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Abstract

In decision-making problems under uncertainty, probabilistic constraints are a valuable tool
to express safety of decisions. They result from taking the probability measure of a given set
of random inequalities depending on the decision vector. Even if the original set of inequali-
ties is convex, this favourable property is not immediately transferred to the probabilistically
constrained feasible set and may in particular depend on the chosen safety level. In this paper,
we provide results guaranteeing the convexity of feasible sets to probabilistic constraints when
the safety level is greater than a computable threshold. Our results extend all the existing
ones and also cover the case where decision vectors belong to Banach spaces. The key idea in
our approach is to reveal the level of underlying convexity in the nominal problem data (e.g.,
concavity of the probability function) by auxiliary transforming functions. We provide several
examples illustrating our theoretical developments.

1 Introduction

1.1 Probability constraints and eventual convexity

We consider a probabilistic constraint built up from the following ingredients: a map g : X×R
m →

R
k, where X is a (reflexive) Banach space, a random vector ξ ∈ R

m defined on an appropriate
probability space, and a user-defined safety level p ∈ [0, 1]. The probabilistic constraint then reads:

ϕ(x) := P[g(x, ξ) ≤ 0] ≥ p , (1)

where ϕ : X → [0, 1] is the associated probability function. The interpretation of (1) is simple: one
requires the decision x to be such that the random inequality system g(x, ξ) ≤ 0 holds with prob-
ability at least p. Such constraints (also called chance-constraint) often appear in decision-making
problems under uncertainty; for the theory and applications of chance-constraints optimization, we
refer to [8, 20, 22, 49, 63] and references therein.

In this paper we focus on the “convexity of the probabilistic constraint" (1), i.e., the convexity
of the set of feasible solutions defined by

M(p) := {x ∈ X : P[g(x, ξ) ≤ 0] ≥ p} . (2)

Understanding when M(p) is a convex set is important for the point of view of optimization, to
guarantee that local solutions are also globally optimal and to use numerical solution methods that
exploit this convexity (we review the most popular methods in section 1.3). A first result of the

1



convexity of M(p) follows from Prékopa’s celebrated log-concavity theorem (see [18, Proposition 4]
for its infinite dimensional version and [12] for generalizations): the convexity of M(p) is guaran-
teed for all p ∈ [0, 1], when −g is jointly quasi-concave in both arguments and ξ an appropriate
random vector. However, joint-quasi-concavity of −g is rather “exceptional" and fails in many ba-
sic situations. For example, when g(x, ξ) = xTξ and ξ is multi-variate Gaussian, it is well known
that M(p) is convex only whenever p ≥ 1

2 (see e.g., [28]). In this example and many others, we
thus observe that if the convexity of M(p) does not hold for all p, there still exists a (computable)
threshold p∗ ∈ [0, 1] such that the set M(p) is convex for all p ≥ p∗. This property is called eventual
convexity as observed by [48] and coined by [24] (which studies the case where g is separable and ξ
has independent components). Eventual convexity results are further generalized in [25] by allowing
for the components of ξ to be coupled through a copulæ dependency structure. These results are
refined, by allowing for more copulæ and with sharper bounds for p∗ in [56], and extended to all
Archimedian copulæ in [59], where also an appropriate solution algorithm is provided. When the
mapping g is non-separable, eventual convexity results are provided in [65] for the special case where
ξ is elliptically symmetrically distributed. Here we will simplify, clarify and extend these results.

1.2 Ideas, contributions, and outline of this paper

In this paper, we build on this line of research about establishing convexity of superlevel-sets of
probability functions (2) for p larger than a threshold. We show that a notion of generalized
concavity naturally appears in this framework, and allows us to reveal the level of hidden convexity
of the data. We formalize a way to analyze separately the convexity inherent to the randomness
and the one associated with the optimization model structure.

Roughly speaking, our approach is the following. In various contexts, the probability function
involves a composition of two functions F ◦Q, with F : R → [0, 1] carrying the randomness of the
problem and Q : Rn → R given by the optimization model. We split the problem of establishing
concavity (or at least quasi-concavity) of the composition F ◦Q by finding an adequate function G
(the inverse of which is denoted G−1) to write

F ◦Q = F ◦G−1 ◦G ◦Q (3)

such that F ◦G−1 and G◦Q satisfy appropriate convexity properties. Thus this approach naturally
raises interest in the concavity of function G ◦Q, which is a “transformable concavity", formalized
by the notion called transconcavity or G-concavity by [53] and [2]. Similarly, we will briefly study
concavity of terms F ◦G−1 and introduce the counterpart notion that we will call concavity-G−1.

Beyond this intuition, the analysis of the convexity of chance-constrained sets is not trivial: F ,
as a distribution function, cannot be concave and one has to be careful with working on appropriate
smaller subsets. The size of those subsets turns out to be directly related to the level of probability
beyond which convexity is guaranteed. Arguments of this type are implicitly and partially used in
[24, 56, 59, 65]. Here we highlight this approach, exploit it in its full generality, and provide a set
of tools to apply it in practice. We apply this set of tools to get eventual convexity statements in
two general contexts

(A) when ξ is specific (elliptically distributed) and g is general (with light geometrical assump-
tions),

(B) when ξ is general (with known associated copula) and g is specific (of the form g(x, ξ) =
ξ − h(x))
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In these two cases, we prove the existence of the threshold p∗ such that M(p) is convex for all p ≥ p∗.
Beyond the theoretical contribution regarding the existence of p∗, we also provide a concrete way
of numerically evaluating p∗ from the nominal data. Our results are illustrated through various
examples (not captured by existing results) of eventual convexity with a specified threshold p∗.

The contributions of this work are thus the following ones. Our main contribution is to identify
the interplay of generalized concavity with the functions used to model the constraints and the
uncertainty in chance-constrained optimization problems. This clarification would allow practition-
ers to refine their models of nonlinearity and readily swapping certain uncertainty distributions by
others sharing similar generalized concavity properties. Since we care about practical use of our
results, this introduction is meant to be an accessible overview of the state-of-the-art on eventual
convexity and its use in practice. We also provide througout the paper many examples illustrating
our results. Finally we specifically list our main technical contributions:

• We slightly extend the existing notion of G-concavity (by allowing for decreasing functions G)
and introduce the new notion of concavity-G−1 that goes with it. We also extend a useful result
of [24] on one-dimensional distribution functions and give necessary and sufficient conditions
under which such functions can be composed with monotonous maps to make them concave.

• For the context (A), our results clarify and extend those of [65] allowing us to treat new
situations: we use various forms of G-concavity and thus can cover a wider range of non-linear
mappings g.

• For the context (B), we first refine the results of [68] by providing a better threshold. More im-
portantly, our results cover new situations as they tackle the most general case with nonlinear
mappings and copulæ, while [56, 59] restricts to α-concavity (a special G) and [68] restricts
to independent copulæ.

• We also extend all these previous results (that consider finite dimensional decision vectors x),
by analysing and stating our results in Banach spaces. This opens the door to cover recent
applications in PDE-constrained optimization (e.g., [18]).

The paper is organized as follows. After section 1.3, which will put this work into a broader
practical perspective, our development starts in Section 2, which provides a careful account of useful
and used notions of generalized concavity together with calculus rules. Section 3 then provides
general eventual convexity statements in the two contexts (A) and (B) in Sections 3.1 and 3.2
respectively. Finally Section 4 is devoted to providing examples covered in our extended framework.

1.3 Discussion on applicability: practicality & open issues

Although this work is theoretical, it can be inserted in the bigger picture of solving chance-constrained
optimization problems. Of course, a priori, evaluating probability functions is computationally de-
manding (see e.g., the discussion in [45]), especially if the random vector is highly dimensional.
Still recent results (e.g., [6]) indicate that random vectors with dimensions in their hundreds, i.e.,
practically relevant sizes, can be handled with CPU times hovering roughly around a minute. Those
CPU times relate to solving a non-convex optimization problem involving a probability function,
evaluated repeatedly. Although this does not alleviate the theoretical or algorithmic difficulties,
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it does show that, by exploiting the structure present in applications, one can solve applications
of relevant size. The existing numerical solution methods use sample-based approximations of the
probabilistic constraint or treat probability functions (or a surrogate) by non-linear optimization
techniques; we briefly review the main methods here. Notice that many of these methods rely on
some convexity properties of the chance-constrained problems, bringing interest to the results of
this paper.

Popular numerical methods for dealing with probabilistic constraints are sample-based approx-
imations, e.g., [39, 40, 41, 46] with various strenghtening procedures, e.g., [32, 67] or investigation
of convexification procedures [1]. We can also mention boolean approaches, e.g., [30, 31, 36, 37],
p-efficient point based concepts, e.g., [9, 10, 11, 38, 58], robust optimization [4], penalty approach
[14], scenario approximation [7, 50], convex approximation [45], or yet other approximations [19, 26].
Aside from this rich literature, the non-linear constraint (1) can also be dealt with directly as such,
from the study of (generalized) differentiability of probability functions and the development of
readily implementable formulæ for gradients. Such formulæ can be further improved by using well
known “variance reduction” techniques, such as Quasi-Monte Carlo methods (e.g., [5]) or importance
sampling (e.g., [3]). For further insights on differentiability, we refer to e.g., [23, 29, 42, 51, 54, 55, 62].
Nonlinear programming methods using these properties include sequential quadratic programming
[6] and the promising bundle methods [59, 66].

Practical probabilistic constrained problems also involve several other constraints, that can be
represented as an abstract subset S ⊂ X. Important questions concern, in fact, the constrained set
M(p) ∩ S, for which the results presented in this paper might be used. As a brief observation we
do write p and not p∗, since p is the user chosen safety level and thus what is practically relevant.

