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We study in this article properties of a nanodot embedded in a support by Monte Carlo simulation.
The nanodot is a piece of simple cubic lattice where each site is occupied by a mobile Heisenberg
spin which can move from one lattice site to another under the effect of the temperature and its
interaction with neighbors. We take into account a short-range exchange interaction between spins
and a long-range dipolar interaction. We show that the ground-state configuration is a vortex around
the dot central axis: the spins on the dot boundary lie in the xy plane but go out of plane with
a net perpendicular magnetization at the dot center. Possible applications are discussed. Finite-
temperature properties are studied. We show the characteristics of the surface melting and determine
the energy, the diffusion coefficient and the layer magnetizations as functions of temperature.

PACS numbers: 75.10.-b ; 75.10.Hk ; 64.60.Cn :

I. INTRODUCTION

In finite systems such as magnetic thin films and nan-
odots, spin configurations are often non uniform near the
surface. The ground-state (GS) structure results from
the competition between interactions in the system. The
combination of the frustration [1] resulting from compet-
ing interactions and the boundary effects in finite systems
gives rise to unexpected phenomena [2]. Among the com-
peting forces, let us focus on the dipolar interaction which
favors an in-plane non uniform spin configuration in flat
and small samples, and the exchange interaction which
tends to align spins in parallel configuration. In addition,
one can have the presence of a perpendicular anisotropy
is known to arise with a large magnitude in ultrathin
films [3, 4]. Note that, in thin films with Heisenberg and
Potts models, the competition between the dipolar in-
teraction, the exchange interaction and the perpendic-
ular anisotropy causes a spin re-orientation transition
at a finite temperature [5, 6]. There has been a great
number of other works treating the dipolar interaction
in the the presence of a perpendicular anisotropy in 2D
monolayers and thin films. All of them found various
ground states (GS) such as in-plane, out-of-plane and
non-uniform strip-domain configurations. Let us men-
tion a few of them: in Ref. 7 an analytical calculation
has been performed at zero temperature (T ) to find GS
by varying the uniaxial surface anisotropy in a mono-
layer and in thin films (i. e. infinite lateral dimension).
In Refs. 8–10, Monte Carlo (MC) simulations have been
carried out for monolayers and thin films at finite T where
re-orientation phase transitions have been found. Ex-
cept in Ref. 10 where all transitions are of second order,
the two other works found first- and second-order transi-

tions depending of the ratio of perpendicular anisotropy
to dipolar strength. In Ref. 11, the authors used micro-
magnetic simulations to calculate the T = 0 configura-
tions for wires and disks. They did not consider finite-T
behaviors. In Ref. [12], a spin-reorientation has been
experimentally observed in Nd2Fe14B by using Lorentz
transmission electron microscopy at variable tempera-
tures and magnetic fields. It was shown that skyrmions
are created around the spin-reorientation temperature.
The absence of works dealing with ultrafine dots at finite
T using a mobile spin model has motivated the present
work.

In this paper, we focus on the case of a small magnetic
nanodot with mobile Heisenberg spins. Various GS con-
figurations have been observed in such nanosystems [13],
depending on the size of the sample, the ratio between
the exchange and dipolar interactions, and the type of
the lattice. Systems in which the core vortex structure
occurs hold much promise from the commercial point of
view; the occurrence of this structure has already been
demonstrated experimentally [14–16] by different imag-
ing techniques. A major advantage of core vortex struc-
tures is the central region (core) of nonzero perpendicular
magnetization, the polarization of which is stable at room
temperature as shown by Shinjo et al. [14]. Interestingly,
core magnetization reversal [17, 18] can be realized in two
ways, by applying a strong magnetic field perpendicular
to the surface of the sample, or a short pulse of magnetic
field parallel to it. This property of magnetic nanodots
opens the door to their application in magnetoresistive
random access memory (MRAM).

The current development of a technology that allows
to obtain samples with a very small dimension [19–21]
has inspired us to investigate, with the use of MC simu-
lations [22, 23], the behavior of the core vortex structure,
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so interesting from the point of view of applications, un-
der the impact of the temperature T using a mobile spin
model. The mobility of the spins with increasing T gives
the opportunity to investigate the melting of these nan-
odots.

