our CNN models are able to classify raw MS data without the
need for preprocessing steps, thus bypassing the preprocessing
expertise. This performance capability is due to convolutional
filters that allow CNN architecture to learn spatial peak patterns
rather than only considering each m/z intensity value separately
as do conventional ML algorithms. More importantly, significant
variations of the overall signal intensity due to biological het-
erogeneity and non-reproducible technical factors can be filtered
by CNNs to increase the robustness of molecular pattern recog-
nition. Combined Max-Pooling and convolution filters allowed
the model to handle peak misalignment. Such end-to-end train-
able systems that work with raw data offer a superior alternative
to pipelines in which each step is trained independently or
handcrafted to find the best combination of parameters. Inference
from pre-trained models will be fast. Using raw MS data has the
potential to contribute significantly to the development of a
diagnosis workflow for rapid, efficient, and reliable detection of
cancers or infections. Our results provide evidence that cumula-
tive learning offers practical means of analyzing mass spectra
obtained in real-world settings where the size of the dataset
available for training a classification algorithm is limited. Our
cumulative optimization of CNN models appeared to be better
adapted than conventional ML models for mass spectra classifi-
cation, even when the tasks required analysis of heterogeneous,
low-resolution datasets containing several classes. In addition,
cumulative CNNs appeared to offer a unified solution for clas-
sification regardless of day-to-day, sample-to-sample, and
machine-to-machine variance. All this without having to worry
about the quantitative assessment of the spectral quality or
manual inspection, allowing thus data exchange with collabora-
tors or from different platforms. Although we have focused our
study on mass spectra, we believe that the method should be
applicable to other types of analyses such as Raman spectroscopy
or nuclear magnetic resonance classification tasks.

In the present study, we have investigated the performance of
our learning approach for MS data classification. It would be
interesting to extend the investigation to analyze which data
characteristics were transferred between datasets. The focus of
our future research will be the interpretation of classification
models in order to identify regions of interest in spectra. Suc-
cessful transfer learning between lipids and proteins species
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suggests that CNNs have a more complex functioning than the
simple identification of specific-phenotype peaks. Discriminating
regions during the CNN classification may be explained by a
complex spatial pattern recognition and by the ability of the
model to generalize from one classification task to others even
slightly unrelated. It would be interesting to understand how such
markers influence the results and to study their global dynamic of
expression.

Methods

Ethics approval. Adult Wistar male rats (225-250 g, 7-8 weeks old) were sacrificed
according with European and french guidelines for animal research (European
Convention for the Protection of Vertebrate Animals used for Experimental and
other Scientific Purposes, ETS No.123) and approved by the local Animal Ethics
committee (C2EA-075 Nord-Pas de Calais). Rats were maintained and housed
under pathogen-free conditions at the University of Lille Animal Care Facility.

Materials. These independent MS datasets are used to evaluate our proposed
approaches :

1. The canine sarcoma dataset contains 1 healthy and 11 sarcoma histology
types obtained from 33 annotated ex vivo biopsies*2. Spectra are acquired in
sensitivity positive ion mode using a Synapt G2-S Q-TOF instrument
(Waters, Wilmslow, UK, MassLynx V4.1.SCN965). The multi-classification
model presented is focused on sarcoma types only. Tumor types grading is
beyond the scope of this study. No samples are excluded.

2. The microorganism dataset contains a five human pathogen collection of 2
Gram-negative bacteria, 2 Gram-positive bacteria, and 1 Yeast*. Spectra are
acquired in negative high-resolution mode using a Synapt G2-S Q-TOF
instrument (Waters, Wilmslow, UK, MassLynx V4.1.SCN965). No samples
are excluded.

These two small SpiderMass datasets are characteristic of the clinical field,
where samples availability coming from patients can be limited thus making the
task of classification models more difficult. SpiderMass is a system designed for
mobile in vivo and real-time analysis*4. It does not involve a chromatography
phase, making it compatible with rapid analysis but increasing the output spectra
heterogeneity. For SpiderMass, the irradiation time is set at 10 s at 10 Hz, giving an
average of 10 individual spectra (1 per laser pulse) over the 10 s period. The spectra
of each microbial class are obtained from a single acquisition (2 irradiation
sequences) per colony. For canine sarcoma, 7 classes are obtained from 5
irradiation sequences on one biopsy and 5 are obtained from 5 irradiation
sequences on each of the different biopsies gathered from dogs of different breeds
and ages.

