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Abstract: Vertical axis turbines, also called Darrieus turbines, present interesting characteristics
for offshore wind and tidal applications but suffer from vibrations and a lower efficiency than the
more conventional horizontal axis turbines. The use of variable pitch, in order to control the angle of
attack of the blades continuously during their rotation, is considered in this study to overcome these
problems. 2D blade-resolved unsteady Reynolds-Averaged Navier–Stokes (RANS) simulations are
employed to evaluate the performance improvement that pitching blades can bring to the optimal
performance of a three-straight-blade vertical axis tidal turbine. Three pitching laws are defined and
tested. They aim to reduce the angle of attack of the blades in the upstream half of the turbine. No
pitching motion is used in the downstream half. The streamwise velocity, monitored at the center of
the turbine, together with the measurement of the blades’ angle of attack help show the effectiveness
of the proposed pitching laws. The decrease in the angle of attack in the upstream half of a revolution
leads to a significant increase in the power coefficient (+40%) and to a better balance of the torque
generated in the upstream and downstream halves. Both torque and thrust ripples are therefore
significantly reduced.

Keywords: marine renewable energy; Vertical Axis Tidal Turbine (VATT); variable pitch; CFD

1. Introduction

The installed capacity of renewable energy in the world has been increasing contin-
uously over the past fifteen years [1,2]. The will to find energy sources available on a
long-term basis with stable costs and lower atmospheric pollutant emissions has led to a
growing interest in renewable energies like solar photovoltaics (PV), wind turbines, and
biomass (hydro-power was already well developed). Onshore wind and solar PV represent
currently the largest additions of installed capacity per year (+60 GW and +115 GW, re-
spectively, in 2019) and are also forecast to lead the capacity growth until 2025 at least [1,3].
Ocean power consists in only 535 MW of installed capacity at the end of 2019 with an
addition of 3 MW during the year [1]. The resource potential of ocean energy is, however,
judged “enormous” [1]. Research is thus necessary to help with the development of this
source of energy.

Ocean energy comprises tidal, wave, and ocean thermal energy conversion (OTEC)
with the tidal branch currently leading the installed capacity. The resource of tidal power
around the Channel Islands, one of the most promising tidal site in Europe, is estimated at
an average of 1.8 GW electrical power [4], for example. Although it is not very significant
compared to the electricity consumption in France or in the UK, tidal energy has the great
advantage of being easily predictable.

Tidal turbines can be divided into two sub-categories: horizontal-axis and vertical-axis
turbines (HATs and VATs, respectively). This study focuses on VATs, also called Darrieus
turbines after Georges Darrieus, the first engineer who patented such vertical-axis rotor in
1931 [5]. Vertical-axis wind turbines (VAWTs) generated a large interest in the 1970s [6,7]
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before the wind energy industry was dominated by horizontal-axis wind turbines (HAWT).
Darrieus turbines have a slightly lower efficiency and generate larger vibrations than HATs
because the blades operate with a constantly varying angle of attack, which led to the
success of HAWTs. However, VATs have some significant advantages over HATs, which
explains why many research studies focused on this technology over the past 15 years:
VATs are insensitive to the flow direction (no need of a yawing mechanism); the drive train
and generator may be placed close to the water surface (wind turbines) or above the water
surface (tidal turbines), making maintenance easier; and they are easily scalable thanks to
the absence of varying gravitational loads on the blades and farms of such turbines could
reach a significantly higher power density than with HATs [8]. Therefore, VATs seem well
adapted for floating offshore and tidal applications.

A way to compensate the low efficiency and high vibrations experienced by VATs is to
use variable pitch [9,10]. By changing the pitch angle of a blade continuously during its
rotation, it is possible to control its angle of attack and avoid stall. Several studies have
been carried out on this topic [11–17]. Active (using an actuator) or passive blade pitching
are generally considered. Active pitching is more efficient as it allows any pitching law
to be used but it is mechanically more complicated and may be a source of additional
maintenance. This is the solution used in our work as our aim is to study the potential of
variable pitch on the performance improvement.

CFD simulations are widely used to predict the performances of VATs. 2D Reynolds-
Averaged Navier–Stokes (RANS) simulations [18–22] are an efficient way to obtain relative
performance data for a rotor configuration (effect of the airfoil shape or rotor solidity for
example). 3D RANS simulations [23–25] are more time consuming than 2D RANS but they
are more accurate since they include the 3D effects (for example, tip vortices and arm–blade
junction losses). They are more adapted to simulate the wake of the turbine due to the
importance of the 3D flow structures on the wake recovery. Large Eddy Simulations (LES)
[26,27] are even more time-consuming but they allow a significant increase in the accuracy
of the performance predictions, especially when the turbine blades experience stall. LES
is also well adapted to model the wake of a VAT. In these simulations, the turbine blades
are “resolved”, i.e., the outer surface of the blades is meshed and the boundary layer is
resolved. Other methods, like the actuator surface [28] or the actuator line [29], model the
effect of the blades on the fluid through source terms in the RANS or LES simulations.
Lift and drag coefficients are obtained from tabulated data (experiments or high fidelity
simulations), which is not the case with the “blade-resolved” simulations. Similar actuator
line methods can also be coupled to a Lattice Boltzmann method LES solver [30] in order
to obtain a high resolution in the turbine wake.