• Is M(p)∩S convex? Convexity of S is achieved in many practical cases: in a significant share
of applications S is polyhedral, or easily seen to be convex. The difficulty in establishing
convexity of M(p) ∩ S therefore lies in checking whether M(p) is a convex set, which is the
aim of this paper. As a sufficient condition, the user would check p ≥ p∗, when applicable, in
order to have a global guarantee on computed solutions. Since, occasionally, p∗ may depend
adversely on random vector dimension, if the test fails, this does not necessarily imply that
M(p) ∩ S is not convex. The results of this paper rather indicate that a computed “solution”
should not necessarily be taken as a global solution, because convexity of M(p) ∩ S is no
longer guaranteed. Such an information is still useful for the user, who may decide to invest
additional effort in running the local optimization solver with multiple starting points, or
calling another (expensive) global optimization solver.

• Is M(p) ∩ S non-empty ? The safety level p is chosen by the user, who, as a modeler, is
responsible for ensuring that a well-posed model is formulated. In practice, we can expect a
reasonable convex optimization solver to return an infeasibility flag when the set M(p) ∩ S
is empty (in the case that M(p) ∩ S is convex as attested by the previous point). In such a
case, the user can examine his data, and subsequently formulate a better model. Answering
the feasibility question without convexity is of course an entirely different matter, and such
a theoretically and algorithmically difficult problem goes largely beyond the scope and the
setting of this paper. Below we mention some relevant heuristic procedures that have worked
well in our experience.

The feasibility regarding probabilistic restrictions is related to the question of maximizing the proba-
bility function overX or S, which recently has received special attention; see e.g., [15, 16, 43]. Indeed,
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if the maximal probability thus found is greater than or equal to p, then M(p)∩ S is ensured to be
a nonempty set. Of course, finding the global solution of this probability maximization problem is a
hard task in general, because the probability function need not be concave. Heuristically, feasibility
can also be addressed by considering a sample based variant of probabilistic maximization problem,
with few samples, i.e.,

min
z1,...,zN

N
∑

i=1

zi

s.t. g(x, ξi) ≤Mzi, x ∈ S, zi ∈ {0, 1} ,

where M is an appropriate “big-M” constant, S is the deterministic constraints set, and ξ1, ..., ξN
are i.i.d. samples of ξ. The last problem can in principle be solved with fairly few samples (small
N) and with low accuracy (e.g., 10% MIP-gap) to produce x̄. An a posteriori evaluation of the
probability function can then assert feasibility of x̄ for the true probabilistic constraint. Indeed,
when g is convex in x and S is convex, one can solve the last program with the methodology laid
out in [61]. The sample can also be exploited in a “scenario approach” (the asymptotics with respect
to N are well studied in for instance [50]). Finally, the approach (maximization of copula structured
probability not requiring convexity) in [60] can also be employed. It consists of minimizing a lower-
C2 function (requiring easily verified differentiability, whenever the copula is Archimedian) with
tools from nonsmooth optimization.

2 Generalized concavity, propagation of concavity, and cumulative

distribution functions

In this section, we gather the tools on generalized concavity that we will use in next sections to reveal
the underlying concavity of nominal data in probabilistic constraints. Section 2.1 briefly reviews the
definitions and useful properties of G-concavity (also called transconcavity (see [2])) and Section
2.2 introduces the right counterpart of concavity-G−1. We provide new technical lemmas, including
a characterization of generalized concavity of cumulative distribution functions.

2.1 Discussions on G-oncavity

We start by recalling the notion of G-concavity introduced by [53] and presented in the book [2]
under the name transconcavity. We just add here the possibility of G being strictly decreasing,
which will turn out to be useful in our context.

Definition 1. Let X be a Banach space and C be a convex subset of X. We say that a function
f : C → R is G-concave if there exists a continuous and strictly monotonic1 function G : f(C) → R

such that
f(λx+ (1− λ)y) ≥ G−1(λG ◦ f(x) + (1 − λ)G ◦ f(y))

holds for all x, y ∈ C and λ ∈ [0, 1].

1In this paper, we denote the inverse of a map G by G
−1, and the division by a map, whenever well defined, by

1

G
.

5



Note that when G is increasing, G-concavity of f is just the concavity of the map G◦f . When G
is decreasing, G-concavity of f is simply the convexity of G◦f . A given function f can be “G-concave”
for several different mappings G. It will be convenient, however, to pin down a specific choice and
subsequently speak of G-concavity of f for such a specific choice. The naming “transconcavity"
would then refer to an unspecified, yet implicitly assumed to exist, mapping G for which f is
G-concave.

Example 1 (Special family). A particularly well studied set of choices for G is that of the family

Gα : t 7→ tα for α ∈ R \ {0} and G0 : t 7→ ln(t). (4)

This family has several properties that help to measure a “level of generalized concavity” of a function
f , as used below in the definition of α-concavity.

We introduce the following mapping mα : R+ × R+ × [0, 1] → R (for a given α ∈ [−∞,∞))
defined as follows:

if ab = 0 and α ≤ 0, mα(a, b, λ) = 0 (5)

else, for λ ∈ [0, 1], we let:

mα(a, b, λ) =







aλb1−λ if α = 0
min {a, b} if α = −∞

(λaα + (1− λ)bα)
1

α else

(6)

This enables us to define the known notion of α-concavity as a “particular case” of G-concavity.

Definition 2 (α-concave function). Let X be a Banach space and C be a convex subset of X. We
say that a function f : C → R+ is α-concave if

f(λx+ (1− λ)y) ≥ mα(f(x), f(y), λ), (7)

for all x, y ∈ C and λ ∈ [0, 1].

Observe that for α 6= 0, α-concavity of f is indeed equivalent with Gα-concavity of f (in the
sense of Definition 1 with Gα of (4)). Notice that 1-concavity coincides with the usual notion of
concavity.

We also note that our definition of the mapping mα differs slightly of that found in [8, Def 4.7],
in so much that we have appended the condition α ≤ 0 to condition (5). The reason for this is that
otherwise the definition does not match up with what is expected whenever a = 0 or b = 0 and
α > 0. In particular consider α = 1 and the usual definition of concavity for a function f , two points
x, y ∈ C with f(y) = 0 for instance. Since our definition slightly differs from the classical one, we
provide the proof of the following technical lemma used to establish the hierarchy of α-concavity.

Lemma 3. Let a, b ∈ R+, λ ∈ [0, 1] be given and fixed. Then for α, β ∈ [−∞,∞), mβ(a, b, λ) ≤
mα(a, b, λ) holds when β ≤ α. Moreover the map α 7→ mα(a, b, λ) is continuous.

Proof. Let a, b, λ be as in the statement. Since λ is arbitrary and mα(a, b, λ) = mα(b, a, 1 − λ), we
may without loss of generality assume a ≤ b. Furthermore, let also β ≤ α be given but fixed. We
will proceed by a case distinction.
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First case: If α ≥ β > 0 or α > 0 > β then the mapping t 7→ t
α
β is convex on R+. So, we have

λu
α
β + (1− λ)v

α
β ≥ (λu+ (1− λ)v)

α
β , for u, v ≥ 0

which since α > 0, and hence t 7→ t
1

α strictly increasing on R+, is equivalent to (λu
α
β +(1−λ)v

α
β )

1

α ≥
(λu+ (1− λ)v)

1

β . The desired result follows by substituting u = aβ and v = bβ .
Second case: If 0 > α ≥ β, then we have −β ≥ −α > 0 and for any u, v ≥ 0, we can apply the
previous case to obtain the inequality:

(λu−β + (1− λ)v−β)
−1

β ≥ (λu−α + (1− λ)v−α)
−1

α .

The latter is equivalent with

(λ(
1

u
)β + (1− λ)(

1

v
)β)

1

β ≤ (λ(
1

u
)α + (1− λ)(

1

v
)α)

1

α ,

provided that u, v > 0 hold. Assuming a > 0 (and hence b > 0), we may substitute u = 1
a and

v = 1
b to obtain the desired inequality. When ab = 0, since both α and β ≤ 0, the desired inequality

holds.
Third case: To treat a case where α = 0 or β = 0, we first establish continuity of α 7→ mα around
0. To this end, consider the following Taylor expansions:

aα = eα ln(a) = 1 + α ln(a) + o(α)

1

α
ln(λaα + (1− λ)bα) =

1

α
ln(1 + α(λ ln(a) + (1− λ) ln(b)) + o(α)) = λ ln(a) + (1− λ) ln(b) + o(1)

Consequently, we get at the limit when α→ 0

exp(
1

α
ln(λaα + (1− λ)bα)) = exp(λ ln(a) + (1− λ) ln(b) + o(1))) → aλb1−λ = m0(a, b, λ),

Now assume β = 0 and α > 0. If m0(a, b, λ) ≤ mα(a, b, λ) were not to hold, then it would follow
that mα(a, b, λ) < m0(a, b, λ). We may pick a sequence αk ↓ 0 and for k large enough it holds
0 < αk ≤ α. By the already established order, we have mαk

(a, b, λ) ≤ mα(a, b, λ) < m0(a, b, λ).
But this contradicts the just established continuity of α 7→ mα(a, b, λ) near 0. The situation α = 0
can be established along similar lines of argument.
Fourth case: The situation wherein β < 0 < α follows by invoking the third case twice, since indeed
mβ(a, b, λ) ≤ m0(a, b, λ) ≤ mα(a, b, λ).
Last case: When β = −∞. The inequality m−∞(a, b, λ) ≤ mα(a, b, λ) holds trivially whenever
ab = 0. By combining the previous cases we may assume α < 0 as well as a, b > 0. We observe that
a, b ≥ m−∞(a, b, λ) = min {a, b} and since α < 0, it holds aα, bα ≤ m−∞(a, b, λ)α. Consequently
too,

λaα + (1− λ)bα ≤ m−∞(a, b, λ)α.

