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Abstract

This article provides numerical evidence that under volume constraint the ball is the set which
maximizes the perimeter of the least-perimeter partition into cells with prescribed areas. We introduce
a numerical maximization algorithm which performs multiple optimizations steps at each iteration
to approximate minimal partitions. Using these partitions we compute perturbations of the domain
which increase the minimal perimeter. The initialization of the optimal partitioning algorithm uses
capacity-constrained Voronoi diagrams. A new algorithm is proposed to identify such diagrams, by
computing the gradients of areas and perimeters for the Voronoi cells with respect to the Voronoi
points.

1 Introduction

In [15] the authors prove that among planar convex sets of given area the disk maximizes the length of
the shortest area-bisecting curve. In order to write the result in a more formal way, let us introduce the
following notations. Denote by Ω ⊂ Rd an open, connected region with Lipschitz boundary. Moreover,
consider ω ⊂ Ω an arbitrary Lipschitz subset. Consider c ∈ (0, 1) and denote with | · | the usual Lebesgue
measure (area in 2D, volume in 3D). Given Ω and c, define the shortest fence set to be

SF (Ω, c) = argmin{PerΩ(ω) : |ω| = c|Ω|}. (1)

In other words, SF (Ω, c) is one subset ω ⊂ Ω which minimizes the relative perimeter PerΩ(ω) when the
measure |ω| is fixed to c|Ω|. For simplicity, denote with L(Ω, c) = PerΩ(SF (Ω, c)). The paper [15] cited
above solves the problem of maximizing L(Ω, c) with respect to Ω,

max
|Ω|=vd

L(Ω, c), (2)

in dimension two for c = 1/2. In the following vd denotes the volume of the unit ball in Rd. The choice
of the volume constraint |Ω| = vd does not reduce the generality of the problem, since changing this
constant only rescales the solution via a homothety. Classical details regarding the existence of SF (Ω, c)
and the definition of the relative perimeter PerΩ(·) are recalled in the next section.

This work was initiated by the note [24] published on the French CNRS site Images des mathématiques,
where the author asks what happens to the solution of (2) when the parameter c varies in (0, 1). There
are multiple generalizations of this problem that can be investigated.

It is possible, for instance, to generalize the problem in the case of partitions of shortest total boundary
measure. Given Ω ⊂ Rd and n > 1 consider (ω1, ..., ωh) to be a partition of Ω, in the sense that the union
of ωi, i = 1, ..., n is ω and ωi ∩ωj = ∅. Given a vector c = (c1, ..., cn) ∈ Rn with

∑n
i=1 ci = 1 consider the

shortest partition of |Ω| with area constraints c to be

SP (Ω, c) = argmin{
n∑
i=1

PerΩ(ωi) : (ωi) partition of Ω, |ωi| = ci|Ω|}. (3)

Figure 1: Examples of minimizers of problem (1) for various shapes Ω and various constraints.
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As before, denote PL(Ω, c) to be the minimal total relative perimeter of SL(Ω, c), i.e. the sum of relative
perimeters of members of SP (Ω, c). Now it is possible to formulate the problem

max
|Ω|=vd

PL(Ω, c), (4)

where the total relative perimeter of a partitions with constraints c is maximized when Ω has fixed
volume. It is immediate to see that (2) is a particular case of (4) by considering n = 2 and c = (c, 1− c).

In this paper, problems (2) and (4) are investigated from both numerical and theoretical points of
view. In order to approximate solutions of these problems multiple issues need to be addressed:

� Compute reliably a numerical approximation of the shortest partition SP (Ω, c) once the domain
Ω and the constraints vector c are given. It is important to avoid local minimizers at this stage,
since the objective is to maximize the shortest perimeter. Any local minimizer may give a false
candidate for the solutions of (2) or (4). There are many works in the literature which deal with
the investigation of minimal length partitions. In [11] the authors use the surface Evolver software
to approximate minimal partitions. In this work the approach presented in [30] is used, where the
perimeter is approximated using a Γ-convergence result of Modica and Mortola [28]. This allows
us to work with density functions rather than sets of finite perimeter and simplifies the handling of
the partition condition. Moreover, working with densities directly allows changes in the topology
of the partitions.
Given a domain Ω, a mesh is constructed and finite elements are used in FreeFEM [20] in order
to approximate SF (Ω, c) or SP (Ω, c). When dealing with partitions, in order to accelerate the
convergence, an initialization based on Voronoi diagrams of prescribed areas is used.

� Once the shortest partition SP (Ω, c) is identified, the bounding set Ω needs to be modified in order
to increase the objective function PL(Ω, c). In order to find a suitable ascent direction classical
results related to the shape derivative will be used [13, 21].

� The family of star-shaped domains is parametrized using radial functions, and radial functions are
discretized by considering truncation of the associated Fourier series. Using the shape derivative
it is possible to compute the gradient of the objective function with respect to the discretization
parameters. Once the gradient is known, an optimization algorithm is used in order to search
for solutions of (2) and (4). The choice of the optimization algorithm is also an important factor
since the computation of SP (Ω, c) is highly sensitive to local minima. Moreover, when changing
Ω following a perturbation field found using a shape derivative argument, the configuration of the
optimal partition might change. The chosen algorithm is a gradient flow with variable step size.

Minimal length partitioning algorithms presented in [30] or [5] use random initializations. While this
illustrates the flexibility of Modica-Mortola type algorithms and the ability of the algorithm to avoid
many local minima, choosing random initializations leads to longer computation times required for the
optimization algorithm. A classical idea is to use Voronoi diagrams as initializations. However, these
Voronoi diagrams should consist of cells which verify the area constraints |ωi| = ci. In the literature, the
notion of capacity-constrained Voronoi diagrams is employed and results in this direction can be found in
[4], [3] and [34]. In this work we propose a new way of computing capacity-constrained Voronoi diagrams
by explicitly computing the gradients of the areas of the Voronoi cells with respect to variations in the
Voronoi points. The gradient of the perimeters of the Voronoi cells is also computed, which allows the
search of capacity-constrained Voronoi diagrams with minimal length.

The numerical simulations give rise to the following conjectures:
� The result of [15] seems to generalize to every c ∈ (0, 1) in dimensions two and three.
� For n > 1 and c = (ci)

n
i=1 ∈ Rn with

∑n
i=1 ci = 1 arbitrary, the solution of (4) is the disk in 2D

and the ball in 3D. What is surprising is that this result holds even when the area constraints of
the cells of the partition are not the same.

Outline and summary of results. Section 2 presents classical theoretical results regarding ap-
proximations of minimal perimeter partitions by Γ-convergence.

Section 3.1 recalls basic aspects regarding the numerical computation of minimal length partitions.
Section 3.3 presents the computation of the gradients of the areas and perimeters of Voronoi cells and
shows how to use prescribed-area Voronoi cells in order to construct initializations for our optimiza-
tion algorithm. Section 3.4 presents the computation of a descent direction for the shape optimization
algorithm using the notion of shape derivative. The choice of the discretization and the optimization
algorithm for approximating solutions of problems (2) and (4) are presented in Section 3.5. We under-
line that the maximization algorithm approximates solutions to a max-min problem, and the optimal
partitioning algorithm presented in Section 3.1 is run at every iteration.
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Finally, results of the optimization algorithm in dimensions two and three are presented in Section 4.
The numerical results suggest that the solution of problems (2) and (4) is the disk in dimension two and
the ball in dimension three. A brief discussion of the optimality conditions is presented in Section 5.

2 Theoretical aspects

2.1 Minimal relative perimeter sets and partitions

The appropriate framework to work with sets of finite relative perimeter in Ω is to consider the space
of functions with bounded variation on Ω

BV (Ω) = {u ∈ L1(Ω) : TV (u) <∞}

where

TV (u) = sup{
∫

Ω

udiv g : g ∈ Cc(Ω), ‖g‖∞ ≤ 1}.

As usual Cc(Ω) represents the space of C∞ functions defined on Ω with compact support in Ω. Using
the divergence theorem it is easy to observe that if u is C1(S) then

TV (u) =

∫
Ω

|∇u|.

If ω is a subset of Ω its generalized perimeter is defined by Per(ω) = TV (χω), where χω represents the
characteristic function of ω. All these aspects are classical and can be found, for example, in [2, 6].

The fact that problems (1) and (3) have solutions is classical and is a consequence of the fact that
the generalized perimeter defined above is lower-semicontinuous for the L1 convergence of characteristic
functions. For more aspects related to solutions of these problems see [26, Chapter 17]. The book
previously referenced also presents aspects related to the regularity of optimal partitions in Part Four.
Aspects about optimal partitions in the smooth case are presented in [29] where qualitative properties of
minimal partitions in the plane or on surfaces are presented.

Proving existence of solutions for problems (2) and (4) is more difficult since these are maximum
problems and the perimeter is lower semicontinuous. We recall that problem (2) was solved in [15] in the
case d = 2, c = 1/2. In particular, existence was proved exploiting results in [10] which show that in this
case the minimal relative perimeter sets are convex. In the following we prove that solutions exist in the
class of convex domains for arbitrary area constraints.

Theorem 2.1. Problem (2) has solutions in the class of convex sets.

Proof: We divide the proof into steps which allow us to apply classical methods in calculus of varia-
tions.

Step 1: Upper bounds. In the following denote by w(Ω) the minimal Hd−1 measure of the
projection of Ω on a hyperplane (in dimension two this corresponds to the minimal width). For convex
bodies the following reverse Loomis-Whitney inequality holds true:

min
{e1,...,ed}

d∏
i=1

Hd−1(K|e⊥i ) ≤ Λd|K|d−1,

where the minimum is taken over all orthonormal bases of Rd and K|e⊥i represents the projection of
K onto a hyperplane orthogonal to ei. In [25] it is shown that there exists a constant c0 such that
Λd ≤ (c0

√
d)d. In particular, this shows that the minimal projection w(Ω) verifies w(Ω)d ≤ Λd|Ω|d−1.

