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ORBIT GROWTH OF CONTACT STRUCTURES AFTER

SURGERY

PATRICK FOULON, BORIS HASSELBLATT, AND ANNE VAUGON

Abstract. Investigation of the effects of a contact surgery construction and
of invariance of contact homology reveals a rich new field of inquiry at the

intersection of dynamical systems and contact geometry. We produce con-

tact 3-flows not topologically orbit-equivalent to any algebraic flow, including
examples on many hyperbolic 3-manifolds, and we show how the surgery pro-

duces dynamical complexity for any Reeb flow compatible with the resulting

contact structure. This includes exponential complexity when neither the surg-
ered flow nor the surgered manifold are hyperbolic. We also demonstrate the

use in dynamics of contact homology, a powerful tool in contact geometry.
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1. Introduction

This paper is a sequel of [29] in which the authors decribed a surgery construction
adapted to contact flows. This construction was originally conceived as a source of
uniformly hyperbolic contact flows. However it turns out that the surgered flows
exhibit more noteworthy dynamical properties than orginally observed and that
interesting consequences of the surgery arise even when the initial or resulting flow
are not hyperbolic. Thus the primary interest in this contact surgery may be as a

Key words and phrases. Anosov flow, 3-manifold, contact structure, Reeb flow, surgery, contact
homology.
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rich source of contact flows exhibiting new phenomena from both dynamical and
contact points of view.

The starting point of our surgery is the unit tangent bundle M of a surface
of negative and (mainly, but not always necessarily) constant curvature equipped
with its natural contact structures. This surgery is known to contact-symplectic
topologists as a Weinstein surgery, and its desciption in [29] makes it easier to study
dynamical properties (as opposed, for instance, to topological properties).

Our purpose is to expand the understanding of the dynamical effects achieved
by the contact surgery from [29] in 3 main directions:

• we show that the complexity of the resulting flow exceeds that of the flow
on which the surgery is performed (Theorems 2.10, 2.12, 2.18, and 2.23),

• we show that much of the complexity of the resulting flow is reflected in
the cylindrical contact homology and is therefore realized in any Reeb flow
associated to the contact structure resulting from the surgery (Theorems
2.18, 2.22, and 2.23), and

• we do this beyond the context of hyperbolic flows (in more than one way—
Theorems 2.22 and 2.23).

Taken together, this reveals a much richer field of inquiry at the interface between
contact geometry and dynamical systems than was apparent when the surgery
construction was conceived.

Contact homology and its growth rate are relevant tools to describe dynamical
properties of all Reeb flows associated to a given contact structure. Even if it is not
always explicit in the statements, they play a crucial role in the proofs of Theorems
2.18, 2.22, and 2.23. A goal of this paper is to demonstrate to dynamicists the use
of these powerful tools from contact geometry.

In addition to the dynamical point of view, our study is also motivated by contact
geometry as we want to investigate connections between growth properties in Reeb
dynamics (generally characterized by the growth rate of contact homology) and
the geometry of the underlying manifold. The simplest model of such a connection
is Colin and Honda’s conjecture [18, Conjecture 2.10], and some surgeries under
study give examples supporting it. Colin and Honda speculate that the number of
Reeb periodic orbits of universally tight1 contact structures on hyperbolic manifolds
grows at least exponentially with the period. More generally, one may look for
sources of exponential or polynomial behavior of contact homology. Our starting
point, the unit tangent bundle of an hyperbolic surface, is a transitional example
as it carries two special contact structures, one with an exponential growth rate for
contact homology and one with a polynomial growth rate. We prove (Theorems 2.22
and 2.23) that some surgeries lead to two coexisting contact forms on the surgered
manifold with exponential and polynomial growth rates and therefore give new
examples of transitional manifolds with respect to growth rate. Note that these
examples do not include hyperbolic manifolds (and are therefore compatible with
Colin and Honda’s conjecture).

The principal results in this article were obtained in 2014, and we here integrate
it with work by others that was done contemporaneously [1, 2, 3].