The present work employs 2D RANS blade-resolved simulations to study the perfor-
mance improvement that active variable pitch can bring to the optimal working point of a
straight-blade vertical axis tidal turbine. Three new pitching laws are defined. They aim
at keeping the blades’ angles of attack constant over a given part of the revolution, in the
upstream half of the turbine. Similar approaches have been used by other researchers to
limit the angle of attack to the stall angle [11] or to keep the circulation around the blade
constant [17]. Here, we limit the angle of attack in the upstream half of the turbine to
a low value, close to the optimal lift-to-drag ratio. This leads to a better balance of the
torque generation between the upstream and downstream halves of the turbine than a
fixed pitch turbine.

To make sure the pitching laws operate as expected, we need to determine the angle
of attack of the blades. Several methods are available in the literature to extract the angle
of attack from the CFD results. One way is to monitor the flow speed along the blade path
and average it for one turbine revolution at a given azimuthal angle (excluding data when
the blade travels through a given monitor point or is close to it) [31–33]. Then, the angle of
attack can be calculated with a “free stream” velocity which is more representative of the
actual flow field close to the blades. However, this method averages the flow speed at each
azimuthal angle, meaning that the unsteadiness of the flow is lost and the velocity used to
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compute the angle of attack is not exactly the one seen by the blades. A similar method
was developed by Elsakka and al. [34], in which they monitor the flow speed at several
points that follow the blade during its rotation. They conclude that using two reference
points, located 0.5 chord length upstream of the blade and 1 chord length away from each
side of the blade, gives an accurate estimation of the angle of attack. Melani et al. [35]
benchmark three of these methods and conclude that the “line-average” method is the
most accurate. This method, first introduced by Jost et al. [36] for HAWTs, uses a closed
line around the airfoil (centered at the quarter chord) to calculate the average undisturbed
velocity. This undisturbed velocity is finally used in the velocity triangle to derive the angle
of attack. Another approach, developed by Bianchini et al. [37], consists in postprocessing
the pressure distribution around the airfoil at a given azimuthal angle and comparing it
to the pressure distribution along a fixed blade (placed in a rectilinear flow) at different
angles of attack. The fixed airfoil is transformed to take into account the virtual camber
effect and Xfoil [38] is used to generate the reference pressure distributions. The method
is considered accurate by its authors as long as the blade is not stalled. The method we
use in this study was first developed in the PhD of the first author [39]. It is very similar
to the previous method as the angle of attack will be determined from the location of the
stagnation point on the blade, by comparison to the location of the stagnation point on
a fixed blade. The blade used for comparison (fixed angles of attack) has the exact same
shape as the turbine blade (i.e., we do not take into account the virtual camber effect) and
the 2D RANS method is employed for the reference simulations.

This article is organized as follows. Section 2 gives the details about the turbine
studied. Section 3 presents the mesh and numerical parameters used. Section 4 provides a
validation study for the numerical set up used, by comparison with experimental results
on a fixed airfoil from the literature. Section 5 presents the method that we have developed
in order to measure the angle of attack on the blades in the simulation results. Section 6
displays some results for the fixed pitch (Darrieus) turbine in order to identify the optimal
operating condition. Section 7 is the core of the article with details about the pitching laws
used and the results obtained, before concluding.

2. Turbine

The turbine used in this study is the SHIVA turbine (Figure 1), under development at
the French naval academy research institute. It is a 3-bladed vertical-axis tidal turbine with
1m span straight blades. One main motor controls the rotational speed of the turbine and
subsidiary motors are mounted on top of each blade to control their pitch angle (Figure 2).
This design provides a great flexibility regarding pitching laws (β = f (θ), with θ the
azimuth) that can be tested.

Figure 1. Computer Assisted Design (CAD) model of the SHIVA turbine.
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Figure 2. Definition of the blade pitch angle β. (~ect,~ecn): coordinate frame attached to the blade (i.e.,
~ect remains parallel to the blade’s chord at all time). (~et,~en): coordinate frame that follows the blade
path with~et parallel to the tangent to the trajectory of the quarter chord at all time. The pitch angle β

is the angle between~ect and~et.

The diameter is 1.6 m and the blade chord length is 0.15 m, which gives a solidity
σ = 0.563 (Table 1). In this study, the flow speed is U∞ = 2m/s which is representative
of flume tank flows and tidal streams. The blade chord Reynolds number (Rec = Wc/ν,
with W the relative velocity (m/s) and ν the kinematic viscosity (m2/s)) varies between
0.6× 106 and 1.2× 106 at the tip speed ratio λ = ωR/U∞ = 3 (with ω the turbine rotational
speed). The characteristics of the SHIVA turbine are summarized in Table 1.