The GS structure found for a nanodot can be consid-
ered as a single skyrmion [24]. There are several mech-
anisms and interactions leading to the appearance of
skyrmions in various kinds of matter. The most popular
one is certainly the Dzyaloshinskii-Moriya (DM) inter-
action which was initially proposed to explain the weak
ferromagnetism observed in antiferromagnetic Mn com-
pounds. The phenomenological Landau-Ginzburg model
introduced by I. Dzyaloshinskii [25] was microscopically
derived by T. Moriya [26]. The DM interaction has been
shown to generate skyrmions in thin films [27–29] and in
magneto-ferroelectric superlattices [30–32].

In this paper, we study a magnetic nanodot embedded
in an non-deformable recipient, using the mobile Heisen-
berg spins. The mobile Potts model with short-range
interaction has been used to study the phase transition
and the sublimation in a solid [33]. Here we extend this
model to the case of a mobile Heisenberg model which
includes a long-range dipolar interaction. The dot can
be heated to high temperatures to melt. Experimentally,
one can imagine periodic arrays of such a dot embedded
on a crystal plane and transport properties of itinerant
spins across such a plane can be studied in the presence of
dots. Itinerant spins are scattered by magnetic dots and
desired transport properties can be obtained by modify-
ing dot arrangements.

The purpose of this work is (i) to investigate the GS
configuration in magnetic nanodots taking into account
the short-range exchange interaction and the long-range
dipolar interaction, (ii) to study the nature of the or-
dering and the phase transition at finite temperatures in
such nanodots, (iii) melting behavior. The methods we
employ in this paper are MC simulations with several
techniques.

The paper is organized as follows. Section II is devoted
to the determination of the GS, while section III shows
MC results of finite-temperature behaviors. Concluding
remarks are given in section IV.

II. GROUND STATE

A. Mobile spin model

Let us consider a recipient of size NL = L×L×Lz with
the cubic lattice where L is the x and y linear dimensions,
and Lz the size in the z direction. We consider a number
Ns of mobile Heisenberg spins which is less than the total
number of lattice sites N × N × Nz. Therefore, each
lattice site can be occupied by a Heisenberg spin or can
be empty. The concentration of spins in the recipient is
therefore c = Ns/NL.

We consider the following Hamiltonian containing the

exchange interaction between nearest neighbors (NN)
and the dipolar interaction between spins without cut-
off:

H = −
NN∑
i,j

JijSi · Sj

−D
all∑
i,j

[
3(Si · ~rij)(Sj · ~rij)

r5ij
− Si · Sj

r3ij

]
, (1)

where Jij denotes the exchange integral between two NN
spins i and j, D is the dipolar coupling parameter, Si

(|Si| = 1 for all i) is the spin at the i-th site, and rij
(rij = |rij |) is the position vector connecting the spins
at the i-th and j-th sites. The dipolar energy is calcu-
lated from the expression included in the Hamiltonian (1)
without any numerical approximations; in particular we
do not introduce the cut-off radius, since this has been
shown [10, 13] to affect quantitatively the calculation re-
sults in a sensitive manner.

B. Method of ground-state determination

In the following, we take Jij = J⊥ = 1 between NN
in the z direction (i.e. between NN in adjacent planes)
and Jij = J// = 4 between in-plane NN. As will be seen
below, another choice will not change our results but it
changes the range of values of D to have a vortex GS.

We start from a random spin configuration of Ns mo-
bile spins. By random, we mean spins occupy random lat-
tice positions and have random orientations. This state
corresponds to a high-T disordered phase. We slowly
cool the system from that state using the Metropolis al-
gorithm [22, 23]. The spins move from site to site, and at
low T , they condense into a film with a number of succes-
sive layers fully occupied. This is due to the fact that the
in-plane interaction is much larger than the perpendic-
ular interaction. However, due to the long-range nature
of dipolar interaction, the spin orientations are still in
a weak disorder showing no symmetric configuration ex-
pected from the symmetry of the Hamiltonian. To get rid
of this and to come down to T = 0, we need to minimize
locally the energy of each spin as follows. We consider
here a spin localized on the lattice site at T = 0. To find
the ground state (GS) of the system we minimize the en-
ergy of each spin, one after another. This can be numeri-
cally achieved as the following. At each spin, we calculate
the local-field components acting on it from its NN using
the above equations. Next we align the spin in its lo-

cal field, i.e. taking Sx
i = Hx

i /

√
(Hx

i )
2

+ (Hy
i )

