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Geometry-Consistent Generative Adversarial Networks for One-Sided Unsupervised Domain Mapping

Unsupervised domain mapping aims to learn a function G XY to translate domain X to Y in the absence of paired examples. Finding the optimal G XY without paired data is an ill-posed problem, so appropriate constraints are required to obtain reasonable solutions. While some prominent constraints such as cycle consistency and distance preservation successfully constrain the solution space, they overlook the special properties of images that simple geometric transformations do not change the image's semantic structure. Based on this special property, we develop a geometry-consistent generative adversarial network (Gc-GAN), which enables one-sided unsupervised domain mapping. GcGAN takes the original image and its counterpart image transformed by a predefined geometric transformation as inputs and generates two images in the new domain coupled with the corresponding geometry-consistency constraint. The geometry-consistency constraint reduces the space of possible solutions while keep the correct solutions in the search space. Quantitative and qualitative comparisons with the baseline (GAN alone) and the state-of-the-art methods including CycleGAN [66] and Dis-tanceGAN [5] demonstrate the effectiveness of our method. Codes will be made available at https://github.

Introduction

Domain mapping or image-to-image translation, which targets at translating an image from one domain to another, has been intensively investigated over the past few years. Let X ∈ X denote a random variable representing source domain images and Y ∈ Y represent target domain images. * equal contribution According to whether we have access to a paired sample {(x i , y i )} N i=1 , domain mapping can be studied in a supervised or unsupervised manner. While several works have successfully produced high-quality translations by focusing on supervised domain mapping with constraints provided by cross-domain image pairs [START_REF] Pathak | Context encoders: Feature learning by inpainting[END_REF][START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF][START_REF] Ting-Chun | High-resolution image synthesis and semantic manipulation with conditional gans[END_REF], 58], the progress of unsupervised domain mapping is relatively slow.

In unsupervised domain mapping, the goal is to model the joint distribution P XY given samples drawn from the marginal distributions P X and P Y in individual domains. Since the two marginal distributions can be inferred from an infinite set of possible joint distributions, it is difficult to guarantee that an individual input x ∈ X and the output G XY (x) are paired up in a meaningful way without additional assumptions or constraints.

To address this problem, recent approaches have exploited the cycle-consistency assumption, i.e., a mapping G XY and its inverse mapping G Y X should be bijections [START_REF] Zhu | Unpaired image-to-image translation using cycleconsistent adversarial networks[END_REF]28,[START_REF] Yi | Dualgan: Unsupervised dual learning for image-to-image translation[END_REF]. Specifically, when feeding an example x ∈ X into the networks G XY • G Y X : X → Y → X, the output should be a reconstruction of x and vise versa for y, i.e., G Y X (G XY (x)) ≈ x and G XY (G Y X (y)) ≈ y. Further, DistanceGAN [5] showed that maintaining the distances between images within domains allows one-sided unsupervised domain mapping.

Existing constraints overlook the special properties of images that simple geometric transformations (global geometric transformations without shape deformation) do not change the image's semantic structure. Here, semantic structure refers to the information that distinguishes different object/staff classes, which can be easily perceived by humans regardless of trivial geometric transformations such as rotation. Based on this property, we develop a geometryconsistency constraint, which helps in reducing the search space of possible solutions while still keeping the correct set of solutions under consideration, and results in a geometry-
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Figure 1: Geometry consistency. The image is denoted by x, and the predefined function f (•) is 90 degrees clockwise rotation. GAN alone: G 1 XY (x). GAN alone (rot): f 1 (G 1 X Ỹ (f (x))). GcGAN: G 2 XY (x). GcGAN (rot): f 1 (G 2 X Ỹ (f (x)). It can be seen that GAN alone is geometrically inconsistent, and that geometry consistency constraints the output of the translation networks, resulting in more sensible domain mapping. GcGAN = GAN alone + geometry consistency constraint.

Existing constraints overlook the special properties of images that simple geometric transformations do not change the image's semantic structure. Here, semantic structure refers to the information that distinguishes different object / staff classes, which are easily perceived by humans. In this paper, we develop a geometry consistency constraint and formulate a geometry-consistent adversarial framework (GcGAN) for unsupervised domain mapping. Our constraint is motivated by the reasonable assumption that a given geometric transformation f (•) should be preserved by related translators G XY and G X Ỹ , if X and Ỹ are the domains obtained by applying f (•) on the samples of X and Y respectively (Fig. 1). Mathematically, given a random sample x from the source domain X and a predefined geometric transformation function f (•), the geometry consistency can be expressed as

f (G XY (x)) ⇡ (G X Ỹ (f (x))) and f 1 (G X Ỹ (f (x))) ⇡ G XY (x), where f 1 (•) is the inverse transformation of f (•) satisfied f 1 (f (x)) = f (f 1 (x)) = x.
Our geometry consistency constraint allows one-sided unsupervised domain mapping, i.e. G XY can be trained independently from G Y X . Intuitively, the geometry consistency constraint works well because it can correct some failed cases in some local regions of each other's translations. In our experiments, G XY and G X Ỹ are identical, and share all the parameters. We take two simple but representative geometric transformations as examples, i.e., vertical flip (vf ) and 90 degrees clockwise rotation (rot), to illustrate our geometry consistency constraint. Quantitative comparisons with baseline (GAN alone) and the state-of-the-art methods including DistanceGAN and CycleGAN demonstrate the superiority of our model in generating realistic images.