Since t 7→ t
1

α is strictly decreasing, we get m−∞(a, b, λ) ≤ mα(a, b, λ).
We finish by proving the continuity. Since both terms λaα and (1 − λ)bα are nonnegative, we

have that:
max(λaα, (1− λ)bα) ≤ λaα + (1− λ)bα,
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and consequently

m−∞(a, b, λ) ≤ (λaα + (1− λ)bα)
1

α ≤ max(λaα, (1− λ)bα)
1

α = [max(λ
1

−α
1

a
, (1 − λ)

1

−α
1

b
)]−1. (8)

Hence by passing to the limit:

lim
α→−∞

[max(λ
1

−α
1

a
, (1− λ)

1

−α
1

b
)]−1 = [max(

1

a
,
1

b
)]−1 = min(a, b),

This gives the continuity at −∞.

The above property of the map mα allows us to establish an entire hierarchy of “concavity”
immediately, as formalized by the next corollary.

Corollary 4 (Hierarchy of α-concavity). Let X be a Banach space and C be a convex subset of
X. Let the map f : C → R+, together with α, β ∈ [−∞,∞), be given. If f is α-concave, it is also
β-concave when α ≥ β. In particular f is quasi-concave.

The family of mappings {Gα}α of (4) allows us to distinguish the level of generalized concavity
of a function f ranging from quasi-concavity (α = −∞) to classic concavity (α = 1). Intuitively, the
greater α is, the “more concave”, f will be. All the practical examples in this paper will use these
functions to quantify and extract underlying convexity. Let us mention though that this family
does not capture completely the subtle notion of transconcavity (see Example 2 below) and that
alternative families of functions could be considered, such as the exponential family of functions
Gr : t 7→ −e−rt, for varying values of r, extensively studied in [2, Chap.8].

Example 2 (transconcavity does not imply α-concavity). Let us provide an example of a mapping
h : R → R+ that is not α-concave for any α ∈ R, but is G-concave for an appropriate choice of a
map G. We will show that h : R → R+ defined as h(x) = exp(−x3) is not α-concave for any α < 0
(and then by Corollary 4 that h can not be α-concave for any α). Indeed, let α < 0 be arbitrary.
Then α-concavity of h is equivalent to convexity of hα. Now by differentiating twice we obtain:

d

dx
(hα)(x) = −3x2α(hα)(x) and

d2

dx2
(hα)(x) = hα(x)αx(9αx3 − 6).

For x < 0, αx > 0 and moreover x 7→ 9αx3−6 has unique (negative root) xr = ( 6
9α )

1

3 . Consequently
9αx3 − 6 > 0 for x < xr and 9αx3 − 6 < 0 for x > xr. By combining with the above, we establish
that d2

dx2 (h
α)(x) < 0 must hold for x ∈ (xr, 0), implying that hα can not be convex, i.e., h is not

α-concave.
Now define G : (0,+∞) → R+ as G(x) = exp(−(ln(x))

1

3 ), then by direct computation d
dxG(x) =

− 1

3x(ln(x))
2
3

G(x) at any x 6= 1. We now readily verify that G is strictly decreasing. Moreover,

G(h(x)) = exp(x); hence, by definition, h is G-concave.

We now recall and extend a lemma from [2] that enables us to propagate the property of G-
concavity.

Lemma 5 (Propagation of generalized concavity). Let X be a Banach space and C be a convex
subset of X. Let the map f : X → R be a G1-concave function for an appropriate choice G1 :
f(C) → R. Let G2 be a continuous and strictly monotonic function over f(C). If G1

−1, the inverse
function of G1 is G2-concave over G1 ◦ f(C), then f is also G2-concave over C.
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Proof. By assumption we have, for any x, y ∈ C, λ ∈ [0, 1] that

f(λx+ (1− λ)y) ≥ G1
−1(λG1 ◦ f(x) + (1− λ)G1 ◦ f(y))

and for any u, v ∈ G1 ◦ f(C), λ ∈ [0, 1], we have

G1
−1(λu+ (1− λ)v) ≥ G2

−1(λG2 ◦G1
−1(u) + (1− λ)G2 ◦G1

−1(v)).

Hence, if we fix x, y ∈ C, λ ∈ [0, 1] and we set u = G1 ◦ f(x), v = G2 ◦ f(y), we get from these
two inequalities:

f(λx+ (1− λ)y) ≥ G1
−1(λu+ (1− λ)v) ≥ G2

−1(λG2 ◦G1
−1(u) + (1− λ)G2 ◦G1

−1(v))

= G2
−1(λG2 ◦G1

−1(G1 ◦ f(x)) + (1− λ)G2 ◦G1
−1(G1 ◦ f(y)))

≥ G2
−1(λG2 ◦ f(x) + (1− λ)G2 ◦ f(y)),

which gives the result.

2.2 Study of concavity-G−1

We introduce in this section the notion of concavity-G−1 which is the right counterpart of the
classical G-concavity recalled previously. In view of (3), the two complementary notions will be
useful in the sequel, in particular because we establish that many cumulative distribution functions
are concave-G−1. Along the way, we generalize a result of [24].

Definition 6 (concave-G−1 functions). Let F : R → R and G : R → R be continuous and strictly
monotonic mappings. The map F is said to be concave-G−1 on an interval I ⊂ R if F ◦ G−1 is
concave on the interval I. By extension of Definition 6, we also speak of a G1-concave-G−1

2 function
F if G1 ◦ F ◦G2

−1 is concave.

This definition can be specialized as follows when considering the family {Gα}α of Example 1.
Let α ∈ (−∞, 1] be given; we say that f : R → R is concave-α on an interval I ⊂ R if (i) f is

increasing and t 7→ f(t
1

α ) is concave on I, or (ii) f is decreasing and t 7→ f(t
1

α ) is convex on I.
(Note that t 7→ f(exp(t)) has to be understood whenever α = 0 is chosen.) Let us provide a positive
example of concave-α functions in our context.

Example 3 (Cumulative distribution functions). Let F : R+ → [0, 1] be the cumulative distribution
function of a χ-random variable with m degrees of freedom. Then for any α, F is concave-α on the
interval I = (0, (m − α)

α
2 ] if α < 0, I = [ln(m)/2,∞) if α = 0 and I = [(m− α)

α
2 ,∞) if α ∈ (0, 1].

This can be established by direct computation or as a result of [65, Lemma 3.1]. Further positive
examples can be found in [24, Table 1].

As we will shortly see, concavity-G−1 and concavity-α of cumulative distribution functions can
be conveniently related to specific properties of their density functions (provided they exist). To
this end, we introduce the following concept.

Definition 7 (G-decreasing functions). Let G : R+ → R+ be a strictly decreasing (resp. increasing)
continuously differentiable map with finitely many critical points. A mapping f is said to be G-
decreasing (resp. G-increasing) if there exists

t∗G > [max
{

t : G′(t) = 0
}

]+

such that the ratio r(t) := f(t)
G′(t) is strictly decreasing (increasing) on the set t ≥ t∗G. Here [t]+ :=

max {t, 0} is the positive part.
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The instantiation of this definition, related to the family of mappings {Gα}α was already intro-
duced in [24] under the notion of α-decreasing functions (only considering the situation α < 0). We
now provide a key result relating concavity-G−1 of a given distribution function with its density
being G-decreasing.

Proposition 8 (concave-G−1 cumulative distribution functions and G-decreasing densities). Let F :
R → [0, 1] be the cumulative distribution function of a random variable with associated (continuously
differentiable) density function f . Consider the statements:

1. the density f is G-decreasing (see Definition 7) with associated parameter t∗ ;

2. the mapping F is concave-G−1 on the interval I = (0, G(t∗)] if G is strictly decreasing, and
on I = [G(t∗),∞) if G is strictly increasing, i.e., z 7→ F (G−1(z)) is concave on I ;

Then 1. implies 2. and if moreover G is twice continuously differentiable, then 2. also implies 1..

Proof. 1. ⇒ 2.. We note that the proof of this implication follows closely the proof of [24, Lemma
3.1] as well as [68, Lemma 4]. Let G : R+ → R+ be a strictly increasing (decreasing) map and t∗

be such t 7→ f(t)
G′(t) is strictly decreasing (increasing) on the set t ≥ t∗.

Let us begin by considering the situation wherein G is strictly decreasing. Then for z ∈ (0, G(t∗)),
we have G−1(z) ≥ t∗. Now, the map z 7→ F (G−1(z)) that we will call χ can be written:

χ(z) =

∫ G−1(z)

−∞
f(s)ds = F (t∗) +

∫ G−1(z)

t∗
f(s)ds

= F (t∗) +

∫ z

G(t∗)

f(G−1(u))

G′(G−1(u))
du = F (t∗)−

∫ G(t∗)

z

f(G−1(u))

G′(G−1(u))
du,

where we have carried out the substitution u = G(s). The ratio appearing in the integral is a
continuous map, making χ (continuously) differentiable. Moreover,

χ′(z) =
f(G−1(z))

G′(G−1(z))
,

which together with z ∈ (0, G(t∗)) implies G−1(z) ≥ t∗ so that χ′ is strictly decreasing. As a
consequence χ is indeed concave.