Structure of the paper. In section 2 we cover the background material and present
our main results. Specifically, section 2.2 presents and elaborates our earlier results
[29], and section 2.3 introduces the resulting complexity increase of the surgered
geodesic flow. section 2.4 finally describes how cylindrical contact homology forces
complexity of Reeb flows with the same contact structure, introduces our surgery

1see section 2.1
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on the fiber flow, and discusses the relation of our results to other works on contact
surgery and Reeb dynamics.

The construction of contact surgery is recalled in section 3, which also contains
some preliminary results on the dynamics of the surgered flow and the proof of
theorem 2.10.

In section 4 we define contact homology and its growth rate. This enables us
to prove theorem 2.18 in section 5, theorem 2.22 in section 6 and theorem 2.23 in
section 7.

Acknowledgements. We thank Marcelo Alves, Frédéric Bourgeois, Patrick Massot
and Samuel Tapie for useful discussions and helpful advice. Boris Hasselblatt is
grateful for the support of the ETH, which was important as we finalized this work.

2. The results

2.1. Definitions and notations. A manifold is said to be closed if it is compact
and has no boundary.

A C∞ 1-form α on a 3-manifold M is called a contact form if α∧dα is a volume
form. The associated plane field ξ := kerα is a cooriented contact structure, and
(M, ξ) is called a contact manifold.. The geometric object under study in contact
geometry is the contact structure (as opposed to the contact form). Note that for a
given contact structure ξ = ker(α) the contact forms with kernel ξ are exactly the
forms fα where f ∈ C∞(M,Rr{0}). Additionally, if α∧dα is a volume form then
fα∧ d(fα) is also a volume form for any f ∈ C∞(M,Rr {0}). A curve tangent to
ξ is said to be Legendrian.

The Reeb vector field associated to a contact form α is the vector field Rα
such that ιRαα = 1 and ιRα dα = 0. Its flow is called the Reeb flow (and it
preserves α because LRαα = ιRα dα = 0). Note that the Reeb vector field is
associated to a contact form α: if we consider another contact form α′ = fα where
f ∈ C∞(M,R r {0}), then dα′ = df ∧ α + f dα and the condition ιRα′ dα′ = 0
implies that Rα and Rα′ are not collinear unless f is constant. A Reeb field on a
contact manifold (M, ξ) is the Reeb field of any contact form α with ξ = kerα. By
Libermann’s Theorem [38] on contact Hamiltonians (see for instance [30, Theorem
2.3.1]), these are exactly the nowhere-vanishing vector fields transverse to ξ whose
flows preserve ξ.

A Reeb vector field (or the associated contact form) is said to be nondegenerate
if all periodic orbits are nondegenerate (1 is not an eigenvalue of the differential
of the Poincaré map). A Reeb vector field (or the associated contact form or the
associated contact structure) is said to be hypertight if there is no contractible
periodic Reeb orbit. One can always perturb a contact form into a nondegenerate
contact form. Hypertightness is much more restrictive.

Contact structures on 3-manifolds can be divided into two classes: tight contact
structures and overtwisted contact structures. This fundamental distinction is due
to Eliashberg [21] following Bennequin [11]. Tight contact structures are the contact
structures that reflect the geometry of the manifolds and this article focuses on
them. A contact structure ξ is said to be overtwisted if there exists an embedded
disk tangent to ξ on its boundary. Otherwise ξ is said to be tight. Universally tight
contact structures are those with a tight lift to the universal cover. Universally tight
and hypertight [33] contact structures are always tight. All the contact structures
considered in this paper are hypertight and therefore tight.

We recall from [29] a contact surgery on a Legendrian curve γ ∈ SΣ derived from
a closed geodesic c on a hyperbolic surface Σ. This corresponds to a (1,−q) Dehn-
surgery and results in a new manifold MS with a contact form αA. The construction
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is presented in section 3. The Reeb flow RαA is Anosov if q is positive—and only
then (theorem 3.3).

