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Compacted binary trees admit a stretched exponential

Andrew Elvey Price∗ Wenjie Fang† Michael Wallner‡

July 2, 2020

Abstract

A compacted binary tree is a directed acyclic graph encoding a binary tree in which
common subtrees are factored and shared, such that they are represented only once. We
show that the number of compacted binary trees of size n grows asymptotically like

Θ
(
n! 4ne3a1n1/3

n3/4
)
,

where a1 ≈ −2.338 is the largest root of the Airy function. Our method involves a new two
parameter recurrence which yields an algorithm of quadratic arithmetic complexity for
computing the number of compacted trees up to a given size. We use empirical methods
to estimate the values of all terms defined by the recurrence, then we prove by induction
that these estimates are sufficiently accurate for large n to determine the asymptotic form.
Our results also lead to new bounds on the number of minimal finite automata recognizing
a finite language on a binary alphabet. As a consequence, these also exhibit a stretched
exponential.

Keywords: Airy function, asymptotics, directed acyclic graphs, Dyck paths, bijection,
stretched exponential, compacted trees, minimal automata, finite languages.

1 Introduction

Compacted binary trees are a special class of directed acyclic graphs that appear as a model for
data structures in the compression of XML documents [5]. Given a rooted binary tree of size
n, its compacted form can be computed in expected and worst-case time O(n) with expected
compacted size Θ(n/

√
logn) [16]. Recently, Genitrini, Gittenberger, Kauers, and Wallner

solved the reversed question on the asymptotic number of compacted trees under certain
height restrictions [17]; however the asymptotic number in the unrestricted case remained
elusive. They also solved this problem for a simpler class of trees known as relaxed trees under
the same height restrictions. In this paper we show that the counting sequences (cn)n∈N of
(unrestricted) compacted binary trees and (rn)n∈N of (unrestricted) relaxed binary trees both
admit a stretched exponential:
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Theorem 1.1. The number of compacted and relaxed binary trees satisfy for n→∞

cn = Θ
(
n! 4ne3a1n1/3

n3/4
)

and rn = Θ
(
n! 4ne3a1n1/3

n
)
,

where a1 ≈ −2.338 is the largest root of the Airy function Ai(x) defined as the unique function
satisfying Ai′′(x) = xAi(x) and limn→∞Ai(x) = 0.

We believe that there are constants γc and γr such that

cn ∼ γcn!4ne3a1n1/3
n3/4 and rn ∼ γrn!4ne3a1n1/3

n,

however, we have been unable to find the exact values of these constants or even prove their
existence. Nevertheless, our empirical analysis yields what we believe to be very accurate
estimates for γc and γr, namely γc ≈ 173.12670485 and γr ≈ 166.95208957.

The presence of a stretched exponential term in a sequence counting combinatorial objects
is not common, although there are quite a few precedents. One simple example is that of
pushed Dyck paths, where Dyck paths of maximum height h are given a weight y−h for some
y > 1. In this case McKay and Beaton determined the weighted number dn of paths of length
2n up to and including the constant term to be asymptotically given by

dn ∼ Ay(y − 1)(log y)1/34n exp
(
−C(log y)2/3n1/3

)
n−5/6,

where A = 25/3π5/6/
√

3 and C = 3(π/2)2/3; see [18]. For the analogous problem of counting
pushed self avoiding walks, Beaton et al. [4] gave a (non-rigorous) probabilistic argument
for the presence of a stretched exponential of the form e−cn

3/7 for some c > 0. In each
of these cases, a stretched exponential appears as part of a compromise between the large
height regime in which most paths occur and the small height regime in which the weight is
maximized. We will see that a similar compromise occurs in this paper. Another situation
in which stretched exponentials have appeared is in cogrowth sequences in groups [14], that
is, paths on Cayley graphs which start and end at the same point. In particular, Revelle [25]
showed that in the lamplighter group the number cn of these paths of length 2n behaves like

cn ∼ C 9nκn1/3
n1/6.

In the group Z oZ, Pittet and Saloff-Coste showed that the asymptotics of the cogrowth series
contains the slightly more complicated term κ

√
n logn [24]. Another example comes from the

study of pattern avoiding permutations, where Conway, Guttmann, and Zinn-Justin [7, 8]
have given compelling numerical evidence that the number pn of 1324-avoiding permutations
of length n behaves like

pn ∼ Bµnµ
√
n

1 ng,

with µ ≈ 11.600, µ1 ≈ 0.0400, g ≈ −1.1.
As seen by these examples, it is generally quite difficult to prove that a sequence has a

stretched exponential in its asymptotics. Part of the difficulty is that a sequence which has
a stretched exponential cannot be “very nice”. In particular, the generating function cannot
be algebraic, and can only be D-finite if it has an irregular singularity [15].

Some explicit examples of D-finite generating series with a stretched exponential are
known; see e.g. [28–30]. In these cases Wright uses a saddle-point method to prove the
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presence of the stretched exponential. To apply this method, one needs to meticulously check
various analytic conditions on the generating function, or to bound related integrals in a
delicate way. These tasks can be highly non-trivial and require a precise knowledge of the
analytic properties of the generating function. For more detail on how to use the saddle-point
method to prove stretched exponentials, and further examples, see [15, Chapter VIII].

In lieu of detailed information on the generating function, we find and analyze the following
recurrence relation

rn,m = rn,m−1 + (m+ 1)rn−1,m,

corresponding to a partial differential equation to which the saddle point method cannot be
readily applied. The number of relaxed trees of size n is then rn,n. We present a method that
works directly with a transformed sequence dn,k and the respective recurrence relation. We
find two explicit sequences An,k and Bn,k with the same asymptotic form, such that

An,k ≤ dn,k ≤ Bn,k, (1)

for all k and all n large enough. The idea is that An,k and Bn,k satisfy the recurrence of dn,k
with the equalities replaced by inequalities, allowing us to prove (1) by induction. In order
to find appropriate sequences An,k and Bn,k, we start by performing a heuristic analysis to
conjecture the asymptotic shape of dn,k for large n. We then prove that the required recursive
inequalities hold for sufficiently large n using adapted Newton polygons.

The inductive step in the method described above requires that all coefficients in the
recurrence be positive. This occurs in the case of relaxed binary trees but not for compacted
binary trees. In the latter case, we construct a sandwiching pair of sequences, each determined
by a recurrence with positive coefficients, to which our method applies.

As an application, we use our results on relaxed and compacted trees to give new asymp-
totic upper and lower bounds for the number of minimal deterministic finite automata with n
states recognizing a finite language on a binary alphabet. These automata are studied in the
context of the complexity of regular languages; see [11, 12, 23]. To our knowledge no upper
or lower bounds capturing even the exponential term had been proven for this problem. Our
bounds are much more accurate, only differing by a polynomial factor, and thereby proving
the presence of a stretched exponential term.

As a further extension of our method, some preliminary results show that our approach
can be generalized to a k-ary version of compacted trees, which in turn settles the enumeration
of minimal finite automata recognizing finite languages for an arbitrary alphabet. A follow-up
paper in this direction is underway.

In its simplest form, our method applies to two parameter linear recurrences with positive
coefficients which may depend on both parameters. We expect, however, that our method
could be adapted to handle a much wider range of recurrence relations, potentially involving
more than two parameters, negative coefficients and perhaps even some non-linear recurrences.
Indeed, we have already seen that it can be adapted to at least one case involving negative
coefficients, namely that of counting compacted binary trees.

Plan of the article. In Section 2 we introduce compacted binary trees and the related
relaxed binary trees, and then derive a bijection to Dyck paths with weights on their horizontal
steps. In Section 3 we show a heuristic method of how to conjecture the asymptotics and in
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particular the appearance of a stretched exponential term. Building on these heuristics, we
prove exponentially and polynomially tight bounds for the recurrence of relaxed binary trees
in Section 4 and of compacted binary trees in Section 5. In Section 6 we show how our results
lead to new bounds on minimal acyclic automata on a binary alphabet.

2 A two-parameter recurrence relation

Originally, compacted binary trees arose in a compression procedure in [16] which computes
the number of unique fringe subtrees. Relaxed binary trees are then defined by relaxing
the uniqueness conditions on compacted binary trees. As we will not need this algorithmic
point of view, we directly give the following definition adapted from [17, Definition 3.1 and
Proposition 4.3].

Before we define compacted and relaxed binary trees, let us recall some basic definitions.
A rooted binary tree is a plane directed connected graph with a distinguished node called the
root, in which all nodes have out-degree either 0 or 2 and all nodes other than the root have
in-degree 1, while the root has in-degree 0. For each vertex with out-degree 2, the out-going
edges are distinguished as a left edge and a right edge. Nodes with out-degree 0 are called
leaves, and nodes with out-degree 2 are called internal nodes. All trees in this paper will be
rooted and we omit this term in the future.

Definition 2.1 (Relaxed binary tree). A relaxed binary tree (or simply relaxed tree) of size n
is a directed acyclic graph obtained from a binary tree with n internal nodes, called its spine,
by keeping the left-most leaf and turning other leaves into pointers, with each one pointing to
a node (internal ones or the left-most leaf) preceding it in postorder.

The counting sequence (rn)n∈N of relaxed binary trees of size n starts as follows:

(rn)n∈N = (1, 1, 3, 16, 127, 1363, 18628, 311250, 6173791, 142190703, . . .) .

It corresponds to OEIS A082161 in the On-line Encyclopedia of Integer Sequences.1 There,
it first appeared as the counting sequence of the number of deterministic, completely de-
fined, initially connected, acyclic automata with 2 inputs and n transient, unlabeled states
and a unique absorbing state, yet without specified final states. This is a direct rephras-
ing of Definition 2.1 in the language of automata theory; for more details see Section 6.
Liskovets [23] provided (probably) the first recurrence relations (C2(n) used for rn) and later
Callan [6] showed that they are counted by determinants of Stirling cycle numbers. However,
the asymptotics remained an open problem, which we will solve in the present paper.

Using the class of relaxed trees, it is then easy to define the set of compacted trees by
requiring the uniqueness of subtrees.

Definition 2.2 (Compacted binary tree). Given a relaxed tree, to each node u we can as-
sociate a binary tree B(u). We proceed by postorder. If u is the left-most leaf, we define
B(u) = u. Otherwise, u has two children v, w, then B(u) is the binary tree with B(v) and
B(w) as left and right sub-trees, respectively. A compacted binary tree, or simply compacted
tree of size n is a relaxed tree with B(u) 6= B(v) (i.e., B(u) not isomorphic to B(v)) for all
pairs of distinct nodes u, v.

1https://oeis.org
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Figure 1: All relaxed (and also compacted) binary trees of size 0, 1, 2, where internal nodes
are shown by circles and the unique leaf is drawn as a square.