Let us now consider the case wherein G is strictly increasing. Then for z ∈ (G(t∗),∞) it also
holds that G−1(z) ≥ t∗. We can write χ as

χ(z) =

∫ G−1(z)

−∞
f(s)ds = F (t∗) +

∫ G−1(z)

t∗
f(s)ds = F (t∗) +

∫ z

G(t∗)

f(G−1(u))

G′(G−1(u))
du

where we have carried out the substitution u = G(s). Now

χ′(z) =
f(G−1(z))

G′(G−1(z))
,

which together with z ∈ (G(t∗),∞) implies G−1(z) ≥ t∗ so that χ′ is strictly decreasing. As a result,
χ is concave.
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2. ⇒ 1. Let us assume to begin with that F is concave-G−1, on the interval [G(t∗),∞) for a strictly
increasing map G and define χ(z) = F ◦ G−1(z). We first note that G is strictly increasing and
(continuously differentiable) and hence by the classic inverse function Theorem (e.g., [13, Theorem
1A.1], G−1 is also continuously differentiable and the identity (G−1)′(x) = 1

G′◦G−1(x)
holds.

Now, by assumption, χ is concave on [G(t∗),∞), and for any x ∈ [G(t∗),∞), we have

χ′(x) = (G−1)′(x).(f ◦G)(x)
χ′′(x) = (G−1)′′(x).(f ◦G)(x) + (G−1)′(x)2.(f ′ ◦G)(x).

We can rewrite the second derivative as follows:

χ′′(x) =
1

(G′ ◦G−1)(x)

(

− G′′ ◦G−1(x)

(G′ ◦G−1(x))2
f ◦G−1(x) +

f ′ ◦G−1

G′ ◦G−1(x)

)

,

where we have used the identity (G−1)′′(x) = − G′′◦G−1(x)
(G′◦G−1(x))3 resulting from differentiating twice in the

identity G(G−1(x)) = x holding locally at any x > 0 and thus in particular at any x ∈ [G(t∗),∞)
since G(t∗) > 0. Since G is strictly increasing, so is G−1 and consequently G′ ◦ G−1(x) > 0.
Concavity of χ implies in turn that χ′′(x) ≤ 0, which can be equivalently stated as:

−G′′(t)

(G′(t))2
f(t) +

f ′(t)

G′(t)
≤ 0, (9)

where t = G−1(x) and x ≥ G(t∗) if and only if t ≥ t∗. By defining ψ : t 7→ f(t)
G′(t) and differentiating

once, we obtain:

ψ′(t) =
f ′(t)

G′(t)
+ f(t)(−1)

G′′(t)

G′2(t)
= −G′′(t)

G′2(t)
f(t) +

f ′(t)

G′(t)
.

Now by (9) it follows that ψ′(t) ≤ 0 for all t ≥ t∗ and hence by Definition 7, f is G-decreasing.
This situation wherein G is strictly decreasing follows upon observing that G−1 is also strictly

decreasing and that consequently G′ ◦G−1(x) < 0 holds. Hence, concavity of χ on the set (0, G(t∗)],
implies ψ′(t) ≥ 0 as was to be shown.

When applying the previous result with the family {Gα}α<1 of (4), we obtain the following
corollary.

Corollary 9 (Characterisation in the case of Gα). Let α ∈ (−∞, 1) be given and F : R → [0, 1] be
the cumulative distribution function of a random variable with continuously differentiable density f .
Then we have the following equivalence

1. f is Gα-decreasing (i.e., f is (1− α)-decreasing in the sense of Definition 2.2 in [24])

2. F is concave-Gα (i.e., F is α-revealed-concave in the sense of Definition 3.1 in [65]).

The implication 1. ⇒ 2. of Corollary 9 for α < 0 was already known and corresponds to Lemma
3.1 in [24]. However both the extension to α ∈ [0, 1) and the reverse implication are novel. Especially
the latter shows that, in principle, there is no loss of generality in studying the properties of the
density instead of the cumulative distribution function F .

As already mentioned, [24, Table 1] contains a large choice of usual distribution functions (nor-
mal, exponential, Weibull, gamma, chi, Maxwell, etc...) with a (1− α)-decreasing density function
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for all α < 0 and an analytic expression for the parameter t∗ indicated in Definition 7. Although
these results may give the impression that all cumulative distribution functions are concave−Gα

−1,
this is not true as the following example shows.

Example 4 (Not concave − Gα
−1 distribution function). Let f : R+ → R be defined as f(t) =

( sin
2(t)
t2

) 2π . Let us first verify that f does indeed integrate to 1. This follows recalling the iden-
tity sin2(t) = (1 − cos(2t))/2 and by using integration by parts, as well as by recalling that

limt→∞
sin(s)

s ds = π
2 .

Now, should f be Gα-decreasing for some α < 0, then it must hold by (9) that

−α(α− 1)

α2
t−αf(t) +

1

α
t1−αf ′(t) ≤ 0,

for t ≥ t∗ for some t∗. Yet the previous inequality is equivalent with (1 − α)f(t) + tf ′(t) ≥ 0 for
t ≥ t∗.

Let us verify that this can not hold. Note that

f ′(t) =

(−2 sin2(t)

t3
+

2 sin(t) cos(t)

t2

)

2

π
.

We verify the negativeness of expression g(t) := (1− α)f(t) + tf ′(t), after algebraic manipulations:

g(t) =
2

π

sin(t)

t

(

(−1− α)
sin(t)

t
+ 2cos(t)

)

Case −1 < α < 0: Choosing the points tn = π
2+2πn, for integers n > 0, we note that cos(tn) = 0,

sin(tn)
tn

> 0 and (−1− α) sin(tn)tn
< 0. Hence, there is always tn such that g(tn) < 0.

Case α ≤ −1: Choosing the points tn = 3π
4 + 2πn, for integers n > 0 sufficient large such that

tn > −1 − α. By noting that cos(tn) = −0.71 and sin(tn) = 0.71, it is easy to verify that (−1 −
α) sin(tn)tn

+ 2cos(tn) < 0. Again, consequently, there is always tn such that g(tn) < 0.
Would the requested t∗ exist, we must have for some n sufficiently large that tn > t∗ and

consequently condition (9) must hold in particular at t = tn. Yet, we have established that it can
not. Hence the density function is not Gα-decreasing for any α < 0.

Example 5 (concavity-G−1 withG 6= Gα). Let us come back to Example 2 and the mapG : R+ → R+

defined as G(x) = exp(− ln(x)
1

3 ). Then, Φ the cumulative distribution function of a standard normal
Gaussian random variable is concave-G−1 on the set (0, G(t∗)], with t∗ = 1.86.

This follows from Proposition 8 as soon as the ratio r(x) = 1√
2πG(x)

exp(−1
2x

2)(−3x ln(x)
3

2 ) is

strictly increasing. This, in turn, can be asserted if the function f(x) := exp(−1
2x

2)(−3x ln(x)
3

2 )
is strictly increasing on the set x ≥ t∗. In order to show this, compute the derivative: f ′(x) =

3 exp(−1
2x

2) ln(x)
1

2 ((x2 − 1) ln(x) − 3
2 ). Observing that for x ∈ (1,∞), (3 exp(−1

2x
2) ln(x)

1

2 ) > 0,
the sign of f ′(x) depends on the term: f2(x) = (x2 − 1) ln(x) − 3

2 . The latter has derivative:

f ′2(x) = 2x ln(x)+ (x2−1)
x . For x > 1, f ′2(x) > 0 (f2(x) is strictly increasing for x > 1). We find that

f2(1.8) = −0.1834 and f2(1.9) = 0.1752, so there is a root of f2 in the interval [1.8, 1.9]. So, for
x ∈ [1.9,∞), f2(x) > 0 and hence f ′(x) > 0, which in turn implies that f(x) is strictly increasing.
Numerically solving f2(x) = 0 in x, we find the solution x∗ = 1.8528.
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3 Interplay of generalized concavity and “convexity" of chance con-

straints

In this section, we establish convexity results for feasible sets of probabilistic constraints by em-
ploying the set of tools of generalized concavity. Our analysis considers two special structures for
(1). The first situation, analyzed in Section 3.1, refers to the general case wherein g is non-linear
and relatively arbitrary, but the random vector ξ is assumed to follow a multi-variate elliptically
symmetric distribution. The second situation, analyzed in Section 3.2, is when g is separable, which
boils2 down to considering g(x, z) = z−h(x). The random vector ξ can be relatively arbitrary in so
much that it can have nearly arbitrary marginal distributions and the (joint) dependency structure
is pinned down by the choice of a copula.

3.1 Non-linear couplings of decisions vectors and elliptically distributed random

vectors

In this section we consider the situation of (1) wherein the map g : X ×R
m → R

k is convex in the
first argument and continuous as a function of both arguments. We also assume that the random
vector ξ taking values in R

m is elliptically symmetrically distributed with mean µ, covariance-like
matrix Σ and generator θ : R+ → R+, which is denoted by ξ ∼ E(µ,Σ, θ) if and only if its density
fξ : R

m → R+ is given by

fξ(z) =
(

detΣ
)−1/2

θ

(

(z − µ)⊤Σ−1(z − µ)

)

, (10)

where the generator function θ : R+ → R+ must satisfy
∫ ∞

0
t
m
2 θ(t)dt <∞.

We consider L as the matrix arising from the Choleski decomposition of Σ, i.e., Σ = LLT, it can be
shown that ξ admits a representation as

ξ = µ+RLζ (11)

where ζ has a uniform distribution over the Euclidean m-dimensional unit sphere Sm−1 := {z ∈
R
m :

∑m
i=1 z

2
i = 1} and R possesses a density, which is given by

fR(r) :=
2π

m
2

Γ(m2 )
rm−1θ(r2), (12)

with Γ is the usual gamma-function.
The family of elliptically distributed random vectors includes many classical families (see e.g. [17]

and [35]): for instance, Gaussian random vectors and Student random vectors (with ν degrees of
freedom) are elliptical with the respective generators

θGauss(t) = exp(−t/2)/(2π)m/2 and θStudent(t) =
Γ
(

m+ν
2

)

Γ
(

ν
2

) (πν)−m/2
(

1 +
t

ν

)−m+ν
2 .