The turbine performances will be evaluated in terms of the coefficient of power (CP,
Equation (1), with Q the turbine torque, ω the turbine rotational speed, and ρ the water
density, A the rotor swept area and U∞ the upstream flow speed), the coefficient of torque
(CQ, Equation (2), with R the turbine radius) and the coefficient of thrust (CT , Equation (3)).

CP =
Qω

0.5ρAU3
∞

(1)

CQ =
Q

0.5ρAU2
∞R

(2)

CT =
Thrust

0.5ρAU2
∞

(3)

Table 1. SHIVA turbine characteristics.

The SHIVA Turbine

Rotor diameter (D = 2R) 1.6 [m]
Number of blades (N) 3

Blade length (l) 1 [m]
Blades cross section NACA 0018

Chord length (c) 0.15 [m]
Solidity (σ = Nc/R) 0.563

Blade rotation axis location 0.25× c
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3. Model and Numerical Methods
3.1. Computational Domain and Mesh

The two-dimensional computational domain is meshed with IcemCFD and the result-
ing multi-block structured grid is divided into three sub domains (Figure 3):

• an outer stator (square of side 60 D, not shown in Figure 3 for clarity);
• a rotating ring containing the 3 blades (rotor), located at the center of the outer stator;

and
• an inner stator

U∞

Blade 1

Blade 2 Blade 3

x

y

Figure 3. Computational domain.

The size of the outer domain (60 D) results from a sensitivity study carried out to
make sure the dependence of the power coefficient to the distance between the turbine and
the outer boundaries is negligible. Transient rotor/stator interfaces using the General Grid
Interface (GGI) method are employed between the rotor and the 2 stators. Figure 4 shows a
close view of the mesh around one blade. Each blade is meshed with 240 cells and the mesh
has been refined close to them to reach y+max = 1.6 (maximum value obtained on a blade and
over a complete revolution at λ = 3) in order to resolve the viscous sublayer sufficiently
and obtain a y+ independent solution, according to Maître et al. [18]. The computational
domain contains 137× 103 cells in total, which gives a good compromise between accuracy
and computational time requirement for the variable pitch simulations.

Figure 4. Mesh in the vicinity of the blade.

3.2. Boundary Conditions and Settings

The inlet velocity is defined by U = Ux = 2 m/s at the inlet boundary. The inlet
turbulence intensity is set to 10% with a viscosity ratio µt/µ = 100. The downstream
boundary is set as an outlet boundary with a 0 Pa relative static pressure. Side boundaries
are set as symmetry boundaries. Finally, the three blades are set as solid walls.

The time step size used in the simulations corresponds to a variation of the azimuthal
angle of the turbine ∆θ = 1◦. This time step is widely used in literature and it has been
verified that it leads to time step-independent solutions: a time step size corresponding
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to ∆θ = 4◦ leads to a decrease in CP by only 0.6% at λ = 3 with a constant pitch (β = 0◦).
At the lowest tip speed ratio (λ = 2), blades experience dynamic stall and the time step is
therefore reduced to ∆θ = 0.5◦ which was found to provide time step-independent solution
at this specific operating condition.

Convergence is defined by a difference between the power coefficient of two consecu-
tive revolutions lower than 0.2% for both fixed pitch and variable pitch simulations.

3.3. Numerical Methods

Incompressible Unsteady Reynolds-Averaged Navier–Stokes (URANS) equations
are solved using ANSYS CFX [40]. The k−ω SST (Shear Stress Transport) turbulence
model [41] is used to model the Reynolds stress. This model is known to be suitable
for lifting body applications when used with a mesh satisfying the criteria y+ ∼ 1. It
was shown to be one of the best RANS turbulence models for Darrieus wind turbines
applications [21].

Advection terms are discretized using a hybrid first/second order scheme (“High
Resolution” scheme in CFX) and the temporal discretization is achieved by using the
implicit second-order backward Euler scheme. Calculations are run in double precision
and are parallelized on 8 CPUs. The computational time required to simulate one turbine
revolution with variable pitch is 3 h and 24 to 30 revolutions are necessary to reach the
0.2% convergence criterion, depending on the pitching law. In the fixed pitch case at λ = 3,
43 turbine revolutions are necessary to reach the same level of convergence.

4. Validation

No experimental data are available at the moment on the turbine studied. It was
chosen to validate the mesh and numerical procedure against published data of 2D lift and
drag coefficients obtained on an airfoil. The pitching laws used in this study will aim at
operating the blades at a constant angle of attack (noted α) over most of the revolution
(see Section 7.1), and therefore it was considered relevant to use fixed angle of attack
experiments for validation. The experimental work of Timmer [42] was selected as it
employs a NACA0018 cross section, the same as the one used by the studied tidal turbine,
and Reynolds number is Re = 7× 105 which is close to the Reynolds number calculated
on the blades of the turbine (Rec ∈ [6× 105, 1.2× 106] at λ = 3).