Figure 1 shows all relaxed (and compacted) trees of size n = 0, 1, 2 and Figure 2 gives
the smallest relaxed tree that is not a compacted tree. The counting sequence (cn)n∈N of
compacted binary trees of size n is OEIS A254789 and starts as follows:

(cn)n∈N = (1, 1, 3, 15, 111, 1119, 14487, 230943, 4395855, 97608831, . . .) .

=

Figure 2: (Left) The smallest relaxed binary tree that is not a compacted binary tree, as the
two gray subtrees correspond to the same (classical) binary tree. (Right) A valid compacted
binary tree of size 3 with the same spine.

In [17, Theorem 5.1 and Corollary 5.4] the so-far most efficient recurrences are given
for the number of compacted and relaxed binary trees, respectively. Computing the first n
terms using these requires O(n3) arithmetic operations. In this section we give an alternative
recurrence with only one auxiliary parameter (instead of two) other than the size n, which
leads to an algorithm of arithmetic complexity O(n2) to compute the first n terms of the
sequence. The construction is motivated by the recent bijection [26].

As a corollary of our main result Theorem 1.1, we directly get an estimate of the asymptotic
proportion of compacted trees among relaxed trees:

cn
rn

= Θ(n−1/4).

An analogous result for compacted and relaxed trees of bounded right height was shown
in [17, Corollary 3.5]. The right height is the maximal number of right edges to internal
nodes on a path in the spine from the root to a leaf. Let ck,n (resp. rk,n) be the number of
compacted (resp. relaxed) trees of right height at most k. Then, for fixed k,

ck,n
rk,n
∼ λkn

− 1
k+3−( 1

4−
1
k+3 ) 1

cos2( π
k+3 ) = o

(
n−1/4

)
,

for a constant λk independent of n. As k →∞, we see that the exponent of n approaches−1/4.
It is thus not surprising that the exponent in the unbounded case is also −1/4.
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2.1 Relaxed binary trees and horizontally decorated paths

For the subsequent construction, we need the following type of lattice paths.

Definition 2.3. A horizontally decorated path P is a lattice path starting from (0, 0) with
steps H = (1, 0) and V = (0, 1) confined to the region 0 ≤ y ≤ x, where each horizontal step
H is decorated by a number in {1, . . . , k + 1} with k its y-coordinate. If P ends at (n, n), we
call it a horizontally decorated Dyck path.

We denote by Dn the set of horizontally decorated Dyck paths of length 2n.
Remark 2.4. Horizontally decorated Dyck paths can also be interpreted as classical Dyck
paths, where below every horizontal step a box given by a unit square between the horizontal
step and the line y = −1 is marked, see Figure 3. This gives an interpretation connecting
these paths with the heights of Dyck paths, which we will exploit later. Independently, Callan
gave in [6] a more general bijection in which he called the paths column-marked subdiagonal
paths, and Bassino and Nicaud studied in [3] a variation when counting some automata, where
the paths stay above the diagonal, which they called k-Dyck boxed diagrams.

Theorem 2.5. There exists a bijection Dyck between relaxed binary trees of size n and the
set Dn of horizontally decorated Dyck paths of length 2n.

Proof. Let C be a relaxed binary tree of size n, and C∗ its spine. For convenience, we identify
the internal nodes in C and C∗, and pointers in C with leaves (not the left-most one) in C∗.

We now give a recursive procedure transforming C into a horizontally decorated Dyck
path P . First, we take C∗ and label its internal nodes and the left-most leaf in postorder
from 1 to n+1. Next, we define the following function Path that transforms C∗ into a lattice
path in H and V . Given a binary tree T , it either consists of two sub-trees (T1, T2), or it is
a leaf ε. We thus define Path recursively by

Path((T1, T2)) = Path(T1)Path(T2)V, Path(ε) = H.

It is clear that Path(C∗) starts with H for the left-most leaf. Let P0 be Path(C∗) with its
starting H removed. Note that Path performs a postorder traversal on C∗ where leaves are
matched with H and internal nodes with V . Then, Path(C∗) ends at (n + 1, n) and stays
always strictly below y = x because every binary (sub-)tree has one more leaf than internal
nodes, and each initial segment of Path(C∗) corresponds to a collection of subtrees of C∗.
Hence, P0 is a Dyck path. Observe that the i-th step V in P0 corresponds to the (i + 1)-st
node in postorder, as the left-most leaf is labeled 1. Finally, for each step H in P0, we label
it by the label of the internal node (or the left-most leaf) to which its corresponding leaf in
C∗ points in C. We thus obtain a Dyck path P with labels on the horizontal steps, and we
define Dyck(C∗) = P .

We have seen that the Dyck path P0 is in bijection with the spine C∗. To see that the
labeling condition on horizontally decorated Dyck paths is equivalent to the condition on
relaxed binary trees, we take a pointer p pointing to a node u with label ` that corresponds
to a step H with a certain coordinate k. By construction of the Dyck path, p comes after u in
postorder if and only if the step H from p comes after the step V from u, which is equivalent
to ` ≤ k+1, as the node with label 1 is the left-most leaf and is not recorded as a step H. We
thus have the equivalence of the two conditions, so Dyck is indeed a bijection as claimed.
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Figure 3: Example of the bijection Dyck between relaxed trees and horizontally decorated
Dyck paths. It transforms internal nodes into vertical steps and pointers into horizontal steps.

The following result gives the claimed algorithm with quadratic arithmetic complexity
to count such paths, which can also be used as a precomputation step of an algorithm that
randomly generates these paths using a linear number of arithmetic operations for each path.
These algorithms are also applicable to relaxed binary trees via the bijection Dyck.

Proposition 2.6. Let rn,m be the number of horizontally decorated paths ending at (n,m).
Then,

rn,m = rn,m−1 + (m+ 1)rn−1,m, for n,m ≥ 1 and n ≥ m,
rn,m = 0, for n < m,

rn,0 = 1, for n ≥ 0.

The number of relaxed binary trees of size n is equal to rn,n.

Proof. Let us start with the boundary conditions. First of all, no such path is allowed to cross
the diagonal y = x, thus rn,m = 0 for n < m. Second, the paths consisting only of horizontal
steps stay at altitude 0 and admit therefore just one possible label for each step, i.e., rn,0 = 1
for n ≥ 0.

For the recursion we consider how a path can jump to (n,m). It either uses a step V from
(n,m − 1) or it uses a step H from (n − 1,m). In the second case, there are m + 1 possible
decorations as the path is currently at altitude m.

Remark 2.7 (Compacted trees of bounded right height). This restriction naturally translates
relaxed binary trees of right height at most k from [17] into horizontally decorated Dyck paths
of height at most k + 1, where height is the maximal normal distance rescaled by

√
2 from

a lattice point on the path to the diagonal. In other words, these paths are constrained to
remain between the diagonal and a line translated to the right parallel to the diagonal by
k + 1 unit steps.

2.2 Compacted binary trees

Given a relaxed tree C, an internal node u is called a cherry if its children in the spine are
both leaves and none of them is the left-most one. According to the discussion at the end of
Section 4 in [17], the only obstacle for a relaxed tree to be a compacted tree is a cherry with
badly chosen pointers. For the convenience of the reader, we now recall and formalize this
observation in the following proposition.
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Proposition 2.8. A relaxed tree C is a compacted tree if and only if there are no two nodes
u 6= v in C which share the same left child u` and the same right child ur. Moreover, if C is
not a compacted tree, such a pair exists where v is a cherry and u precedes v in postorder.

Proof. The “only if” part follows directly from Definition 2.2. We now focus on the “if” part.
Suppose that C is not a compacted tree, which means there is at least a pair of internal nodes
u, v such that u precedes v and B(u) = B(v), with B(u) defined in Definition 2.2. Now we
want to show that there is one such pair with v being a cherry. We take such a pair (u, v).
If v is a cherry, the claim holds. Otherwise, without loss of generality, we suppose that the
left child v′ of v is not a leaf. Let u` be the left child of u. If u` is an internal node, we take
u′ = u`. Otherwise, we take u′ to be the internal node pointed to by u`. By definition, we
have B(u′) = B(v′), and clearly u′ precedes v′ in postorder. We thus obtain a new pair with
the same conditions but of greater depth in the spine. However, since the spine has finite
depth, this process cannot continue forever. As it only stops when v is a cherry, we have the
existence of such a pair (u, v) with v a cherry.

The restriction described in Proposition 2.8 has an analogue in the class of horizontally
decorated paths: We label every step V with its final altitude plus one, which corresponds to
its row number in the interpretation with marked boxes, and which also corresponds to the
traversal/process order in postorder of its internal node in the relaxed tree; compare Figure 3.
Recall that each step H is already labeled. For any step S, let L(S) be its label. We associate
to every step V a pair of integers (v1, v2), which correspond to the labels of its left and right
children. First, let S′ be the step before V and set v2 = L(S′). Next, draw a line from the
ending point of V in the southwest direction parallel to the diagonal, and stop upon touching
the path again. Let S′′ be the last step before V that ends on this line (if there is no such
step, set v1 = 1). Then set v1 = L(S′′).

Definition 2.9. A C-decorated path P is a horizontally decorated path where the decorations
h1 and h2 of each pattern of consecutive steps HHV fulfill (h1, h2) 6= (v1, v2) for all preceding
steps V .

Proposition 2.10. The map Dyck bijectively sends the set of compacted trees of size n to
the set of C-decorated Dyck paths of length 2n.

Proof. Recall from Theorem 2.5 that the map Dyck is a bijection sending relaxed trees of size
n to the set of horizontally decorated Dyck paths of size 2n. C-decorated paths are defined
precisely so that their corresponding relaxed trees satisfy the condition of Proposition 2.8.
Therefore, Dyck forms a bijection between C-decorated paths and compacted trees.

The key observation for the counting result is that exactly one pair of labels (h1, h2) is
avoided for each preceding step V of a consecutive pattern HHV . Applying this classification
to the previous result we get a similar quadratic-time recurrence for compacted binary trees.

Proposition 2.11. Let cn,m be the number of C-decorated paths ending at (n,m). Then,

cn,m = cn,m−1 + (m+ 1)cn−1,m − (m− 1)cn−2,m−1, for n ≥ m ≥ 1,
cn,m = 0, for n < m,

cn,0 = 1, for n ≥ 0.

8



The number of compacted binary trees of size n is equal to cn,n.

Proof. In the first case, the term (m+ 1)cn−1,m counts the paths ending with a H-step while
cn,m−1−(m−1)cn−2,m−1 counts the paths ending with a V -step. The term −(m−1)cn−2,m−1
occurs because, for each C-decorated path ending at (n− 2,m− 1), there are exactly m− 1
paths formed by adding an additional HHV that are not C-decorated paths.