Related Work

Generative Adversarial Networks. Generative adversarial networks (GANs) [9, [START_REF] Goodfellow | Generative adversarial nets[END_REF][START_REF] Benaim | One-shot unsupervised cross domain translation[END_REF]23,[START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF][START_REF] Almahairi | Augmented cyclegan: Learning many-to-many mappings from unpaired data[END_REF] learn two networks, i.e., a generator and a discriminator, in a staged zero-sum game fashion to generate images from inputs. Many applications and computer vision tasks have recently been developed based on deep convolutional GANs (DCGANs), such as image inpainting, text to image synthesis, and domain adaptation [3,22,24]. The key components enabling GANs is the proposed adversarial constraint, which enforces the generated images to be indistinguishable from real images. Our formulation also takes advantage of an adversarial constraint to learn translators between two individual domains. Domain Mapping. Many well-known computer vision tasks, such as scene parsing and image colorization, follow the same settings as domain mapping or image-to-image translation. Specific to recent adversarial image-to-image translation networks, this problem has been studied in a supervised manner and unsupervised manner with respect to paired inputs and unpaired inputs.

There are a variety of literatures [22,[START_REF] Donahue | Adversarial feature learning[END_REF]11,31,29] on supervised domain mapping. One representative example is conditional GAN [11], which proposed learning the discriminator to distinguish (x, y) and (x, G XY (x)) instead of y and G XY (x), where (x, y) is a meaningful pair across domains. Further, Wang et al. [31] showed that conditional GANs can be used to generate high-resolution images with a novel feature matching loss, as well as multiscale generator and discriminator architectures. While there has been significant progress in supervised domain mapping, many real-word applications can not provide aligned images across different domains because data preparation is expensive. Thus, different constraints and frameworks have been proposed for image-to-image translation in the absence of training pairs [START_REF] Gong | Causal generative domain adaptation networks[END_REF]33,2], i.e., unsupervised domain mapping.

In unsupervised domain mapping, only unaligned or unpaired samples in individual domains are provided, making the task more practical but more difficult. Unpaired domain mapping has a long history, and some successes in adver- 

f -1 (G 1 X Ỹ (f (x))). GcGAN: G 2 XY (x). GcGAN (rot): f -1 (G 2 X Ỹ (f (x)).
It can be seen that GAN alone produces geometrically-inconsistent output images, indicating that the learned GXY and G X Ỹ are far away from the correct mapping functions. By enforcing geometry consistency, our method results in more sensible domain mapping. consistent generative adversarial network (GcGAN).

Our geometry-consistency constraint is motivated by the fact that a given geometric transformation f (•) between the input images should be preserved by related translators G XY and G X Ỹ , if X and Ỹ are the domains obtained by applying f (•) on the examples of X and Y , respectively. Mathematically, given a random example x from the source domain X and a predefined geometric transformation function f (•), geometry consistency can be expressed as

f (G XY (x)) ≈ G X Ỹ (f (x)) and f -1 (G X Ỹ (f (x))) ≈ G XY (x), where f -1 (•) is the inverse function of f (•).
Because it is unlikely that G XY and G X Ỹ always fail in the same location, G XY and G X Ỹ co-regularize each other by the geometry-consistency constraint and thus correct each others' failures in local regions of their respective translations (see Figure 1 for an illustration). Our geometryconsistency constraint allows one-sided unsupervised domain mapping, i.e., G XY can be trained independently from G Y X . In this paper, we employ two simple but representative geometric transformations as examples, i.e., vertical flipping (vf ) and 90 degrees clockwise rotation (rot), to illustrate geometry consistency. Quantitative and qualitative comparisons with the baseline (GAN alone) and the stateof-the-art methods including CycleGAN [START_REF] Zhu | Unpaired image-to-image translation using cycleconsistent adversarial networks[END_REF] and Distance-GAN [5] demonstrate the effectiveness of our method.