3. The MALDI-MSI rat brain dataset contains spectra of rat gray and white
brain matter, acquired using a Rapiflex MALDI-TOF instrument (Bruker
Flex Imaging 5.0, Bremen). MALDI-MSI MS are imported into the user-
friendly Scils software (Scils 2019a Core version) and ROI non-processed
spectra are exported into a csv file format. This dataset is generated for
this study. The Wistar rat (Ratus norvegicus) are sacrificed after
behavioral practical in the University of Lille, their brains are collected
and snap frozen in liquid nitrogen and stored at —80 °C. There are then
sectioned at 12 pm using a cryostat (Leica microsystems) and thaw-
mounted on indium thin oxide slides (LaserBio Labs). The 2,5-
dihydroxybenzoic acid (DHB) matrix (Sigma-Aldrich) is sublimed onto
the tissue section at 150 °C for 12 min using a ‘home-built’ sublimation
device. The image is acquired at 50 pum x 50 um spatial resolution in
positive ion reflectron mode.

4. The beef liver dataset contains two types of spectra of liver samples from
healthy animals, one acquired in positive ion mode and the other in negative
ion mode, both in sensitivity mode using a Synapt G2-S Q-TOF instrument
(Waters, Wilmslow, UK, MassLynx V4.1.SCN965). This dataset is generated
for this study. Raw commercial product is sliced to suitable thickness, snap-
frozen in liquid nitrogen and stored at —80 °C. Tissue is warmed to RT prior
to SpiderMass spectral acquisition. The dataset is generated while running a
time-course reproducibility experiment.

These large and medium datasets are used to investigate the transfer and
cumulative learning approaches. SpiderMass is based on the WALDI process which
corresponds to MALDI with water as matrix#>. We first train the CNNs with the
MALDI dataset (rat brain dataset) and then perform the classification of canine
sarcoma and microorganism datasets based on this training.

5. The human ovary dataset 1 represents two classes of serums, healthy and
cancerous. High-resolution spectra are acquired via ProteinChip weak-
cation-exchange interaction chips (WCX2, Ciphergen Biosystems, Inc.,
Fremont, CA, USA) and surface-enhanced laser-desorption/ionization

(SELDI) TOF technology (QSTAR Pulsar I, Applied Biosystems, Inc.,
Framingham, USA)%’. No samples are excluded.

6. The human ovary dataset 2 (as above) contains spectra acquired in low-
resolution using a WCX2 protein chip via a Protein Biological System II
(PBSII) SELDI-TOF instrument?’. No samples are excluded.

We validate our transfer and cumulative learning approach using these two
small well-controlled, independent, and publicly available clinical MS datasets.
These two datasets are based on the SELDI process, we first train the CNNs with
the MALDI dataset (rat brain dataset) and then perform ovarian classification
based on this training. SELDI is an old ionization method which has small utility
nowadays since it yields only a subset of the most abundant peptides and protein
fragments. Some SELDI platforms may not be suitable for routine clinical diagnosis
and struggle to prove their worth as reliable tools*¢. Low-resolution can make close
species in m/z difficult to distinguish and give rise to coalesced features.
Nevertheless, due to its easy-to-use quantitative screening procedures, SELDI still
can be used for general description of proteins’. Rather than assessing the utility
of these technologies or instruments, our goal in this paper is to see the problem
from the user standpoint. We illustrate the strength of our methodology as a
solution to multiple real-life constraints such as the fact that the user is confronted
with several types of data generated by different devices or platforms, and often in a
limited size.

All classes considered in this study are non-overlapping. Table 6 lists the
instruments and the samples used in this study.