Note that one might also count the following simpler class which is in bijection with
C-decorated paths, albeit without a natural bijection.

Definition 2.12. A H-decorated path P is a horizontally decorated path where the decorations
h1 and h2 of each pattern of consecutive steps HHV fulfill h1 6= h2 except for h1 = h2 = 1.

In terms of marked boxes, this constraint translates to the fact that, below the horizontal
steps in each consecutive pattern HHV , the marks must be in different rows except possibly
for the lowest one.

3 Heuristic analysis

In this section, we will explain briefly some heuristics and an ansatz that we will apply later
to get the asymptotic behavior of rn and cn. These heuristics are closely related to the
asymptotic behavior of Dyck paths and the Airy function.

3.1 An intuitive explanation of the stretched exponential

We can consider rn as a weighted sum of Dyck paths, where each Dyck path P has a weight
w(P ) that is the number of horizontally decorated Dyck paths that it gives rise to. There
is thus a balance of the number of total paths and their weights for the weighted sum rn,n.
On the one hand, most paths have an (average) height of O(

√
n) (i.e., mean distance to

the diagonal). On the other hand, their weight is maximal if their height is O(1), i.e., they
are close to the diagonal. In other words, typical Dyck paths are numerous but with small
weight, and Dyck paths atypically close to the diagonal are few but with enormous weight.
The asymptotic behavior of the weighted sum of Dyck paths that we consider should be a
result of a compromise between these two forces. We will now make this more explicit by
analyzing Dyck paths with height approximately nα for some α ∈ (0, 1/2).

Given a Dyck path P with steps H = (1, 0) and V = (0, 1) as in Definition 2.3, let mi be
the y-coordinate of the i-th step H. The number of Dyck paths with mi bounded uniformly
satisfy the following property.

Proposition 3.1 ([22, Theorem 3.3]). For a Dyck path P of length 2n chosen uniformly at
random, let mi be the y-coordinate of the i-th step H. For α < 1/2, we have

logP
(

max
1≤i≤n

(i−mi) < nα
)
∼ −π2n1−2α.

Let w(P ) the number of horizontally decorated Dyck paths whose unlabeled version is
the Dyck path P . For a randomly chosen Dyck path P of length 2n with i − mi bounded
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uniformly by nα, we heuristically expect most values of i−mi to be of the order Θ(nα), with
i of order Θ(n). This leads to the following approximation:

log w(P )
n! =

∑
1≤i≤n

log
(
mi + 1
i

)
=

∑
1≤i≤n

log
(

1− i−mi − 1
i

)
≈ cn ·

(
−n

α

n

)
= −cnα.

Here, c > 0 is some constant depending on α. This approximation is only heuristically justified
and very hard to prove. The contribution of Dyck paths with i −mi uniformly bounded by
nα should thus roughly be n!4n exp(−(1 + o(1))c′np(α)), with p(α) = min(α, 1 − 2α) and
c′ > 0 a constant depending on α. Here, 4n comes from the growth constant of Dyck paths.
The function p(α) is minimal at α = 1/3, which maximizes the contribution, leading to the
following heuristic guess that the number of relaxed binary trees rn should satisfy

log rn
n!4n ∼

n→∞
−an1/3,

for some constant a > 0. Furthermore, we anticipate that the main contribution should come
from horizontally decorated Dyck paths with i−mi mostly of order Θ(n1/3). Since most such
i’s should be of order Θ(n), we can even state the condition above as x − y = Θ(y1/3) for
most endpoints (x, y) of horizontal steps. This heuristic is the starting point of our analysis.

3.2 Weighted Dyck meanders

The heuristics of the previous section suggest that the mean distance to the diagonal will
play an important role. Therefore, we propose another model of lattice paths emphasizing
this distance. A Dyck meander (or simply a meander) M is a lattice path consisting of up
steps U = (1, 1) and down steps D = (1,−1) while never falling below y = 0. It is clear that
Dyck paths of length 2n are in bijection with Dyck meanders of length 2n ending on y = 0
with the transcription H → U, V → D. This bijection can also be viewed geometrically as the
linear transformation x′ = x + y, y′ = x − y. This transformation will simplify the following
analysis. We can consider Dyck meanders as initial segments of Dyck paths.

Furthermore, we have seen that a rescaling by n! seems practical. So we consider the
following weight on steps U in a meander M . If U starts from (a, b), then its weight is
(a− b+ 2)/(a+ b+ 2), and the weight of M is the product of the weights of its steps U . Let
dn,m denote the weighted sum of meanders ending at (n,m). We get the following recurrence
for dn,m.

Proposition 3.2. The weighted sum dn,m defined above for meanders ending at (n,m) sat-
isfies the recurrence

dn,m = n−m+2
n+m dn−1,m−1 + dn−1,m+1, for n > 0,m ≥ 0,

d0,m = 0, for m > 0,
dn,−1 = 0, for n ≥ 0,
d0,0 = 1.

(2)

Proof. We concentrate on the first case, as the boundary cases follow directly from the defini-
tion of meanders. Given a meander ending at (n,m) with n > 0, the last step may be an up
step or a down step. The contribution of the former case is n−m+2

n+m dn−1,m−1, with the weight
of the last up step taken into account. The contribution of the latter case is simply dn−1,m+1.
We thus get the claimed recurrence.
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Corollary 3.3. For integers m,n of the same parity, we have

dn,m = 1
((n+m)/2)!r(n+m)/2,(n−m)/2.

When m,n are not of the same parity, we have dn,m = 0.
In particular, the number of relaxed trees of size n is given by n!d2n,0.

Proof. It is clear that meanders can only end on points (n,m) for n,m of the same parity.
In this case, it suffices to compare Proposition 2.6 with Proposition 3.2 under the proposed
equality.

For some simple cases of dn,m, elementary computations show that dn,m = 0 for m > n,
dn,n = 1

n! , dn,n−2 = 2n−1−1
(n−1)! and dn,n−4 = 7·3n−3−2n+1

2(n−2)! .

3.3 Analytic approximation of weighted Dyck meanders

The heuristic in Section 3.1 suggests that the main weight of dn,m comes from the region
m = Θ(n1/3). It thus suggests an approximation of dn,m of the form

dn,m ∼ f(n−1/3(m+ 1))h(n), (3)

for some functions f and h, where we expect h(n) ≈ 2nρn1/3 for some ρ. The idea is that h(n)
describes how the total weight for a fixed n grows, and f(κ) describes the rescaled weight
distribution in the main region m = Θ(n1/3).

Let s(n) be the ratio h(n)
h(n−1) . Suppose that m = κn1/3−1, the recurrence relation becomes

f(κ)s(n) = n− κn1/3 + 3
n+ κn1/3 − 1

f
(
(n− 1)−1/3(κn1/3 − 1)

)
+ f

(
(n− 1)−1/3(κn1/3 + 1)

)
. (4)

Now, since we expect h(n) ≈ 2nρn1/3 , we postulate that the ratio s(n) behaves like

s(n) = 2 + cn−2/3 +O(n−1), (5)

and that f(κ) is analytic. Using these assumptions, we can expand (4) as a Puiseux series in
1/n. Moving all terms to the right-hand side yields

0 =
(
(c+ 2κ)f(κ)− f ′′(κ)

)
n−2/3 +O(n−1).

Solving the differential equation (c+2κ)f(κ)−f ′′(κ) = 0 under the condition f(κ)→ 0 when
κ→∞ yields the unique solution (up to multiplication by a constant)

f(κ) = bAi
(
c+ 2κ
22/3

)
. (6)

The condition on the behavior of f(κ) near ∞ is motivated by the experimental observation
that dn,m is quickly decaying for m close to n. We also insist that f(0) = 0 as dn,−1 = 0,
which implies that c = 22/3a1 where a1 ≈ −2.338 is the first root of the Airy function Ai(x),
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i.e. the largest one as all roots are on the real negative axis; see [1, p. 450]. Now, using this
conjectural value of c, it follows that (ignoring polynomial terms)

h(n) ≈ 2n exp
(
3a1(n/2)1/3

)
.

This suggests that the number of relaxed trees rn = n!d2n,0 behaves like

rn ≈ n!4n exp
(
3a1n

1/3
)
,

which is compatible with what we want to prove.
We observe that (4) can be expanded into a Puiseux series of n1/3 by taking appropriate

series expansions of f(κ) and s(n). Therefore, to refine the analysis above, it is natural to
look at the expansion of s(n) in (5) to more subdominant terms, and to postulate a more
refined ansatz of dn,m than (3), probably as a series in n1/3. Indeed, if we take

dn,m ∼
(
f(n−1/3(m+ 1)) + n−1/3g(n−1/3(m+ 1))

)
h(n)

and
s(n) = 2 + cn−2/3 + dn−1 +O(n−4/3),

then using the same method we can reach the polynomial part of the asymptotic behavior of
rn as

rn ≈ n!4n exp
(
3a1n

1/3
)
n.

In general, we can postulate

dn,m ≈ h(n)
k∑
j=0

fj(n−1/3(m+ 1))n−j/3,

and
s(n) = 2 + γ2n

−2/3 + γ3n
−1 + . . .+ γkn

−k/3 + o(n−k/3).

The proof of our main result on relaxed binary trees is based on choosing the cutoff appro-
priately, and using perturbations of that truncation to bound rn.

3.4 Discussion on the constants

One of the first steps in our method involves taking ratios h(n)/h(n − 1) (or equivalently
rn/rn−1) of successive terms. From the leading asymptotic behavior of these ratios we can
deduce the exact asymptotic form up to the constant term. Unfortunately, however, this
method makes it impossible to exactly determine the constant term γr. In this section we
give estimates of the constant terms: we believe that there are constants γr ≈ 166.95208957
and γc ≈ 173.12670485 such that

cn ∼ γcn!4ne3a1n1/3
n3/4 and rn ∼ γrn!4ne3a1n1/3

n.

Based on the analysis in Section 3.3, we expect the ratios rn/rn−1 to behave like

rn
rn−1

=
k−1∑
j=0

βjn
1−j/3 +O(n1−k/3),

12
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(a) Plot of un vs. 10n−1/3 for approximating the
constant term γr of relaxed trees.
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(b) Plot of v̂n = vn − 166.95208957 vs. 1018n−6,
where vn approximates the constant term γr for
relaxed trees.
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(c) Plot of un vs. 10n−1/3 for approximating the
constant term γc of compacted trees.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

4.85×10-8

4.9×10-8

4.95×10-8

5.×10-8

v̂n

1018n−6

(d) Plot of v̂n = vn − 173.1267048 vs. 1018n−6,
where vn approximates the constant term γc of
compacted trees.