Related Work

Generative Adversarial Networks. Generative adversarial networks (GANs) [START_REF] Goodfellow | Generative adversarial nets[END_REF][START_REF] Van Den Oord | Conditional image generation with pixelcnn decoders[END_REF][START_REF] Emily L Denton | Deep generative image models using a? laplacian pyramid of adversarial networks[END_REF][START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF][START_REF] Salimans | Improved techniques for training gans[END_REF]3] learn two networks, i.e., a generator and a discriminator, in a staged zero-sum game fashion to generate images from inputs. Many tasks have recently been developed based on deep convolutional GANs, such as image inpainting, style transfer, and domain adaptation [START_REF] Bousmalis | Domain separation networks[END_REF][START_REF] Zhang | Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks[END_REF][START_REF] Pathak | Context encoders: Feature learning by inpainting[END_REF][START_REF] Reed | Generative adversarial text to image synthesis[END_REF]31,[START_REF] Wang | Mix and match networks: encoder-decoder alignment for zeropair image translation[END_REF]9,[START_REF] Shen | Neural style transfer via meta networks[END_REF]23,[START_REF] Sheng | Avatarnet: Multi-scale zero-shot style transfer by feature decoration[END_REF]64,[START_REF] Johnson | Perceptual losses for real-time style transfer and super-resolution[END_REF][START_REF] Royer | Xgan: Unsupervised image-to-image translation for many-to-many mappings[END_REF]19,[START_REF] Gong | Causal generative domain adaptation networks[END_REF][START_REF] Li | Deep domain generalization via conditional invariant adversarial networks[END_REF][START_REF] Zhang | Domain adaptation under target and conditional shift[END_REF]. The key component enabling GANs is the adversarial constraint, which enforces the generated images to be indistinguishable from real images. Domain Mapping. Recent adversarial domain mapping has been studied in a supervised or unsupervised manner with respect to paired or unpaired inputs. There are a variety of literatures [START_REF] Pathak | Context encoders: Feature learning by inpainting[END_REF]31,[START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF][START_REF] Ting-Chun | High-resolution image synthesis and semantic manipulation with conditional gans[END_REF][START_REF] Ulyanov | Texture networks: feed-forward synthesis of textures and stylized images[END_REF]58,25,[START_REF] Lin | Conditional image-to-image translation[END_REF]4,[START_REF] Chen | Photographic image synthesis with cascaded refinement networks[END_REF] on supervised domain mapping. One representative example is conditional GAN [START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF], which learned the discriminator to distinguish (x, y) and (x, G XY (x)) instead of y and G XY (x), where (x, y) is a meaningful pair across domains. Further, Wang et al. [START_REF] Ting-Chun | High-resolution image synthesis and semantic manipulation with conditional gans[END_REF] showed that conditional GANs can be used to generate high-resolution images with a novel feature matching loss, as well as multi-scale generator and discriminator architectures. While there has been significant progress in supervised domain mapping, many real-word applications can not provide aligned images across domains because data preparation is expensive. Thus, different constraints and frameworks have been proposed for image-toimage translation in the absence of training pairs. In unsupervised domain mapping, only unaligned examples in individual domains are provided, making the task more practical but more difficult. Unpaired domain mapping has a long history, and some successes in adversarial networks have recently been presented [START_REF] Liu | Coupled generative adversarial networks[END_REF][START_REF] Zhu | Unpaired image-to-image translation using cycleconsistent adversarial networks[END_REF]5,[START_REF] Liu | Unsupervised image-to-image translation networks[END_REF][START_REF] Ma | Da-gan: Instance-level image translation by deep attention generative adversarial networks[END_REF][START_REF] Liu | A unified feature disentangler for multidomain image translation and manipulation[END_REF][START_REF] Benaim | One-shot unsupervised cross domain translation[END_REF]11]. For example, Liu and Tuzel [START_REF] Liu | Coupled generative adversarial networks[END_REF] introduced coupled GAN (CoGAN) to learn cross-domain representations by enforcing a weight-sharing constraint. Subsequently, CycleGAN [START_REF] Zhu | Unpaired image-to-image translation using cycleconsistent adversarial networks[END_REF], DiscoGAN [28], and DualGAN [START_REF] Yi | Dualgan: Unsupervised dual learning for image-to-image translation[END_REF] enforced that translators G XY and G Y X should be bijections. Thus, jointly learning G XY and G Y X by enforcing cycle consistency can help to produce convincing mappings. Since then, many constraints and assumptions have been proposed to improve cycle consistency [8, [START_REF] Gokaslan | Improving shape deformation in unsupervised image-to-image translation[END_REF]24,[START_REF] Lee | Diverse image-to-image translation via disentangled representations[END_REF][START_REF] Li | Unsupervised image-to-image translation with stacked cycle-consistent adversarial networks[END_REF]11,2,[START_REF] Zhu | Toward multimodal image-to-image translation[END_REF][START_REF] Gonzalez-Garcia | Image-to-image translation for cross-domain disentanglement[END_REF][START_REF] Youssef | Unsupervised attentionguided image to image translation[END_REF][START_REF] Liu | Unsupervised image-to-image translation networks[END_REF]36,[START_REF] Almahairi | Augmented cyclegan: Learning many-to-many mappings from unpaired data[END_REF]. Recently, Benaim and Wolf [5] reported that maintaining the distances between samples within domains allows one-sided unsupervised domain mapping. GcGAN is also a one-sided framework coupled with our geometry-consistency constraint, and produces competitive and even better translations than the two-sided CycleGAN in various applications.
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-1 (f (x)) = f (f -1 (x)) = x.
GXY and G X Ỹ are the generators (or translators) which target the domain translation tasks from X to Y and X to Ỹ, where X and Ỹ are two domains obtained by applying f (•) on all the images in X and Y, respectively. DY is an adversarial discriminator in domain Y. The red dotted lines denote the unsupervised constraints with respect to cycle consistency (x ≈ GY X (GXY (x))), distance consistency (x ≈ GY X (GXY (x))), and our geometry consistency (f (GXY (x)) ≈ G X Ỹ (f (x))), respectively.