Definition 2.1 ([37]). Let M be a manifold and ϕ : R ×M → M a smooth flow
with nowhere vanishing generating vector field X. Then ϕ (and also X) is said
to be an Anosov flow if the tangent bundle TM (necessarily invariantly) splits
as TM = RX ⊕ E+ ⊕ E− (the flow, strong-unstable and strong-stable directions,
respectively), in such a way that there are constants C > 0 and η > 1 > λ > 0 for
which

(1)
∥∥Dϕ−t � E+

∥∥ ≤ Cη−t and
∥∥Dϕt � E−∥∥ ≤ Cλt

for t > 0. The weak-unstable and weak-stable bundles are RX ⊕ E+ and RX ⊕
E−, respectively. (E± are then tangent to continuous foliations W± with smooth
leaves.)

An Anosov flow on a 3-manifold is said to be of algebraic type if it is finitely
covered by the geodesic flow of a surface of constant negative curvature or the
suspension of a diffeomorphism of the 2-torus, and it is called a contact Anosov
flow if it is a Reeb flow, in which case E+ ⊕ E− is the contact structure and α is
said to be Anosov as well. Geodesic flows of Riemannian manifolds with negative
sectional curvature are Anosov flows. For surfaces of constant negative curvature
it is easy to verify the defining property directly, and we do so at the start of
section 2.4.3.

In this paper, we show that the complexity of the resulting flow exceeds that
of the flow on which the surgery is performed. We measure the complexity of the
flow of X via its orbit growth, entropy and cohomological pressure. For a contact
form α, a free homotopy class ρ and T > 0, we denote by Nρ

T (α) the number
of Rα-periodic orbits in ρ with period smaller than T and NT (α) the number
of Rα-periodic orbits with period smaller than T . The orbit growth of Rα (or the
associated flow) is the asymptotic behavior of NT (α), its exponential growth rate is
the topological entropy. We summarize the needed notions and facts in section 2.3.1.
Cohomological pressure drives orbit growth in a given homology class and is defined
in section 2.3.2.

2.2. New contact flows. We begin with a paraphrase of the main result of the
surgery construction from [29] in a way that points to the broader perspective of
the present work and make a few initial observations that go further.

Theorem 2.2 ([29, Theorems 1.6, 1.9]). On the unit tangent bundle M of a neg-
atively curved surface, there is a family of smooth Dehn surgeries, including the
Handel–Thurston surgery, that produce new contact flows. The surgered geodesic
flow has the following properties:

(1) It acts on a manifold that is not a unit tangent bundle.
(2) If it is Anosov, it is not ortibt equivalent to an algebraic Anosov flow.
(3) If it is Anosov, then its topological and volume entropies differ, or, equiva-

lently, the measure of maximal entropy is always singular [28].
(4) If it is Anosov and if the surgered manifold is hyperbolic, then non empty

free homotopy class ρ of closed orbits is infinite and is an isotopy class,2

moreover, there exist a1, c1, a2, c2 > 0 such that

1

a2
ln(T )− c2 ≤ Nρ

T (αA) ≤ a1 ln(T ) + c1

2Each closed orbit is related to at most finitely many others by the pair being the boundary
of an embedded cylinder [9]. (This relation is neither transitive nor reflexive.) For comparison,

isotopy only ensures that the circles in question are the boundary components of an immersed
cylinder.
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for all T > 0, where αA is the contact form defined on the surgered man-
ifold. [26, Theorem A], [8, Remark 5.1.16, Theorem 5.3.3], [9], [10, Theo-
rem F].

That these surgeries produce contact flows on hyperbolic manifolds is a corollary
of the two following theorems.

Theorem 2.3 (Thurston [51, 52, Theorem 5.8.2], Petronio and Porti [47]). For
all but infinitely many slopes, Dehn filling a hyperbolic 3-manifold gives rise to a
hyperbolic manifold.

Theorem 2.4 (Folklore [29, Theorem 1.12]). Suppose Σ is a hyperbolic surface,
π : SΣ→ Σ its unit tangent bundle, γ : S1 → M continuous such that c := π ◦ γ is
a closed geodesic that is not the same geodesic traversed more than once and such
that ` ∩ c 6= ∅ whenever ` is a noncontractible closed curve. Then SΣ r (γ(S1)) is
a hyperbolic manifold.