A simple and popular method of creating an intensity matrix from multiple
spectra prior to classification is spectral bucketing or binning*®. Easy to use on MS
data, binning consists of projecting spectra into “buckets” having a fixed size.
SpiderMass spectra are binned to 0.1 Da for the subsequent analyses. This binning
condenses canine sarcoma and beef liver data points to 15,000 features. For the
microorganism dataset it condenses points to 19,000 features for the transfer
learning and to 15,000 features for the cumulative learning. We adopt a binning at
0.1 Da in this study since this window size is considered as the common size in Q-
TOF MS data analysis*>»>C. Rat brain MALDI spectra are binned to have the same
dimensions as SpiderMass datasets in order to allow transfer learning since CNNs
require data of equal dimensions. To allow valid comparison with the original
paper, both public ovarian datasets high-resolution and low-resolution are binned
to m/z 7084%7. Rat brain MALDI spectra are binned in this case at the same
dimension as detailed in Supplementary Table 1.

We compute two of the most popular metrics to assess mass spectra similarity,
namely Pearson’s and cosine correlation coefficient between binned intensity
spectra of the microorganism (19,000 feature vectors) and the canine sarcoma
(15,000 feature vectors) datasets®!->2. The aim is to assess whether or not spectra
are correlated when they are acquired from a single physical sample. Correlation
coefficients in the microorganism dataset are low between intra-colony spectra. We
also find that correlation values are low between intra and inter-biopsies canine
sarcoma spectra. This variability is due to the tumor heterogeneity. It is well-known
that cancer is a complex and dynamic disease, where tumors are made of evolving
and heterogeneous populations of cells which arise from successive appearance and
expansion of subclonal populations®3. Canine sarcoma spectra are splitted into
training, validation, and test sets without taking into account their source biopsy
since they are weakly correlated. The only case where spectra are highly correlated
is the healthy canine samples. However the correlation coefficients are high
between intra and inter-normal biopsies which means that the normal class is a
good control and no matter how the normal spectra form the same biopsy are
splitted into the three sets, we are not favoring a positive classification outcome.
Pearson and cosine correlation coefficients of these datasets are provided in the
supplementary material (Supplementary Data 1-13). The effect of taking into
account the biopsy origin of the samples in the splitting of train, validation, and test
samples is tested and discussed using the four canine sarcoma classes containing at
least three biopsies. No significant different effect is observed (supplementary
Canine spectra correlations section and Supplementary Table 54).

Experimental design. We import all MS datasets without undergoing any pre-
processing step nor feature selection step. We bin each dataset and scale it linearly
between 0 and 1. Datasets are divided randomly into three subsets, one for training,
one for validation, and one for testing with ratios of 60%, 20%, and 20%, respec-
tively. These subsets are computed using a 5-fold cross validation (CV). Classifi-
cation accuracy is averaged over 10 independent iterations. These subsets are
computed for each iteration using a stratified sampling to maintain the original
proportion of minority classes. The loss function is weighted during the training
process for samples from under-represented classes in the datasets. Performance of
classifiers is measured by four metrics: global accuracy (over all classes), sensitivity,
specificity, and confusion matrix as an indicator on how is simple or hard for the
classifier to distinguish between different classes. CNN weights are initialized with
He normal distribution since Relu/Leaky Relu is used as the activation function®*,
except for the output layer, where a sigmoid function is used for binary classifi-
cation or a softmax function for multi-class classification. Only the best hyper-
parameters are used for the evaluation process. The model is saved only if there is
an accuracy improvement of the validation set and thereby use those weights for
testing.
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Table 6 Description of datasets.
MS instruments Datasets Classes # spectra # samples Mass ranges # features
Target domain data
Synapt G2-S Q-TOF (Waters, Canine sarcoma Healthy 482 8 100-1600 Da 15,000
SpiderMass)
Myxosarcoma 60 1
Fibrosarcoma 404 6
Hemangiopericytoma 134 2
Malignant peripheral nerve tumor 60 1
Osteosarcoma 339 5
Undifferentiated pleomorphic 376 5
sarcoma
Rhabdomyosarcoma 66 1
Splenic fibrohistiocytic nodules 63 1
Histiocytic sarcoma 105 1
Soft tissue sarcoma 69 1
Gastrointestinal stromal sarcoma 70 1
Total 2228 33 biopsies
Synapt G2-S Q-TOF (Waters, Microorganisms  Staphylococcus aureus 26 1 100-2000 Da 19,0002
SpiderMass)
E. coli D31 26 1 15,0000
Pseudomonas aeruginosa 24 1
Enterococcus faecalis 18 1
Candida albicans 23 1
Total 17 5 colonies
PBSII SELDI-TOF Human ovary 2 Healthy 91 700-12,000 Da 7084
Cancer 162 37
Total 253
Source domain data
Rapiflex MALDI-TOF (Bruker) Rat brain Gray matter 4635 A single section 300-1300 Da 19,0002
White matter 5465 15,0000
Total 10100 7084¢
Synapt G2-S Q-TOF (Waters, Beef liver Positive mode 1372 10 100-1600 Da 15,000
SpiderMass)
Negative mode 1265 10
Total 2637 20 samples
Hybrid Quadrupole (QSTAR Human ovary 1 Healthy 95 1-20,000 Da 7084
pulsar )
Cancer 121 37
Total 216
aNumber of features used for microorganisms transfer learning.
bNumber of features used for canine sarcoma transfer and cumulative learning.
“Number of features used for ovarian transfer and cumulative learning.