Preliminaries

Let X and Y be two domains with unpaired training examples {x i } N i=1 and {y j } M j=1 , where x i and y j are drawn from the marginal distributions P X and P Y , where X and Y are two random variables associated with X and Y, respectively. In the paper, we exploit style transfer without undesirable semantic distortions, and have two goals. First, we need to learn a mapping G XY such that G XY (X) has the same distribution as Y , i.e., P G XY (X) ≈ P Y . Second, the learned mapping function only changes the image style without distorting the semantic structures.

While many works have modeled the invertibility between G XY and G Y X for convincing mappings since the success of CycleGAN, here we propose to enforce geometry consistency as a constraint that allows one-sided domain mapping. Let f (•) be a predefined geometric transformation. We can obtain two extra domains X and Ỹ with examples {x i } N i=1 and {ỹ j } M j=1 by applying f (•) on X and Y , respectively. We learn an additional translator G X Ỹ : X → Ỹ while learning G XY : X → Y , and introduce our geometry-consistency constraint based on the predefined transformation such that the two networks can co-regularize each other. Our framework enforces that G XY (x) and G X Ỹ (x) should keep the same geometric transformation with the one between x and x, i.e., f (G XY (x)) ≈ G X Ỹ (x), where x = f (x). We denote the two adversarial discriminators as D Y and D Ỹ with respect to domains Y and Ỹ, respectively.

Proposed Method

We present our geometry-consistency constraint and Gc-GAN beginning with a review of the cycle-consistency constraint and the distance constraint. An illustration of the differences between these constraints is shown in Figure 2.

Unsupervised Constraints

Cycle-consistency constraint.

Following the cycleconsistency assumption [28,[START_REF] Zhu | Unpaired image-to-image translation using cycleconsistent adversarial networks[END_REF][START_REF] Yi | Dualgan: Unsupervised dual learning for image-to-image translation[END_REF], through the translators

G XY • G Y X : X → Y → X and G Y X • G XY : Y → X → Y ,
the examples x and y in domain X and Y should recover the original images, i.e., x ≈ G Y X (G XY (x)) and y ≈ G XY (G Y X (y)). Cycle consistency is implemented by a bidirectional reconstruction process that requires G XY and G Y X to be jointly learned, as shown in Figure 2 (Cycle-GAN). The cycle consistency loss L cyc (G XY , G Y X , X, Y ) takes the form as:

L cyc = E x∼P X [ G Y X (G XY (x)) -x 1 ] + E y∼P Y [ G XY (G Y X (y)) -y 1 ]. (1) 
Distance constraint. The assumption behind the distance constraint is that the distance between two examples x i and x j in domain X should be preserved after mapping to domain Y , i.e., d( 

x i , x j ) ≈ a • d(G XY (x i ), G XY (x j )) + b, where d(•)
L dis = E xi,xj ∼P X [|φ(x i , x j ) -ψ(x i , x j )|], φ(x i , x j ) = 1 σ X ( x i -x j 1 -µ X ), ψ(x i , x j ) = 1 σ Y ( G XY (x i ) -G XY (x j ) 1 -µ Y ), (2) 
where µ X , µ Y (σ X , σ Y ) are the means (standard deviations) of distances of all the possible pairs of (x i , x j ) within domain X and (y i , y j ) within domain Y, respectively. 

Geometry-consistent

L gan = E y∼P Y [log D Y (y)] + E x∼P X [log(1 -D Y (G XY (x)))]. (3) 
In the transformed domains X and Ỹ, we employ the adversarial loss L gan (G X Ỹ , D Ỹ , X, Ỹ ) that has the same form to L gan (G XY , D Y , X, Y ).

Geometry-consistency constraint. As shown in Figure 2 (GcGAN), given a predefined geometric transformation function f (•), we feed the images x ∈ X and x = f (x) into the translators G XY and G X Ỹ , respectively. Following our geometry-consistency constraint, the outputs y = G XY (x) and ỹ = G X Ỹ (x) should also satisfy ỹ ≈ f (y ) like x and x. Considering both f (•) and the inverse geometric transformation function f -1 (•), our complete geometry consistency loss L geo (G XY , G X Ỹ , X, Y ) has the following form:

L geo = E x∼P X [ G XY (x) -f -1 (G X Ỹ (f (x))) 1 ] + E x∼P X [ G X Ỹ (f (x)) -f (G XY (x)) 1 ]. (4) 
This geometry-consistency loss can be seen as a reconstruction loss that relies on the predefined geometric transformation function f (•). In this paper, we only take two common geometric transformations as examples, namely vertical flipping (vf ) and 90 • clockwise rotation (rot), to demonstrate the effectiveness of our geometryconsistency constraint. Note that, G XY and G X Ỹ have the same architecture and share all the parameters.

Full objective. By combining our geometry-consistency constraint with the standard adversarial constraint, a remarkable one-sided unsupervised domain mapping can be targeted. The full objective for our GcGAN L GcGAN (G XY , G X Ỹ , D Y , D Ỹ , X, Y ) will be:

L GcGAN = L gan (G XY , D Y , X, Y ) + L gan (G X Ỹ , D Ỹ , X, Y ) + λL geo (G XY , G X Ỹ , X, Y ), (5) 
where λ (λ = 20.0 in all the experiments) is a trade-off hyperparameter to weight the contribution of L gan and L geo during the model training. Carefully tuning λ may give preferable results to specific translation tasks.