The computational domain used in this validation process is shown in Figure 5.
The first O-grid around the blade section is kept the same as in the turbine case (see Figure 4),
to ensure the validation process is relevant. The structured grid continues inside a 20 c-
long-sides box. Between this box and the circular outer boundary located 50 c away from
the blade section, an unstructured grid is used. At the inlet boundary, U = Ux = 4.667 m/s
(corresponding to Rec = 7× 105 in water, with ν = 10−6 m2 s−1). The inlet turbulence
intensity is set to 5% with a viscosity ratio µt/µ = 10. The turbulence intensity decays
between the inlet boundary and the blade section to reach 0.1% around the blade, which
corresponds to the turbulence intensity measured in [42]. All other numerical parameters
are the same as detailed in Section 3.
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50 c

20 c

structured

unstructured

Figure 5. Computational domain used in the validation step.

Angles of attack range from 0◦ to 18◦. Figure 6 (left) shows that the lift coefficient
predicted by the simulations (continuous line) agrees well with the experiments. It starts
deviating from the experiments at α = 17◦, beyond the stall angle. The present simulations
overestimate the drag coefficient compared to Timmer’s experiments (Figure 6 (right)). This
is due to the presence of a laminar boundary layer on most of the airfoil in the experiments:
a turbulent boundary layer is triggered by addition of zig-zag tape only on the pressure
side at 80% of the chord. The laminar boundary layer is not taken into account in the fully
turbulent simulations (SST). However, drag predictions agree well with the experiments
carried out by Jacobs et al. [43] at the NACA variable density tunnel (VDT) where the
turbulence intensity was higher than in Timmer’s case, which probably led to a much
bigger part of the boundary layer to be turbulent [42]. Results show that the mesh used
and the numerical settings are well adapted.

0 5 10 15 20
0

0.5

1

1.5

α (◦)

C
L

Timmer
Jacobs et al.

SST

0 2 4 6

·10−2

0

0.5

1

1.5

CD

C
L

Timmer
Jacobs et al.

SST

Figure 6. Lift coefficient as a function of angle of attack (left) and as a function of the drag coefficient
(right). Comparison of simulations with experiments from Timmer [42] and from Jacobs et al. [43].

5. Measurement of the Angle of Attack

To have a better understanding of the physics of the turbine and to properly assess
whether the pitching laws work as expected, it was considered necessary to find a way to
determine the angle of attack of the blades from the CFD results. The angle of attack (α) is
generally calculated from Equation (4) [44], although this equation relies on several strong
assumptions that make it not applicable to the downstream half (at least) of a vertical axis
turbine.

α = arctan
(

sin(θ)
λ + cos(θ)

)
(4)
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Several researchers have worked on improving the angle of attack determination.
The method we develop in this study is similar to the one found in [37]: we propose to
use the location of the stagnation point on a blade (as a function of the reduced chord
length x/c) and to compare it to the location of the stagnation point on the same airfoil
at a fixed angle of attack. We can then derive an equivalent angle of attack of the blade
at the corresponding azimuthal angle. The stagnation point can be easily located as it
corresponds to the mesh node of maximum pressure on the blade. This method requires
however to run fixed angle of attack simulations at a Reynolds number representative of
the turbine operation and over the expected range of angles of attack that a turbine blade
will experience. The interpolation of the fixed angle of attack data (α as a function of the
non-dimensioned location of the stagnation point, (x/c)stagnation point) is used to derive the
equivalent angle of attack of the turbine blade.

This method is limited by the comparison between a rotating and a fixed blade, i.e., it
does not take into account the pitching motion of the blades. However, the stagnation
point is a local parameter which directly represents the angle of attack of the blade and
allows this method to capture unsteady phenomenons (wake of another blade, wake of a
tower). Moreover, in the present study the pitching laws aim to keep the blades’ angle of
attack constant. The proposed method is therefore considered well adapted here.

6. Fixed Pitch Cases

In this section, we present results obtained with a constant pitch angle β = 0◦ (Dar-
rieus configuration) to evaluate the baseline performance of the turbine. Figure 7 shows
that the optimum power coefficient (CP) is predicted at (or close to) λ = 3.

0 1 2 3 4 5 6

0

0.2

0.4

λ (tip speed ratio)

C
P

Figure 7. Power coefficient of the fixed pitch turbine as a function of the tip speed ratio (λ), U∞ =

2 m/s.

Figure 8 presents the torque coefficient (CQ) calculated for one blade of the turbine at
λ = 3 (Blade 1 in Figure 3). Positive (driving) torque is only produced in the upstream half
of the revolution. In the downstream half, the blade’s contribution to the torque generation
is zero or slightly negative, which means that the blade does not harness power while
traveling through the downstream half but slightly brakes the turbine instead. This is due
to the significant decrease of the flow speed in the upstream half of the turbine.
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0 45 90 135 180 225 270 315 360
−0.1

0

0.1

0.2
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C
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Upstream Downstream

Figure 8. Torque coefficient (CQ) of blade 1 at λ = 3.