Figure 4: Plots for 800 ≤ n ≤ 1000 visualizing the numerical approximation of the leading
constants γr and γc of relaxed and compacted trees, respectively. Note that the scalings on
the x-axes with 10n−1/3 and 1018n−6 are chosen because n is close to 1000.

for any positive integer k, with the sequence β0, β1, . . . beginning with the terms 4, 0, 4a1, 4.
This is equivalent to the existence of a sequence δ0, δ1, . . . such that rn behaves like

rn = n!4n exp(3a1n
1/3)n

k−1∑
j=0

δjn
−j/3 +O(n−k/3)

 ,
for any positive integer k. In this equation, δ0 = γr is the constant term that we aim to
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approximate. A simple way to approximate γr is to write

un = rn
n!4n exp(3a1n1/3)n

.

Then the graph of the values of un plotted against 10n−1/3 (because n is close to 1000) should
be roughly linear (see Figure 4a), and the point where it crosses the y-axis can be taken as
an approximation for γr. This yields γr ≈ 160. We get a more precise estimate as follows:
Fix k to be some positive integer. Then, for each n, consider the integers m ∈ [n, n+ k). For
each such m we expect the equation

um ≈
k−1∑
j=0

δjm
−j/3

to be approximately true. We then solve this system of equations for δ0, . . . , δk−1 as though
the equations were exact, using known, exact values of um. This yields approximations for
δ0, . . . , δk−1. Denote the approximation thus obtained for δ0 = γr by vn. Note that this is
equivalent to writing vn as a weighted sum of the numbers um, which cancels the terms n−j/3

for 1 ≤ j < k. For example, if k = 2 then vn = ((n+ 1)1/3un− n1/3un+1)/((n+ 1)1/3− n1/3).
Hence, if our assumptions are correct then vn = γr +O(n−k/3). Taking k = 18 and plotting
vn against 1018n−6 (because n is close to 1000) as in Figure 4b yields the approximation
γr ≈ 166.95208957, where we expect the quoted digits to be correct. In Figures 4c and
4d we show a similar analysis of the counting sequence for compacted trees, yielding the
approximation γc ≈ 173.12670485.

4 Proof of stretched exponential for relaxed trees

In this section we prove upper and lower bounds for the number of relaxed trees. These
bounds differ only in the constant term, so they completely determine both the stretched
exponential factor and the polynomial factor in the asymptotic number of relaxed trees for
large n.

Recall from Corollary 3.3 that the number of relaxed trees rn of size n is given by rn =
n!d2n,0, where the terms dn,m are given by the recurrence relation (2) which we repeat here
for the convenience of the reader:

dn,m = n−m+2
n+m dn−1,m−1 + dn−1,m+1, for n > 0,m ≥ 0,

d0,m = 0, for m > 0,
dn,−1 = 0, for n ≥ 0,
d0,0 = 1.

Our proofs of the upper and lower bounds for relaxed trees come from more general bounds
for the numbers dn,m, which we prove by induction. Suppose that (Xn,m)n≥m≥0 and (sn)n≥1
are sequences of non-negative real numbers satisfying

Xn,msn ≤
n−m+ 2
n+m

Xn−1,m−1 +Xn−1,m+1, (7)
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for all sufficiently large n and all integers m ∈ [0, n]. We define the sequence (hn)n≥0 by
h0 = 1 and hn = snhn−1. By induction on n, for some constant b0, the following inequality
holds for all sufficiently large n and all m ≥ 0:

Xn,mhn
(7)
≤ n−m+ 2

n+m
Xn−1,m−1hn−1 +Xn−1,m+1hn−1

(IS)
≤ n−m+ 2

n+m
b0dn−1,m−1 + b0dn−1,m+1 (8)

(2)= b0dn,m.

Here (IS) marks the “Induction Step”. Similarly, if we can show the opposite of (7), it will
imply that

Xn,mhn ≥ b1 · dn,m,

for all sufficiently large n and all integers m ∈ [0, n].
Comparing to the heuristic analysis in Section 3.3, we see that Xn,m acts as the function

f(κ), and sn as s(n). Therefore, we should expect Xn,m to be close to (6), and sn to be a
slight deviation of (5).

In Lemma 4.2 we will prove that certain explicit sequences X̃n,m and s̃n satisfy (7), which
will lead to a lower bound on the numbers dn,m. Similarly, in Lemma 4.4 we will show
that other explicit sequences X̂n,m and ŝn satisfy the opposite of (7), which therefore yields
an upper bound on the numbers dn,m. Together, these two bounds determine the exact
asymptotic form of the numbers d2n,0 up to the constant term.

In order to prove these bounds with the explicit expressions of Xn,m and sn, we will
consider the difference between the right- and the left-hand side of (7). Then we will show
that this difference is non-negative. We start by expanding the involved Airy function and
its derivative in the neighborhood of an appropriate point α, leading to a sum of the form

pn,mAi(α) + p′n,mAi′(α),

where pn,m and p′n,m can be expressed as Puiseux series in n whose coefficients are fractional
polynomials in m. By looking at the “Newton polygon” of these Puiseux series, we can pick
out the dominant term at different regimes of n and m, leading to a proof of (7) (or the
reverse direction).

The following Lemma summarizes some elementary results on the relation between the
Airy function Ai and its derivative Ai′. We will use these results in Lemmas 4.2 and 4.4 to
bound the subsequently defined auxiliary sequence X̃n,m.

Lemma 4.1. The functions

Φ(x) = x
Ai′(a1 + x)
Ai(a1 + x) and Ψ(x) = Ai′(a1 + x)

Ai(a1 + x)

are infinitely differentiable and monotonically decreasing on x > 0 with Φ(0) = 1.

Proof. First, by l’Hospital’s rule it is easy to see that Φ(0) = 1. Second, as a1 is the largest
root of Ai(x), the functions Φ(x) and Ψ(x) are infinitely differentiable as compositions of
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Figure 5: (Left) The Airy function Ai(a1 +x), (Centre) its derivative Ai′(a1 +x), and (Right)
the quotient Φ(x) = xAi′(a1+x)

Ai(a1+x) on the positive real line.

differentiable functions. It remains to prove the monotonicity; see Figure 5. A local expansion
at x = 0 shows that the functions are initially decreasing. The same holds for large x due to
the approximation Ai(x) ∼ exp(− 2

3x
3/2)

2
√
πx1/4 , see [1, Equation 10.5.49], giving

Ψ(x) ∼ −
√
a1 + x, (9)

for x→∞. We will show that Φ′(x) and Ψ′(x) are always negative for x > 0. Note that Φ(x)
and Ψ(x) will change sign only once at x0 ≈ 0.91.

We present the following argument for the monotonicity of Φ(x). Assume that there exists
an x+ such that Φ′(x+) > 0. Then, as Φ(x) is initially and finally decreasing, there must
exist y1 < x+ < y2 such that Φ′(y1) = Φ′(y2) = 0 and Φ′′(y1) ≥ 0 ≥ Φ′′(y2).

The second derivatives are equal to

Φ′′(x) = 2a1 + 3x− 2
x

Φ(x)Φ′(x).

These lead to 2a1 + 3y1 ≥ 0 ≥ 2a1 + 3y2, thus also the contradiction y1 ≥ y2. The argument
for the monotonicity of Ψ(x) is analogous, except that the second derivative is now

Ψ′′(x) = 1− 2Ψ(x)Ψ′(x),

leading to the contradiction Ψ′′(y1) = Ψ′′(y2) = 1.

Later we will use the value x0 which is the unique root of Φ(x) and Ψ(x) to determine
the dominant term in the expansion of our series in Ai(x) and Ai′(x).

4.1 Lower bound

Lemma 4.2. For all n,m ≥ 0 let

X̃n,m :=
(

1− 2m2

3n + m

2n

)
Ai
(
a1 + 21/3(m+ 1)

n1/3

)
and

s̃n := 2 + 22/3a1
n2/3 + 8

3n −
1

n7/6 .
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Then, for any ε > 0, there exists an ñ0 such that

X̃n,ms̃n ≤
n−m+ 2
n+m

X̃n−1,m−1 + X̃n−1,m+1, (10)

for all n ≥ ñ0 and for all 0 ≤ m < n2/3−ε.

Proof. First, define the following sequence

Pn,m := −Zn,msn + n−m+ 2
n+m

Zn−1,m−1 + Zn−1,m+1,

where

sn := σ0 + σ1
n1/3 + σ2

n2/3 + σ3
n

+ σ4
n7/6 ,

Zn,m :=
(

1 + τ2m
2 + τ1m

n

)
Ai
(
a1 + 21/3(m+ 1)

n1/3

)
,

with σi, τj ∈ R. Then the inequality (10) is equivalent to Pn,m ≥ 0 with σ0 = 2, σ1 = 0,
σ2 = 22/3a1, σ3 = 8/3, and σ4 = −1 as well as τ0 = 0, τ1 = 1/2, and τ2 = −2/3. Next, we
expand Ai(z) in a neighborhood of

α = a1 + 21/3m

n1/3 , (11)

and we get the following expansion

Pn,m = pn,mAi(α) + p′n,mAi′(α),

where pn,m and p′n,m are functions of m and n−1 and may be expanded as power series in
n−1/6 with coefficients polynomial in m. As long as n > 1 and n > m, this series converges
absolutely because the Airy function is entire and so all functions expanded are analytic in
the region defined by |n| > 1 and |n| > |m|.

As a first step we compute the possible range of the powers in m and n. We will start
by showing that [minj ]Pn,m = 0 for i + j > 1, i, j ∈ Q. The expansions of the three
involved Airy functions only give terms of the form O(mjn−j(n−1/3)k)Ai(k)(α), with j, k ≥
0. Due to the differential equation Ai′′(α) = αAi(α), the term Ai(k)(α) takes the form
O(αbk/2c)Ai(α) +O(αb(k−1)/2c)Ai′(α). Hence, all terms in the expansion of the Airy function
are of the form O(mjn−j)Ai(α) or O(mjn−j−1/3)Ai′(α) for some j ≥ 0. Due to the factor
m2n−1 in the definition of X̃n,m, this implies that [minj ]Pn,m = 0 for i+ j > 1. Additionally,
it also implies that the coefficients of Ai′(α) are equal to 0 for i+ j > 2/3.