2A general separable g would be of the form g(x, z) = ψ(z)−h(x). In our case, recalling that z will be substituted
out for the random vector ξ, there is no loss of generality in assuming ψ(z) = z since the general case reduces to it
when taking ξ̃ = ψ(ξ) to be the underlying random vector that we study.
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The advantage of the spherical radial decomposition (11) is that it allows one to derive the
following attractive form for ϕ (see e.g. Theorem2.1 of [65]): if x ∈ X is such that

1. g(x, µ) ≤ 0 (recall that µ = E (ξ))

2. for any z ∈ R
m such that g(x, z) ≤ 0, we have

g(x, λµ + (1− λ)z) ≤ 0 ∀λ ∈ [0, 1],

then ϕ defined in (1) can be written as

ϕ(x) =

∫

v∈Sm−1

FR(ρ(x, v))dµζ (v) (13)

where FR is the cumulative distribution function of R, µζ is the law of uniform distribution on the
m-dimensional euclidian sphere S

m−1, and ρ : X × S
m−1 → R+ ∪ {∞} is the continuous3 mapping

defined by

ρ(x, v) =







sup
t≥0

t

s.t. g(x, µ+tLv) ≤ 0.
(14)

Note that if for each v the map ρ(·, v) is FR-concave, then due to the linearity of the integral
such a property would carry over immediately to ϕ. It is clear that such a request could not hold
without restrictions since generally a probability function can not be “concave”. Indeed, it is a
bounded function by 0 and 1 and usually increasing along a certain “path”. For this reason the
analysis is non-trivial. The second difficulty is in conveying these desired properties from p alone.
Let us provide a precise statement.

Theorem 10 (Convexity of probability functions). Let C be a convex subset of X. Assume that,
for any v ∈ S

m−1, there exists a continuous function Gv : ρ(C × {v}) → R+ such that

• Gv is strictly monotonic on ρ(C × {v}),

• x 7→ ρ(x, v) is Gv-concave on C and continuous,

• FR is concave −Gv
−1 on (Gv ◦ ρ)(C × {v}),

where ρ is defined as in (14). Then ϕ : X → [0, 1] defined in (1) is concave on C.

Proof. Let us first establish that for any fixed v ∈ S
m−1 that x 7→ FR ◦ ρ(x, v) is concave on C.

To this end pick x1, x2 ∈ C and λ ∈ [0, 1] arbitrarily and consider xλ = λx1 + (1 − λ)x2. Then by
Gv-concavity of ρ(·, v) it follows:

ρ(xλ, v) ≥ Gv
−1(λGv(ρ(x1, v)) + (1− λ)Gv(ρ(x2, v))).

Now since FR is increasing as a distribution function it follows too that

FR(ρ(x
λ, v)) ≥ FR(Gv

−1(λGv(ρ(x1, v)) + (1− λ)Gv(ρ(x2, v)))).

3The continuity of ρ is well-known (see e.g. Lemma 3.4 in [64]); it implies in particular that ρ is mesurable. Note
also that ρ is quasi-concave (see Lemma 3.2 in [65]). We will need here stronger notions of G-concavity to establish
our results.
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Now consider the set Iv ⊆ R defined as Iv = Gv(ρ(C, v)).
Our claim is that Iv is an interval, i.e., is convex. To this end, we recall that the continuous

image of a connected set is connected and hence ρ(C, v) is a connected set (recall that C is a convex
set). By applying the argument a second time, since Gv is continuous, it follows that Iv is connected.
Now since Iv is a subset of R, it is connected if and only if it is convex if and only if it is an interval.

Now since Iv is an interval and hence convex, λGv(ρ(x1, v)) + (1− λ)Gv(ρ(x2, v))) ∈ Iv and we
may apply concavity −Gv

−1 of FR to pursue our development as follows:

FR(ρ(x
λ, v)) ≥ (FR◦Gv

−1)(λGv(ρ(x1, v))+(1−λ)Gv(ρ(x2, v)))) ≥ λFR(ρ(x1, v))+(1−λ)FR(ρ(x2, v)),

which is what was to be shown. Now by linearity of integrals, we get

ϕ(xλ) =

∫

v∈Sm−1

FR(ρ(x
λ, v))dµζ(v) ≥ λ

∫

v∈Sm−1

FR(ρ(x1, v))dµζ(v) + (1− λ)

∫

v∈Sm−1

FR(ρ(x2, v))dµζ(v)

= λϕ(x1) + (1− λ)ϕ(x2),

thus concluding the proof.

Although Theorem 10 allows us to establish concavity of ϕ on a certain given convex set C,
an important additional difficulty is how to entail that M(p) ⊆ C holds for p large enough. Then
one can immediately deduce the convexity of M(p) from concavity of ϕ. A convenient situation
is one when, for all x, the set M(x) := {z ∈ R

m : g(x, z) ≤ 0} is convex in R
m. For this it

would be sufficient to request that g is convex respectively in x and in z (but not necessarily
jointly). We can however generalize to the situation wherein M(x) is star-shaped with respect to
µ if the convex hull of the latter sets does “not distort" measurement of length of lines segments
{r ≥ 0 : µ+ rLv ∈ M(x)} moving through it. In order to make a precise statement, we introduce
the following map: ρco : X × S

m−1 → R+ ∪ {−∞,∞}:

ρco(x, v) =







sup
t≥0

t

s.t. µ+tLv ∈ Co(M(x))
(15)

where Co(M(x)) denotes the convex hull of M(x).

Theorem 11 (Eventual convexity of elliptical chance constraints). Let C be a given convex subset
of X. In addition to the framework of this section, assume that

1. there exists a t∗ > 0, such that {x ∈ X : ρ(x, v) ≥ t∗,∀v ∈ S
m−1} ⊆ C ;

2. For any v ∈ S
m−1, there exists a continuous function Gv : R → R as in Theorem 10;

3. There exists p0 ∈ [12 , 1] and δnd > 0 such that

δndρ(x, v) ≥ ρco(x, v),

for all x ∈M(p0) and all v ∈ S
m−1, where ρ and ρco are defined respectively in (14) and (15).

Then for any q ∈ (0, 12 ) and any p ≥ max(p0, p(t
∗, q)) with

p(t∗, q) =

(

1

2
− q

)

FR

(

δndt∗

δ(q)

)

+
1

2
+ q, (16)
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the set M(p) defined in (2) is convex. Here δ(q) is the unique solution (in δ) to the equation

Bi

(

m− 1

2
,
1

2
, sin2(arccos(δ))

)

= (1− 2q)Bc

(

m− 1

2
,
1

2

)

,

where Bi (resp. Bc) refers to the incomplete (resp. complete) Beta function.

Proof. We follow here closely the demonstration of the Theorem 4.1 from [65]. Let p ∈ [p0, 1] be
given and take any x ∈M(p). We have, for such x that 1

2 < p ≤ P[g(x, ξ) ≤ 0] ≤ P[ξ ∈ Co(M(x))].
Then corollary 2.1 from [65] gives that µ ∈ int(Co(M(x))).

Let us now pick an arbitrary but fixed v ∈ Dom(ρ(x, .)). Note that, by assumption, there is
δnd > 0 such that δndρ(x, v) ≥ ρco(x, v), i.e., v ∈ Dom(ρco(x, .)) as well. Hence, µ + ρco(x, v)Lv
belongs to the boundary of Co(M(x)).

Therefore, we can separate µ+ ρco(x, v)Lv from the convex set Co(M(x)), so that there exists
a non-zero s ∈ R

m such that for all z ∈ Co(M(x)),

sTz ≤ sT(µ+ ρco(x, v)Lv) ≤ sT(µ + δndρ(x, v)Lv).

Now define c ∈ R
m and γ > 0 as follows:

c :=
s

‖LTs‖ and γ = cT(µ+ δndρ(x, v)Lv),

where we recall the
∥

∥LTs
∥

∥ > 0 since L is regular and s 6= 0. It now follows by construction that,

M(x) ⊂ Co(M(x)) ⊂ {z ∈ R
m : cTz ≤ γ}.

In particular this entails P[g(x, ξ) ≤ 0] ≤ P[cTξ ≤ γ]. We can employ Theorem 2.2 of [65] to get
the estimate

p ≤ P[g(x, ξ) ≤ 0] ≤ P[cTξ ≤ γ] ≤
(

1

2
− q

)

FR





δndρ(x, v) sTLv

‖LTs‖
δ(q)



+ q +
1

2

≤
(

1

2
− q

)

FR

(

δndρ(x, v)

δ(q)

)

+ q +
1

2
,

for any q ∈ (0, 12 ) and associated δ(q) > 0, where we have used the Cauchy-Schwartz inequality and
the monotonicity of FR. Since FR is increasing and (12 − q) > 0 as well as p ≥ max(p0, p(t

∗, q)), we
derive ρ(x, v) ≥ t∗. Moreover obviously, ρ(x, v) ≥ t∗ for v /∈ Dom(ρ(x, .)). Hence, M(p) ⊆ {x ∈
X : ρ(x, v) ≥ t∗,∀v ∈ S

m−1} ⊆ C. Now, we can apply Theorem 10 to establish that ϕ is concave
on C and therefore M(p) must be convex.

Remark 1 (Abstract theorem at work). Though looking abstract, the conditions of the theorem are
often present in practice. They can for example be ensured whenever the following conditions hold.
We provide examples in Section 4.