Protocol for evaluating prominent 2D-CNN adapted to 1D input. The aim of the
first experiment is to evaluate and compare the application of three prominent
CNN architectures for classifying spectra in clinical datasets. We test variant_Lecun
(model 1), Variant_LeNet (model 2), and Variant_VGG9 (model 3) models as
detailed in the supplementary Source model optimization section. CNN archi-
tectures share the same characteristics and follow the same principles whether they
are 1D or 2D. The basic difference is the dimension of the input signal and
consequently how filters slide across the data. Models 1 and 3 have been described
in the literature and are modified slightly to fit our 1D data classification problem.
Convolutional modules and pooling size are adapted to 1D input. The same
number of filters is used but they are expanded to account for spectral features
larger than those extracted from images. No zero padding is needed because all of
the spectra start and end with a zero value and have the same length through
binning. For model 1, two fully connected layers out of three from the original
LeNet architecture are kept. The adaptation of 2D-CNN architecture to 1D input
was described, for example in Inception modules®* according to data specificity.
Using this approach, we expect to determine what model depth and parameters are
optimal for MS spectra classification. This evaluation allows assessment of layers
number required for spectral feature extraction, especially in the case of highly
heterogeneous biological classes such as canine sarcoma types and in the case of
low resolution such as human ovary 2 dataset.

Protocol for evaluating transfer learning. The aim of the second experiment is to
evaluate model improvement by CNNSs spectral transfer learning. The three CNN
architectures are trained on the large MALDI-MSI rat brain dataset with all weights
initialized according to He normal distribution. Rat brain dataset is chosen as the
source domain as it contains the largest amount of spectra in our study. The

decision layers (fully connected layers and sigmoid layer) of the CNN networks are
not useful, since the MALDI-MSI and clinical datasets are from different domains.
The representation model weights (i.e. the convolutional portion) are then frozen
so that they would not be updated during back-propagation, the decision layers are
removed, and the new specific decision layers dedicated to smaller clinical datasets
are trained. The evaluation of transfer learning using the canine sarcoma and
microorganism datasets is illustrated in the gray portion of Fig. 1 and in panel a of
Fig. 2. The green portion of Fig. 1 and the panel a of Fig. 2 illustrate the application
of transfer learning to the public human ovary 1 dataset following the same
strategy.