As a direct consequence w(Ω) is bounded above in the class of convex sets Ω which satisfy |Ω| = vd.
It is immediate to see that the quantity w(Ω) gives an upper bound for SF (Ω, c). To justify this

choose e0 the direction for which Hd−1(Ω|e⊥0 ) is minimal and slice Ω with a hyperplane orthogonal to e0

which divides Ω into two regions ω and Ω \ ω with volume |ω| = c. The relative perimeter of the set ω
in Ω is at most equal to w(Ω), the Hd−1 measure of the projection. Therefore, we may conclude that
in the class of convex sets with measure |Ω| = vn the quantity L(Ω, c) is bounded from above, and the
upper bound only depends on d and vd. This implies the existence of a maximizing sequence (Ωh)h≥1

which verifies L(Ωh, c) ≤ L(Ωh+1, c) and L(Ωh, c) → sup|Ω|=vd L(Ω, c), where the supremum is taken in
the class of convex sets.

3



Step 2: Compactness. When dealing with a sequence of convex sets we may extract a subsequence
converging in the Hausdorff distance provided the sets are uniformly bounded. For classical aspects
related to the Hausdorff distance we refer to [21, Chapter 2]. Therefore, in the following we show that
the diameters diam(Ωh) of convex sets Ωh forming the maximizing sequence are uniformly bounded.

First, let us note that since (Ωh) is a maximizing sequence for L(Ω, c) there exists a positive constant
p0 > 0 such that L(Ω, c) > p0. Since w(Ω) ≥ L(Ω, c) we also have w(Ωh) ≥ p0 > 0 for n ≥ 1. The results
in [16] show that the minimal perimeter projection, the diameter and the volume of a convex set Ω satisfy

w(Ω) diam(Ω) ≤ |Ω|/d.

It is now immediate to see that diam(Ωh) ≤ |Ωh|/(dw(Ω)) ≤ vd/(dp0), and therefore the diameters of
(Ωh) are bounded. Without loss of generality we may assume that (Ωh) are contained in a large enough
ball. Applying the classical Blaschke selection theorem we find that there exists a maximizing sequence,
denoted for simplicity by (Ωh), such that Ωh converges, with respect to the Hausdorff distance, to the
convex set Ω . Moreover, the volume is continuous for the Hausdorff distance among bounded convex
sets, so Ω also satisfies the volume constraint |Ω| = vd.

Step 3. Continuity. The last step is to prove that L(Ω, c) is indeed equal to lim supn→∞ L(Ωh, c).
This is a direct consequence of [32, Theorem 4.1], which states that if (Ωh) is a sequence of convex bodies
in Rd and Ωh → Ω in the Hausdorff distance then L(Ωh, c) → L(Ω, c) for every c ∈ [0, 1]. This finishes
the proof as the limit Ω is indeed a maximizer for (2). �

Remark 2.2. Removing the convexity assumption is not straightforward. Nevertheless, using the reg-
ularity results regarding solutions of (1) it is possible that this result could be partially extended in the
general case. There are multiple difficulties which follow the structure of the proof above:

� Proving there exists an upper bound in (2).
� Proving that a maximizing sequence is bounded: long tails may not intersect the minimizing set in

(1) therefore cutting them may increase L(Ω, c).
� Obtaining compactness results of a maximizing sequence: classically this should be possible when

working in the class of sets of finite perimeter.
� Proving that the maximizing sequence converges to an actual maximizer. This would involve obtain-

ing some continuity properties regarding the perimeter of a sequence of sets. This is not straight-
forward, as the perimeter is only lower-semicontinuous for the L1 convergence of characteristic
functions. Nevertheless, using the regularity of minimal relative perimeter sets might help obtain
the desired results.

The case of partitions can be handled using a similar strategy in the class of convex sets. The missing
ingredient is the convergence of the minimal perimeters of partitions, analogue to the results in [32].

Theorem 2.3. Problem (4) has solutions in the class of convex sets.

Proof: As in the proof of 2.1 it is straightforward to give upper bounds for PL(Ω, c) in terms of w(Ω)
(the minimal Hd−1 measure of the projection on a hyperplane). A maximizing sequence (Ωh) would
have a positive lower bound 0 < p0 ≤ w(Ωh) for the sequence of minimal projections on hyperplanes.
Therefore the diameters of (Ωh) are bounded from above and we may assume that the convex sets Ωh
converge to a convex set Ω (with respect to the Hausdorff distance). The set Ω also verifies the volume
constraint |Ω| = vd.

It only remains to prove the continuity of the minimal perimeters PL(Ωh, c) for the convergence with
respect to the Hausdorff distance. In order to do this, the same tools as in the proof of Theorem 4.1 in
[32] can be used.

1. Lower-semicontinuity. Theorem 3.4 in [32] shows that there exist bilipschitz maps fh : Ωh →
Ω with Lipschitz constants Lip(fh) converging to 1, the Lipschitz constants of the inverse maps
Lip(f−1

h ) also converging to 1. The volumes and perimeters of the images of finite perimeter sets
Eh ⊂ Ωh have upper and lower bounds as follows:

1

Lip(f−1
h )d

|Eh| ≤ |fh(Eh)| ≤ Lip(fh)d|Eh|

1

Lip(f−1
h )d−1

PerΩh
(Eh) ≤ PerΩ(fh(Eh)) ≤ Lip(fh)d−1 PerΩh

(Eh)

Let (ωih)ni=1 be a minimal perimeter partition for Ωh with constraint c ∈ Rn. Then (fh(ωih)) is a
partition of Ω with limh→∞ |fh(ωih)| = ci|Ω|. Extracting a diagonal sequence, we may assume that
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(ωih)ni=1 converges with respect to the Hausdorff distance to a partition (ωi)
n
i=1 of Ω as h → ∞.

Using the estimates above and the fact that the perimeter is lower semi-continuous with respect to
the convergence of finite perimeter sets we have

PL(Ω, c) ≤
n∑
i=1

PerΩ(ωi) ≤ lim inf
h→∞

n∑
i=1

PerΩ(fi(ω
i
h))

= lim inf
h→∞

n∑
i=1

PerΩh
(ωih) = lim inf

h→∞
PL(Ωh, c).

2. Upper-semicontinuity. It remains to prove that PL(Ω, c) ≥ lim suph→∞ PL(Ωh, c). Reasoning
by contradiction, suppose that PL(Ω, c) < lim supPL(Ωh, c). Up to a subsequence we may assume
that PL(Ωh, c) converges. Choose (ωi)

n
i=1 a minimal partition in Ω with constraints |ωi| = ci|Ω|.

As in [32] using these sets it is possible to construct better competitors on some Ωh for large h than
the corresponding optimal partition. This leads to a contradiction.
Indeed, (f−1

h (ωih))ni=1 forms a partition of Ωh, which may fail to satisfy the volume constraints.
Optimality conditions imply that common boundaries of the sets in the partition are regular hy-
persurfaces. Therefore, it is possible to perturb these boundaries around regular points in order
to attain the desired volume constraints. Moreover, for h large enough this will produce partitions
which verify

n∑
i=1

PerΩh
(f−1
h (ωh)) < PL(Ωh, c),

contradicting the optimality of PL(Ωh, c).

This concludes the proof of the existence of solutions for the given problem. �

Remark 2.4. Existence results obtained in this section may also be generalized to the case where Ω is
the boundary of a convex set in Rd. In particular, there exist sets Ω which are surfaces of co-dimension 1
that are boundaries of some convex set in Rd and have fixed Hd−1 measure which maximize the minimal
relative geodesic perimeter of a subset or partition with given Hd−1 measure constraints.

2.2 Relaxation of the perimeter - Gamma convergence

A key point in our approach is to approximate minimal length partitions SP (Ω, c). In order to avoid
difficulties related to the treatment of the partition constraint it is convenient to represent each set in
the partition ωi as a density ui : Ω → [0, 1]. Then, the partition constraint can be simply expressed
by the algebraic equality

∑n
i=1 ui = 1 on Ω. The next aspect is to approximate the perimeter of a set

represented via its density function. A well known technique is to use a Γ-convergence relaxation for the
perimeter inspired by a result of Modica and Mortola [28]. The main idea is to replace the perimeter with
a functional that, when minimized, yields minimizers converging to those that minimize the perimeter.

Let us briefly recall the concept of Γ-convergence and the property that motivates its use when dealing
with numerical optimization.

Remark 2.5. Let X be a metric space. For ε > 0 consider the functionals Fε, F : X → [0,+∞]. We

say that Fε Γ-converges to F and we denote Fε
Γ−→ F if the following two properties hold:

(LI) For every x ∈ X and every (xε) ⊂ X with (xε)→ x we have

F (x) ≤ lim inf
ε→0

Fε(xε) (5)

(LS) For every x ∈ X there exists (xε) ⊂ X such that (xε)→ x and

F (x) ≥ lim sup
ε→0

Fε(xε). (6)

An important consequence is the following result concerning the convergence of minimizers of a se-
quence of functionals that Γ converge.

Proposition 2.6. Suppose that Fε
Γ−→ F and xε minimizes Fε on X. Then every limit point of (xε) is

a minimizer for F on X.
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Therefore, in practice, in order to approximate the minimizers of F it is possible to search for mini-
mizers of Fε, for ε small enough.

Let us now state the two theoretical results that are used in this work concerning the Γ-convergence
relaxation of the perimeter and of the total perimeter of a partition, with integral constraints on the
densities. The first result is the classical Modica-Mortola theorem [28]. Various proofs can be found in
[1, 6, 9]. In the following Ω is a bounded, Lipschitz open set and let W : R → [0,∞) is a continuous
function such that W (z) = 0 if and only if z ∈ {0, 1}. For a given double well potential W described

previously, denote γ = 2
∫ 1

0

√
W (s)ds. In the following c ∈ [0, 1] represents the fraction used for the

volume constraint.