7. Variable Pitch Cases
7.1. Aim, Strategy, and Definition of the Pitching Laws

The aim of introducing a pitching motion to the blades is mainly to improve the
turbine efficiency. However, when controlling the blades’ pitch angle, we can also work on
reducing both torque ripple and thrust fluctuations, that are major drawbacks of Darrieus
turbines. This can be achieved if the torque distribution is balanced between the upstream
and downstream halves of the turbine.

Our strategy is to define different pitching laws for the upstream and downstream
halves of a revolution. To that end, we split the revolution into four parts (Figure 9):
Top, Upstream, Bottom, and Downstream. Specific laws will be defined for the Upstream
and Downstream parts in order to achieve the aims defined at the beginning of this sec-
tion. The Top and Bottom sections correspond to low or even negative torque generation
(Figure 8). Pitching laws for these sections are thus cubic splines interpolations between
three points to ensure a low drag around the azimuths 0◦ and 180◦ as well as the differentia-
bility of the global pitching law. The three points are one end of the Upstream law, β = 0◦

for θ = 0◦ (Top) or θ = 180◦ (Bottom), and the other end of the Downstream law. Cubic
splines generate two polynomials for each Top and Bottom parts (Int 1 and Int 2 or Int 3
and Int 4, respectively, Figure 9). Therefore, the global pitching law (for one revolution)
uses six polynomials and is continuous and differentiable.

O

θ

U∞ Upstream Downstream

Top

Int 1 Int 2

Int 3 Int 4

Bottom

Figure 9. Cutting up of the pitching laws areas.
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Three pitching laws are tested in this study. They consist in limiting the angle of attack
of the blades in the upstream half of the turbine to a given value: 6◦ (PL1), 8◦ (PL2), and
10◦ (PL3), while almost not pitching the blades in the downstream half (Figure 10a,b). It
means that when the angle of attack of the blade becomes larger than the target value
(6◦, 8◦ or 10◦, as defined by Equation (4)) while traveling through the upstream half,
the blade pitches to maintain the target value until the azimuthal angle where the angle
of attack (as defined by Equation (4)) becomes lower than the target value (Figure 10a).
Those pitching laws are based on the simplified angle of attack defined by Equation (4),
which is considered valid as we focus on the upstream half only. Outside of the region
of limited angle of attack, α is modified (increased) by the cubic splines to ensure the
differentiability of the global law (Figure 10). In the downstream half, a very small pitching
motion (amplitude = 0.1◦) is imposed (Figure 10b) to keep the mesh deformation active
at anytime and avoid discontinuities in the simulations while having a negligible effect
on the blades loading. Details of the equations defining the three pitching laws are given
in Appendix A. Limiting the angle of attack to a given value is similar to an idea already
proposed by Staelens et al. [11]. However, in our case we limit the angle of attack to a
value different from the one corresponding to static stall, the global pitching laws are
differentiable and different laws are applied in the upstream and downstream halves of a
revolution. The approach is also similar to the one followed in [17] that aims to keep the
bound circulation constant when blades travel along the upstream or downstream halves
of the revolution.

0 30 60 90 120 150 180
0

5

10

15

20

Azimuth (◦)

α
(◦

)

Eq. 4 PL1
PL2 PL3

(a)

0 40 80 120 160 200 240 280 320 360

−10

−5

0

Azimuth (◦)

β
(◦

)

PL1
PL2
PL3

(b)

Figure 10. (a) Blades’ angle of attack of the Darrieus turbine (from Equation (4)) and of the 3 variable-pitch cases; (b) pitching
laws studied, λ = 3.

7.2. Results with Pitch Control
7.2.1. Power Coefficient

The average power coefficient (CP, average of the instantaneous power coefficient CP,
Equation (1), over one revolution) and its corresponding ripple factor (CPF, Equation (5)),
defined as the difference between the maximum and minimum values reached by CP over
one turbine revolution, as used by Marsh et al. [24], are presented in Table 2. The three pitch-
ing laws proposed lead to a significant increase in power coefficient, with PL2 performing
the best (+40.9% compared to the fixed pitch case). Figure 11 presents the instantaneous
power coefficient over one revolution for all cases. The maximum CP reached by the
turbine is approximately the same for all configurations but the cases with variable pitch
show a significant increase in the minimum CP. The proposed pitching laws smooth the
CP distribution, as was expected.

CPF = CPmax − CPmin (5)
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Table 2. Power coefficient: average (CP) and ripple factor (CPF = CPmax − CPmin) values for the
fixed and variable pitch cases.

CP CPF

Fixed pitch 0.360 (ref) 0.60 (ref)
PL1 0.503 (+39.8%) 0.20 (−66.7%)
PL2 0.507 (+40.9%) 0.28 (−52.8%)
PL3 0.499 (+38.7%) 0.38 (−37.1%)

0

30

60

90

120

150

180

210

240

270

300

330

0

0.2

0.4

0.6

0.8
CP

Darrieus
PL1
PL2
PL3

Figure 11. Results of CP for the Darrieus and the pitching law cases, λ = 3.