• There exist some α ∈ R such that for each v ∈ S
m−1, the map x 7→ ρ(x, v) is α-concave (see

[65, Proposition 5.1] for an exemple) and the radial distribution function FR is concave-α.
Here prominent examples are the chi distribution, the Fisher-Snedecor distribution, etc.
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• To get a suitable t∗ associated with FR, one can use the concavity-α of FR. For the example of
the chi-distribution, we get t∗ =

√
m− α and C =

{

x ∈ X : ρ(x, v) ≥ √
m− α for all v ∈ S

m−1
}

.

• The request of item 3 holds whenever the set M(x) is convex for all x ∈ C and in that case
δnd = 1. Such convexity can be ensured whenever the map z 7→ g(x, z) is quasi-convex for
each x ∈ X, and in that case p0 =

1
2 can be taken.

• Note finally that continuity of the map ρ can be ensured under fairly general conditions, e.g.,
convexity of g in the second argument and g(x, µ) < 0 together with continuous differentiability
of g immediately entail continuity of x 7→ ρ(x, v) (even continuity in both arguments). See for
instance [21]. Continuity can also be ensured under less restrictive conditions. For instance
whenever, the map g is continuous at any x̄, v̄, r̄ such that g(x̄, r̄Lv̄) = 0, neighbourhoods
U, V,W of x̄, v̄, r̄ respectively can be identified such that for all (x, v) ∈ U × V , the map
r 7→ g(x, rLv) is monotonic. This in turn is related to uniqueness of solutions of perturbed
systems g(x, rLv) = t for t sufficiently small and not very restrictive. To ensure continuity of
ρ from this assumption, we can just use a general version of the implicit function theorem; see
[13, Theorem 1H.3] as well as [27, 33] which are older statements of such a result.

The computed threshold p∗ is thus valid for a large class of nonlinear functions g. Should it be
conservative, refinements might be obtained when studying specific structures; see e.g., [43, 57] and
forthcoming Remark 3. Beyond being a general guarantee, the threshold p∗ is thus an indication
that lower thresholds could be revealed for specific functions.

3.2 Separable copulæ-structured probabilistic constraints

In this section we will consider the following form of (1):

P[ξ ≤ h(x)] ≥ p,

where ξ taking values in R
m is a random vector and h : X → R

m a given map. By employing
Sklar’s Theorem [52], we may write (1) with the special structure as above in the following form:

P[ξ ≤ h(x)] = C(F1(h1(x)), ..., Fm(hm(x))). (17)

Here F1, ..., Fm are the marginal distribution functions of the random vector ξ and hi : X → R,
i = 1, ...,m refers to the components of the mapping h. Moreover C : [0, 1]m → [0, 1] is a copula,
i.e., a multi-variate distribution function with uniform marginal distributions (e.g., [44] for further
details). In what follows, we require specific properties of C and F1, ..., Fm and through these choices
pin down the multivariate distribution of ξ.

We introduce the analogue of concave-G−1 functions in this context of copulæ.

Definition 12 (concave-G−1 copulæ). Let C : [0, 1]m → [0, 1] be a copula and G : [0, 1]m → R
m a

map such that the ith component Gi is continuous and strictly monotonic. The copula C is said to
be concave-G−1 on the product of intervals I =

∏m
i=1 Ii, with Ii ⊆ R if the map

I ∋ z 7→ C(G1
−1(z1), ...,Gm

−1(zm))

is quasi-concave.
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Example 6 (Relation to other concave copulæ). Taking Gi = Gγ in the previous definition, a
concave-G−1 copula corresponds to a (−∞) − γ-concave copula in the terminology of [56]. For
example, all Archimedian copulæ are concave − G1

−1 (see [59, Theorem 3.3]. Example 7 below
provides an example of concave-G−1 copula which is necessarily (−∞)− γ-concave. Note also that,
in the special case γ = 0, this notion is weaker than the notion of logexp-concave of [25]). Prominent
examples of such copulæ are for instance the independent, maximum or Gumbel copula. The Clayton
copula is an example of concave−G0

−1 copula which is not logexp-concave (see Lemma 5.5 of [56]).

Example 7 (Gaussian case). Let R be a positive definite m×m correlation matrix and Φ denote the
standard normal distribution function. Then the Gaussian copula CR : [0, 1]m → [0, 1] is defined as

CR(u) = ΦR(Φ−1(u1), ...,Φ
−1(um)),

where ΦR is the multivariate Gaussian distribution function related to correlation matrix R. Now
observe that Φ−1 : [0, 1] → R is strictly increasing and continuous. Now for any z ∈ I = R

m,
CR(Φ(z1), ...,Φ(zm)) = ΦR(Φ−1(Φ(z1)), ...,Φ

−1(Φ(zm))) = ΦR(z1, ..., zm). Recalling that multivari-
ate Gaussian distribution functions are 0-concave (see, e.g., [47]), it follows from Corollary 4 that

CR is concave − Φ−1−1
. It was however not clear whether or not CR is (−∞) − γ-concave; see the

extensive discussion in [56, section 6]). Similar analysis can be carried out with Clayton Copula
which can be shown to be concave-G−1 with Gi(z) = ln (z)2.

We can now provide the announced eventual convexity result.

Theorem 13 (Eventual convexity of separable copulae-structured probabilistic constraints). Let
hi : X → R be continuous mappings and consider the following identity:

P[ξ ≤ h(x)] = C(F1(h1(x)), ..., Fm(hm(x))), (18)

where C is a suitable copula and Fi are the marginal distribution functions of component i of ξ,
i = 1, ...,m.

Assume that we can find strictly monotonous mappings Gi : R → R, such that the functions hi are
Gi-concave on a given convex level set C = {x ∈ X : hi(x) ≥ bi, i = 1, ...,m} of X for appropriate
parameters bi ∈ R, i = 1, ...,m.

Assume moreover that for i = 1, ...,m continuous strictly monotonic mappings Ĝi : [0, 1] → R

can be identified such that C is concave − Ĝ−1 (see Definition 12) on the set I =
∏m

i=1 Ii, where

• the interval Ii = [Ĝi(bi),∞) whenever Ĝi is strictly increasing

• the interval Ii = (−∞, Ĝi(bi)] whenever Ĝi is strictly decreasing.

Finally, assume that the marginal distribution functions Fi : R → R are Ĝi-concave-G−1
i on

• the interval [Gi(bi),∞) whenever Gi is strictly increasing

• the interval (0, Gi(bi)] whenever Gi is strictly decreasing.

Then the set M(p) := {x ∈ X : P[ξ ≤ h(x)] ≥ p} is convex for all p > p∗ := maxi=1,...,m Fi(bi).
Convexity can also be asserted for p = p∗ if each individual distribution function Fi, i = 1, ...,m is
strictly increasing.

18



Proof. Pick any p > p∗, x, y ∈ M(p), λ ∈ [0, 1] and i ∈ {1, ...,m} arbitrarily. Define xλ :=
λx+ (1− λ)y. Since all copulæ are dominated by the maximum-copula, we get:

Fi(hi(x)) ≥ min
j=1,...,m

Fj(hj(x)) ≥ C(F1(h1(x)), ..., Fm(hm(x))) ≥ p > p∗ ≥ Fi(bi). (19)

Now the latter entails
hi(x) ≥ bi. (20)

and this in turn means M(p) ⊆ C. Estimate (20) also holds whenever p ≥ p∗ and Fi is strictly
increasing for each i = 1, ...,m. A similar estimate is obtained for y clearly. Let us first remark that
due to (20), we have Gi(hi(x)) ≥ Gi(bi), whenever Gi is strictly increasing and Gi(hi(x)) ≤ Gi(bi)
otherwise.

Consequently, λGi(hi(x)) + (1 − λ)Gi(hi(y)) ≤ Gi(bi) whenever Gi is strictly decreasing, and
λGi(hi(x)) + (1 − λ)Gi(hi(y)) ≥ Gi(bi) otherwise. We note that in either situation λGi(hi(x)) +
(1 − λ)Gi(hi(y)) belongs to the interval associated with Ĝi-concavity-G−1

i of Fi. Now, since Fi is
increasing we establish first that

Fi(hi(x
λ)) ≥ Fi(Gi

−1(λGi(hi(x)) + (1− λ)Gi(hi(y)))), (21)

by Gi-concavity of hi on the set C. As argued above, related to λGi(hi(x)) + (1 − λ)Gi(hi(y))
belonging to an appropriate domain, we may pursue (21) by invoking Ĝi-concavity-G−1

i of Fi, and
obtain

Fi(hi(x
λ)) ≥ Fi(Gi

−1(λGi(hi(x)) + (1− λ)Gi(hi(y))))

≥ Ĝ−1
i (λĜi(Fi(Gi

−1(Gi(hi(x))))) + (1− λ)Ĝi(Fi(Gi
−1(Gi(hi(x))))))

≥ Ĝ−1
i (λĜi(Fi(hi(x))) + (1− λ)Ĝi(Fi(hi(y)))) (22)

Since i was fixed but arbitrary, the above equation (22) holds for all i = 1, ...,m. A Copula is
increasing in its arguments, so we get in turn:

C(F1(h1(x
λ)), ..., Fm(hm(xλ))) ≥

C(Ĝ−1
1 (λĜ1(F1(h1(x))) + (1− λ)Ĝ1(F1(h1(y)))), ..., Ĝ

−1
m (λĜm(Fm(hm(x))) + (1− λ)Ĝm(Fm(hm(y))))).