Theorem 2.7 (Modica-Mortola). Define Fε, F : L1(Ω)→ [0,+∞] by

Fε(u) =


∫

Ω

(
ε|∇u|2 +

1

ε
W (u)

)
u ∈ H1(Ω),

∫
Ω
u = c|Ω|

+∞ otherwise

and

F (u) =

{
γ PerΩ(u−1(1)) u ∈ BV (Ω; {0, 1}),

∫
Ω
u = c|Ω|

+∞ otherwise
.

Then Fε
Γ−→ F in the L1(Ω) topology.

In [30] this result was generalized to the case of partitions and was used to compute approximations
for SP (Ω, c). For c ∈ Rn with

∑n
i=1 ci = 1, in order to simplify notations, let us denote by X(Ω, c)

the space of admissible densities which verify the integral constraints and the algebraic non-overlapping
constraint

X(Ω, c) = {u = (ui)
n
i=1 ∈ L1(Ω)n :

∫
Ω

ui = ci|Ω|,
n∑
i=1

ui = 1}.

The Γ-convergence result in the case of partitions is recalled below.

Theorem 2.8. Define Pε, G : L1(Ω)→ [0,+∞] by

Gε(u) =


n∑
i=1

∫
Ω

(
ε|∇ui|2 +

1

ε
W (ui)

)
if u ∈ (H1(Ω))n ∩X(Ω, c)

+∞ otherwise

G(u) =

{
γ
∑n
i=1 PerΩ({ui = 1}) if u ∈ (BV (Ω, {0, 1}))n ∩X(Ω, c)

+∞ otherwise

Then Gε
Γ−→ G in the (L1(Ω))n topology.

A proof of this result can be found in [30]. In the numerical simulations the double well potential is
chosen to be W (s) = s2(1− s)2 which gives the factor γ = 1/3 in the results shown above.

Remark 2.9. It can be seen that SF (Ω, c) is a minimizer of F in Theorem 2.7 and SP (Ω, c) is a
minimizer of G in Theorem 2.8. Using the result recalled in Proposition 2.6 it is possible to approximate
these minimizers by those of Fε and Gε, respectively, for ε small enough. From a numerical point of
view, dealing with the minimization of Fε and Gε is easier since the variable densities are H1 regular. In
the following we denote by Lε(Ω, c) and PLε(Ω, c) the optimal costs obtained when minimizing Fε and
Gε respectively.

Remark 2.10. It can immediately be seen that, assuming W is at least of class C1, minimizers u of Fε
verify an optimality condition of the form∫

Ω

(
2ε∇u · ∇ϕ+

1

ε
W ′(u)ϕ+ µϕ

)
= 0, for every ϕ ∈ H1(Ω)

where µ ∈ R is a Lagrange multiplier for the volume constraint. Classical regularity theory results that
can be found in [17] allow us to employ a bootstrap argument and conclude that u is of class C∞ in the
interior of Ω and u has the regularity of Ω up to the boundary. For example, for smooth domains Ω the
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optimizer u is also smooth up to the boundary of Ω. Moreover, it can be proved that the minimizer u takes
values in [0, 1]. We refer to [18] for more details. Moreover, when Ω is convex it is possible to deduce
that the minimizer u is Lipschitz continuous.

The same type of result holds true for minimizers of Gε in the partition case, with eventual singularities
at junction points between three phase or more in the partition. Nevertheless, the contact between the
optimal partition and the boundary ∂Ω has the desired regularity.

Since in the numerical section we deal with the minimization of Fε, Gε for fixed Ω and with the
maximization of Lε(Ω, c), PLε(Ω, c), we briefly recall existence results related to these problems. In the
following we suppose that the double well potential W is Lipschitz continuous on R. This is not restrictive
since minimizers of Fε, Pε are densities which take values in [0, 1], which means that values of W far away
from this interval do not matter in the analysis.

Theorem 2.11. (i) Problems
min

u∈L1(Ω)
Fε(u) and min

u∈L1(Ω)n
Pε(u)

admit solutions for Ω a Lipschitz domain with finite volume.
(ii) Given c ∈ (0, 1) and c = (ci) ∈ Rn,

∑n
i=1 ci = 1 problems

max
|Ω|=vd

Lε(Ω, c) and max
|Ω|=vd

PLε(Ω, c)

admit solutions in the class of convex sets.

Proof: The proof of (i) is classical. Note that the constraints on the density functions are embedded in
the definition of the functionals Fε, Pε to be minimized. We give the ideas for Pε as Fε is just a particular
case. The existence proof goes as follows:

� The functional Pε is obviously bounded from below by zero. Moreover, truncating the density
functions (ui) to take values in [0, 1] does not increase the value of Pε. This allows us from now on
to assume that the densities have values in this interval.

� Minimizing sequences exist and they are bounded in H1(Ω)n, which allows us to extract a subse-
quence weakly converging in H1. The constraints are stable under the L2 convergence. Moreover,
the lower-semicontinuity of the H1 norm and Fatou’s lemma allow us to see that any weak H1-limit
point of the minimizing sequence is a minimizer.

The proof of (ii) follows the same lines as the proofs of Theorems 2.1, 2.3. As in the proof of
these theorems, we start by noticing that the minimal Hd−1 measure w(Ω) of the projection of Ω on a
hyperplane is bounded from above. We detail the proof for Lε, while the proof in the case of partitions
follows the same path. In order to emphasize the dependence of Fε on Ω we write Fε(u) = Fε(Ω, u).

Upper bound. Choose e0 the direction for which Hd−1(Ω|e⊥0 ) is minimal and equal to w(Ω). Given
a hyperplane ζ orthogonal to e0 consider the function uε = ϕε(d(x)), where d(x) is the signed distance
to the hyperplane ζ (choosing an orientation) and ψε, ϕε are given by

ψε(t) =

∫ t

0

ε√
ε+W (s)

ds, ϕε(t) =


0 t ≤ 0

ψ−1
ε (t) 0 ≤ t ≤ ψε(1)

1 t ≥ ψε(1).

This type of construction is standard when proving the limsup part of the Γ-convergence proof for the
Modica-Mortola type results in Theorems 2.7, 2.8 (see for example [27]). The coarea formula and the
fact that |∇d(x)| = 1 allows us to write∫

Ω

uε =

∫
R

∫
{d(x)=t}

ϕε(t)dHd−1dt.

The definition of ϕε and a continuity argument allow us to deduce that there is a position of the hyperplane
for which the constraint

∫
Ω
uε = c|Ω| is verified.

Using the coarea formula to evaluate Fε(Ω, uε) we obtain

Fε(Ω, uε) =

∫
Ω

(
ε|ϕ′ε(d(x))|2 +

1

ε
W (ϕε(d(x)))

)
=

∫
R

∫
{d(x)=t}

(
ε|ϕ′ε(t)|2 +

1

ε
W (ϕε(t))

)
dHd−1dt

≤ w(Ω)

∫ ψε(1)

0

(
ε|ϕ′ε(t)|2 +

1

ε
W (ϕε(t))

)
dt.
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The last inequality comes from the fact that {d(x) = t} is a slice of Ω orthogonal to e0 and its Hd−1

measure is at most w(Ω). Moreover, we can restrict the bounds in the one dimensional integral to 0 and
ψε(1) since for t not in this interval the integrand is zero. A simple computation gives

ϕ′ε(t) =
1

ψ′ε(ψ
−1
ε (t))

=
1

ε

√
ε+W (ϕε).

Thus we obtain

Fε(Ω, uε) ≤
2w(Ω)

ε

∫ ψε(1)

0

(ε+W (ϕε))dt = 2w(Ω)

∫ 1

0

√
ε+W (s)ds,

where the last equality comes from the change of variables s = ϕε(t). This quantity depends only on W
and w(Ω) and is bounded from above independently of Ω.

Compactness. The same argument used in the proof of Theorem 2.1 can be applied in order to
conclude that there exists a maximizing sequence (Ωh) converging in the Hausdorff distance to a convex
set Ω with non-empty interior and volume |Ω| = vd. Moreover, we may assume that there exists a
bounded open set D such that (Ωh)h≥1,Ω ⊂ D.

Following the ideas in [21, Chapter 2] we may assume that (Ωh) and Ω satisfy an ε-cone condition,
or equivalently that they are Lipschitz regular with a uniform Lipschitz constant. In this case, the
convergence with respect to the Hausdorff distance implies that |Ωh \ Ω|+ |Ω \ Ωh| → 0.

Continuity. It now remains to prove that Lε(Ωh, c)→ Lε(Ω, c) as h→∞. Let us note first that since
Ωh is a maximizing sequence we have Lε(Ω, c) ≤ limh→∞ Lε(Ωh, c). Consider a minimizer u ∈ H1(Ω)
such that Fε(Ω, u) = Lε(Ω, c).

Since (Ωh) and Ω have a uniform Lipschitz constant L (as recalled above), using the extension theorems
recalled in [8, Theorem 3.4], there exists an extension ũ ∈ W 1,p(D) of u which verifies ‖ũ‖W 1,p(D) ≤
Const(L)‖u‖W 1,p(Ωh). Together with the results recalled in Remark 2.10 we find that ε|∇ũ|2 + 1

εW (ũ) ∈
L∞(D). Combining this with the fact that |Ω \ Ωh|+ |Ωh \ Ω| → 0 implies that

Fε(Ωh, ũ)→ Fε(Ω, u).