In fact, Table 2 shows that the power coefficient ripple factor is significantly affected
by the pitching laws. The lower this value is, the smoother the CP distribution is. Its value
is decreased by 37.1% with PL3 and by 66.7% with PL1. Therefore, out of the three pitching
laws tested, it can be concluded that the lower the angle of attack in the upstream half of
the turbine, the smoother the CP distribution (which also means the smoother the torque
distribution as CP is directly related to the torque).

Figure 12 shows that the lower the angle of attack of the blades in the upstream half
of the turbine, the lower the torque produced by the blades in the corresponding region
but also the higher the torque produced in the downstream half. Even if the blades are
not pitching when traveling through the downstream side of the turbine, their loading
is significantly affected by the pitching law active on the upstream side. The decrease in
peak torque generated in the upstream half is compensated by the gain in the downstream
half and the gain in the region of low azimuth. In fact, for θ ∈ [20◦ ∼ 40◦], the pitching
laws increase the angle of attack of the blades compared to the Darrieus configuration
(Figure 10a) which produces a higher torque. It results in an increased average power
coefficient (Table 2). Figure 12 also confirms that the proposed pitching laws balance the
torque distribution between the upstream and downstream halves of the turbine.

The power needed to pitch the 3 blades, with PL2, corresponds to an averaged
coefficient of power CPpitching = 0.1. This is significant as the overall performance is then
only slightly better than the Darrieus configuration (+13% instead of +40.9%).
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Figure 12. Torque coefficient (CQ) of one blade for the Darrieus and the pitching law cases, λ = 3.

7.2.2. Thrust Coefficient

The thrust coefficient (CT) is plotted in Figure 13 against the azimuth, over one turbine
revolution. Similarly to the power coefficient (Figure 11), the proposed pitching laws
smooth the thrust distribution. However, the average thrust is approximately the same in
all cases (Table 3). Compared to the fixed pitch case, PL1 slightly reduces CT when PL2
gives a very similar value and PL3 slightly increases it (Table 3).
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Figure 13. Thrust coefficient (CT) for the Darrieus and the pitching law cases, λ = 3.

Table 3. Thrust coefficient: average (CT) and ripple factor (CTF = CTmax − CTmin) values for the fixed
and variable pitch cases.

CT CTF

Darrieus 0.982 (ref) 0.77 (ref)
PL1 0.919 (−6.5%) 0.20 (−74.0%)
PL2 0.974 (−0.8%) 0.16 (−79.0%)
PL3 1.016 (+3.4%) 0.17 (−78.1%)

The thrust ripple factor (CTF ), defined the same way as the power coefficient ripple
factor (CPF, Section 7.2.1), is reduced by 74% (PL1) to 79% (PL2) with the proposed pitching
laws (Table 3). Although the average thrust coefficient is similar in all cases, such reductions
of its fluctuations are of particular interest for the design of the support structures and the
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foundations because of both the decrease in the maximum thrust generated by the turbine
and the lower fatigue experienced by the structure [45].

7.2.3. Flow Field

Figure 14 shows that reducing the angle of attack of the blades in the upstream half
of the turbine leads to a significant increase in the flow speed at the center of the rotor
compared to the fixed pitch case. More energy is thus available for the blades traveling
through the downstream side of the turbine, which explains the balance observed between
the upstream and downstream halves in Figure 12. The streamwise velocity at the center
of the turbine (Figure 15) is about 30% of the upstream velocity for the fixed pitch case
while it varies from 60% (PL3) to 70% (PL1) of the upstream velocity with variable pitch.
Although not very large even in the fixed pitch configuration, it can be noted that the
velocity fluctuations at the center of the turbine are reduced with the proposed pitching
laws (Figure 15).

Figure 14. Isocontours of non-dimensioned streamwise velocity (Ux/U∞) for the Darrieus (left) and
the PL2 (right) cases, λ = 3. Instantaneous flow field with blade 1 located at θ = 0◦.
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Figure 15. Non-dimensioned flow speed (Ux/U∞) at the center of the turbine for the Darrieus and
the pitching law cases, λ = 3.

Figure 16 shows the angle of attack measured on one blade, from the CFD results,
following the method presented in Section 5. The result of Equation (4) is plotted for
comparison. The fixed pitch case (Darrieus) shows a similar pattern to Equation (4) in
the upstream half of the turbine, although the measured angles of attack are lower than
the predicted ones. This can be explained by the slower actual flow speed approaching
the turbine compared to U∞ used in Equation (4), which is especially true with the fixed
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pitch case (Figure 17). The lower slope observed in the measurements at θ = 0◦ and
θ = 180◦ may be explained by the fact that the flow speed is not perfectly aligned with
the streamwise direction but slightly deviating from the turbine (on both sides), which
results in a lateral component of the incoming flow. This lateral component reduces the
blades’ angle of attack, particularly at these two azimuthal angles. The accuracy of the
method detailed in Section 5, which is not known precisely, can also be questioned, but
it is estimated by the authors to be affecting the data less than the two previous points.
In the downstream half, the measured angles of attack are significantly lower than what
Equation (4) predicts, as expected, due to the significantly slower flow speed at the center
of the turbine compared to U∞ (Figure 15). The low angles of attack are consistent with the
low torque values observed in this range of azimuth (Figure 12). Interestingly, the three
variable pitch cases show a limitation of the angle of attack in the upstream half, as was
targeted. However, the measured values are lower than the targets (8.1◦ instead of 10◦