Moreover arguing as before, for any i = 1, ...,m it holds that λĜi(Fi(hi(x)))+(1−λ)Ĝi(Fi(hi(y))) ∈
Ii. We can now employ concavity − Ĝ−1 of the copula C, to establish:

C(F1(h1(x
λ)), ..., Fm(hm(xλ))) ≥

m−∞(C(F1(h1(x)), ..., Fm(hm(x))), C(F1(h1(y)), ..., Fm(hm(y))), λ) ≥ p,

which is equivalent with C(F1(h1(x
λ)), ..., Fm(hm(xλ))) ≥ p, i.e., xλ ∈M(p) as was to be shown.

The conditions given in the above Theorem 13 allow for quite some flexibility. We refer to [56,
section 5] for examples. In section 4.2 below we provide other examples, not covered by prior results.

4 Selected examples

In this section, we provide several new examples for which eventual convexity can be asserted with
the extended framework built upon G-concavity. Section 4.1 is concerned with a situation wherein
g is non-linear and Section 4.2 wherein g separable.
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4.1 Example with a quadratic probabilistic constraint

Consider the map g : Rn × R
m → R defined as

g(x, z) = zTW (x)z + 2

n
∑

i=1

aiw
T

i z + b (23)

where a1, ..., an are fixed constants, w1, ..., wn are fixed vectors of Rm, andW : Rn → S+
n is a “convex"

function, in the sense that for any (x, y) ∈ R
n, λ ∈ [0,1], λW (x) + (1− λ)W (y)−W (λx+ (1− λ)y)

is positive (semi-)definite. Note that, for all z, g(·, z) is then convex with respect to its first variable.
We assume furthermore that b < 0, which ensures g(x, 0) < 0. A concrete example of a mapping
W satisfying the above request is for instance W (x) =

∑n
i=1 xiWi, with Wi positive semi-definite

and x ≥ 0 as an ambiant further restriction.
Let ξ be an elliptically symmetrically distributed random vector with given spherical-radial

decomposition ξ = RLζ. Then, by fixing (x, v) ∈ R
n × S

m−1 and defining

h(x, v) := (Lv)TW (x)(Lv) and β(v) :=
n
∑

i=1

aiw
T

i (Lv),

we can explicitly identify the map ρ of (13), being the unique solution to the equation g(x, rLv) = 0.
This solution map is given by the expression:

ρ(x, v) =
−β(v) +

√

β(v)2 − bh(x, v)

h(x, v)
. (24)

Next, we identify a function gv : R+ → R such that ρ(., v) is gv-concave for any v ∈ S
m−1.

Lemma 14. For any fixed v ∈ S
m−1 define the map gv : (0,∞) → R− as gv(t) = −( bt + β(v))2.

Then x 7→ ρ(x, v) gv-concave on R
n.

Proof. We first note that ρ(x, v) > 0, since ρ(x, v) is the solution to g(x, rLv) = 0, and z 7→ g(x, z)
is convex (as a convex quadratic map in z) as well as g(x, 0) < 0 so that by continuity any solution (if
any) to g(x, rLv) = 0 must satisfy r > 0. Consequently the composition gv(ρ(x, v)) is well-defined.
Moreover, gv is clearly (continuously) differentiable on (0,∞). Now observe that

1

ρ(x, v)
=

h(x, v)

−β(v) +
√

β(v)2 − bh(x, v)
=
β(v) +

√

β(v)2 − bh(x, v)

−b .

So that, −b
ρ(x,v) − β(v) =

√

β(v)2 − bh(x, v) ≥ 0, i.e.,

gv(ρ(x, v)) = −(
b

ρ(x, v)
+ β(v))2 = −β(v)2 + bh(x, v).

Now, b < 0 and x 7→ h(x, v) is convex, therefore x 7→ gv(ρ(x, v)) is concave. It remains to show that
gv is strictly increasing on an appropriate domain. To this end, observe that

• if β(v) ≤ 0, we have for t > 0, g′v(t) = 2 b
t2
( bt +β(v)). Now, since b < 0 and β(v) ≤ 0, it follows

that ( bt + β(v)) < 0 and evidently b
t2
< 0 so we conclude that g′v(t) > 0, as was to be shown.

Note that gv maps to (−∞,−β(v)2) for β(v) ≤ 0.
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• if β(v) > 0, we still have, for t > 0, g′v(t) = (2 b
t2
( bt +β(v)) and b

t2
< 0. However ( bt +β(v)) < 0

if and only if t < b
−β(v) , so that gv is strictly increasing on (0, b

−β(v) ] in this case only. We will

now establish that ρ(x, v) ∈ (0, b
−β(v)) holds for such v. To this end recall

1

ρ(x, v)
=
β(v) +

√

β(v)2 − bh(x, v)

−b ⇐⇒ ρ(x, v) =
−b

β(v) +
√

β(v)2 − bh(x, v)
,

which with β(v) +
√

β(v)2 − bh(x, v) > β(v) ≥ 0, gives ρ(x, v) < b
−β(v) as desired.

We can identify explicitly the inverse function of gv, but for this we will need to make a case-
distinction.

• For v such that β(v) ≤ 0, gv
−1 : (−∞,−β(v)2) → (0,∞) is given by gv

−1(t) = −b√
−t+β(v)

• For v such that β(v) > 0, gv
−1 : (−∞, 0] → (0, b

−β(v) ], is given by gv
−1(t) = −b√

−t+β(v)
.

We now employ Lemma 5 in order to combine specialized concavity of ρ with more usual notions.

Lemma 15. Let v ∈ S
m−1 be given and consider the map gv

−1(t) = −b√
−t+β(v)

defined from

(−∞,−β(v)2) to (0,∞) when β(v) ≤ 0 and from (−∞, 0] to (0, b
−β(v) ] otherwise. This map is

−3-concave on the set (−∞,−β(v)2].
Proof. We will show this by a direct computation. In order to do so, let α > −1 be given but
arbitrary and let ψ denote the map t 7→ ( 1

gv−1(t)
)1+α. The map ψ is clearly twice differentiable on

the appropriate domain and hence establishing the requested generalized concavity of gv
−1 amounts

to establishing convexity of ψ. Now we establish

ψ(t) = (
−1

b
)1+α(

√
−t+ β(v))1+α

ψ′(t) = −(
−1

b
)1+α 1 + α

2
(−t)−1

2 (
√
−t+ β(v))α

ψ′′(t) = (
1 + α

4b2
)(−t)− 3

2 (
1

gv−1(t)
)α−1

(

(α− 1)
√
−t− β(v)

)

.

It is now clear that for β(v) ≤ 0 and α > 1, it holds ψ′′(t) > 0, implying the convexity of
ψ, i.e., the −1 − α-concavity of gv

−1. When β(v) > 0 holds, then for α ≥ 2, we observe that
(α− 1)

√
−t− β(v) ≥

√
−t− β(v). The latter is evidently positive whenever t ≤ −β2(v).

Remark 2. Let us observe that for any v and x with g(x, 0) < 0, gv(ρ(x, v)) ∈ (−∞,−β(v)2]
holds. Indeed, let us set −t := −gv(ρ(x, v)) = ( b

ρ(x,v) + β(v))2. Then as observed already:
√
−t =

− b
ρ(x,v) − β(v) =

√

β(v)2 − bh(x, v) ≥ 0. And consequently

√
−t− β(v) = − b

ρ(x, v)
− 2β(v) =

1

ρ(x, v)
(−b− 2βρ(x, v)).

But, ρ(x, v) is the unique (positive) solution (in r) to the equation h(x, v)r2 + 2β(v)r2 + b = 0.
Therefore we have

√
−t − β(v) = 1

ρ(x,v)h(x, v)ρ(x, v)
2 = h(x, v)ρ(x, v) ≥ 0, thus establishing the

claim.
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We can now provide an eventual convexity statement for a probability function involvingg defined
in (23).

Proposition 16. Consider the probability function ϕ(x) := P[g(x, ξ) ≤ 0], where x ∈ R
n is given

and g defined as in (23). Let ξ taking values in R
m be an elliptically symmetrically distributed

random vector with mean 0 and covariance matrix Σ and associated radial distribution FR. Let FR
be concave-(−3) on the set (0, (t∗)−3], with t∗ given by the first assumption of Theorem 11.

Then for any q ∈ (0, 12 ), the set M(p) is convex provided that p ≥ p∗ with

p∗ :=

(

1

2
− q

)

FR

(

t∗

δ(q)

)

+
1

2
+ q,

where δ(q) is as in Theorem 11.

Proof. The set C :=
{

x ∈ R
n : ρ(x, v) ≥ t∗ ∀v ∈ S

m−1
}

is a convex set since ρ(x, v) is quasi-concave
in x as a result of convexity of g in x. Moreover evidently requisite 1. of Theorem 11 holds. Next,
let us turn our attention to establishing requisite 2.

To this end, let v ∈ S
m−1 be given and let gv : R+ → R− be the map defined in Lemma 14.

From this Lemma, we know in particular that ρ is gv-concave on the range of ρ(., v). Hence in
particular on C. Let us thus pick x1, x2 ∈ C, λ ∈ [0, 1] arbitrarily. We thus obtain the estimate:

ρ(λx1 + (1− λ)x2, v) ≥ gv
−1(λgv(ρ(x1, v)) + (1− λ)gv(ρ(x2, v))).

Moreover, by Remark 2 gv(ρ(x1, v)) ∈ (−∞,−β(v)2] (and likewise for x2) and therefore similarly
λgv(ρ(x1, v)) + (1 − λ)gv(ρ(x2, v)) ∈ (−∞,−β(v)2]. Now, we may apply Lemma 15 to derive the
further estimate:

gv
−1(λgv(ρ(x1, v)) + (1− λ)gv(ρ(x2, v))) ≥ m−3(gv

−1(gv(ρ(x1, v))), gv
−1(gv(ρ(x2, v))), λ)

= m−3(ρ(x1, v), ρ(x2, v), λ).