We cannot conclude yet, since ũ may not satisfy the integral constraints on Ωh.
In order to fix this, let x0 be a point in the interior of Ω. For h large enough there exists a ball Bδ of

radius δ > 0 such that Bδ ⊂ Ω ∩ Ωh. Denote by dδ the function which is equal to the distance to ∂Bδ
inside Bδ and zero outside. We use this function to construct functions uh = ũ+xhdδ, for xh ∈ R, which
verify the integral constraints

∫
Ωh
uh = c|Ωh|. Since∣∣∣∣∫

Ω

ũ−
∫

Ωh

u

∣∣∣∣ ≤
∣∣∣∣∣
∫

Ω\Ωh

ũ

∣∣∣∣∣+

∣∣∣∣∣
∫

Ωh\Ω
u

∣∣∣∣∣ = O(|Ω \ Ωh|+ |Ωh \ Ω|)→ 0,

we necessarily have xh → 0. This immediately shows that

|Fε(Ωh, uh)− Fε(Ωh, ũ)| → 0

as h→∞.
Since Lε(Ωh, c) ≤ Fε(Ω, uh) we find that lim suph→∞ Lε(Ωh, c) ≤ Fε(Ω, u) = Lε(Ω, c). This concludes

the proof of the existence result. The case of partitions can be handled in a similar manner with the
additional difficulty that the area constraints and sum constraints need to be handled simultaneously.
This can be achieved by modifying the candidate densities in a finite family of balls. �

3 Numerical modeling

3.1 Numerical framework for approximating minimal perimeter partitions

In this section the numerical minimization of Fε and Pε is discussed. Since Ω is a general domain in
this work, we choose to work with finite element discretizations. Given Th a triangulation of Ω, denote
by (xj)

N
j=1 the set of the nodes. Working with P1 Lagrange finite elements, a piecewise affine function u

defined on the mesh Th is written
∑N
j=1 ujφj . As usual, φj are the piece-wise linear functions on each

triangle, characterized by φj(xk) = δjk. For a P1 finite element function, the values uj are given by u(xj)
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and we denote u = (uj) = (u(xj)) ∈ RN . With these notations, it is classical to introduce the mass
matrix M and the rigidity matrix K defined by

M =

(∫
Th
φiφj

)
1≤i,j≤N

and K =

(∫
Th
∇φi · ∇φj

)
1≤i,j≤N

As an immediate consequence of the linearity of the decompositions u =
∑N
j=1 ujφj , v =

∑N
j=1 vjφj we

have that ∫
Th
uv = uTMv and

∫
Th
∇u · ∇v = uTKv.

This immediately shows that the functionals Fε and Pε can be expressed in terms of the mass and rigidity
matrices M and K using the expression∫

Th

(
ε|∇u|2 +

1

ε
u2(1− u)2

)
= εuTKu +

1

ε
vTMv =: F(u) (7)

where v = (uj(1− uj))Nj=1. The gradient of this expression w.r.t. u can be computed and is given by

∇F(u) = 2εKu +
2

ε
Mv � (1− 2u), (8)

where � denotes pointwise multiplication of two vectors: u� v = (ujvj)
N
j=1.

It is obvious that with (7) and (8) it is possible to implement a gradient-based optimization algorithm
in order to minimize Fε and Pε. The software FreeFEM [20] is used for constructing the finite element
framework and the algorithm LBFGS from the package Nlopt [23] is used for the minimization of (7).
We address the question of handling the constraints in the next section.

3.2 Area constraints and projections

The area or volume constraint can be expressed with the aid of the vector m = Me with e =
(1, 1, ..., 1) ∈ RN . Indeed, with this notation, for a finite element function u we have

∫
Th u = m · u.

Projection for one phase. Let us start with the projection of one function onto the integral
constraint. Given a P1 finite element function u and its values u at the nodes we search a function
u0 = u + αm with values at nodes u0 verifying the constraint m · u0 = c by solving

(u + αm) ·m = c,

which leads to α = (c− u ·m)/(m ·m).
An alternative way of handling the constraint during the optimization process is to project the initial

vector on the constraint and project the gradient onto the hyperplane x ·m = 0 at each iteration. This
can simply be done by using c = 0 in the relation above. Such a modification of the gradient allows us
to use efficient black-box optimization toolboxes, since quasi-Newton algorithms like LBFGS will perform
updates based on a number of gradients stored in memory. If these gradients verify x ·m = 0, the integral
constraint will be preserved throughout the optimization process.

Projection for multiple phases. In the case of partitions projections on the integral constraints
were already proposed in [30] (when using finite differences) and in [5] (when using finite elements). A
drawback of using orthogonal projections parallel to the vector m is the fact that the vector u is modified
almost everywhere in the domain Ω, which also includes the regions where it is 0 or 1. As observed
in [7], this can cause resulting optimal densities to be non-zero at interfaces between two cells and at
triple points. The solution proposed was to use instead projections parallel to

√
2W (ui), which basically

consists in modifying the function ui only where it is different from 0 or 1.
Let us now describe the construction of the projection algorithm on the constraints∫

Ω

ui = ci|Ω|,
n∑
i=1

ui = 1.

with the compatibility condition
∑
ci = 1. Consider λ ∈ H1(Ω) and (µi) ∈ Rn and perform the

transformation
ui + λ

√
2W (ui) + µi

√
2W (ui)

9



in order to satisfy the constraints∫
Ω

ui +

∫
Ω

λ
√

2W (ui) + µi

∫
Ω

√
2W (ui) = ci|Ω|, i = 1, ..., n (9)

and
n∑
i=1

ui + λ

n∑
i=1

√
2W (ui) +

n∑
i=1

µi
√

2W (ui) = 1 (10)

It is easy to note that:
� in view of (10), given µi we can find λ:

λ =
1−

∑n
i=1 ui −

∑n
i=1 µi

√
2W (ui)∑n

i=1

√
2W (ui)

.

� in view of (9), given λ we can find µi using the relations above.
In the following we introduce the quantities λ̄i =

∫
Ω
λ
√

2W (ui). Again, in view of (9), if λ̄i are known,
then µi are known and so is λ. In order to obtain a system for λ̄i, let us note that

µi =
ci|Ω| −

∫
D
ui − λ̄i∫

D

√
2W (ui)

.

With this in mind we get

λ̄i =

∫
Ω

λ
√

2W (ui) =

∫
Ω

(
1−

∑n
j=1 uj −

∑n
j=1 µj

√
2W (uj)∑n

j=1

√
2W (uj)

)√
2W (ui)

=

∫
Ω

1−
∑n
j=1 uj −

∑n
j=1

(
cj |Ω|−

∫
Ω
uj−λ̄j∫

D

√
2W (uj)

)√
2W (uj)∑n

j=1

√
2W (uj)

√2W (ui)

In order to further simplify the above expression, let’s make the following notations
�

√
2W (ui) = wi

� 1−
∑n
j=1 ui = E

� cj |Ω| −
∫
D
uj = Fj , j = 1, ..., n

This gives

λ̄i =

∫
Ω

E −∑n
j=1

(
Fj−λ̄j∫

Ω
wj

)
wj∑n

j=1 wj

wi

=

∫
Ω

E −
∑n
j=1 Fjwj/

∫
Ω
wj∑n

j=1 wj
wi +

n∑
j=1

∫
Ω

wiwj/
∫

Ω
wj∑n

j=1 wj
λ̄j

which can be written in the form (I −A)λ̄ = b with λ̄ = (λ̄1, ..., λ̄n) and

A =

(∫
Ω

wiwj/
∫

Ω
wj∑n

j=1 wj

)
i,j=1,...,n

, b =

(∫
Ω

E −
∑n
j=1 Fjwj/

∫
Ω
wj∑n

j=1 wj
wi

)
j=1,...,n

.

One may note that the above system (I −A)λ̄ = b is singular since the sum on the columns of A is equal
to 1 and therefore

(I −AT )e = 0,

where e = (1, ..., 1) ∈ Rn. This is due to the fact that one of the constraints is redundant, in view of the
compatibility condition. In practice we simply discard one unknown and set it to zero.

As noted previously, the same procedure can be applied to the gradients gi associated to each ui in
order to satisfy at every iteration ∫

Ω

gi = 0,

n∑
i=1

gi = 0.

This allows us to preserve the constraints when using a black-box LBFGS optimizer when initial param-
eters satisfy the integral and sum constraints.
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3.3 Initializations for 2D partitions - Voronoi diagrams

The optimization algorithm for approximating Lε(Ω, c) and PLε(Ω, c) is ready to be implemented,
following the ideas shown in the previous sections. There is, however, the choice of the initialization which
is non-trivial and which has an impact on the performance of the optimization algorithm. It was already
noted in [30] and [5] that starting from random initializations is possible, but some additional work needs
to be done in order to avoid constant phases, which are encountered at some local minimizers. Keeping
in mind that the optimal partition problem needs to be solved multiple times during the optimization
algorithm, we propose below a different initialization strategy, based on Voronoi diagrams. The use of
Voronoi diagrams for generating initializations is a rather natural idea when dealing with partitions and
was already mentioned in [11]. In this section Ω is assumed to be a polygon.

Using random Voronoi diagrams is not very helpful, since area constraints are not verified in general.
This led us to consider Voronoi diagrams which verify the area constraints, which in the literature are
called capacity-constrained Voronoi diagrams. Algorithms for computing such diagrams were proposed in
[4] for the discrete case and in [3] for the continuous case. In the continuous case the method employed
in [3] was to optimize the position of one Voronoi point at a time using the gradient-free Nelder-Mead
method. In [34] the authors propose efficient ways of generating such diagram, but for weighted Voronoi
diagrams only. In the following we propose an alternative method for constructing capacity-constrained
Voronoi diagrams by computing the sensitivity of the areas of the Voronoi cells with respect to the position
of the points generating the respective Voronoi diagram. Since we are also interested in minimizing the
perimeter, the computation of the sensitivity of the perimeter of Voronoi cells is also described.

Terminology related to Voronoi diagrams. Given a set of points p1, ..., pn ∈ R2 (called Voronoi
points) the associated Voronoi diagram consists of n Voronoi cells V1, ..., Vn defined for i = 1, ..., n by

Vi = {x ∈ R2 : |x− pi| ≤ |x− pj |, j = 1, ..., n, j 6= i}.

Each Voronoi cell Vi is a polygonal region (possibly infinite). The vertices of Vi are simply called vertices
in the following (please observe the difference between the Voronoi points and the Voronoi vertices). The
edges of Vi are called ridges, some of which can be unbounded. Each ridge connects two Voronoi vertices
(possibly at infinity, for unbounded ridges) called ridge vertices. Moreover, each ridge separates two of
the initial points, called ridge points. All structure information of a Voronoi diagram associated to a set
of points can be recovered as an output to some freely available software like scipy.spatial.Voronoi.
The Voronoi diagrams are not restricted to a bounded domain. It is possible, however, to consider
restrictions of a Voronoi diagram to a bounded set Ω by simply intersectiong the regions Vi with the set
Ω. In our implementation the intersection of polygons is handled using the Shapely Python package for
computational geometry.