(PL1), 6.8◦ instead of 8◦ (PL2), and 4.4◦ instead of 6◦ (PL3)). In the downstream half,
the angle of attack is significantly increased compared to the fixed pitch case. For PL1,
the blades’ angle of attack is even higher in the downstream half of the turbine than in
the upstream half. However, the difference of flow speed between the upstream and
downstream halves of the turbine makes that the torque generated in the upstream half
is higher than in the downstream half. It can be noticed that the three pitching laws give
similar angles of attack in the downstream half of the turbine.
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Figure 16. Measured angle of attack for the Darrieus and the pitching law cases, λ = 3.
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Figure 17. Non-dimensioned instantaneous streamwise velocity (Ux/U∞) plotted on a line crossing
the center of the turbine (y = 0 m) in the streamwise direction. Data for the Darrieus and the pitching
law cases, λ = 3.

Finally, Figure 17 presents the non-dimensioned streamwise velocity (instantaneous)
uspstream, inside, and downstream of the turbine. It shows that the velocity is higher
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when the proposed pitching laws are used. However, inside the turbine, the velocity is
slowed down following a very similar slope in all cases. Figure 17 also shows that at the
location x/D = 2 (in the wake), the streamwise velocity with PL2 is 34% of the far field
value, while in the fixed pitch case it is only 16% of the far field value. Unfortunately,
the refinement of the mesh used in the far wake does not allow us to conclude about the
relevance of the pitching laws for farm applications.

8. Conclusions

2D URANS simulations have been employed to study the performance improvement
that pitching blades can bring to a three-straight-blade vertical axis tidal turbine. The
numerical procedure employed has been validated, before the fixed pitch (β = 0◦) config-
uration of the turbine was studied to determine its power curve. The optimal tip speed
ratio has then been selected to see how much the optimal performance of the turbine can
be improved with controlled variable pitch.

The three pitching laws defined aimed to reduce the angle of attack of the blades in
the upstream half of the turbine. No pitching motion was used in the downstream half.
The decrease in angle of attack in the upstream half of a revolution led to a better balance of
the torque generated in the upstream and downstream halves. In fact, when the proposed
pitching laws were active, less energy was harnessed by the blades traveling through the
upstream half of the turbine and thus, more energy was available in the downstream half,
compared to the fixed pitch case.

The streamwise velocity, monitored at the center of the turbine, together with the
measurement of the blades’ angle of attack (determined using an innovative method based
on the location of the stagnation point) helped showing the effectiveness of the proposed
pitching laws. The targeted angles of attack in the upstream half of the turbine were
satisfactorily obtained. Those in the downstream half of the turbine were significantly
increased compared to the fixed pitch case due to the increase in flow speed at the center
of the turbine when the pitching laws are active. Blades were forced to operate close to
the angle of attack corresponding to their optimal lift to drag ratio, which can explain the
increase in average power coefficient.

Another interesting result of the proposed pitching laws is the significant reduction in
both torque and thrust ripples which are of great interest for the mechanical design of such
turbine. This is expected to make the support structure and the foundations cheaper. Out
of the three pitching laws tested, the intermediate one, PL2, can be considered as the best
one as it gives the highest average power coefficient, the lowest thrust ripple and a torque
ripple which is decreased by more than 50% compared to the fixed pitch case.

However, the proposed pitching laws assume that the flow is in a specific direction
and they should be modified if the flow direction changes (at least the reference azimuth
θ = 0◦ should be updated). This would either require relatively expensive and complex
electronic actuators and sensors or limit the applications to river turbines where the flow
direction does not change with time. This problem is nevertheless the same whatever the
pitching laws are and it is not specific to the ones proposed in this study.

The study has shown that the cost of the selected pitching laws is not negligible.
Therefore, it would be interesting to take this parameter into account sooner when new
laws are considered.

Further research will focus on the coupling between pitching laws in the upstream and
downstream halves of a turbine in order to further improve the average power coefficient
and smooth the torque and thrust ripples as much as possible. Studying the impact of such
pitching laws on the power density of a tidal farm is also an interesting point that should
be addressed.
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Appendix A. Details of the Pitching Laws

Appendix A provides the details of the three pitching laws proposed in this article:
PL1, PL2, and PL3, presented in Tables A1–A3, respectively. θstart

upstream corresponds to the
azimuth where the (increasing) blade angle of attack (according to Equation (4)) reaches the
target value defined as 6◦ (PL1), 8◦ (PL2), or 10◦ (PL3), in the upstream half of the turbine
(see Figure 10a). θend

upstream corresponds to the azimuth where the (decreasing) blade angle
of attack (according to Equation (4)) reaches the target value, in the upstream half of the
turbine. Similar parameters θstart

downstream and θend
downstream are defined in the downstream half

although a negligible pitching motion is imposed there. The range of validity of the laws is
defined in Table A4.