Network architecture. The full framework of our GcGAN is illustrated in Figure 2. Our experimental settings, network architectures, and learning strategies follow Cy-cleGAN. We employ the same discriminator and generator as CycleGAN depending on the specific tasks. Specifically, the generator is a standard encoder-decoder, where the encoder contains two convolutional layers with stride 2 and several residual blocks [22] (6 / 9 blocks with respect to 128 × 128 / 256 × 256 of input resolution), and the decoder contains two deconvolutional layers also with stride 2. The discriminator distinguishes images at the patch level following PatchGANs [START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF]33]. Like CycleGAN, we also use an identity mapping loss [START_REF] Taigman | Unsupervised cross-domain image generation[END_REF] in all of our experiments (except SVHN → MNIST), including our baseline (GAN alone). For other details, we use LeakyReLU as nonlinearity for the discriminators and instance normalization [START_REF] Ulyanov | Instance normalization: The missing ingredient for fast stylization[END_REF] to normalize convolutional feature maps.

Learning and inference. We use the Adam solver [29] with a learning rate of 0.0002 and coefficients of (0.5, 0.999), where the latter is used to compute running averages of gradients and their squares. The learning rate is fixed in the initial 100 epochs, and linearly decays to zero over the next 100 epochs. Following CycleGAN, the negative log likelihood objective is replaced with a more stable and effective least-squares loss [START_REF] Mao | Least squares generative adversarial networks[END_REF] for L gan . The discriminator is updated with random samples from a history of generated images stored in an image buffer [START_REF] Shrivastava | Learning from simulated and unsupervised images through adversarial training[END_REF] of size 50. The generator and discriminator are optimized alternately. In the inference phase, we feed an image only into the learned generator G XY to obtain a translated image.

Experiments

We apply our GcGAN to a wide range of applications and make both quantitative and qualitative comparisons with the baseline (GAN alone) and previous state-of-theart methods including DistanceGAN and CycleGAN. We also study different ablations (based on rot) to analyze where the latter is used to compute running averages of gradients and their squares. The learning rate is fixed in the initial 100 epochs, and linearly decays to zero over the next 100 epochs. Following CycleGAN, the negative log likelihood objective is replaced with a more stable and effective least-squares loss [START_REF] Gonzalez-Garcia | Image-to-image translation for cross-domain disentanglement[END_REF] for L gan . The discriminator is updated with random samples from a history of generated images stored in an image buffer [START_REF] Johnson | Perceptual losses for real-time style transfer and super-resolution[END_REF] of size 50. The generator and discriminator are optimized in an iteration way.

In the inference phase, we feed an image into the learned generator G XY to obtain a translated image.

Experiments

We apply our GcGAN to a wide range of applications, and make both quantitative and qualitative comparisons with baseline (GAN alone) and previous state-of-the-art methods including DistanceGAN and CycleGAN. We also study different ablations to analyze our geometry consistency constraint. Since adversarial networks are always not that stable, every independent experiments could result some slightly different scores. The scores in the quantitative analyses are computed by average voting on three independent GcGAN experiments.

Quantitative Results

The results demonstrate that our geometry consistency constraint can not only partially filter out the candidate solutions having mode collapse, as a result our GcGAN can produce flexible translations, but also compatible with other unsupervised constraints such as cycle consistency constant and distance constraint.

Cityscapes. Cityscapes [4] contains 3975 image-label pairs, with 2975 used for training and 500 for validation (test in this paper). For fair comparison with CycleGAN, the translators are trained at a resolution of 128 ⇥ 128 in an unaligned fashion. We evaluate our domain mappers using FCN scores and scene parsing metrics as previously [19,4]. Specifically, for parsing ! image, we suppose that a highquality fake image should produce qualitative semantic segmentation like real images when feeding it into a scene parser. Thus, we employ the pretrained FCN-8s [19] provided by pix2pix [11] to predict semantic labels for the 500 fake images. The label maps are then resized to the original resolution (1024 ⇥ 2048), and compared against the ground truth labels using some standard scene parsing metrics including pixel accuracy, class accuracy, and mean IoU [19]. For image ! parsing, since the fake labels are in RGB for- our geometry-consistency constraint. Since adversarial networks are not always stable, every independent experiment could result in slightly different scores. The scores in the quantitative analysis are computed by the average on three independent experiments.

Quantitative Analysis

The results demonstrate that our geometry-consistency constraint can not only partially filter out the candidate solutions having mode collapse or semantic distortions and thus produce more sensible translations, but also compatible with other unsupervised constraints such as cycle consistency [START_REF] Zhu | Unpaired image-to-image translation using cycleconsistent adversarial networks[END_REF] and distance preservation [5].