In the following, given the points pi, i = 1, ..., n, we consider the Voronoi regions restricted to a finite
domain Ω re-defined by Vi = Vi ∩Ω. Note that in some cases, some Vi may be void if Ω does not contain
the associated point pi. We explain below how to compute the gradients of the areas and perimeters of
Vi with respect to positions of the points pi.

Gradient of the areas of the Voronoi cells. The derivative of a functional that can be represented
as an integral over the Voronoi cell Vi with respect to the Voronoi points can be computed if the normal
displacement of the cell is known. This fact was recalled in [14] and [22] and is classical in the shape
derivative theory. However, since the functionals considered there were sums over all Voronoi cells Vi, the
contributions coming from the variations of the boundary cancelled themselves and only the variation of
the integrand mattered.

This is no longer the case in our situation. The area of the voronoi cell Vi is Ai =
∫
Vi

1dx and its
directional derivative when perturbing a point pj in direction d is given by the integral on the boundary
of the normal variation of Vi: A

′
i(d) =

∫
∂Vi

θ.n, where θ is the infintesimal displacement of the boundary

of Vi when moving pj in the direction di. More explicitly, if Vi(t) is the Voronoi cell for pj + td then

θ = limt→0
v(t)
t , where the vector field v(t) is defined by Vi + v(t) = Vi(t) on the boundary of Vi.

For a given ridge vkvl with associated ridge points pi, pj , we perturb the point pi 7→ pi + δ and
investigate the derivative of the normal perturbation of vkvl as δ → 0. The two main perturbations are
the following:

� δ is collinear with pipj : in this case the perturbation induced on the ridge is just δ/2. (see Figure
2 (left)). The associated infinitesimal normal perturbation is constant equal to 1/2.

� δ is orthogonal to pipj : in this case the infinitesimal perturbation induced on the ridge is a rotation
around the intersectionmij of pipj and vkvl. The associated infinitesimal normal perturbation varies
linearly on vkvl from −|vl −mij |/|pi − pj | to |vk −mij |/|pi − pj | (the signs vary with respect to
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the orientation of the orthogonal perturbation). (see Figure 2 (middle)). In order to prove this it
is enough to consider the normal perturbation v(t) of the ridge vkvl illustrated in Figure 2 (right)
and take the limit v(t)/t as t→ 0.

For a general perturbation δ of pi we denote by n the normal vector to vkvl pointing outwards to
Vi and by t the unit vector collinear with −−→vlvk. Furthermore, consider the notations for the normal and
tangential contributions (computed as one dimensional integrals on vkvl of the infinitesimal perturbations
described above):

zn = (δ · n)/2|vk − vl|, zt = (δ · t)
1

2|pi − pj |
(|vk −mij |2 − |vl −mij |2). (11)

By symmetry, these contributions will be similar, but with changed signs when perturbing pj with δ. The
contributions to the gradients of the areas of the cells Vi and Vj when perturbing pi or pj are described
below

Vi Vj
pi zn + zt −zn − zt
pj zn − zt −zn + zt

(12)

The algorithm for computing the gradient of the areas of the cells simply iterates over all the Voronoi
ridges that intersect Ω and for each ridge adds the contributions described in (12).

Algorithm 1 describes the computation of the gradient of the areas of the cells. The coordinates of
the n input points are given in the vector x ∈ R2n and the output is the real matrix M of size 2n × n
containing as columns the gradients of the areas of the n cells with respect to the 2n coordinates.

Algorithm 1 Compute gradients of areas of Voronoi cells

Require: x = (x1, y1, ..., xn, yn), coordinates of points p1, ..., pn, bounding polygon Ω
1: Initialize M = 0 (of size 2n× n)
2: Compute the Voronoi diagram associated to the points (pi)

n
i=1 and the intersections of the Voronoi

cells with the polygon Ω.
3: Set Voronoi ridges as the set of Voronoi ridges that intersect the bounding polygon Ω.
4: for r in Voronoi ridges do
5: For the Voronoi ridge r Find the associated Voronoi points pi and pj and the Voronoi vertices
vk, vl.

6: Set δ = (1, 0) and compute the contributions zn, zt as above.
7: Perform the updates using (12):

M2i−1,i ←M2i−1,i + zn + zt, M2i−1,j ←M2i−1,j − zn − zt,

M2j−1,i ←M2j−1,i + zn − zt, M2j−1,j ←M2j−1,j − zn + zt.

8: Set δ = (0, 1) and compute the contributions zn, zt as above.
9: Perform the updates using (12):

M2i,i ←M2i,i + zn + zt, M2i,j ←M2i,j − zn − zt,

M2j,i ←M2j,i + zn − zt, M2j,j ←M2j,j − zn + zt.

10: end for
return M

The explicit formulas for the gradients of the areas allow us to easily find capacity-constrained Voronoi
diagrams as results of an optimization algorithm. For given constraints |Vi| = ci|Ω| with

∑n
i=1 ci = 1, it

is enough to minimize the functional

(p1, ..., pn) 7→
n∑
i=1

(Area(Vi)− ci)2. (13)

In order to obtain more regular structures it is also possible to minimize the energy

(p1, ..., pn) 7→
n∑
i=1

∫
Vi

|x− pi|2 (14)

12



vk

vl

pjpi

vk

vl
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Figure 2: Normal perturbation of the Voronoi ridge when moving one of the point in the normal and
tangent directions.

Figure 3: (top) Voronoi diagrams with more than 100 cells with equal areas obtained when minimizing
(13). (bottom) Voronoi diagram obtained when minimizing (14) under capacity constraints.

under the capacity constraints |Vi| = ci. The energy (14) is employed for characterizing centroidal Voronoi
diagrams where each Voronoi point pi coincides with the centroid of the cell Vi. In particular, Centroidal
Voronoi diagrams are critical points for (14). See [34] for more details regarding this functional. Examples
in this sense are shown in Figure 3. The constrained minimization is done using the MMA algorithm
[33] from the NLOPT library [23]. Note that all constraints are coded as inequality constraints in this
algorithm: |Vi| ≤ ci. Since Vi form a partition of Ω it is immediate to see that if the sets satisfy the
inequality constraints, they, in fact, also satisfy the equality constraints |Vi| = ci.

Remark 3.1. It is also possible to generalize the gradient formulas when a density is involved, when
dealing with quantities of the type

∫
Vi
ρ, where ρ ∈ L1(Ω) is a given density. The shape derivative of

∫
Vi
ρ

is
∫
∂Vi

ρθ.n, where θ is the perturbation of the boundary ∂Vi. The boundary perturbations are obviously the

same, but the computations in (11) are no longer explicit, and a one-dimensional numerical integration
needs to be performed for each Voronoi ridge.

Gradient of the perimeter of the Voronoi cells. We saw that in order to compute the gradient
of the areas of the Voronoi cells, the normal displacement of the Voronoi ridges needed to be understood,
when moving the Voronoi points. On the other hand, the variation of the perimeter of a Voronoi region
depends on the tangential perturbation of the Voronoi ridges. In order to understand this perturbation
one needs to see how the Voronoi vertices move when perturbing the Voronoi points. Moreover, it can
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be observed that when two Voronoi vertices merge, i.e. a Voronoi ridge collapses, the total perimeter of
the cells is not smooth. This behavior is illustrated by an example shown in Figure 4.

2.4 2.2 2.0 1.8 1.6

56.0

56.5

57.0

57.5

58.0

Figure 4: Variation of the perimeter corresponding to a four point singularity in a square. The Voronoi
points are (−t, 0), (0,−2), (t, 0), (0, 2) for t ∈ [1.5, 2.5]. From left to right: starting configuration, singular
configuration, final configuration, graphical representation of the total perimeter.

Therefore, we suppose in the following that each Voronoi vertex is in contact with at most three
Voronoi ridges. Moreover, the definition of the Voronoi cells allows us to conclude that in this situation
each Voronoi vertex is the circumcenter of the triangle determined by the three points associated to
the neighboring Voronoi regions. This allows us to transform perturbations of the Voronoi points into
perturbations of the Voronoi vertices, by looking at the following well known formulas for the circumcenter
of a triangle with vertices (Ax, Ay), (Bx, By), (Cx, Cy):

Ox =
1

D
[(A2

x +A2
y)(By − Cy) + (B2

x +B2
y)(Cy −Ay) + (C2

x + C2
y)(Ay −By)]

Oy =
1

D
[(A2

x +A2
y)(Cx −Bx) + (B2

x +B2
y)(Ax − Cx) + (C2

x + C2
y)(Bx −Ax)] (15)

where D = 2[Ax(By−Cy) +Bx(Cy−Ay) +Cx(Ay−By)]. The formulas above are well defined as long as
the three points A,B,C are not colinear. Moreover, it is immediate to see that in this case the circum-
center varies smoothly with respect to the coordinates of the vertices of the triangle. The infinitesimal
perturbation of the circumcenter when moving (Ax, Ay) can be computed by simply differentiating the
above formulas w.r.t. Ax and Ay. Once the derivative of the circumcenter is known, in order to find the
gradient of the prerimeter it is enough to project this derivative on all the Voronoi ridges going through
the respective circumcenter and add the contribution to the gradient of the perimeter of each cell with
respect to the corresponding coordinates. See Figure 5 for more details.

pi

pj

pk

δ

V

pi

pj

p′j

δ

V`

Figure 5: (left) Perturbation of the circumcenter when moving one point and projections on the Voronoi
ridges. (right) Computing the perturbation of a boundary point by transforming it into a circumcenter.