The aim is to provide a framework as flexible as possible regarding the choice of
upstream and downstream laws. θstart

downstream and θend
downstream could be different than the

values selected in the upstream half of the turbine.
The upstream law, downstream law, Int 1, Int 2, Int 3, and Int 4 equations, together,

make the global pitching law: β = f (θ) (plotted in Figure 10b).

Table A1. Details of pitching law PL1 (θ is always in degrees (◦) in the expressions).

θstart
upstream [◦] 25

Upstream law [◦] 6 - atan
(

sin(θ π
180 )

λ+cos(θ π
180 )

)
× 180

π

θend
upstream [◦] 167

θstart
downstream [◦] 193

Downstream law [◦] 0.1× sin(θ π
180 )

θend
downstream [◦] 335

Int 1 [◦] 0 + 5.5854× 10−2θ + 4.3288× 10−3θ2 − 2.7370× 10−4θ3

Int 2 [◦] −3.3687× 10−1 + 4.6298× 10−1
(

θ − θend
upstream

)
− 5.7772× 10−2

(
θ − θend

upstream

)2
+ 1.8578× 10−3

(
θ − θend

upstream

)3

Int 3 [◦] 0− 9.7183× 10−2(θ − 180) + 1.4683× 10−2(θ − 180)2 − 5.6463× 10−4(θ − 180)3

Int 4 [◦] −4.2262× 10−2 + 1.5818× 10−3(θ − θend
downstream

)
− 2.1579× 10−3(θ − θend

downstream

)2
+ 8.6488× 10−5(θ − θend

downstream

)3

Table A2. Details of pitching law PL2 (θ is always in degrees (◦) in the expressions).

θstart
upstream [◦] 33

Upstream law [◦] 8 - atan
(

sin(θ π
180 )

λ+cos(θ π
180 )

)
× 180

Π

θend
upstream [◦] 163

θstart
downstream [◦] 197

Downstream law [◦] 0.1× sin(θ π
180 )

θend
downstream [◦] 327

Int 1 [◦] 0 + 5.7635× 10−2θ + 3.3873× 10−3θ2 − 1.5767× 10−4θ3

Int 2 [◦] −1.4151× 10−1 + 4.3507× 10−1
(

θ − θend
upstream

)
− 4.3634× 10−2

(
θ − θend

upstream

)2
+ 1.0901× 10−3

(
θ − θend

upstream

)3

Int 3 [◦] 0− 1.0340× 10−1(θ − 180) + 1.1959× 10−2(θ − 180)2 − 3.5165× 10−4(θ − 180)3

Int 4 [◦] −5.4464× 10−2 + 1.4638× 10−3(θ − θend
downstream

)
− 1.6852× 10−3(θ − θend

downstream

)2
+ 5.1237× 10−5(θ − θend

downstream

)3
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Table A3. Details of pitching law PL3 (θ is always in degrees (◦) in the expressions).

θstart
upstream [◦] 42

Upstream law [◦] 10 - atan( sin(θ π
180 )

λ+cos(θ π
180 )

)× 180
Π

θend
upstream [◦] 158

θstart
downstream [◦] 202

Downstream law [◦] 0.1× sin(θ π
180 )

θend
downstream [◦] 318

Int 1 [◦] 0 + 5.4294× 10−2θ + 2.5025× 10−3θ2 − 9.2188× 10−5θ3

Int 2 [◦] −2.4412× 10−1 + 4.0153× 10−1
(

θ − θend
upstream

)
− 3.0765× 10−2

(
θ − θend

upstream

)2
+ 5.9175× 10−4

(
θ − θend

upstream

)3

Int 3 [◦] 0− 9.2933× 10−2(θ − 180) + 8.2898× 10−3(θ − 180)2 − 1.8832× 10−4(θ − 180)3

Int 4 [◦] −6.6913× 10−2 + 1.2970× 10−3(θ − θend
downstream

)
− 1.2407× 10−3(θ − θend

downstream

)2
+ 2.9708× 10−5(θ − θend

downstream

)3

Table A4. Range of validity (for θ) of each sub-part of the pitching law.

Pitching Law Range of Validity

Int 1 θ ∈ [0◦, θstart
upstream]

Upstream law θ ∈ [θstart
upstream, θend

upstream]

Int 2 θ ∈ [θend
upstream, 180◦]

Int 3 θ ∈ [180◦, θstart
downstream]

Downstream law θ ∈ [θstart
downstream, θend

downstream]
Int 4 θ ∈ [θend

downstream, 360◦]
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