Nonetheless, there exist infinitely many closed orientable hyperbolic manifolds
of dimension 3 which do not support an Anosov flow [49, Theorem A]. Additionally,
since there are only finitely many homotopy classes of tight contact structures on
a 3-manifold [17, Théorème 1] and the contact structures with an Anosov Reeb
flow are tight as they are hypertight ([48], [6, p. 18]), there exist only finitely many
homotopy classes of contact Anosov flows on a given 3-manifold. On hyperbolic
3-manifolds the same goes for isotopy classes [17, Théorème 2]. We do not know if
the surgery from theorem 2.2 can produce different contact structures on the same
manifold.

Remark 2.5. The dynamical properties of the flow after surgery differ from the
properties of Anosov algebraic flows. Indeed, for algebraic flows, free homotopy
classes of closed orbits are finite. For geodesic flows no two (parametrized) orbits
are homotopic, though rotating the tangent vector through π isotopes each to its
flip, which has the same image as another orbit (the same geodesic run backwards),
and only in suspensions are all free homotopy classes of images of orbits singletons
[10, Corollary 4.3].

Our surgery corresponds to a (1,−q)-Dehn surgery and produces Anosov Reeb
flows for q > 0. As part of our study focuses on the q < 0-case, it is important to
note the following.

Proposition 2.6. Some surgeries from theorem 2.2 produce flows that are not
Anosov (theorem 3.3).

In the case q = 1, this surgery is the standard Weinstein surgery as defined by
Weinstein [55] in 1991 simplifying Eliashberg’s work [22] of 1990 (see [30, Chapter 6]
for more details). The surgery (1, q) for any q can be deduced from this construction.
A direct construction for any q using Giroux theory of convex surfaces can be found
in [19].

In answer to a question of Serge Troubetzkoy we here note:

Proposition 2.7. There are analytic Anosov flows as described in theorem 2.2.

Proof. The contact form is smooth and can hence be approximated by analytic
ones. The contact property of the form and the Anosov property of its Reeb flow
are open. �

Remark 2.8. Another perspective on the connection with the Handel–Thurston
construction is that our result implies in particular that the Handel–Thurston ex-
amples are topologically orbit-equivalent to contact flows.
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Remark 2.9. For context we recall here that contact Anosov flows have the
Bernoulli property [36, 45, 16] and exponential decay of correlations [39]. The
Bernoulli property and the Ornstein Isomorphism Theorem [44] imply that the
flows we obtain from our surgery are measure-theoretically isomorphic to the orig-
inal contact Anosov flow up to a constant rescaling of time, the constant being the
ratio of the Liouville entropies. (This answers a question of Vershik.)

2.3. Production of closed orbits for contact Anosov flows.

2.3.1. Impact on entropy. We continue with new results about the features of the
contact Anosov flows from [29] to the effect that the surgery of theorem 2.2 pro-
duces “exponentially many” closed orbits. We preface these statements by a brief
summary of the needed notions and facts pertinent to entropy.

• The topological entropy of an Anosov flow (or of the vector field that gener-
ates it) equals the exponential growth rate of the number of periodic orbits;
in our case this means that htop(Rα) = limT→∞

1
T logNT (α).

• The entropy hµ(ϕt) of a flow ϕt with respect to an invariant Borel prob-
ability measure µ (also referred to as the entropy of µ with respect to ϕt)
does not exceed the topological entropy of ϕt.3

• If a flow-invariant Borel probability measure µ is absolutely continuous with
respect to a smooth volume, then we say it is a Liouville measure and write
hLiouville := hµ.

• For the geodesic flow gt of a surface we have hLiouville(g
t) = htop(gt) if (and

only if [28, 34, 35]) the curvature is constant.
• Scaling of time: if s ∈ (0,∞), then hLiouville(sX) = shLiouville(X) and
htop(sX) = shtop(X).

• More generally, there is Abramov’s formula: the entropy of a time change
gX of a nonzero vector field X with respect to a gX-invariant probability
measure µg canonically associated with an X-invariant Borel probability
measure µ is

(2) hµg (gX) = hµ(X)

∫
g dµ.