Variations induced by the Voronoi nodes are enough to compute the gradient of perimeters of Voronoi
cells that do not intersect the boundary of the bounding polygon. For the boundary cells, it is necessary to
describe the perturbation of intersections between Voronoi ridges and the bounding polygon. Fortunately,
this can also be described using variations of circumcenters for some particular triangles.

Indeed, let vkvl be a Voronoi ridge intersecting a side ` of the bounding polygon Ω at the point q and
let pi, pj be the associated Voronoi points. Consider now p′j the reflection of the point pj with respect

14



to the line supporting `. Then obviously q is the circumcenter of the triangle pipjp
′
j and the variation

of q with respect to perturbations of pi can be found using the same procedure as above. See Figure 5
for more details. The algorithm for computing the gradients for the perimeters of the Voronoi cells is
presented in Algorithm 2, assuming that every Voronoi vertex is a circumcenter of exactly one triangle
determined by the Voronoi points.

Algorithm 2 Compute gradients of perimeters of Voronoi cells

Require: x = (x1, y1, ..., xn, yn), coordinates of points p1, ..., pn, bounding polygon Ω
1: Initialize M = 0 (of size 2n× n)
2: Compute the Voronoi diagram associated to the points (pi)

n
i=1 and the intersections of the Voronoi

cells with the polygon Ω.
3: Set Voronoi vertices as the set of Voronoi ridges that intersect the bounding polygon Ω.
4: for v in Voronoi vertices do
5: Let pi, pj , pk be the three Voronoi points which are associated to ridges going through v.

6: Compute the derivative ~d of the circumcenter of pipjpk when moving pi in the direction δ = (1, 0).
See Figure 5.

7: For all ridges r going through v project ~d on r and add this to the gradient w.r.t. the x coordi-
nate of the perimeter of the cells {V1, V2} neighbors to the ridge r (determined by the ridge points
associated to the ridge r): these are elements M2i−1,V1

,M2i−1,V2
in matrix M .

8: Repeat the above with δ = (0, 1) in order to get the gradients with respect to the y-coordinates.
9: Do the same instructions for pj and pk.

10: end for
Set Voronoi ridges as the set of Voronoi ridges that intersect the boundary polygon Ω.

11: for r in Voronoi ridges do
12: Denote by pi, pj the associated ridge points and by ` the edge of the boudnary polygon Ω cut by

r

13: Let p′j be the reflection of pj with respect to `.

14: For δ = (1, 0) compute the derivative ~d of the circumcenter of pipjp
′
j when moving pi in the

direction δ. See Figure 5.
15: Project ~d on the ridge r and add this projection to the gradient of the cells i and j w.r.t. the x

coordinate: M2i−1,i and M2i−1,j in matrix M .

16: Project ~d on ` and add this to the gradient of the cells i and j (with the proper sign).
17: Repeat the above with δ = (0, 1) in order to get the gradients with respect to the y coordinates.
18: Do the same instructions for pj .
19: end for

return M

Using the gradients for the area and perimeters of Voronoi cells it is possible to perform a constrained
minimization of the perimeter under area constraint starting from random Voronoi initializations. The
optimization is performed with Nlopt [23] optimization toolbox in Python using the MMA [33] algorithm.
Some examples of initializations obtained are shown in Figure 6. The initial Voronoi points are chosen
randomly inside the polygon Ω. In order to accelerate the convergence of the optimization algorithm a few
iterations of Lloyd’s algorithm are performed before starting the optimization process. Recall that Lloyd’s
algorithm consists in replacing the Voronoi points by the centroids of the respective cells iteratively (see
for example [34] for more details). In order to deal with local minima multiple optimizations (typically 10)
are performed for every polygon Ω and the one with the partition having the least perimeter is retained
as a valid initialization. Note that the algorithm gives similar topologies with the best known ones shown
in [11] for the case of equal areas and in [19] for the case of cells with two different areas.

Initialization of a partition. Having at our disposal the gradients of areas and perimeters of
Voronoi cells, we are now ready to propose initialization algorithms for optimal partitioning algorithm.
In practice we use one of the options below:

1. Compute minimizers of (13) starting from random Voronoi points (pi). Repeat the procedure a
number of times and keep the configuration having the smallest total perimeter. This works well
when the areas of the cells are the same.

2. Optimize the total perimeter of the Voronoi cells under capacity constraints starting from random
Voronoi points (pi). Repeat the procedure a number of times and keep the configuration having the
smallest total perimeter. This approach gives good results when the areas of the cells are different
and the optimization process is more difficult, since more local minima are present.
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3. When n ≤ 4 random initializations work very well.
4. In dimension three random initializations were used for n ≤ 4 and random Voronoi initializations

were used for n ≥ 5.

Figure 6: Initializations obtained when minimizing the perimeter of Voronoi cells under area constraints.
The areas are equal, except the third case where two cells have areas three times smaller than the other
three.

3.4 Shape derivative

In order find perturbations of the domain Ω that decrease the value of a functional J(Ω) the concept
of shape derivative is useful. For a Lipschitz domain Ω, the functional J is said to be shape differentiable
at Ω if there exists a linear form θ 7→ J ′(Ω)(θ) such that for every vector field θ ∈W 1,∞(Rd,Rd) we have

J((I + θ)(Ω)) = J(Ω) + J ′(Ω)(θ) + o(‖θ‖W 1,∞),

where I denotes the identity mapping. Classical results from [13, 21] show that for a function f ∈ H1(Ω)
the functional J(Ω) =

∫
Ω
f is shape differentiable with

J ′(Ω)(θ) =

∫
∂Ω

fθ.n. (16)

In the following, (·)′Ω denotes the derivation with respect to the domain Ω.
The case of one phase. Consider uΩ which minimizes Fε(u) from Theorem 2.7 and suppose that

uΩ is unique. In this case we may assume that uΩ varies smoothly with respect to perturbations of the
boundary of Ω. Remark 2.10 underlines the fact that uΩ is C∞ in the interior of Ω and has the regularity
of Ω up to the boundary. In the following we suppose that Ω is at least of class C2, which implies that
uΩ is indeed in H2(Ω) and the gradient ∇uΩ has a well defined trace on ∂Ω. Differentiating Fε(uΩ)
with respect to Ω gives two terms, one involving just the derivation of a volumic integral and the other
involving the shape derivative of the optimal density uΩ with respect to θ. Fortunately, the minimality
of uΩ eliminates the latter term, which is more delicate and depends implicitly on the perturbation θ.
Indeed,

Lε(Ω, c)
′
Ω(θ) = (Fε(uΩ))′Ω(θ) =

∫
∂Ω

(
ε|∇uΩ|2 +

1

ε
W (uΩ)

)
θ.n

+

∫
Ω

(
ε|∇uΩ|2 +

1

ε
W (uΩ)

)
(u′Ω(θ)) (equal to 0)

=

∫
∂Ω

(
ε|∇uΩ|2 +

1

ε
W (uΩ)

)
θ.n (17)

where u′Ω(θ) is the shape derivative of uΩ with respect to θ. For more details one may consult [13].
In order to understand why the term above involving u′Ω(θ) is zero let us recall that minimizing Fε(u)

under the constraint
∫

Ω
u = c implies the existence of a Lagrange multiplier µ ∈ R such that∫

Ω

(
2ε∇uΩ · ∇φ+

1

ε
W ′(uΩ)(φ) + µφ

)
= 0,

for every φ smooth enough. In the numerical simulation we consider W (s) = s2(1−s)2 which, in particular
verifies W ′(0) = W ′(1) = 0. For ε small enough, the set {uΩ ∈ {0, 1}} has non-empty interior. Moreover,
∇uΩ = 0 and W ′(uΩ) = 0 on {uΩ ∈ {0, 1}}, so choosing φ with compact support in {uΩ ∈ {0, 1}} gives
µ = 0. As a direct consequence, given a vector field θ we have∫

Ω

(
ε|∇uΩ|2 +

1

ε
W (uΩ)

)′
(u′Ω(θ)) = 0
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Figure 7: (left) Minimization of the Modica-Mortola functional Fε with integral constraint 0.3|Ω|. (right)
Representation of the shape gradient and the normal perturbation producing an ascent direction for
SF (Ω, 0.3).

Note that the formula (17) does give a valuable and reasonable assumption on the perturbation of
the boundary Ω that increases the length of the set with minimal perimeter. Notice that the term(
ε|∇uΩ|2 + 1

εW (uΩ)
)

is non-zero (and strictly positive) only in the neighborhood of the contact points
of the minimal relative perimeter set with the boundary ∂Ω. Moving the boundary outwards at these
points with a small enough step size will increase the minimal perimeter Lε(Ω, c).

In the case the solution uΩ is not unique, we cannot assume that uΩ varies smoothly with Ω. Indeed,
perturbing the contact points of

(
ε|∇uΩ|2 + 1

εW (uΩ)
)

may drastically change the topology of the minimal
set. Nevertheless, perturbing the boundary of Ω with this normal velocity will either increase the value
of Lε(Ω, c) or keep it constant (in case there are multiple solutions). Moreover, the perturbed domain
will have a reduced multiplicity for the family of optimal solutions uΩ. Assuming there are only finitely
many solutions for a given Ω, repeating this process will eventually decrease the objective function. In
Figure 7 the numerical approximation of uΩ is shown together with the value of

(
ε|∇uΩ|2 + 1

εW (uΩ)
)
.

Perturbing Ω in the normal direction as shown will increase the minimal value, provided the solution uΩ

is unique.

Remark 3.2. The hypothesis regarding the uniqueness of uΩ for the shape derivative to exist is similar
to the hypothesis needed when differentiating the eigenvalue of an operator with respect to the shape.
When dealing with multiple eigenvalues, the shape derivative does not exist, but directional derivatives
are available. For more details see [21, Chapter 5]. It is possible that such theoretical results could be
obtained in our case, but this goes outside the scope of this article.