Cityscapes. Cityscapes [START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF] contains 3975 image-label pairs, with 2975 used for training and 500 for validation (test in this paper). For a fair comparison with CycleGAN, the translators are trained at a resolution of 128 × 128 in an unaligned fashion. We evaluate our domain mappers using FCN scores and scene parsing metrics following previous works [START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF][START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF][START_REF] Zhu | Unpaired image-to-image translation using cycleconsistent adversarial networks[END_REF]. Specifically, for parsing → image, we assume that a high-quality translated image should produce qualitative semantic segmentation like real images when feeding it into a scene parser. Thus, we employ the pretrained FCN-8s [START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF] provided by pix2pix [START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF] to predict semantic labels for the 500 translated images. The label maps are then resized to the original resolution of 1024 × 2048 and compared against the ground truth labels using some standard scene parsing metrics including pixel accuracy, class accuracy, and mean IoU [START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF]. For image → parsing, since the fake labels are in the RGB format, we simply convert them into class-level labels using the nearest neighbor search strategy. In particular, we have 19 (category labels) + 1 (ignored label) categories for Cityscapes, each with a corresponding color value (RGB). For a pixel i in a translated parsing, we compute the distances between the 20 groundtruth color values and the color value of pixel i. The label of pixel i should be the one with the smallest distance. Then, the aforementioned metrics are used to evaluate our mapping on the 19 category labels.

The parsing scores are presented in Table 1. Our Gc-GAN outperforms the baseline (GAN alone) by a large margin. We take the average of pixel accuracy, class accuracy, and mean IoU as the final score for analysis [START_REF] Zhou | Scene parsing through ade20k dataset[END_REF], i.e., score = (pixel acc + class acc + mean IoU)/3. For image → parsing, GcGAN (32.6%) yields a slightly higher score than CycleGAN (32.0%). For parsing → image, Gc-GAN (29.0% ∼ 29.5%) obtains a convincing improvement of 1.3% ∼ 1.8% over distanceGAN (27.7%).

We next perform ablation studies to further discuss Gc-GAN. The scores are reported in Table 1. Specifically, GcGAN-rot-Seperate shows that the generator G XY employed in GcGAN is sufficient to handle both the style transfers (without shape deformation) X → Y and X → Ỹ . GcGAN-Mix-{comb, rand} demonstrate that persevering a geometric transformation can filter out most of the candidate solutions having mode collapse or undesired shape deformation, but preserving more ones can not leach more. Besides, GcGAN-Mix-rand performs slightly worse than GcGAN-Mix-comb. One of the possible reasons is that neither X rot →Y rot nor X vf →Y vf are sufficiently trained in the random case, which would decrease the effect of the aforementioned co-regularization mechanism. For GcGAN-rot + Cycle, we set the trade-off parameter for L cyc to 10.0 as published in CycleGAN. The consistent improvement is a credible support that our geometry-consistency constraint is compatible with the widely-used cycle-consistency constraint. Moreover, when setting λ = 0 in L GcGAN , both G XY and G Y X perform badly. One of the possible reasons is that, without the geometry consistency constraint, jointly modeling X→Y and X→ Ỹ with the shared generator G XY would decrease the performance due to domain diversities caused by the geometric transformations. When removing L gan (G X Ỹ , D Ỹ ), the obtained scores are much higher than baseline (GAN alone) because Y can partially correct Ỹ so that G XY is able to handle the mapping X→ Ỹ , and then Ỹ can constrain the mapping X→Y .

As the analysis, when learning both L gan (G XY , D Y ) and L gan (G X Ỹ , D Ỹ ) with L geo , the co-regularization help generate preferable translations.

SVHN → MNIST. We apply our approach to the SVHN → MNIST translation task. 2. Both GcGAN-rot and GcGAN-vf outperform DistanceGAN and CycleGAN by a large margin (about 6% ∼ 7%). From the ablations, adding our geometry-consistency constraint to current unsupervised domain mapping frameworks will achieve different levels of improvements against the original ones. Note that, it seems that the distance-preservation constraint is not compatible with the cycle-consistency constraint on this task, but our geometry-consistency constraint can improve both ones. DistanceGAN [5] GcGAN Google Maps. We obtain 2194 (map, aerial photo) pairs of images in and around New York City from Google Maps [START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF], and split them into training and test sets with 1096 and 1098 pairs, respectively. We train Map Aerial photo translators with an image size of 256×256 using the training set in an unsupervised manner (unpaired) by ignoring the pair information. For Aerial photo → Map, we make comparisons with CycleGAN using average RMSE and pixel accuracy (%). Given a pixel i with the ground-truth RGB value (r i , g i , b i ) and the predicted RGB value (r i , g

i , b i ), if max(|r i -r i |, |g i -g i |, |b i -b i |) < δ,
we consider this is an accurate prediction. Since maps only contain a limited number of different RGB values, it is reasonable to compute pixel accuracy using this strategy (δ 1 = 5 and δ 2 = 10 in this paper). For Map → Aerial photo, we only show some qualitative results in Figure 3 From the scores presented in Table 3, GcGAN produces superior translations to the baseline (GAN alone). In particular, GcGAN yields an 18.0% ∼ 21.9% improvement over the baseline with respect to pixel accuracy when δ = 5.0, demonstrating that the fake maps obtained by our GcGAN contain more details. In addition, GcGANs achieve competitive scores compared with CycleGAN.

Qualitative Evalutation

The qualitative results are shown in Figure 3 Horse → Zebra. We apply GcGAN to the widely studied object transfiguration application task, i.e., Horse → Zebra. The images are randomly sampled from ImageNet [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF] using the keywords (i.e., wild horse and zebra). The numbers of training images are 939 and 1177 for horse and zebra, respectively. We find that training GcGAN without parameter sharing would produce preferable translations for the task.