This means that comparisons of the intrinsic dynamical complexity of these
vector fields are meaningful only when

∫
g = 1.

• Pesin entropy formula [7]: For a volume-preserving flow ϕt with 1-dimen-
sional expanding direction, hLiouville(ϕ

t) equals the positive Lyapunov ex-
ponent of the flow [7], [37, Definition S.2.5], which is (a.e.) defined as the
exponential growth rate of unstable vectors under the flow and as a function
of time.

Theorem 2.10. If ψt is a contact Anosov flow obtained from the geodesic flow
gt of a compact oriented surface of constant negative curvature by the surgery in
theorem 2.2 (generated by the vector field in (8)), then its topological entropy is
strictly larger. Indeed, htop(ψ

t) > hLiouville(ψ
t) ≥ hLiouville(g

t) = htop(g
t).

Since htop measures the exponential growth rate of periodic orbits of a hyperbolic
dynamical system, the number NT (ψt) of ψt-periodic orbits of period t ≤ T (of up
to a given length) grows at a larger exponential rate than NT (gt).

Remark 2.11. The strict inequality in theorem 2.10 is obtained by contraposition
of a rigidity result [28], so we do not know by how much the topological entropy

3Indeed, the topological entropy is the supremum of the entropies of invariant Borel probability
measures (Variational Principle).
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increases through our surgery. Recently, Bishop, Hughes, Vinhage and Yang sug-
gested to provide effective lower bounds for this entropy-increase by using cutting
sequences in the spirit of Series.

2.3.2. Growth in homology classes. In a self-contained digression, we can give rather
more detailed information about orbit growth in homology classes.

Theorem 2.12. If ψt is a contact Anosov flow obtained from the geodesic flow
gt of a compact oriented surface of constant negative curvature by the surgery in
theorem 2.2 (generated by the vector field in (8)), then

Nζ
T (ψt)

/
Nη
T (gt)

exponentially−−−−−−−→
T→∞

∞

for any homology classes ζ for ψt and η for gt (where Nζ
T (ψt) and Nη

T (gt) count
the number of periodic orbits orbit with period ≤ T in the homology classes ζ and
η).

The proof derives from the notion of cohomological pressure.

Definition 2.13 ([50, Theorem 1(iii), p. 398]). The cohomological pressure of ϕt is

P (ϕt) := inf
[b]∈H1(M,R)

{
sup

µ∈M(ϕt)

{
hµ(ϕt) +

∫
b(X) dµ

}}
,

where M(ϕt) is the set of ϕt-invariant Borel probability measures.

Remark 2.14. The cohomological pressure is the usual pressure of the function
b(X) and the abose formula is well-defined for a cohomology class [b]. Indeed,
here, H1(M,R) is the first de Rham cohomology group, and the integral is the
Schwartzman winding cycle, which is well-defined for a closed 1-form when µ is
ϕt-invariant; the supremum is unaffected by addition of an exact form to b.

Contact Anosov flows satisfy

(3) htop(ϕt) ≥ P (ϕt) ≥ hLiouville(ϕ
t) [25, Corollary 1].

Theorem 2.15 ([25, Theorem 5.3]). If ϕt is a flow such as the ones obtained in
theorem 2.2, then P (ϕt) > hLiouville(ϕ

t).

Thus, the conclusion of theorem 2.10 is strengthened to

htop(ϕt) ≥ P (ϕt) > hLiouville(ϕ
t) ≥ hLiouville(g

t) = htop(gt).

This makes it possible to amplify the observation about increased orbit growth
and prove theorem 2.12. Indeed, contact Anosov flows are homologically full4 [25,
Proposition 1], and, for homologically full flows, cohomological pressure drives orbit
growth in a given homology class ζ [50, Theorem 1]:

(4) Nζ
T (ϕt) ∼ C(ζ)

eTP (ϕt)

T 1+
b1
2

as T →∞,

where b1 is the first Betti number of the underlying manifold.