The case of partitions. Consider uΩ = (uiΩ)ni=1 which minimizes Pε in Theorem 2.8. As in the
previous paragraphs, supposing that uΩ is unique and varies smoothly with respect to perturbations in
Ω, using again the minimality of uΩ for Pε we find that

PLε(Ω, c)′Ω(θ) = (Pε(uΩ))′Ω(θ) =

∫
∂Ω

n∑
i=1

(
ε|∇uiΩ|2 +

1

ε
W (uiΩ)

)
θ.n

+

∫
Ω

[
n∑
i=1

(
ε|∇uiΩ|2 +

1

ε
W (uiΩ)

)]′
(u′Ω(θ)) (equal to 0)

=

∫
∂Ω

n∑
i=1

(
ε|∇uiΩ|2 +

1

ε
W (uiΩ)

)
θ.n. (18)

Again, in order to justify the fact that the term underlined above is indeed zero, let us recall that when
minimizing Pε(u) under the constraints

∫
Ω
ui = ci|Ω| and

∑n
i=1 ui = 1 we find that there exist Lagrange

multipliers µi ∈ R, i = 1, ..., n and λ ∈ L1(Ω) such that∫
Ω

(
n∑
i=1

2ε∇uiΩ · ∇φi +
1

ε
W ′(uiΩ)(φi) + µiφi + λ(φ1 + ...+ φn)

)
= 0.

Following similar arguments as in the case of one phase, we find that the Lagrange multipliers associated
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Figure 8: (left) Minimization of the minimal partition functional Pε for three cells with equal areas.
(right) Representation of the shape gradient and the normal perturbation producing an ascent direction
for SF (Ω, c).

Figure 9: Symmetric domain with two minimizers Lε(Ω, 0.2). The optimal densities obtained numerically
are represented together with the perturbation fields obtained from (17)

to the volume constraints are zero. This shows that∫
Ω

[
n∑
i=1

(
ε|∇uiΩ|2 +

1

ε
W (uiΩ)

)]′
(u′Ω(θ)) = −

∫
Ω

λ

(
n∑
i=1

(uiΩ)′(θ)

)
.

On the other hand, differentiating the constraint
∑n
i=1 u

i
Ω = 1 gives

∑n
i=1(uiΩ)′(θ) = 0, which proves the

desired result.
As discussed above, in the case uΩ is not unique, perturbing the boundary of Ω with normal velocity

given by
∑n
i=1

(
ε|∇uiΩ|2 + 1

εW (uiΩ)
)

will not decrease the value of PLε(Ω, c) and will reduce the multi-
plicity of the family of optimal partitions uΩ. Repeating the process will eventually increase the length of
the minimal partition. In Figure 8 the numerical approximation of uΩ is shown together with the value
of
∑n
i=1

(
ε|∇uiΩ|2 + 1

εW (uiΩ)
)
. Perturbing Ω in the normal direction as shown will increase the length of

the minimal partition, provided the solution uΩ is unique.
An example of non differentiability - multiplicity greater than one. It is not difficult to

imagine domains Ω for which there are multiple minimizers Lε(Ω, c), given c > 0. It is enough to consider
c small enough and a symmetric domain like in Figure 9. Let us show that in such a case the functional
Lε(Ω, c) does not admit a shape derivative. Indeed, suppose that Ω is symmetric like in Figure 9. Denote
u1, u2 the two solutions and θ1, θ2 two vector fields such that θi.n = ε|∇ui|2+ 1

εu
2
i (1−ui)2 (also illustrated

in Figure 9).
Suppose that J(Ω) := Lε(Ω, 0.2) is differentiable at Ω. Then for {i, j} = {1, 2} it is clear that

Fε((I + tθi)(Ω), uj) = Fε(Ω, uj), i.e. the minimal value of Fε does not change when modifying Ω with
only one of the vector fields θi. This would imply that J ′(Ω)(θ1) = J ′(Ω)(θ2) = 0 and by linearity
J ′(Ω)(θ1 + θ2) = 0. However, this last equality is clearly false, since if we modify Ω with the combined
vector field θ1 + θ2 we clearly have

J((I + (θ1 + θ2)(Ω)) = J(Ω) +

∫
∂Ω

(
ε|∇u1|2 +

1

ε
u2

1(1− u1)2

)
θ1.n+ o(‖θ1‖W 1,∞).
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In order to deduce the above equality it is enough to work with one half Ωi of the domain Ω. We use the
fact that this half can be extended to a non-symmetric domain for which ui is a unique minimizer and
apply the formula for the shape derivative found previously.

Therefore, we arrive at a contradiction, showing that when multiple minimizers of Fε(Ω, u) exist, the
functional Lε(Ω, c) is not shape differentiable. The same kind of argument can be applied for PLε(Ω, c).

3.5 Radial parametrization and optimization algorithm

The results of [15] and existence results obtained in Section 2.1 are restricted to convex domains
Ω. We therefore choose to search for domains maximizing SF (Ω, c) and SP (Ω, c) in the larger class of
star-shaped domains which includes the class of convex sets. These domains can be parametrized using a
radial function in dimension two and three. Furthermore, a spectral decomposition of the radial function
with a Finite number of Fourier coefficients is used in order to work with a finite, but sufficiently large
number of parameters in the computations.

Planar domains. In dimension two, the radial function ρ : [0, 2π]→ R+ is discretized using 2N + 1
Fourier coefficients

ρ(t) = a0 +

N∑
k=1

(ak cos(kt) + bk sin(kt)).

Consider a shape functional J(Ω) whose shape derivative is expressed by J ′(Ω)(θ) =
∫
∂Ω
Gθ.n. Using

the discretization above, given v = (a0, a1, ..., aN , b1, ..., bN ) that defines Ω via the radial function ρ, a
finite dimensional function is obtained j(v) = J(Ω). It is classical to compute the gradient of j using the
shape derivative, by choosing the appropriate boundary perturbation for each Fourier coefficient. Using
the notation r = x/|x| we have r.n = ρ/

√
ρ2 + (ρ′)2. Therefore, denoting vn = ρ/

√
ρ2 + (ρ′)2, we obtain

∂j

∂ak
=

∫
∂Ω

G cos(kt)vn and
∂j

∂bk
=

∫
∂Ω

G sin(kt)vn. (19)

Domains in R3. In dimension three we choose to parametrize the unit sphere using (φ, ψ) ∈ [−π, π]×
[0, 2π] 7→ (cosψ cosφ, sinψ cosφ, sinφ). Next, we are interested in parametrizing radial functions ρ :
[−π, π] × [0, 2π] which are constant for φ ∈ {−π, π}. This is needed in order to be able to create 3D
meshes in FreeFEM [20] by deforming two dimensional meshes. One way of attaining this objective is
to use two dimensional Fourier parametrizations which contain only sines for the φ coordinate, together
with an affine function in φ in order to allow different values at the extremities φ ∈ {−π, π}:

ρ(φ, ψ) = aφ+ b+

N∑
k=1

M∑
l=1

(ck,l sin(2kφ) cos(lψ) + dk,l sin(2kφ) sin(lψ)) .

As in dimension two, it is straightforward to infer the gradient of the discretized functional with respect

to each one of the parameters. A simple computation yields vn = r.n = ρ/
√
ρ2 + (ρ′θ)

2/ cos2 φ+ (ρ′φ)2:

∂j

∂a
=

∫
∂Ω

Gφvn,
∂j

∂b
=

∫
∂Ω

Gvn,

∂j

∂ck,l
=

∫
∂Ω

G sin(2kφ) cos(lψ)vn,
∂j

∂dk,l
=

∫
∂Ω

G sin(2kφ) sin(lψ)vn (20)

Optimization algorithm. Given the discretization and the gradients expressed above it is straight-
forward to implement a gradient descent algorithm. The delicate issue is the fact that at each iteration,
the objective function and its gradient are computed as a result of a minimization algorithm. If Lε(Ω, c)
or PLε(Ω, c) are replaced by a local minimum instead of the global one, then this may give a false candi-
date for the maximization algorithm. Therefore, we choose to work with a gradient flow type algorithm,
which consists in advancing at each iteration in the direction given by the gradient of the functional
with a prescribed step, regardless of the fact that the objective function increases or decreases. In this
way, even the optimization algorithms solved at one of the iterations yields a local minimum, the global
optimization algorithm may still correct itself at subsequent iterations. The area constraint is imposed
by a projection algorithm: the next iterate is rescaled to have the desired area via a homothety. The
precise description is given in Algorithm 3.

An example of a result obtained with this algorithm for the maximization of Lε(Ω, c) is shown in
Figure 10 together with the graph of the objective function. It can be seen that the objective function
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Algorithm 3 Global maximization algorithm

Require: Initial Fourier coefficients, area constraints (c for one phase, a vector c for the partitions), the
number of iterations Niter, ε, initial step α, the number of iterations Nmod after which the step is
halved

1: for i in {1,2,...,Niter} do
2: Construct the mesh of Ω from the Fourier coefficients v: the size of triangles/tetrahedra should

be at most ε/2.
3: Approximate Lε(Ω, c) (or PLε(Ω, c) in the case of partitions)
4: Compute the gradient ∇j(v): use (19) or (20) with G given by (17) (or (18) for the partitions

case)
5: Advance in the direction of the gradient in order to increase the value of j(v):

v← v + α∇j(v).

6: Project on the area/volume constraint of Ω using a homothety
7: If i mod Nmod ≡ 0 decrease the step: α← α/2.
8: end for

return the final set of Fourier coefficients v
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Figure 10: Maximization of L(Ω, 0.3) in dimension two together with the evolution of the cost function.

increases and stabilizes as the size of the step decreases. Oscillations in the curve describing the cost have
two main causes: first, the optimization algorithm at the current iteration might yield a local minimum
instead of the global one and secondly, the size of the step may be too big. An example for the case
of partitions is shown in Figure 11. Multiple instances of the gradient flow maximization algorithm are
represented in Figure 12 for n = 6 and in Figure 13 for n = 10.

Numerical aspects. When minimizing Fε and Pε it is classical to consider meshes with elements
that have size smaller than ε. This is due to the fact that the phase transition from 0 to 1 typically takes
place in a region of width proportional to ε and the mesh needs to be fine enough to capture this. In
dimension two we consider ε = 0.05 giving rise to meshes having around 23k nodes.