Finally, since FR is increasing as a distribution function, we may pursue our estimates to obtain:

FR(ρ(λx1 + (1− λ)x2, v)) ≥ FR(m−3(ρ(x1, v), ρ(x2, v), λ)) ≥ λFR(ρ(x1, v)) + (1− λ)FR,

since z 7→ FR(z
− 1

3 ) is concave on the set (0, (t∗)−3] by assumption and ρ(x1, v) ≥ t∗ (likewise for
x2) so that λρ(x1, v)

−3 + (1− λ)ρ(x2, v)
−3 ∈ (0, (t∗)−3]. This concludes the proof of requisite 2.

Moreover note furthermore that the map g defined in (23) is convex in the second argument
z. Consequently, for all x ∈ M(12 ), we have g(x, 0) < 0 and requisite 3. of Theorem 11 holds for
p0 =

1
2 . The resulting convexity now follows from applying Theorem 11.

Remark 3 (Refined threshold). When ξ is multi-variate Gaussian, the value t∗ can be established
to be

√
m+ 3 and moreover the threshold can be strengthened to p∗ = Φ(

√
m+ 3). Note moreover

that, in all cases, we do not only have convexity of M(p) for p > p∗, but even concavity of ϕ on
this set, which is a rather strong property. Concavity of ϕ is not required to derive convexity of its
level-sets. Indeed, quasi-concavity would suffice.

In view of this, it is of interest to recall results for the specifically structured mapping g(x, z) =
z−x. In this case, ρ can be proved to be concave [65, Example 3.3]). Using Theorem 11, we would de-
rive a stronger property: the concavity of ϕ on the sets of the form

{

x ∈ R
m : x ≥ µ+

√
m− 1 ‖L‖ e

}

(with e the all-one vector); if ξ is Gaussian, this is already known (e.g., [48, Theorem 2.1]). Yet, it
is also well-known that multivariate Gaussian distribution functions are log-concave ([34]) and thus
have all level sets convex. As a result, the true threshold in that situation would be p∗ = 0.
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Example 8. As a numerical illustration, we propose to take both the decision and random vector
in dimension 2, i.e., m = n = 2. We let ξ be a Gaussian random vector with mean µ = 0

and covariance matrix Σ =

(

0.01125 0.00675
0.00675 0.2025

)

. The mapping W : R+
2 → S++

2 is given by

W (x1, x2) =

(

x21 + 0.5 0
0 |x2 − 1|3 + 0.2

)

, 2(a1w
T
1 + a2w

T
2 ) = (1, 1) and b = −1.

We obtain for these inputs the contour plot of Figure 1. The contour lines are regularly drawn
from the probability value 0.1 to 0.95. We see on this graph how the level sets tend to get convex
as the level increases. The red region in the center is the region where ρ(x, v) ≥

√
m+ 3 =

√
5 for

any v ∈ S
m−1. Proposition 16 allows us to establish convexity for p∗ = Φ(

√
5) = 0.9873. We see

here that the set obtained, is far, from being the largest one where convexity seems to be present.
This illustrates the discrepancy between the current available threshold p∗, depending, in this case,
adversely on dimension and the practical situation, which seems to exhibit convexity for thresholds
significantly lower!

We gather in a Python toolbox many useful functions for numerical illustrations in this frame-
work. In particular, we provide tools for computing the probability function ϕ (with associated
function ρ) and plotting of its level-sets; as in Figure 1. We call this toolbox pychance and make it
publicly available on GitHub at https://github.com/yassine-laguel/pychance.

Figure 1: Plot of the probability function ϕ for the given quadratic problem.

4.2 Examples with copulæ

We provide here eventual convexity statements based on results of Section 3.2 for examples that
are not covered by prior results. We choose these examples with decision vectors of dimension 2
to keep calculus simple without misrepresenting our results; this dimension does not impact our
results, valid in infinite dimension.

Example 9 (Convexity statement for am-dimensional copula). Consider anym dimensional Archimedean
copula, and construct the probability functions

ϕ(x) = C(F1(h1(x)), . . . , Fm(hm(x))),

with a G-concave h1 and α-concave hi (i ≥ 2) defined as follows. Given remark 6, we know that C
is concave − G1

−1. Let h1 : R2
++ → R++ be defined by h1(x, y) = ( y

x2 )
2 which is neither concave
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nor convex, but G-concave with G(x) = −1/
√
x as easily shown4. Let hi : R

2
++ → R++ be defined

from any convex positive function fi by hi(x, y) = fi(x, y)
αi with αi ∈ [−6, 0). Let us define now

the marginal distribution functions. We take F1(z) = 1 − exp(−λz) the exponential distribution
function of parameter λ > 0; we easily5 see that it is concave-G−1 on the interval I = [b,∞) with
b =

√

2λ/3. We take Fi to be the Rayleigh distribution function with parameter σ = 1.5 for all
i ≥ 2.

We can then apply Theorem 13 to get the convexity of M(p) for any p > p∗ with

p∗ = max

{

F1

(

3

2λ

)

,max
i≥2

Fi

(

√

(1− αi/2)σ
)

}

= 0.7769

since F1

(

3
2λ

)

= 0.7769 and the max over i ≥ 2 does not exceed 0.7364. Thus the obtained threshold
is fixed and independent of the dimension of the random vector.

Remark 4 (Independence from the dimension). The previous example gives a situation wherein the
threshold p∗ does not depend on the dimension m of the random vector. The underlying reason is
that all mappings hi are generalized concave with a set of parameters that do not degenerate with m.
It should also be observed that the involved parameters (see e.g., [24, Table 1]) depend continuously
on the parameters of the chosen marginal distributions and the generalized concavity parameter of
h. Therefore, should these parameters belong to a compact set, the threshold p∗ does not depend
on dimension either. It is reasonable to assume that the mappings hi, marginal distributions, and
their parameters are homogenous. Typically the index i expresses time and the probability function
stems from the desire to incorporate akin features: each component i is relatively similar.

Example 10 (Convexity statement with functions from the literature). Let us consider the functions
of Example 1 of [68]: the two mappings from R

2 to R+

h1(x, y) = exp−(x+ y)3 and h2(x, y) =
1

x2 + y2 + 1

and the distributions F1 = Φ, the distribution function of a standard normal Gaussian random
variable and F2 = Fχ, the distribution function of a χ-random variable with 2 degrees of freedom.
From Example 2, the map h1 can be shown to be G-concave with a given strictly decreasing map G.
Moreover, Example 5 gives us that Φ is concave-G−1 on the set (0, G(1.86)]. Observe also that the
map h2 is (−1)-concave (indeed, h2

−1 is convex) and Fχ is concave − (g−1)
−1 (see Table 1 in [65])

on the set (0,
√
3
−1

].
We extend now the situation of Example 1 of [68] which is restricted to the independent copula.

We consider here any concave−g1−1 copula (in particular for all Archimedian copulæ, by Example 6),
and we apply Theorem 13 to get that the feasible set M(p) with probability function

ϕ(x, y) = C(F1(h1(x, y)), F2(h2(x, y))),

4We see that G(x) is strictly increasing. To verify that (x, y) 7→ G(h1(x, y)) = −
x2

y
is concave, just compute its

Hessian

−
2

y3

(

y2 −xy

−xy x2

)

which is is negative semi-definite by a direct computation (negative trace and zero determinant).
5Observe first that G

−1(z) = z−2 is convex and strictly increasing. Verify that the composition F1(G
−1(z)) is

concave on some subset when z takes arguments in (−∞, 0), by a direct computation of its second derivative which
gives 2f1(G

−1(z))z−4(3− 2λz−2) with the density function f1(z) = λ exp(−λz).
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is convex for p∗ = max
{

Φ(1.86), Fχ(
√
3)
}

= max {0.9686, 0.7769} = 0.9686. Existing theory cannot
be applied to this case: [68] requires independent copula, and [56] requires α-concavity (but h1 is
not α-concave for any α).

Example 11 (Improved previous result for specific copula). Let us go further with the previous
example when C is concave − G0

−1 which subsumes the case of independent copula considered in
[68]. In this case, z 7→ Φ(G−1(z)) is log-concave on the larger set (0, G(tz)], with tz = 1.6422 (this
value is numerically identified by employing the principles of [56, section 5.2]), and z 7→ Fχ(z

−1) is
log-concave on an interval of the form (0, 0.7563] (by Corollary 9). Then for any concave − G0

−1

copula (e.g., independent, Gumbel, Clayton), Theorem 13 gives the threshold

p∗ = max
{

Φ(tz), Fχ(1.3223)
}

= max {Φ(1.6422), 0.5828} = 0.9497.

This value is better than the threshold Φ(3) = 0.9987 given in [68, Example 1] for the independent
case only.

Concluding Remarks

In this paper we have provided general conditions under which probabilistic constraints define a
convex set. We have investigated two different structures of the probability functions: (i) a non-
separable structure with elliptically random vectors; (ii) a separable structure with the dependency
expressed by a given copula. In these situations, we have employed the notion of G-concavity to
reveal the level of underlying convexity in the functions defining the constraints. The obtained
results are more general than those appearing in prior results. The provided conditions can be
verified from the nominal problem data, as illustrated on various examples.

This work raises issues about the application of our convexity results in practice for general
chance-constrained optimization problems (non-emptiness and convexity of feasible sets, guarantees
of solutions... see the discussion in Section 1.3). A related question is the improvement of the
computed thresholds. In some specific situations indeed, it might be possible to lower the computed
threshold p∗ by exploiting structure of the problems. More generally, more work is required in order
to reduce to gap between observed convexity and guaranteed convexity.
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