2.4. Production of closed orbits for any Reeb flow. We now broaden the
scope far beyond hyperbolic dynamics by beginning to involve contact geometry
in a serious fashion. Specifically, the existence of well-understood Reeb flows, such
as those in theorem 2.2, allows us to control all the other Reeb flows associated
to the same contact structure in terms of entropy or orbit growth. We transcend
hyperbolicity because we describe here our results concerning dynamical properties
of Reeb flows associated to all (or a subclass of) contact forms after a contact
surgery. These flows need not be hyperbolic even if the contact structure arises
from an Anosov flow.

4I.e., every homology class contains a closed orbit
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2.4.1. Orbit growth from Anosov Reeb flows. This section presents an archetype
of theorem deriving properties for all Reeb flows from stronger properties for one
Reeb flow. Our results described in section 2.4.2 can be seen as extension of this
theorem. It can be applied to some of the contact flows described in theorem 2.2.

The existence of Anosov Reeb flows is a source of exponential orbit growth for
all Reeb flows as proved by Alves or Macarini and Paternain [40, Theorem 2.12.].

Theorem 2.16 (Alves [3, Corollary 1]). If one Reeb flow for a compact contact
3-manifold (M, ξ) is Anosov, then every Reeb flow on (M, ξ) has positive topological
entropy.

Remark 2.17. Alves also obtains lower bounds for the entropy: for α = fα0 with
f > 0, we get h(Rα) ≥ a/max(f) where a is some growth rate associated to Rα0

.
Note also that these estimates can not be obtained by the Abramov formula, which
determines the measure-theoretic entropy of a time-change because different Reeb
fields for a contact structure need not be collinear.

The standard contact structure on the unit tangent bundle of a hyperbolic sur-
face has an Anosov Reeb flow and therefore, by theorem 2.16, all its other Reeb
flows have positive entropy and their orbit growth is at least exponential. In par-
ticular, theorem 2.16 applies to the contact structures obtained in theorem 2.2 on
hyperbolic manifolds: these are examples satisfying the Colin–Honda conjecture,
and on nonhyperbolic manifolds, for instance, when the surgery is associated to a
simple geodesic. We give a slightly different proof of this result in section 4.

2.4.2. Orbit growth from contact homology. We now present our results and extend
theorem 2.16 in two different settings

(1) when the Reeb flow after surgery is Anosov, we study orbit growth in free
homotopy classes;

(2) when the geodesic associated to the surgery is a simple curve, we prove
positivity of entropy for any contact form (and any surgery).

Let us describe our results in the first setting. The following result can be seen
as a corollary of the invariance of contact homology and the Barthelmé–Fenley
estimates from [10, Theorem F] in the nondegenerate case, and of Alves’ proof of
Theorem 1 in [3] and the Barthelmé–Fenley estimates from [10, Theorem F] in the
degenerate case.

Theorem 2.18. Let (MS , ξS = ker(αA)) be a contact manifold obtained after a
non-trivial contact surgery such that αA is Anosov. Let ρ be a primitive free homo-
topy class containing at least one RαA-periodic orbit. Then for all contact forms α
on (MS , ξS), ρ contains infinitely many Rα-periodic orbits. Additionally,

(1) if α is nondegenerate, there exist a > 0 and b ∈ R such that Nρ
T (λ) ≥

a ln(T ) + b for all T > 0,
(2) if α is degenerate and MS is hyperbolic, there exist a > 0 and b ∈ R such

that Nρ
T (λ) ≥ a ln(ln(T )) + b for all T > 0.

Remark 2.19. In fact, for α nondegenerate, we will prove Nρ
T (α) ≥ Nρ

CT (αA) for
some C > 0 and for all T > 0 and use the Barthelmé–Fenley result. Therefore better
control of Nρ

T (αA) in some free homotopy classes will lead to better estimates.

Remark 2.20. There is no hope to obtain a upper bound on Nρ
T (αA) for all contact

forms as the number of Reeb periodic orbits can always be increased by creating
many periodic orbits in a neighborhood of a preexisting periodic orbit.

Remark 2.21. If the manifold is not hyperbolic, the Barthelmé and Fenley esti-
mates are weaker as the upper bound is linear. The proof of theorem 2.18 can be
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adapted to this situation but leads to weak control of the growth of periodic orbits
in a given homotopy class for degenerate contact forms.