Protocol for evaluating cumulative learning. Transfer learning in some cases may
not be enough as an aid in classifying biologically similar materials using CNN
models. This proximity is reflected in a high degree of confusion between classes.
This is typically the case when the biggest dataset which is supposed to be used to
learn the pivotal data representation is not big enough. In addition, low-resolution
or data heterogeneity can further complicate the classification task. We therefore
propose two approaches to develop 1D-CNN cumulative learning:

Scenario A. The first step is to train CNN architectures on the MALDI-MSI rat
brain dataset as described before for transfer learning. The representation model
weights are then fine-tuned, the decision layers (i.e. fully connected and sigmoid)
are removed, and new decision layers are trained with the beef liver dataset. Beef
liver CNN weights (i.e. data representation) are thus initialized from the rat-brain-
trained CNN representations. Finally, the beef liver CNN representation weights
are frozen and new specific decision layers (fully connected and softmax) are added
and trained using the canine sarcoma dataset, as illustrated in the blue portion of
Fig. 1 and in panel b of Fig. 2. The green portion of Fig. 1 and the panel b of Fig. 2
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Fig. 2 Protocols of classification with variant_LeNet architecture. a Protocol of transfer learning. b Protocol of cumulative learning Scenario A. ¢ Protocol

of cumulative learning Scenario B.

illustrate the application of cumulative learning Scenario A to the public human
ovary 2 dataset following the same strategy.

Scenario B. CNN architectures are trained on MALDI-MSI rat brain and fine-
tuned with the beef liver dataset as described in Scenario A, but instead of testing
this representation on the canine sarcoma dataset, an additional cumulative
learning is added. Beef liver CNN representation weights are fine-tuned, decision
layers (fully connected and sigmoid) are removed and new specific decision layers
are added and trained using the microorganism dataset, before freezing
convolutional layer weighting barring the last one and training new specific last
convolutional and decision layers on the canine sarcoma dataset, as illustrated in
the orange portion of Figure 1 and in panel ¢ of Figure 2.

Protocol for comparing our approach with other ML approaches. Some 1D-CNNs
have been found superior to conventional and popular algorithms for classifying
raw data?>3334, The aim of our third experiment is to compare our 1D-CNNs to

three popular conventional ML algorithms, namely SVM, RF, and LDA. To make
such a comparison valid, all spectra are binned similarly, and the same ratio of
training, validation and test subsets is conserved. To allow a fair comparison to that
of CNNs on raw data, we first evaluate the performance of these conventional ML
algorithms on raw datasets. However, these conventional algorithms are not
designed to classify MS spectra that have not been preprocessed. Hence, we also
evaluate their performance on preprocessed datasets. In this case, spectra are
corrected using sequential preprocessing means provided in the MALDIquant
package (version 1.19.3)°%. The preprocessing comprises five steps, each of these
feasible using any of several methods. For the present purpose, the most standard
methods are chosen: (1) log-intensity transformation. (2) Baseline subtraction
using the SNIP algorithm (statistics-sensitive non-linear iterative peak-clipping).
(3) Normalization by dividing mass spectra by their total ion count (TIC). (4)
Alignment using a cubic warping function!®. We align spectra by class, namely
spectra of each class are aligned separately. A non-linear cubic warping function is
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computed to align the whole spectra by fitting a local regression to the matched
reference peaks. The cubic warping function w(x) is expressed :

w(x) = oy + ayx + ax* + ayx’. (1)

To estimate the model parameters (ay... 3), a weighted least squares is applied.

(5) Peaks are detected using the median absolute deviation. Spectra are aligned
prior to peak detection in order to preserve all peak information (height, width, and
spatial distribution) and thereby ensure the best alignment. Ovarian datasets are
preprocessed following the same preprocessing strategy. The optimized hyper-
parameters for each ML algorithm are tuned with a grid search and are described in
the supplementary Table 25. Only the optimal hyper-parameters are used for the
evaluation. Chi-square (y?) statistic is used to reduce data dimensionality before
feeding to SVM and RF algorithms. Principal component analysis (PCA) is
combined to LDA classification. We will elaborate later in the discussion section
the questions that the preprocessing raises specially the undesirable effect it may
have when applied to clinical data.

Data availability

Canine sarcoma raw library is accessible on the ProteomeXchange consortium:
PXD010990. Human ovarian datasets can be accessed through FDA-NCI Clinical
Proteomics at https://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp.
Microorganisms, beef liver, and rat brain raw libraries are accessible on https://data.
mendeley.com/datasets/33cbb37cs2/2.

Code availability
The code that supports the findings in this study is available https://github.com/
KhawlaSeddiki/1D-MS_CumulativeLearningCNNs.
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