Next, we strengthen this result by choosing suitable values σi for 0 ≤ i ≤ 4 in the
definition of sn in order to eliminate more initial coefficients. Then, we will show that the
remaining terms satisfy Pn,m ≥ 0. We performed this tedious task in Maple and we refer to
the accompanying worksheet [27] for more details. The results are summarized in Figure 6
where the initial non-zero coefficients are shown. A diamond at (i, j) is drawn if and only if
the coefficient [minj ]Pn,m is non-zero. It is an empty diamond if the given choice of σi and
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τj makes it disappear, whereas it is a solid diamond if it remains non-zero. The convex hull
is formed by the following three lines

L1 : j = −7
6 −

7i
18 ,

L2 : j = −1
3 −

2i
3 ,

L3 : j = 1− i.

Figure 6: (Left) Non-zero coefficients of Pn,m = ∑
ai,jm

inj shown by diamonds for sn :=
σ0 + σ1

n1/3 + σ2
n2/3 + σ3

n + σ4
n7/6 and Zn,m :=

(
1 + τ2m2+τ1m

n

)
Ai
(
a1 + 21/3(m+1)

n1/3

)
. There are no

terms in the blue dashed area. The blue terms vanish for σ0 = 2, the red terms vanish for
σ1 = 0, the green terms vanish for σ2 = 22/3a1, and the yellow terms vanish for σ3 = 8/3
and τ2 = −2/3. The black and red lines represent the two parts L1 and L2, respectively, of
the convex hull. (Right) The solid gray diamonds are decomposed into the coefficients pn,m
of Ai(α) (red boxes) and p′n,m of Ai′(α) (blue diamonds).

Next, we distinguish between the contributions arising from pn,m and p′n,m. The expan-
sions for n tending to infinity start as follows, where the elements on the convex hull are
written in color:

Pn,m = Ai(α)
(
− σ4
n7/6 −

25/3a1m

3n5/3 −
41m2

9n2 −
28/3a1m

3

3n8/3 −34m4

9n3 −
62m5

135n4 + . . .

)
+

Ai′(α)
(

21/3(2τ1 − 1)
n4/3 + 21/3

n3/2 −
8a1m

9n2 + 21/3(24τ1 − 31)m2

9n7/3 −213/3m3

9n7/3

−525/3m4

9n10/3 − 89 24/3m5

135n13/3 + . . .

)
.

We now choose σ4 = −1 which leads to a positive term Ai(α)n−7/6 and set τ1 = 1/2 to
eliminate the term of order n−4/3 from the convex hull (it is replaced by 21/3

n3/2 ). Then, the
non-zero coefficients are shown in Figure 7. Next, for fixed (large) n we prove that for all
m the dominant contributions in Pn,m are positive. Therefore, we consider three different
regimes. Let x0 be the unique positive root of Ψ(x) from Lemma 4.1.
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Figure 7: Non-zero coefficients pn,m = ∑
ãi,jm

inj (red) and p′n,m = ∑
ã′i,jm

inj (blue) of the
expansion (11) for Pn,m. The coefficient of n−4/3 in the right picture depicted as a solid blue
circle disappears for τ1 = 1/2.

1. Consider the range of small values of m given by m ≤ x0(n/2)1/3. In this range Ai(α)
and Ai′(α) are both positive. Moreover, the (red) coefficients of Ai(α) are dominated
by n−7/6 for large n, while the (blue) coefficients of Ai′(α) apart from the term ν =
−213/3m3

9n7/3 Ai′(α) are dominated by 21/3

n3/2 . By Lemma 4.1 we have

21/3m

n1/3 Ai′(α)−Ai(α) < 0.

Hence, ν > −16m2

9n2 Ai(α), and it can therefore be treated as if it belonged to the coeffi-
cients of Ai(α). Thus, as the dominating terms are positive, there exists some N0 such
that Pn,m > 0 whenever n > N0 and m ≤ x0(n/2)1/3.

2. Next, consider the central range x0(n/2)1/3 < m ≤ n7/18. Here, we have Ai′(α) < 0.
On the one hand, as seen in the left part of Figure 7, the (red) coefficients of Ai(α) are
still dominated by n−7/6 (which holds up to m = Θ(n5/12)). On the other hand, in this
range the term ν = −213/3m3

9n7/3 Ai′(α) dominates all other (blue) coefficients of Ai′(α) (due
to τ1 = 1/2). Since ν > 0 in this range, this implies that there exists some (sufficiently
large) N1 such that Pn,m > 0 whenever n > N1 and x0(n/2)1/3 < m ≤ n7/18.

3. Finally, consider the range of large values n7/18 < m < n2/3−ε. By the reasoning on Ψ(x)
in Lemma 4.1 we see that −Ai′(α) > Ai(α) > 0. Therefore, the (blue) term ν dominates
all of the (red) terms of Ai(α) as well as all other (blue) terms of Ai′(α). Hence there
exists some N2 such that Pn,m > 0 whenever n > N2 and n7/18 < m < n2/3−ε.

Choosing ñ0 = max{N0, N1, N2} completes the proof.

Remark 4.3. The previous result could be strengthened to hold up to m ≤ n1−ε by (9) as will
be shown in the proof of Lemma 4.4. However, we will not need this result in the sequel.
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Now, to complete the lower bound we define the sequence Xn,m := max{X̃n,m, 0}, i.e.,

Xn,m :=

X̃n,m, if m <
√

96n+9+3
8 ,

0, if m ≥
√

96n+9+3
8 .

Then, in the first case we get the following inequality for all sufficiently large n

Xn,ms̃n ≤
n−m+ 2
n+m

X̃n−1,m−1 + X̃n−1,m+1 ≤
n−m+ 2
n+m

Xn−1,m−1 +Xn−1,m+1,

using Lemma 4.2 with ε = 1
12 . Note that we could choose any ε ∈ (0, 1

6), as we just need
n2/3−ε >

√
96n+9+3

8 for large n. In the second case we have

Xn,ms̃n = 0 ≤ n−m+ 2
n+m

Xn−1,m−1 +Xn−1,m+1.

Finally, we write h̃n = s̃nh̃n−1 and we deduce by induction that dn,m ≥ bh̃nXn,m for some
constant b > 0, all sufficiently large n and all m ∈ [0, n]. In particular, it follows from (8)
that the number rn = n!d2n,0 of relaxed trees of size n is bounded below by

rn ≥ γ n!4ne3a1n1/3
n, (12)

for some constant γ > 0. In the next section we will show an upper bound with the same
asymptotic form, but with a different constant γ.

4.2 Upper bound

Next, we consider a similar auxiliary sequence X̂n,m which will give rise to an upper bound
on the number of relaxed binary trees.

Lemma 4.4. Choose η > 2/9 fixed and for all n,m ≥ 0 let

X̂n,m :=
(

1− 2m2

3n + m

2n + η
m4

n2

)
Ai
(
a1 + 21/3(m+ 1)

n1/3

)
and

ŝn := 2 + 22/3a1
n2/3 + 8

3n + 1
n7/6 .

Then, for any ε > 0, there exists a constant n̂0 such that

X̂n,mŝn ≥
n−m+ 2
n+m

X̂n−1,m−1 + X̂n−1,m+1, (13)

for all n ≥ n̂0 and all 0 ≤ m < n1−ε.

Proof. The proof follows the same lines as that of Lemma 4.2. Therefore we only focus on
the needed modifications. As a first step we define the following sequence

Qn,m := X̂n,mŝn −
n−m+ 2
n+m

X̂n−1,m−1 − X̂n−1,m+1.
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Then the inequality (13) is equivalent to Qn,m ≥ 0. Again, we expand Ai(z) in a neighborhood
of α = a1 + 21/3m

n1/3 , and we get (see [27] for more details)

Qn,m = qn,mAi(α) + q′n,mAi′(α),

where qn,m and q′n,m are functions of m and n−1 and may again be expanded as power series
in n−1/6 with coefficients polynomial in m. Now, it is easy to see that [minj ]Qn,m = 0 for
i+ j > 2, where the shift by 1 compared to the lower bound is due to the factor ηm4n−2. The
initial non-zero coefficients are shown in Figure 8. The four lines (black, red, green, blue) of
the convex hull are

L̂1 : j = −7
6 −

7i
18 ,

L̂2 : j = −5
6 −

i

2 ,

L̂3 : j = −2i
3 ,

L̂4 : j = 2− i.

Figure 8: (Left) Non-zero coefficients of Qn,m = ∑
bi,jm

inj shown in solid gray diamonds for
sn := σ0 + σ1

n1/3 + σ2
n2/3 + σ3

n + σ4
n7/6 and Xn,m :=

(
1 + τ2m2+τ1m

n + ηm
4

n2

)
Ai
(
a1 + 21/3(m+1)

n1/3

)
.

There are no terms in the blue dashed area. The blue terms vanish for σ0 = 2, the red terms
vanish for σ1 = 0, the green terms vanish for σ2 = 22/3a1, and the yellow term vanishes for
σ3 = 8/3 and τ2 = −2/3. The black, red, and green lines represent the three parts L̂1, L̂2
and L̂3, respectively, of the convex hull. (Right) The solid gray diamonds are decomposed
into the coefficients qn,m of Ai(α) (red boxes) and q′n,m of Ai′(α) (blue diamonds).
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Figure 9: Non-zero coefficients qk,l = ∑
b̃i,jm

inj (red) and q′k,` = ∑
b̃′i,jm

inj (blue) of the
expansion for Qn,m. The coefficient of n−4/3 in the right picture depicted as a solid blue circle
disappears for τ1 = 1/2.

Next, we distinguish between the contributions arising from qn,m and q′n,m. The non-zero
coefficients are shown in Figure 9. The expansions for n tending to infinity start as follows,
where the elements on the convex hull are written in color.

Qn,m = Ai(α)
(
σ4
n7/6 + 25/3a1m

3n5/3 +m2(41− 108η)
9n2 + 28/3a1m

3(1− 6η)
3n8/3 +2m4(17− 132η)

9n3

− 25/3a1m
5η

n11/3 −17m6η

3n4 −
31m7η

45n5 + . . .

)
+

Ai′(α)
(

21/3

n3/2 + 8a1m

9n2 + 21/3m2(19− 108η)
9n7/3 +210/3m3(2− 9η)

9n7/3 + 5m421/3(2− 27η)
9n10/3

−210/3m5η

3n10/3 − 5m621/3η

3n13/3 − 89m721/3η

45n16/3 + . . .

)
.

Let x0 be again the unique positive root of Ψ(x) from Lemma 4.1. In order to prove that
Qn,m ≥ 0 for m ≤ n1−ε, we consider the following four regions:

1. m ≤ x0(n/2)1/3,

2. x0(n/2)1/3 < m ≤ n7/18,

3. n7/18 < m ≤ n1/2,

4. n1/2 < m ≤ n1−ε.