2
+ (Hz

i )
2

etc. The denominator is the modulus of the local field.
In doing so, the spin modulus is normalized to be 1. As
seen from Eq. (1), the energy of the spin Si is minimum.
We take another spin and repeat the same procedure un-
til all spins are visited. This achieves one iteration. We
have to do a sufficient number of iterations until the sys-



3

tem energy converges. The spins at T = 0 form a dot of
size L× L× Ls which verifies c = Ns/NL = Ls/Lz.

An example of GS are displayed in Fig. 1 in a recipient
of 15× 15× 12. The concentration used is c = 25%. We
see that the dot size at T = 0 is 15× 15× 3. Let us give
some comments on Fig. 1. In Fig. 1a the dot is viewed in
3D space. We see three compact layers. Figure 1b shows
the first layer structure, Fig. 1c shows the projection
on the xy plane where we can see that the projection
of the spins near the dot center are not exactly parallel.
Figure 1d shows the projection on the xz plane, namely
a side view of the dot. One sees that the spins at the dot
center go out of the xy plane. This is easily understood in
order these spins reduce the spin orientation constraint.
In a zero field in the z direction, these central spins can
point in the + or -z direction. There is therefore a two-
fold degeneracy. It may have application in magnetic
recording memory using a small magnetic field along the
±z direction to control the magnetization direction.

Note that there is a range of D where we observe such
vortex structure for a given (J⊥, J//). When we change
the recipient size and the concentration, this range of D
changes. What we mean by this sentence is that when we
increase the system size for example, in the dipolar term
a spin interacts with a larger number of spins because
there is no cutoff in the dipolar sum of Hamiltonian (1).
Therefore, to obtain a vortex which is favored by the
dipolar interaction, we just need a smaller D to over-
come the energy of the linear configuration favored by a
given set of (J⊥, J//). Another example of concentration
is shown in Fig. 2. Other cases displayed in Figs. 3-6
below show that when we decrease the concentration c
we have to increase D and vice-versa in order to have
a vortex structure. It is not our purpose to precisely
determine the range of D in which there is a vortex con-
figuration. We give here only the physical mechanism
which determines the planar vortex phase.

III. MELTING

A. Slow heating

In this section, we slowly heat the dot in a recipient.
We take the recipient height much larger than the thick-
ness of the dot. The empty space in the z direction allows
the dot to melt into a liquid at high temperature (T ).

Since the spins are mobile, a spin can move from one
lattice site to a nearest site. MC simulation is used to
update the spin position and the spin orientation. The
spin position is updated whenever there are vacant sites
next to it, at the same time with the orientation update,
using the Metropolis algorithm.

We start the simulation using the GS state configu-
ration and we heat the system to a temperature T . As
usual, we discard a large number of MC steps to equi-
librate the system before averaging physical quantities
over a large number of MC steps. Physical quantities

FIG. 1. Ground state of c = 25% of mobile spins in a recipient
of 15×15×12. The dot at T = 0 has the size 15×15×3. We
have used J⊥ = 1, J// = 4, D = 1: (a) 3D view, (b) First-layer
configuration, (c) Projection on the xy plane, (d) Projection
on the xz plane. See text for comments.

which are calculated include the energy E, the magneti-
zation, the heat capacity and the magnetic susceptibility
as functions of T for different concentrations c, different
sizes of the recipient. We have also calculated the dif-
fusion coefficient, which is the sum of the mean square
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FIG. 2. Ground state of c = 30% of mobile spins in a recipient
of 15 × 15 × 12. The dot at T = 0 has the size 15 × 15 × 4
(four layers). We have used J⊥ = 1, J// = 4, and with a
dipolar interaction D = 0.7: (a) 3D view, (b) Projection on
the xy plane, (c) Projection on the xz plane to see the spin
z-components. The GS exhibits a vortex around the center
of the dot. The spins lie in the xy plane at the border except
around the vicinity of the center where they have non-zero z
components.