In dimension three using ε = 0.1 gives meshes of about 25k nodes. When dealing with more cells in
dimension three we start with ε = 0.07 and we interpolate and re-optimize the result on a finer mesh
corresponding to ε = 0.04. This gives meshes with around 35k nodes. For postprocessing and plotting
purposes, the final mesh is further refined using MMG3D [12] such that more tetrahedra are present
where phases change quickly. The final partition is interpolated and re-optimized (with ε = 0.025) on
this fine mesh (with around 270k nodes) before plotting.

Code. The finite element software used for the optimization algorithm described in Section 3.1 is
FreeFEM [20], which provides an interface to the LBFGS optimizer from Nlopt [23].

The partition initialization via Voronoi diagrams is coded in Python, where optimization algorithms
from Scipy.optimize and Nlopt are used for unconstrained and, respectively, constrained optimizations.
Codes and examples are provided in the following Github repository: https://github.com/bbogo/

LongestShortestPartitions/tree/main/GradientVoronoi.
The visualization is done with Python using Matplotlib in dimension two and Mayavi [31] in dimension

three. The graphical representation of partitions is done by extracting surface meshes of an iso-level for
each cell in the optimal partition using FreeFEM [20] and MMG3D [12]. These surface meshes are then
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Figure 11: Maximization of PL(Ω, (1/3, 1/3, 1/3)) in dimension two together with the evolution of the
cost function.

Iter 1: 3.314 Iter 6: 3.381 Iter 13: 3.391 Iter 20: 3.436 Iter 70: 3.446 Iter 150: 3.451

Figure 12: Illustration of the gradient flow algorithm in dimension two for n = 6: the numerical optimal
partition and its associated cost are represented for a couple of iterations.

plotted with Mayavi [31].
Some codes used for obtaining the results illustrated in the paper can be found in the Github reposi-

tory: https://github.com/bbogo/LongestShortestPartitions/tree/main/FreeFEMcodes.

4 Results

In this section we use the algorithm described previously in order to study problems (2) and (4).
Results from [15] show that problem (2) is solved by the disk in dimension two for c = 1/2. We perform
simulations for various values of c < 1/2 (note that considering c or 1−c for the constraint gives the same
result) and the numerical result is the disk in dimension two. In dimension three the same phenomenon
occurs: for various values of the volume fraction c the shape which maximized the relative minimal
perimeter of a subset with volume c|Ω| is the ball. Some examples are shown in Figure 14.

Surprisingly, the case of partitions shows similar results. When considering equal area constraints the
set with fixed area maximizing the length of the minimal partition is still the disk (see Figure 15 for some
examples). In dimension three for n ∈ {3, 4, 6, 13} we obtain similar results: the ball maximizes the total
surface area of the smallest total perimeter partition. These results are illustrated in Figures 17 and 18.

Note that simulations made in the one phase case already shows that when partitioning the domain
into two regions with two non-equal areas, the maximizer of the minimal length partition is still the
disk. This suggests that even in the case where the cells do not have the same prescribed area, the set
Ω which maximizes the minimal perimeter of a partition is still the disk in 2D (the ball in 3D). Indeed,

Iter 1: 4.663 Iter 6: 4.795 Iter 13: 4.794 Iter 20: 4.863 Iter 70: 4.892 Iter 150: 4.902

Figure 13: Illustration of the gradient flow algorithm in dimension two for n = 10: the numerical optimal
partition and its associated cost are represented for a couple of iterations.
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Figure 14: Maximization of the minimal relative perimeter in 2D and 3D with volume constraints c ∈
{0.25, 0.4, 0.5}. The optimal set Ω (the disk/ball) together with the set obtained numerically when
minimizing the relative perimeter for the given volume fraction.

Figure 15: Maximization of the length of the minimal perimeter partition into equal areas for n ∈ {4, 7, 10}

Figure 16: Maximization of the length of the minimal perimeter partition into different areas: n = 3,
ratios 1 : 2 : 3, n = 4, ratios 1 : 1 : 1.2 : 1.2, n = 4 : 1 : 1 : 1.5 : 1.5.
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Figure 17: (left) Maximization of the length of the minimal perimeter partition into equal areas for
n ∈ {3, 4}. (right) Results obtained when the area constraints are not the same: n = 3: ratios 1 : 2 : 2,
n = 4: ratios 1 : 2 : 2 : 2.

Figure 18: Maximization of the length of the minimal perimeter partition into equal areas for n ∈ {6, 13}.
An expanded view of the optimal partition is also illustrated for each case.

when considering more cells with different areas, the numerical result is the same: the disk seems to be
the maximizer (see Figure 16 for some examples). As already underlined in [19], the study of partitions
in cells with prescribed but different areas is more complex, since in this case there are even more local
minima.

The numerical simulations give rise to the following conjecture, which generalizes the results of [15].

Conjecture 4.1. 1. Given c ∈ (0, 1), the set Ω maximizing L(Ω, c) under the constraint |Ω| = vd (i.e.
solving (2)) is the ball.

2. Given n > 1 and c = (ci)
n
i=1 ∈ Rn+ with

∑n
i=1 ci = 1, the set Ω maximizing PL(Ω, c) under the

constraint |Ω| = vd (i.e. solving (4)) is the ball.

Remark 4.2. The same type of results seem to hold when maximizing the minimal geodesic perimeter
for closed surfaces in Ω in R3 which are boundaries of convex sets with a constraint on the H2(∂Ω). The
techniques used in this case are those presented in [5] and the theoretical and numerical framework is
similar to what was done in dimension three. In this case the sphere seems to be the maximizing set,
which is in accord with the conjecture stated above.

5 Remarks on optimality conditions

As discussed in Section 3.4, existence of shape derivatives for Lε and PLε depends on the uniqueness
of the minimizers for these functionals. Therefore, it is not straightforward to obtain classical optimality
conditions. It is possible, however, to obtain some qualitative information about sets maximizing the
minimal values of Lε and PLε under volume constraint. Recall that the optimizer of shape differentiable
functional J under volume constraint will verify an optimality condition of the form

J ′(Ω)(θ) + `|Ω|′(θ) = 0, (21)

where ` ∈ R is a Lagrange multiplier associated to the volume constraint. Recall that the shape derivative
of the volume functional is |Ω|′(θ) =

∫
∂Ω
θ.n.

Non-uniqueness of the minimal relative perimeter set/partition at the optimum. Results
in Section 3.4 show that the shape derivatives of Lε and PLε exist when they correspond to unique
minimizers of the Modica-Mortola type functionals. In this case, the corresponding shape derivatives are
boundary integrals of non-constant functions multiplied by the normal perturbation θ.n. Therefore, it is
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straightforward to see that a relation of the type (21) cannot hold. This allows us to conclude that of Ω∗

is a minimizer of Lε(Ω, c) the optimal minimal relative perimeter set is not unique. The same happens in
the case of partitions: if Ω∗ minimizes PLε(Ω, c) and the minimal length partition of Ω with constraints
c is not unique.

Suppose now that Ω is a domain with fixed volume |Ω| = vd such that SF (Ω, c) is unique. Then
for ε > 0 small enough Lε(Ω, c) will also be unique. Thus Lε(Ω, c) admits a shape derivative. Also the
corresponding optimal density uΩ is not constant on the boundary, and therefore the optimality relation
(21) cannot hold. This shows that such a domain Ω is not a solution of problem (2). The same argument
can be applied for problem (4).

As a conclusion, a domain Ω that solves (2) must have multiple minimal relative perimeter sets (or
multiple minimal length partitions for problem (4)).

Infinitely many minimal relative perimeter sets/partitions at the optimum. Suppose that
Ω is a domain with volume |Ω| = vd such that there are a finite number of minimizers SF (Ω, c). Then
there are relatively open subsets Γ ⊂ ∂Ω such that Γ does not intersect the boundary of any of these
minimizers. It is possible to perturb ∂Ω inwards on Γ without creating additional solutions SF (Ω, c).
This process diminishes the volume of |Ω|. Rescaling the perturbed domain to have the initial volume
increases the length of minimal relative perimeter set SF (Ω, c).

The same argument can be repeated in the case where there are subsets of ∂Ω which do not intersect
any of the minimizers SF (Ω, c). The same type of arguments applies also the case of partitions SP (Ω, c).
Therefore any set Ω which solves (2) or (4) should verify the following observations:

� there are infinitely many minimal relative perimeter sets (partitions) SF (Ω, c) (SP (Ω, c))
� for any relatively open set Γ ⊂ ∂Ω there exist a minimal relative perimeter set (partition) SF (Ω, c)

(SP (Ω, c)) which intersects Γ
These observations show that sets with radial symmetry are natural candidates to be solutions of problems
(2), (4). This fact is also confirmed by the numerical simulations shown in Section 4.

6 Conclusions

The theoretical considerations and numerical simulations presented in this paper suggest that the
results of [15] are valid in more general settings: under volume constraint the ball is the set Ω who
maximizes

� the minimal relative perimeter of a subset ω ⊂ Ω with volume constraint |ω| = c|Ω| for all c ∈ (0, 1).
� the minimal relative perimeter of a partition of Ω into sets (ωi)

n
i=1 with volume constraints |ωi| =

ci|Ω| given ci ∈ (0, 1) with
∑n
i=1 ci = 1. The result seems to hold even in the case where the sets

|ωi| do not have the same volume constraints.
The numerical maximization algorithm consisted in solving at each iteration an optimization problem

which approximates the least perimeter set or partition under the given constraint. Then a perturbation
of the set which does not decrease the minimal perimeter is found and the set is modified. In all cases,
the numerical result was close to the disk/ball.

The initialization phase for the computation of the optimal partitions is made using Voronoi diagrams
with prescribed capacity. We provide a new way of generating such Voronoi diagrams using the gradients
of the areas with respect to the Voronoi points. The gradient of the perimeter of the Voronoi cells is also
computed.
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