Recall that in the proof that Pn,m ≥ 0 in Lemma 4.2, we considered almost the same first
3 regions, except that in that case the upper bound on the third region was slightly larger
(n2/3−ε). So the main difference here is the addition of the fourth region, which is required
for this lemma to apply up to m = n1−ε.

The treatments of the first 3 regions is analogous to those in Lemma 4.2 except for 2 minor
changes. First, in the second and third regime we include the additional variable η to make
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the dominant term 210/3m3(2−9η)
9n7/3 Ai′(α) positive. Second, in the third regime an additional

dominant term −210/3m5η
3n10/3 Ai′(α) appears for m = Θ(n1/2) which is positive anyway.

Finally, in the fourth regime, the afformentioned term −210/3m5η
3n10/3 Ai′(α) is positive and

dominates all other blue terms. However, the dominant red term is −17m6η
3n4 Ai(z), which is

negative, so it suffices to show that this is dominated by the blue term. Indeed, due to (9)
we know that as m/n1/3 tends to infinity, Ai′(α) ∼ −21/6m1/2

n1/6 Ai(α). Hence, the blue term
−210/3m5η

3n10/3 Ai′(α) dominates in this entire region n1/2 < m ≤ n1−ε.

To finish the proof of the upper bound, we will choose some constant N > 0 and define
a sequence d̃n,m by the same rules as dn,m except that d̃n,m = 0 whenever m > n3/4 and
n > N . Then, writing ĥn = ŝnĥn−1, we can use the lemma above to show by induction that
the numbers d̃n,m satisfy the inequality.

b0d̃n,m ≤ ĥnXn,m,

for some constant b0 and all sufficiently large n; compare (8). In particular, the numbers d̃2n,0
are bounded above by

d̃2n,0 ≤ γ4ne3a1n1/3
n,

for some constant γ > 0. The rest of this section is dedicated to proving that there is some
choice of N such that d̃2n,0 ≥ d2n,0/2 for all n.

In order to finish our proof of the upper bound for the numbers d2n,0, we will use the
interpretation of these numbers as weighted Dyck paths, described in Section 3.2. It will be
useful to have an upper bound on the number of these paths which pass through a certain
point (2x, 2y) as a proportion of the total weighted number of paths. Let p`,m,2n denote the
weighted number of paths from (`,m) to (2n, 0); see Figure 10. Then the proportion sx,y,n of
the d2n,0 weighted Dyck paths that pass through (2x, 2y) is

sx,y,n = d2x,2yp2x,2y,2n
d2n,0

.

The following lemma yields an upper bound on the number p2x,2y,2n.

2x

2y

p2x,2y,2nd2x,2y
d2n,0

Figure 10: Proportion of weighted Dyck paths of length 2n passing through the point (2x, 2y)
showing one example path contributing to sx,y,n.
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Lemma 4.5. The numbers p`,m,2n satisfy the inequality

p`,j,2n
j + 1 ≥

p`,k,2n
k + 1 ,

for integers 0 ≤ j < k ≤ ` ≤ 2n satisfying 2 | k − j.

Proof. First we note that the numbers p`,m,2n are determined by the recurrence relation

p`,m,2n = p`+1,m−1,2n + `−m+ 2
`+m+ 2p`+1,m+1,2n

along with the initial conditions p2n,m,2n = δm,0 and pl,−1,2n = 0. We will now prove the
statement of the lemma by reverse induction on `. Our base case is ` = 2n, for which the
inequality clearly holds. For the inductive step, we assume that the inequality holds for `+ 1
and all m, and we will prove that it holds for `. It suffices to prove that for m ≥ 1 the
following inequality holds

p`,m−1,2n
m

− p`,m+1,2n
m+ 2 ≥ 0.

Let L denote the left-hand side of this inequality. Using the recurrence relation, we can
rewrite L as

L = p`+1,m−2,2n
m

+ (`−m+ 3)p`+1,m,2n
(`+m+ 1)m − p`+1,m,2n

m+ 2 − (`−m+ 1)p`+1,m+2,2n
(`+m+ 3)(m+ 2) .

Now, by the inductive assumption we get the inequalities p`+1,m+2,2n ≤ m+3
m+1p`+1,m,2n and

p`+1,m−2,2n ≥ m−1
m+1p`+1,m,2n, where the latter even holds for m = 1 as then both sides are 0.

It follows that

L ≥ (m− 1)pl+1,m,2n
(m+ 1)m + (`−m+ 3)p`+1,m,2n

(`+m+ 1)m − p`+1,m,2n
m+ 2 − (m+ 3)(`−m+ 1)p`+1,m,2n

(m+ 1)(`+m+ 3)(m+ 2)

= 4(3 +m+ `+m`)p`+1,m,2n
m(m+ 2)(1 +m+ `)(3 +m+ `) ≥ 0

as desired. This completes the induction, which proves the inequality for ` ∈ [0, 2n]. We refer
to the accompanying worksheet [27] for more details.

In particular, it follows from this lemma that

p2x,2y,2n ≤ (2y + 1)p2x,0,2n.

Moreover, note that the proportion sx,0,n of weighted paths passing through (2x, 0) satisfies
sx,0,n ≤ 1. Hence, the proportion sx,y,n satisfies

sx,y,n = p2x,2y,2nd2x,2y
d2n,0

≤ (2y + 1)p2x,0,2nd2x,2y
d2n,0sx,0,n

= (2y + 1)d2x,2y
d2x,0

. (14)

From the lower bound (12) we have

d2x,0 ≥ γ4xe3a1x1/3
x,

24



so we now desire an upper bound for d2x,2y. It will suffice to use the upper bound

d2x,2y ≤
(

2x
x+ y

)
,

which holds because the right-hand side is the number of (unweighted) paths from (0, 0) to
(2x, 2y), and all weights on our weighted paths are smaller than 1. We are now ready to prove
the following lemma

Lemma 4.6. For all ε > 0 there exists a constant Nε > 0 with the following property: Recall
that dn,m is the weighted number of paths ending at (n,m). Let d̃n,m be the number of these
paths such that no intermediate point (2x, 2y) on the path satisfies x > Nε and y > x3/4.
Then d2n,0 ≤ (1 + ε)d̃2n,0 for all n > 0.

Proof. We can rewrite the desired inequality as

1− d̃2n,0
d2n,0

≤ ε

1 + ε
.

Note that the left-hand side is equal to the proportion of weighted paths with at least one
intermediate point (2x, 2y) satisfying x > Nε and y > x3/4. The proportion sx,y,n of weighted
paths which go through any such point (2x, 2y) is bounded above by

sx,y,n
(14)
≤ (2y + 1)d2x,2y

d2x,0
(12)
≤ 2y + 1

γ4xe3a1x1/3
x

(
2x
x+ y

)

≤ γ−14−xe−3a1x1/3
x−1 (2y + 1)Γ(2x+ 1)

Γ(x+ x3/4 + 1)Γ(x− x3/4 + 1)
.

The right-hand side of this inequality behaves like

Θ
(
e−x

1/2+O(x1/3)
)

(15)

for large x. Hence, there is some constant c such that

sx,y,n ≤ c · 2−x
1/2

for all x, y, n satisfying y > x3/4. Now, the proportion 1 − d̃2n,0/d2n,0 of weighted paths
passing through at least one point (2x, 2y) is no greater than the sum of the proportions of
paths going through each such point. Hence

1− d̃2n,0
d2n,0

≤
∑

x≥Nε+1

∑
x≥y>x3/4

sx,y,n ≤
∑

x≥Nε+1

∑
x≥y>x3/4

c · 2−x1/2 ≤
∑

x≥Nε+1

cx · 2−x1/2
.

The sum on the right converges to a value less than ε/(1 + ε) for sufficiently large Nε. This
completes the proof of the lemma.

Remark 4.7. Choosing y > xβ instead of y > x3/4 one can show that (15) behaves like
O
(
e−x

2β−1−3a1x1/3
)
. Hence, any β > 2/3 gives the same result, yet β = 2/3 is not sufficient.
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Finally, we define d̃n,m as in Lemma 4.6 with some fixed ε > 0. Then it follows from
Lemma 4.4 that there is some constant γ′ > 0 such that

d̃2n,0 ≤ γ′4ne3a1n1/3
n,

for all n. Hence
rn = n!d2n,0 ≤ 2γ′n!4ne3a1n1/3

n,

completing the proof of the upper bound. We have now proven upper and lower bounds for
the number rn of relaxed trees, which differ only in the constant term. Therefore,

rn = Θ
(
n!4ne3a1n1/3

n
)
.

5 Proof of stretched exponential for compacted trees

We will now deal with compacted binary trees, whose recurrence as in Proposition 2.11 has
negative terms. We start by transforming the terms cn,m counting compacted trees to a
sequence en,m using the equation

en,m = 1
((n+m)/2)!c(n+m)/2,(n−m)/2,

for n−m even. Then, the terms en,m are determined by the recurrence
en,m = n−m+2

n+m en−1,m−1 + en−1,m+1 − 2(n−m−2)
(n+m)(n+m−2)en−3,m−1, for n ≥ m > 0,

en,m = en−1,m+1, for n > 0,m = 0,
en,m = 1, for n = m = 0,
en,m = 0, for m > n,

and the number of compacted trees of size n is equal to n!e2n,0.
The method that we applied to (2) in the relaxed case does not directly apply to this

recurrence, as there is a negative term on the right-hand side. We solve this problem using
the following lemma:

Lemma 5.1. For n ≥ 3 and n > m ≥ 0, the term en,m for compacted binary trees is bounded
below by

Le = n−m+ 2
n+m

en−1,m−1 + n−m− 2
n−m

en−1,m+1 + n−m− 4
n−m− 2

(
2

n−m
en−2,m+2 + 2

n+m
en−3,m+1

)
and bounded above by

Ue = n−m+ 2
n+m

en−1,m−1 + n−m− 2
n−m

en−1,m+1 + 2
n−m

en−2,m+2

+ 2
n+m

en−3,m+1 + 4
(n+m)(n+m− 2)en−3,m−1.

That is, Le ≤ en,m ≤ Ue. Furthermore, Ue ≤ Ud ≤ dn,m where Ud is defined by the same
expression as Ue but with each e replaced by d.
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Proof. We start with the upper bound of en,m. In order to prove that, we will compute
successively stronger upper bounds. We start with the trivial upper bound

en,m ≤
n−m+ 2
n+m

en−1,m−1 + en−1,m+1. (16)

Applying this bound to en−1,m+1 then en−2,m we find that

en−1,m+1 ≤
n−m
n+m

(
n−m

n+m− 2en−3,m−1 + en−3,m+1

)
+ en−2,m+2. (17)

Adding 2/(n−m) times this inequality to the defining equation of en,m yields

en,m ≤
n−m+ 2
n+m

en−1,m−1 + n−m− 2
n−m

en−1,m+1

+ 2
n−m

en−2,m+2 + 2
n+m

en−3,m+1 + 4
(n+m)(n+m− 2)en−3,m−1.