of the distance made by each spin at each T . We have
also computed the mean value of the number of nearest
neighbors as a function of T . We recall some definitions:

The total energy

E = 〈H〉 (2)

The Edwards-Anderson order parameter QEA is

QEA =
1

Ns(ta − t0)

∑
i

|
ta∑

t=t0

Si(t)| (3)

where 〈·〉 indicates the thermal average with Ns being the
total number of spins. Note that the QEA is calculated
by taking the time average of each spin before averaging
over all spins of the system. This order parameter is
very useful in the case of disordered systems such as spin
glasses [34] or doped compounds: it expresses the degree
of freezing of spins independent of whether the system
has a long-range order or not [35].

To study the change of behavior, we will show the re-
sults of the following situations for comparison:

i) all spins are supposed to be localized on their site
(this case corresponds to the solid crystal)

ii) spins on one, two, three, ... layers are mobile (this
case allows us to study the partial melting process)

iii) all spins are mobile. This case corresponds to the
full melting to the liquid phase at high enough T .

B. Concentration effects

As said in the previous section, when we change the
concentration, we need another value of D to obtain a
vortex configuration. For 3 layers (c = 25%), we pick
D = 1 in the range of the vortex phase, while for 4 layers
(c = 30%), we pick D = 0.7 which lies in the middle of
the vortex phase. This explains why we have to specify
D for each concentration. Varying D slightly around the
chosen values does not change qualitatively the results.
Now if we work with one fixed variable, say c, and we
study the system behavior as a function of D, we find the
vortex phase in a range of D, the collinear configurations
at small D, and no planar vortex at very high D. The
linear phase and the non-planar vortex phase are not
interesting with respect to applications using the spin
reversal by a small magnetic field.

Let us show in Fig.3 the results of the energy as a
function of T for various dot thickness, namely various
concentrations c with the choice of J// = 4 and J⊥ = 1.
All spins are mobile.

FIG. 3. Energy per spin U vs T . Effect of the concentration.
The lattice size of the system is 15× 15× 12 with J// = 4 and
J⊥ = 1. The blue curve corresponds to a spin concentration
equal to c = 50% with a magnetic dipole-dipole interaction
equal to D = 0.3. The green curve corresponds to c = 30%
and D = 0.7. The red curve corresponds to c = 25% and
D = 1.

It is interesting to note that the three energy curves
have the same transition temperature Tc, a kind of fixed
point independent of the concentration c. The Edwards-
Anderson order parameter is shown in Fig. 4a confirms
that the transitions of these concentrations occur at the
same temperature within statistical errors. We show in
Fig. 4b the diffusion coefficient. We see here that spins
start to move after the transition at Tc from the vortex
configuration to the disordered phase.

The fact that the meting temperature does not change
with the concentration up to 50% means that spins have
enough empty space to evaporate. We may imagine the
extreme situation where c is close to 1: the first evapo-
rated spins in the little empty space prevent the following
spins to evaporate due to the lack of empty sites. This
increases the melting temperature.
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FIG. 4. (a) The Edwards-Anderson order parameter QEA vs
T for several concentrations, (b) The diffusion coefficient CD

vs T . The lattice size of the system is 15 × 15 × 12 with
J// = 4 and J⊥ = 1. The blue curve corresponds to c = 50%
and D = 0.3. The green curve corresponds to c = 30% and
D = 0.7. The red curve corresponds to c = 25% and D = 1.

C. Comparison with a localized-spin system

We show here the case of a system of localized spins
to compare with the mobile spins shown above. Figure
5 shows the energy for three thicknesses of the dot. Un-
like the full melting case shown above, the transition oc-
curs at a different temperature for a different thickness.
This is well-known in magnetism of thin solid films: the
transition temperature increases with increasing thick-
ness [35, 36]. We come back to this point at the end of
this subsection.