Synthetic

Real. We employ the 2975 training images from Cityscapes as the real-world scenes, and randomly select 3060 images from SYNTHIA-CVPR16 [START_REF] Ros | The synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes[END_REF], which is a virtual urban scene benchmark, as the synthetic images. 

Conclusion

In this paper, we propose to enforce geometry consistency as a constraint for unsupervised domain mapping, which can be viewed as a predefined geometric transformation f (•) preserving the geometry of a scene. The geometryconsistency constraint makes the translation networks on the original images and transformed images co-regularize each other, which not only provides an effective remedy to the mode collapse problem suffered by standard GANs, but also reduces the semantic distortions in the translation. We evaluate our model, i.e., the geometry-consistent generative adversarial network (GcGAN), both qualitatively and quantitatively in various applications. The experimental results demonstrate that GcGAN achieves competitive and sometimes even better translations than the state-of-the-art methods including DistanceGAN and CycleGAN. Finally, our geometry-consistency constraint is compatible with other well-studied unsupervised constraints. 
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Figure 1 :

 1 Figure 1: Geometry consistency. The original input image is denoted by x, and the predefined function f (•) is a 90 • clockwise rotation (rot). GAN alone: G 1 XY (x). GAN alone (rot):f -1 (G 1 X Ỹ (f (x))). GcGAN: G 2 XY (x). GcGAN (rot): f -1 (G 2 X Ỹ (f (x)).It can be seen that GAN alone produces geometrically-inconsistent output images, indicating that the learned GXY and G X Ỹ are far away from the correct mapping functions. By enforcing geometry consistency, our method results in more sensible domain mapping.

Figure 2 :

 2 Figure 2: An illustration of the differences between CycleGAN [66], DistanceGAN [5], and our GcGAN. x and y are random examples from domain X and Y, respectively. d(xi, xj) is the distance between images xi and xj. f (•) is a predefined geometric transformation function for images, which satisfiesf -1 (f (x)) = f (f -1 (x)) = x.GXY and G X Ỹ are the generators (or translators) which target the domain translation tasks from X to Y and X to Ỹ, where X and Ỹ are two domains obtained by applying f (•) on all the images in X and Y, respectively. DY is an adversarial discriminator in domain Y. The red dotted lines denote the unsupervised constraints with respect to cycle consistency (x ≈ GY X (GXY (x))), distance consistency (x ≈ GY X (GXY (x))), and our geometry consistency (f (GXY (x)) ≈ G X Ỹ (f (x))), respectively.

  is a predefined function to measure the distance between two examples and a and b are the linear coefficient and bias. In DistanceGAN [5], the distance consistency loss L dis (G XY , X, Y ) is the exception to the absolute differ-ences between distances:

Figure 3 :

 3 Figure 3: Qualitative comparison on Cityscapes (Parsing ⌦ Image) and Google Maps (Map ⌦ Aerial photo). GAN alone suffers from mode collapse. Translated images by GcGAN contain more details. GcGAN = GAN alone + geometry consistency constraint.

Figure 3 :

 3 Figure 3: Qualitative comparison on Cityscapes (Parsing Image) and Google Maps (Map Aerial photo). GAN alone suffers from mode collapse. Translated images by GcGAN contain more details. GcGAN = GAN alone + geometry consistency.

Figure 4 :

 4 Figure 4: Qualitative comparison for SVHN → MNIST.

  , Figure 4, and Figure 5. Our geometry-consistency constraint improve the training of GAN alone, and helps to generate empirically more impressive translations on various applications. The following applications are trained in the image size of 256 × 256 with the rot geometric transformation.

  Summer Winter. The images used for the season translation tasks are provided by CycleGAN. The training set sizes for Summer and Winter are 1273 and 854. Photo Artistic Painting. We translate natural images to artistic paintings with different art styles, including Monet, Cezanne, Van Gogh, and Ukiyo-e. We also perform Gc-GAN on the translation task of Monet's paintings → photographs. We use the photos and paintings (Monet: 1074, Cezanne: 584, Van Gogh: 401, Ukiyo-e: 1433, and Photographs: 6853) collected by CycleGAN for training.DayNight. We randomly extract 4500 training images for both Day and Night from the 91 webcam sequences captured by[START_REF] Laffont | Transient attributes for high-level understanding and editing of outdoor scenes[END_REF].

Figure 5 :Figure 5 :

 55 Photo ! Artistic Painting

Figure 12 : 16 Figure 8 :

 12168 Figure 12: Translating SVHN to MNIST with a CycleGAN architecture

Figure 9 :

 9 Figure9: Horse ! Zebra. For this task, GcGAN generates slightly better translations for some images, but can not perform better than CycleGAN generally.
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Figure 9 :Figure 10 :

 910 Figure9: Horse → Zebra. For this task, GcGAN generates slightly better translations for some images, but can not perform better than CycleGAN[START_REF] Zhang | Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks[END_REF] generally.
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Figure 10 :

 10 Figure 10: Monet → Photo. GcGAN is superior in generating realistic images. Zoom in for better view.

  Photo ! ParsingParing ! Photo

Figure 15 : 23 Figure 15 :

 152315 Figure15: Failure Cases. GcGAN can not guarantee reasonable translations for all the cases. Thus, more assumptions and constraints should be investigated to improve unsupervised domain mapping.