Now we will prove that Ud ≤ dn,m. Note that the first two inequalities (16) and (17) in
this proof become equalities when each e is replaced by d. Adding 2/(n−m) times the latter
(now) equality (17) to the defining equation (2) of dn,m yields

Ud = dn,m −
2(n−m− 2)

(n+m)(n+m− 2)dn−3,m−1 ≤ dn,m.

We then see that en,m ≤ Ue ≤ Ud ≤ dn,m through induction on n.
For the lower bound on en,m, we start with the inequality

en,m ≥
n−m+ 2
n+m

en−1,m−1. (18)

This is clear form = 0, and form ≥ n it is an equality. We can then deduce this inequality (18)
for all n,m using induction: Assume that the statement is true for all n < N and allm ∈ [0, n].
Then, for m ∈ [1, n− 2] and n = N , we have

1
n−m

en−1,m+1 ≥
1

n+m
en−2,m >

n−m− 2
(n+m)(n+m− 2)en−3,m−1.

Hence,

en,m = n−m+ 2
n+m

en−1,m−1 + en−1,m+1 −
2(n−m− 2)

(n+m)(n+m− 2)en−3,m−1

≥ n−m+ 2
n+m

en−1,m−1 +
(

1− 2
n−m

)
en−1,m+1.

≥ n−m+ 2
n+m

en−1,m−1.

This completes the induction. Moreover, it shows that

en,m ≥
n−m+ 2
n+m

en−1,m−1 +
(

1− 2
n−m

)
en−1,m+1, (19)

for m ∈ [1, n− 2]. It is easy to see that this stronger inequality (19) also holds for m = 0 and
m ≥ n. Applying (19) to en−1,m+1 then en−2,m yields
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1
n−m

en−1,m+1 ≥
1

n+m
en−2,m + n−m− 4

(n−m)(n−m− 2)en−2,m+2

≥ 1
n+m

(
n−m

n+m− 2en−3,m−1 + n−m− 4
n−m− 2en−3,m+1

)
+ n−m− 4

(n−m)(n−m− 2)en−2,m+2.

Finally, combining this with the inequality

en,m ≥
n−m+ 2
n+m

en−1,m−1 + en−1,m+1 −
2(n−m)

(n+m)(n+m− 2)en−3,m−1

yields the desired result.

The advantage of the bounds in the lemma above is that all terms are positive, so we can
derive the asymptotics using the same techniques as for relaxed binary trees. Note that the
behavior stays the same in the process of deriving the Newton polygons and leads to the same
pictures as shown in Figures 6 and 7.

5.1 Lower bound

The following result is analogous to Lemma 4.2.

Lemma 5.2. For all n,m ≥ 0 let

Ỹn,m :=
(

1− 2m2

3n + m

4n

)
Ai
(
a1 + 21/3(m+ 1)

n1/3

)
and

s̃n := 2 + 22/3a1
n2/3 + 13

6n −
1

n7/6 .

Then, for any ε > 0, there exists a constant ñ0 such that

Ỹn,ms̃ns̃n−1s̃n−2 ≤
n−m+ 2
n+m

Ỹn−1,m−1s̃n−1s̃n−2 + n−m− 2
n−m

Ỹn−1,m+1s̃n−1s̃n−2

+ n−m− 4
n−m− 2

( 2
n−m

Ỹn−2,m+2s̃n−2 + 2
n+m

Ỹn−3,m+1

)
,

for all n ≥ ñ0 and all 0 ≤ m < n2/3−ε.

Proof. The proof is analogous to the case of relaxed trees. In this case, the expansions for
n→∞ start as follows, where the elements on the convex hull are written in color:

Pn,m = Ai(α)
(
− 4σ4
n7/6 −

211/3a1m

3n5/3 −164m2

9n2 − 214/3a1m
3

3n8/3 −136m4

9n3 − 248m5

135n4 + . . .

)
+

Ai′(α)
(

27/3

n3/2 −
32a1m

9n2 − 7213/3m2

9n7/3 −
219/3m3

9n7/3 − 5m4210/3

9n10/3 − 89m5210/3

135n13/3 + . . .

)
.

In this expansion we choose σ4 = −1, which leads to a positive term Ai(α)n−7/6, and we also
choose τ1 = 1/4 (instead of 1/2 in the relaxed trees case), which kills the leading coefficient
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of Ai′(α)24/3(4τ1 − 1)n−4/3 for small m = o(n1/3). Then, the behavior and thus the pictures
are identical to the case of relaxed trees shown in Figures 6 and 7. Hence, the proof follows
exactly the same lines as that Lemma 4.2.

As in the relaxed case, we define a sequence Yn,m := max{Ỹn,m, 0}, i.e.,

Yn,m :=

Ỹn,m, if m <
√

384n+9+3
16 ,

0, if m ≥
√

384n+9+3
16 .

Then defining h̃n = s̃nh̃n−1, we get by induction

en,m ≥ κ0h̃nYn,m,

for some κ0 > 0. In particular, it follows that the number cn = n!e2n,0 of compacted trees of
size n is bounded below by

cn ≥ γ n!4ne3a1n1/3
n3/4, (20)

for some constant γ > 0. In the next section we will show an upper bound with the same
asymptotic form, but with a different constant γ.

5.2 Upper bound

The following result is analogous to Lemma 4.4.

Lemma 5.3. Choose η > 2/9 fixed and for all n,m ≥ 0 let

Ŷn,m :=
(

1− 2m2

3n + m

4n + η
m4

n2

)
Ai
(
a1 + 21/3(m+ 1)

n1/3

)
and

ŝn := 2 + 22/3a1
n2/3 + 13

6n + 1
n7/6 .

Then, for any ε > 0, there exists a constant n̂0 such that

Ŷn,mŝnŝn−1ŝn−2 ≥
n−m+ 2
n+m

Ŷn−1,m−1ŝn−1ŝn−2 + n−m− 2
n−m

Ŷn−1,m+1ŝn−1ŝn−2

+ 2
n−m

Ŷn−2,m+2ŝn−2

+ 2
n+m

Ŷn−3,m+1 + 4
(n+m)(n+m− 2) Ŷn−3,m−1,

for all n ≥ n̂0 and all 0 ≤ m < n1−ε.

Proof. The proof is again analogous to the case of relaxed trees. In this case, the expansions
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for n→∞ start as follows, where the elements on the convex hull are written in color:

Qn,m = Ai(α)
(

4σ4
n7/6 + 211/3a1m

3n5/3 +4m2(41− 108η)
9n2 + 214/3a1m

3(1− 6η)
3n8/3 +8m4(17− 132η)

9n3

− 211/3a1m
5η

n11/3 −68m6η

3n4 −
124m7η

45n5 + . . .

)
+

Ai′(α)
(

27/3

n3/2 + 32a1m

9n2 + 213/3m2(7− 27η)
9n7/3 +216/3m3(2− 9η)

9n7/3 + 24/3m4(20− 279η)
9n10/3

−216/3m5η

3n10/3 − 5m627/3η

3n13/3 − 89m727/3η

45n16/3 + . . .

)
.

In this expansion we choose σ4 = 1, which leads to a positive term Ai(α)n−7/6, and again
τ1 = 1/4. Then, the behavior and therefore the pictures are identical to the case of relaxed
trees shown in the Figures 8 and 9; see the proof of Lemma 4.4 for more details.

As in the relaxed tree case, the inequality of Lemma 5.3 is only proven for m < n1−ε, so
we need to do more work to handle the m ≥ n1−ε case and deduce the desired upper bound.
In order to use the lemma, we define a new sequence ên,m by the recurrence relation

ên,m = n−m+2
n+m ên−1,m−1 + n−m−2

n−m ên−1,m+1
+ 2
n−m ên−2,m+2 + 2

n+m ên−3,m+1
+ 4

(n+m)(n+m−2) ên−3,m−1, for n ≥ 3, n > m ≥ 0,
ên,m = en,m, otherwise.

Then it follows from Lemma 5.1 that en,m ≤ ên,m ≤ dn,m for all n,m, as ên,m share the same
recurrence as Ud in Lemma 5.1. Now consider some large N > 0, to be determined later,
and define a second sequence ẽn,m by the same rules as ên,m except that ẽn,m = 0 whenever
m > n3/4 and n > N . Then, using Lemma 5.3 and defining ĥn = ŝnĥn−1, we can show by
induction that there is some constant κ1 such that

ẽn,m ≤ κ1ĥnŶn,m.

It follows that there is some constant γ′ > 0 such that

ẽ2n,0 ≤ γ′4ne3a1n1/3
n3/4.

Hence, it suffices to prove that there is some choice of N and some constant ε > 0 such that
ê2n,0 ≤ (1 + ε)ẽ2n,0 for all n. Therefore, we first define a class C of weighted paths with the
step set {(1, 1), (1,−1), (2,−2), (3,−1), (3, 1)} and weights corresponding to the recurrence
defining ên,m. Then ên,m is the weighted number of paths p ∈ C from (0, 0) to (n,m). We
start with the following lemma, which is analogous to Lemma 4.5.

Lemma 5.4. Let q`,m,2n denote the weighted number of paths p ∈ C from (`,m) to (2n, 0).
Then the numbers q`,m,2n satisfy the inequality

q`,j,2n
j + 1 ≥

q`,k,2n
k + 1 ,

for integers 0 ≤ j < k ≤ ` ≤ 2n satisfying 2|k − j and n ≥ 10.
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Proof. The proof is along the same lines as the proof of Lemma 4.5. As in that case, it suffices
to prove that

q`,m−1,2n
m

− q`,m+1,2n
m+ 2 ≥ 0, (21)

for all m ≥ 1. We proceed by reverse induction on `, with base case ` = 2n. For the inductive
step, note that q satisfies the following recurrence for ` < 2n:

q`,m,2n = 0, for m < 0,
q`,m,2n = `−m

`−m+2q`+1,m−1,2n + `−m+2
`+m+2q`+1,m+1,2n

+ 2
`−m+4q`+2,m−2,2n + 2

`+m+2q`+3,m−1,2n
+ 4

(`+m+4)(`+m+2)q`+3,m+1,2n, for m ≥ 0.