In addition to the Edwards-Anderson order parame-
ter, we can define an order parameter in the case of no
long-range GS ordering: if the GS is well defined by a
numerical method, then we can project the actual spin
configuration of at a given T at a given time t on the GS.
Needless to say, if the spin configuration is not strongly
deviated from the GS, the order parameter is close to 1.
This is defines as:

P (T ) =
1

Ns(ta − t0)

∑
i

|
ta∑

t=t0

Si(T, t) · S0
i (T = 0)| (4)

where Si(T, t) is the i-th spin at the time t, at tempera-
ture T , and S0

i (T = 0) is its state in the GS. The order
parameter P (T ) is close to 1 at very low T where each

FIG. 5. Energy vs T . Localized spin model. The lattice
size of the system is 15 × 15 × 12 with J// = 4 and J⊥ = 1.
The blue curve corresponds to c = 50%, i.e. a 6-layer film,
with a magnetic dipole-dipole interaction equal to D = 0.3.
The green curve corresponds to c = 30% (4-layer film) and
D = 0.7. The red curve corresponds to c = 25% (3-layer film)
and D = 1.

spin is only weakly deviated from its state in the GS.
P (T ) is zero when every spin strongly fluctuates in the
paramagnetic state. The above definition of P (T ) is sim-
ilar to the Edward-Anderson order parameter used to
measure the degree of freezing in spin glasses [34]: we
follow each spin with time evolving and take the spatial
average at the end. However, the advantage of P (T ) is
the fact that we can follow the GS configuration until it
is broken.

We show in Fig. 6 the Edwards-Anderson order pa-
rameter QEA and the projection order parameter P as
functions of T . These confirm the difference of Tc for dif-
ferent film thicknesses. Note however that in magnetic
thin films with localized spins, Tc increases with increas-
ing thickness provided that all parameters other than the
film thickness are the same [36]. In the present model,
we cannot have this condition because we should choose
D to produce the vortex structure while varying the film
thickness, explained previously in sections II B and III B.
As a matter of fact, Figs. 5 and 6 show the data for three
different thicknesses with three different D, i. e. for three
different systems. The thickness is not the only variable
here. So the variation of Tc is not due to it alone, the
scaling in Ref. [36] does not apply.

D. Effect on the number of layers that can melt

Let us show now the case where spins in one, two or
more layers are mobile. This allows us to follow the melt-
ing progressively. Though artificial, this procedure cor-
responds to a reality when the surface layer melts first,
then the second layer, ... with increasing T [37].

Figure 7 shows the energy and the diffusion coefficient
versus T . The case of localized spins is also shown for
comparison. One sees that the transition temperature
decreases as the number of mobile layers increases. Note
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FIG. 6. (a) Edwards-Anderson order parameter vs T , (b)
Order parameter P . The model is the localized spin model.
The lattice size of the system is 15× 15× 12 with J// = 4 and
J⊥ = 1. The blue curve corresponds to a 6-layer film, with
a magnetic dipole-dipole interaction equal to D = 0.3. The
green curve corresponds to a 4-layer film and D = 0.7. The
red curve corresponds to a 3-layer film and D = 1.

that the case of a system of completely localized spins
has a very high Tc.

Figure 8 shows the Edwards-Anderson order parame-
ter and the order parameter P . Several remarks are in
order: (i) for a system of completely localized spins or a
system of completely mobile spins, there is only one tran-
sition for each concentration, (ii) when a number of layers
are mobile, the system has a partially ordered state: the
mobile layers become disordered at some T but the lo-
calized layers are still ordered. This causes a step in the
order parameters observed in Fig. 8.

Finally, we show in Fig. 9 the occupation rate R of
each layer in the system in the case c = 30%. In the GS,
and at low T (< 1) only the first four layers are occupied
(R 1), the other layers are empty (R 0). However with
increasing T , R of the first four layers diminish and R
of the other layers increase. For very high T , the spins
occupy all layers, and it is only after the melting that all
layers have the same occupation rate as expected in the
liquid phase.

To close this section, let us discuss about the values of
interaction used above. The value J⊥ = 1 was used as the
energy unit. The value J// = 4 was used to favor layered
ordering. As long as J// > J⊥ our results shown above
do not change qualitatively, only the range of values of
D giving rise to the vortex structure as well as the tran-
sition temperature change. Finally, let us note that the

FIG. 7. (a) Energy U vs T , (b) Diffusion coefficient CD vs
T . The lattice size of the system is 15 × 15 × 12 with J// = 4,
J⊥ = 1 and D = 0.7. The concentration is fixed to c = 30%,
i.e. 4 filled layers. The red curve corresponds to a localized-
spin system. The green curve corresponds to the two first
layers can melt; the blue curve to three mobile layers and the
cyan curve to four mobile layers.

results have been shown for the same lateral lattice size
but changing this size will not change qualitatively the
results except the change of the range of values of D giv-
ing rise to the vortex structure because of the long-range
nature of the dipolar interaction.