  Generative Adversarial Networks Adversarial constraint. Taking G XY as an example, an adversarial loss L gan (G XY , D Y , X, Y ) [21] enforces G XY and D Y to simultaneously optimize each other in an minimax game, i.e., min G XY max D Y L gan (G XY , D Y , X, Y ). In other words, D Y aims to distinguish real examples {y} from translated samples {G XY (x)}. By contrast, G XY aims to fool D Y so that D Y can label a fake example y = G XY (x) as a sample satisfying y ∼ P Y . The objective can be expressed as:

Table 1 :

 1 Parsing scores on Cityscapes. LGcGAN : The objective in Eqn. 5 with rot. GcGAN-rot-Separate: GXY and G X Ỹ do not share parameters. GcGAN-Mix-comb: Training GcGAN with both vf and rot in each iteration. GcGAN-Mix-rand: Training GcGAN with randomly chosen vf and rot in each iteration. GcGAN-rot + Cycle: GcGAN-rot with the cycle-consistency constraint.

	method		image → parsing pixel acc class acc mean IoU pixel acc class acc mean IoU parsing → image
			Benchmark Performance		
	CoGAN [40] BiGAN/ALI [15, 16] SimGAN [54] CycleGAN (Cycle) [66] DistanceGAN [5] GAN alone (baseline) GcGAN-rot GcGAN-vf		0.45 0.41 0.47 0.58 -0.514 0.574 0.576	0.11 0.13 0.11 0.22 -0.160 0.234 0.232	0.08 0.07 0.07 0.16 -0.104 0.170 0.171	0.40 0.19 0.20 0.52 0.53 0.437 0.551 0.548	0.10 0.06 0.10 0.17 0.19 0.161 0.197 0.196	0.06 0.02 0.04 0.11 0.11 0.098 0.129 0.127
		Ablation Studies (Robustness & Compatibility)	
	L GcGAN w/o L geo (λ = 0) L GcGAN w/o L gan ( X, Ỹ ) GcGAN-rot-Seperate GcGAN-Mix-comb GcGAN-Mix-rand GcGAN-rot + Cycle	0.486 0.549 0.575 0.573 0.564 0.587	0.163 0.199 0.233 0.229 0.217 0.246	0.102 0.139 0.170 0.168 0.156 0.182	0.396 0.526 0.545 0.545 0.547 0.557	0.148 0.184 0.196 0.197 0.192 0.201	0.088 0.111 0.124 0.128 0.123 0.132
	method	class acc (%)				
	Benchmark Performance					
	DistanceGAN (Dist.) [5] CycleGAN (Cycle) [66] Self-Distance [5]		26.8 26.1 25.2				
	GcGAN-rot GcGAN-vf		32.5 33.3				
	Ablation Studies (Compatibility)				
	Cycle + Dist. [5] GcGAN-rot + Dist. GcGAN-rot + Cycle GcGAN-rot + Dist. + Cycle		18.0 34.0 33.8 33.2				

Table 2 :

 2 Quantitative scores for SVHN → MNIST.

  The translation models are trained on 73257 and 60000 training images of resolution 32 × 32 contained in the SVHN and MNIST training sets, respectively. The experimental settings follow DistanceGAN [5], including the default trade-off parameters for L cyc and L dis .

	We compare our GcGAN with both DistanceGAN and Cy-cleGAN in this translation task. To obtain quantitative re-sults, we feed the translated images into a pretrained classi-fier trained on the MNIST training split, as done in [5].
	Classification accuracies are reported in Table

Table 3 :

 3 . Quantitative scores for Aerial photo → Map.

	method	RMSE acc (δ 1 ) acc (δ 2 )
	Benchmark Performance CycleGAN [66] 28.15 41.8 GAN alone (baseline) 33.27 19.3	63.7 42.0
	GcGAN-rot GcGAN-vf	28.31 28.50	41.2 37.3	63.1 58.9
	Ablation Studies (Robustness & Compatibility)
	GcGAN-rot-Separate GcGAN-Mix-comb GcGAN-rot + Cycle	30.25 27.98 28.21	40.7 42.8 40.6	60.8 64.6 63.5
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Network Architecture

The generator and discriminator (except for SVHN → MNIST) presented before are shown in Tab. 4. For convenience, we use the following abbreviation: C = Feature channel, K = Kernel size, S = Stride size, Deconv/Conv = Deconvolutional/Convolutional layer, and ResBlk = A residual block. The network architecture for SVHN → MNIST is reported in Tab. 5.

Generator

Other Qualitative Results

We show other qualitative results for the fourteen applications in our submission (Figure 6 to Figure 14). Our geometry-consistency constraint makes the translation networks on the original images and transformed images coregularize each other, which not only provides an effective remedy to the mode collapse problem suffered by standard GANs, but also reduces the semantic distortions in the translation. As a result, GcGAN can produce empirically impressive translations. 

Failure Cases

Unluckily, GcGAN cannot guarantee reasonable translations for all the cases as previous works. Thus, more assumptions and constraints should be investigated to improve unsupervised domain mapping. Some failure cases are shown in Figure 15.