Now in order to prove (21), we expand the left-hand side L(`,m, n) using the recurrence
relation above. For m ≥ 2, we use the inductive assumption, which says that (21) holds for
all larger values of ` and all m, to show that

L(`,m, n) ≥ R1(`,m)q`+1,m,2n +R2(`,m)q`+2,m−1,2n +R3(`,m)q`+3,m−2,2n,

for some explicit rational functions R1, R2 and R3. Due to the nature of the functions R1,
R2 and R3, we can prove that the right-hand side above is positive using the inequalities

q`+1,m,2n ≥
`−m+ 1
`−m+ 3q`+2,m−1,2n and q`+2,m−1,2n ≥

`−m+ 3
`−m+ 5q`+3,m−2,2n,

which follow directly from the recurrence relation. The case m = 1 is similar, though we
instead find

L(`, 1, n) ≥ R̃1(`)q`+1,1,2n + R̃2(`)q`+2,0,2n + R̃3(`)q`+3,1,2n,

and we prove that the right hand side is positive using the inequalities

q`+1,1,2n ≥
`

`+ 2q`+2,0,2n and q`+2,0,2n ≥ q`+3,1,2n,

which follow directly from the recurrence relation. We refer the accompanying worksheet [27]
for more details.

Now, among the ê2n,0 weighted paths starting at (0, 0) and ending at (2n, 0), the propor-
tion of those passing through some point (2x, 2y) is

ê2x,2yq2x,2y,2n
ê2n,0

≤ ê2x,2yq2x,2y,2n
ê2x,0q2x,0,2n

≤ (2y + 1) ê2x,2y
ê2x,0

≤ (2y + 1)d2x,2y
e2x,0

≤ 2y + 1
γ4xe3a1x1/3

x3/4

(
2x
x+ y

)
.

We used the fact that ê2x,2y ≤ d2x,2y which we proved inductively using Lemma 5.1, and
we also used the lower bound (20) for e2x,0. We can finish in exactly the same way as in
Lemma 4.6 for relaxed trees, thereby showing that there is some choice for N such that
ê2n,0 ≤ 2ẽ2n,0 for all n.

Recall that e2n,0 ≤ ê2n,0 and there is some constant κ1 such that ẽn,m ≤ κ1ĥnŶn,m. This
implies that

cn = n!c2n,0 ≤ 2κ1n!ĥ2nŶ2n,0.
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The right-hand side behaves asymptotically like Θ(n!4ne3a1n1/3
n3/4), hence there is some

constant γ′′ such that
cn ≤ γ′′n!4ne3a1n1/3

n3/4,

for all n. This completes the upper bound. Indeed, since we have now proven both the upper
and lower bounds, which differ only in the constant term, they imply that

cn = Θ
(
n!4ne3a1n1/3

n3/4
)
.

6 Minimal finite automata

In this section we use the results on compacted and relaxed trees to give bounds on the
enumeration of a certain class of deterministic finite automata considered in [11, 12, 23]. We
start with some basic definitions of automata.

A deterministic finite automaton (DFA) A is a 5-tuple (Σ, Q, δ, q0, F ), where Σ is a finite
set of letters called the alphabet, Q is a finite set of states, δ : Q × Σ → Q is the transition
function, q0 is the initial state, and F ⊆ Q is the set of final states (sometimes called accept
states). A DFA can be represented by a directed graph with one vertex vs for each state s ∈ Q,
with the vertices corresponding to final states being highlighted, and for every transition
δ(s, w) = ŝ, there is an edge from s to ŝ labeled w (see Figure 11).

q0

q1

q2

q3

q4

a a

a

a a

b

b

b
b b

Figure 11: The unique minimal DFA with 5 states for the language {aa, aab, ab, b, bb}. Here,
q0 is the initial state, q2 and q3 are the final states, and q4 is the unique dead state.

A word w = w1w2 · · ·wn ∈ Σ∗ is accepted by A if the sequence of states (s0, s1, . . . , sn) ∈
Qn+1 defined by s0 = q0 and si+1 = δ(si, wi) for i = 0, . . . , n − 1 ends with sn ∈ F a final
state. The set of words accepted by A is called the language L(A) recognized by A. It is
well-known that DFAs recognize exactly the set of regular languages. Note that every DFA
recognizes a unique language, but a language can be recognized by several different DFAs.
A DFA is called minimal if no DFA with fewer states recognizes the same language. The
Myhill-Nerode Theorem states that every regular language is recognized by a unique minimal
DFA (up to isomorphism) [19, Theorem 3.10]. For more details on automata see [19].

Since every regular language defines a unique minimal automaton, one can define the
complexity of the language to be the number of states in the corresponding automaton. More
precisely, this is an interpretation for the space complexity of the language.

The asymptotic proportion of minimal DFAs in the class of (not necessarily acyclic) au-
tomata was solved by Bassino, Nicaud, and Sportiello in [2], building on enumeration results
by Korshunov [20, 21] and Bassino and Nicaud [3]. This result also exploits an underlying
tree structure of the automata, but this tree structure comes from a different traversal than
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what we use. In that case, no stretched exponential appears in the asymptotic enumeration,
and the minimal automata account for a constant fraction of all automata.

The analogous problem in the restricted case of automata that recognize a finite language
is widely open (see for example [11]). This corresponds to counting finite languages by
their space complexity. To show the relation between these automata and compacted and
relaxed trees, we need the following lemma from [23, Lemma 2.3] or [19, Section 3.4]. For the
convenience of the reader, we include a proof of one direction here.

Lemma 6.1. A DFA A is the minimal automaton for some finite language if and only if it
has the following properties:

• There is a unique sink s. That is, a state which is not a final state and with all
transitions from s end at s that is, δ(s, w) = s.

• A is acyclic: the corresponding directed graph has no cycles except for the loops at the
dead state.

• A is initially connected: for any state p there exists a word w ∈ Σ∗ such that A reaches
the state p upon reading w.

• A is reduced: for any two different states q, q′, the two automata with initial state q
and q′ recognize different languages.

Proof. We will show one direction of this proof: that a minimal automaton has the four
properties. For a proof of the reverse direction see e.g. [23, Lemma 2.3] or [19, Section 3.4].

If A is minimal but not reduced then there are two states q and q′ from which the same
language is recognized. These two states can be merged into a single state without changing
the language, contradicting the minimality of A. This implies that there is at most one state
q from which the empty language is recognized. Moreover, such a state must exist for the
language to be finite. This state q must therefore be the unique sink.

The fact the A is acyclic follows immediately from the fact that A recognizes a finite
language. Finally, if we remove from A all states p that cannot be reached, the language
accepted by the automaton will not be changed, so by the minimality of A, there must be no
such states and A must be initially connected.

We note here one consequence of this lemma: since the automaton is acyclic, there must
be some state q other than the sink s such that all transitions from q end at s. Then since the
automaton is reduced, there must be only one such state q, and it must be an accept state.

Now using our asymptotic results on compacted and relaxed trees, we give the following
new bounds on the asymptotic number of such automata, determining their asymptotics up
to a polynomial multiplicative term.

Theorem 6.2. Let m2,n be the number of minimal DFAs over a binary alphabet with n

transient states (and a unique sink) that recognize a finite language. Then,

2n−1cn ≤ m2,n ≤ 2n−1rn.

As a consequence, there exist positive constants κ1 and κ2 such that

κ1n
3/4 ≤ m2,n

n!8ne3a1n1/3 ≤ κ2n.
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Proof. By the lemma above, a compacted tree C can be transformed into an automaton A that
recognizes a finite language over the alphabet {a, b} as follows: The states of the automaton
A correspond to the internal nodes and the leaf of C. The initial state corresponds to the
root, and at each state, the transition after reading a (resp. b) is given by the left (resp. right)
child or pointer in C. The leaf is designated as the unique sink, and we can choose any subset
of internal nodes as final states, with the condition that the unique node with two pointers
to the sink is always a final state.

To prove the minimality of such automata, we just need to check the four conditions of
Lemma 6.1. The fact that A is acyclic and has a unique sink follow immediately from the
fact the C is a DAG. Then A is initially connected because C has a unique source. Now we
will show that A is reduced. For any state q in A, let L(q) denote the language recognized
by the automaton with initial state q. Now suppose that A is not reduced and let q and q′
be different states of A satisfying L(q) = L(q′). We also assume that amongst all such pairs
(q, q′), the length of the longest word in L(q) is minimized. Since the unique node with both
pointers to the sink is a final state, the language L(q) can only be empty if q and q′ are both
the final state, which is impossible. Since L(q) = L(q′) we must have L(δ(q, a)) = L(δ(q′, a))
and L(δ(q, b)) = L(δ(q′, b)). Then, the minimality condition on the language L(q) implies
that δ(q, a) = δ(q′, a) and δ(q, b) = δ(q′, b). But this means that the node u and v in C
corresponding to q and q′ have the same left child and the same right child, contradicting the
fact that C is compacted. This completes the proof that A is reduced.

Hence, each of the 2n−1 subsets of the remaining states (not the sink and not the node
with two pointers to the sink) gives a valid minimal automaton of size n.

Applying the same construction to relaxed trees gives an upper bound, as every minimal
automaton, after forgetting which states are final, corresponds by construction to a relaxed
tree. Note that this observation has already been made in [23, Equation (1)], yet the asymp-
totics was not known.

Using the methods of the present work, the authors showed in a companion paper [13]
that

m2,n = Θ
(
n! 8ne3a1n1/3

n7/8
)
.

To our knowledge, our results give the best known bounds on the asymptotic number of
minimal DFAs on a binary alphabet recognizing a finite language. Note that they disprove
the conjecture m2,n ∼ K 2n−1rn for some K > 0 of Liskovets based on numerical data;
see [23, Equation (16)]. Previously, Domaratzki derived in [10] the lower bound

m2,n ≥
(2n− 1)!
(n− 1)! c

n−1
1 ,

with c1 ≈ 1.0669467, which implies the asymptotic bound m2,n ≥ n!(4c1)n
2c1
√
πn

(note that m2,n =
f ′2(n+ 1) in his results). Furthermore, Domaratzki showed in [9] the upper bound

m2,n ≤ 2n−1G2n+2,

where G2n are the Genocchi numbers defined by 2t
et+1 = t +∑

n≥1(−1)nG2n
t2n

(2n)! . This gives
the asymptotic bound m2,n ≤ 4(2n)!( 2

π2 )n+1n2. This bound, however, is much larger than the
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superexponential growth given by n! in our upper bound. While not explicitly formulated in
the literature, it is possible to bound the acyclic DFAs by general DFAs using the results by
Korshunov [20,21] (see also [3, Theorem 18]). Thereby, we get the upper bound

m2,n = O
(
n!(2e2ν)n

)
,

where ν = αα(1+α)1−α ≈ 0.8359 with α being the solution of 1+x = xe2/(1+x), and therefore
2e2ν ≈ 12.3531, which is significantly larger than the exponential growth in our upper bound.
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