IV. CONCLUSION

In this paper, we have studied a dot where the lat-
tice sites are occupied by mobile Heisenberg spins. The
dot is embedded in a close recipient which allows to con-
serve the number of spins. We have taken into account
the in-plane and perpendicular exchange interactions and
the long-range dipolar interaction without cut-off. The
confined geometry of the dot and the competition be-
tween exchange interactions and the dipolar interaction
gives rise to a ground state which is a vortex around the
dot center with the spins at the center pointing out of
the xy plane. Such a structure has a net perpendicular
magnetization with a two-fold degeneracy along the ±z
axis. Using a small magnetic field one can pin the mag-
netization in + or -z direction. If the dot is sandwiched
between two ferromagnetic films, then one can obtain a
giant magneto-resistance [38, 39] in a perpendicular spin
transport. Let us denote the up spin of the ferromag-
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FIG. 8. System with partially mobile layers. (a) Edwards-
Anderson order parameter vs T , (b) Projection of the order
parameter P vs T . The lattice size of the system is 15×15×12
with J// = 4, J⊥ = 1, and D = 0.7. The concentration is fixed
to c = 30%, i.e. 4 filled layers. The red curve corresponds
to a localized-spin system, the green curve corresponds to the
case where the two first layers (starting from the top) are
constituted with mobile spins, the blue curve corresponds to
the case of three mobile layers, and the cyan curve to four
mobile layers.

FIG. 9. Occupation rate R per layer vs T .The lattice size of
the system is 15× 15× 12 with J// = 4, J⊥ = 1, and D = 0.7.
The concentration is fixed to c = 30%, i.e. 4 filled layers in
the solid phase. Each color represents a layer.

netic film by ↑F , and the up dot magnetization by ↑D.
According to the giant magneto-resistance geometry, the
configuration ↑F | ↑D | ↑F will let the electron up spins
go across the system (high current) while ↑F | ↓D | ↑F
will block the electron up spins (small current). The
switch between the two states can be realized with an
applied magnetic field. Thanks to the smallness of the
dot magnetization, one just needs a small magnetic field
which does not heat the system with the magnetization
reversal. This is certainly an advantage over the use of a
ferromagnetic layer instead of the dot.

Let us discuss another possible application of the
present system in the domain of computer memory de-
vices. The present system has a two-level structure which
is stable at finite temperatures below the melting point
(cf. Fig. 4): center spins can be up or down piloted by an
extremely small magnetic field to reverse just a few spins
as said earlier. This can serve as a two-bit unit. An ap-
plication device one can imagine is a, array of dots with
horizontal lines are the bit lines and vertical lines are the
word lines, similarly to what proposed in Ref. [40] using
array of dots of skyrmions. The present system repre-
sents a considerable advantage: small dot size (just a few
dozen of spins) and an extremely small magnetic field to
operate. It can therefore increase the stocking capacity
in memory devices for example.

We have studied the melting of such a dot with increas-
ing temperature and found that, among other results,
within the studied sizes the melting to the liquid phase
takes place at the same temperature regardless of the sys-
tem size. This is not the case of the order-disorder phase
transition in a solid film [35]. Note that our technique
using the mobile spin model can be used to study the be-
havior of liquid crystals. We have recently succeeded to
obtain the nematic and smectic structures while cooling
a liquid to low T using an appropriate choice of Hamil-
tonian [41, 42].

Finally, note that in this work, we have simulated the
system at a fixed concentration using the canonical de-
scription so that only one phase transition is observed.
However, if we use the grand-canonical method, we be-
lieve that we will observe the coexisting phases at a given
T when varying the concentration, as what has been
found in Ref. [33] using the mean-field approximation
(cf. Fig. 6 of that reference). The implementation of
the grand-canonical Monte Carlo method however is very
complicated. This is left for a future study.
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