We now turn to our second setting and assume the geodesic associated to the
surgery is a simple curve. Note that we do not assume that the Reeb flow is Anosov
and therefore consider any (1, q)-Dehn surgery. Additionally, note that MS is never
a hyperbolic manifold in this setting. Our main theorem is the following.

Theorem 2.22. If (MS , αA) is a contact manifold obtained from contact surgery
along a simple geodesic, then any Reeb flow of (MS , ker(αA)) has positive topological
entropy.

In particular, the number of periodic orbits grows at least exponentially with
respect to the period. The proof of this theorem is based on Alves’ work [1]. In
the same paper, Alves obtains the same result when the associated geodesic is
separating [1, Section 4 and Theorem 2]. Our strategy of proof is similar to that of
Alves.

Floer type homology and especially contact homology are the main tools to
control Reeb periodic orbits of all contact forms associated to a contact structure.
The contact homology of a “nice” contact form α0 is the homology of a complex
generated by Rα0

-periodic orbits and therefore encode dynamical properties of the
Reeb vector field (contact homology is described in section 4).

The growth rate of contact homology makes it possible define the polynomial
behavior of a contact structure. We now focus on examples obtained by surgery
exhibiting polynomial growth.

2.4.3. Coexistence of diverse contact flows. We first introduce the three Reeb flows
that naturally appear on the unit tangent bundle of a constantly curved surface
of higher genus. This is elementary but not commonly presented. On the unit
tangent bundle of a hyperbolic surface, there is a canonical framing consisting of
X, the vector field on SΣ that generates the geodesic flow, of V , the vertical vector
field (pointing in the fiber direction), and of H := [V,X]. It satisfies the classical
structure equations

(5) [V,X] = H, [H,X] = V, [H,V ] = X.

One can check these by using that in the PSL(2,R)-representation of SΣ̃, these
vector fields are given by

X ∼
(

1/2 0
0 −1/2

)
, H ∼

(
0 1/2

1/2 0

)
, V ∼

(
0 −1/2

1/2 0

)
.

The structure equations imply that e± := V ± H satisfies [X,V ± H] = ∓e±, so
if a vector field f · e± along an orbit of X is invariant under the geodesic flow,
then 0 = [X, fe±] = (ḟ ∓ f)e±, where ḟ is the derivative along the orbit. This

means that ḟ = ±f , so f(t) = const e±t. Thus, the differential of the geodesic flow
expands and contracts, respectively, the directions e±; this is the Anosov property
and E± is spanned by the vector e± = V ±H.

Of course, in the PSL(2,R)-representation of SΣ̃, these 3 flows are given by

X  exp
((1/2 0

0 −1/2

)
t
)

=

(
et/2 0
0 e−t/2

)
,

H  exp
(( 0 1/2

1/2 0

)
t
)

=

(
cosh t/2 sinh t/2
sinh t/2 cosh t/2

)
,

V  exp
((

0 −1/2
1/2 0

)
t
)

=

(
cos t/2 − sin t/2
sin t/2 cos t/2

)
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To see in these terms that X generates a contact flow, define a 1-form α0 by
α0(X) = 1 and α0(V ) = 0 = α0(H). For Z ∈ {V,H} we have

dα0(X,Z) = LX
≡0

α0(Z)

=0

−LZ
≡1

α0(X)

=0

−α0(

∈−{V,H}

[X,Z])

=0

= 0,

so ιX dα0 ≡ 0. Additionally α0 ∧ dα0(X,V,H) = α0(X) dα0(V,H) = 1 because

dα0(V,H) = LV
≡0

α0(H)

=0

−LH
≡0

α0(V )

=0

−α0(

=−X

[V,H])

=−1

= 1.

Thus, α0 ∧dα0 is a volume form; in fact a volume particularly well adapted to this
canonical framing, and α0 is a contact form. Additionally, X = Rα0

.
Likewise, one can check that the 1-forms β and γ defined by β(V ) = 1 and

β(X) = 0 = β(H), and γ(H) = 1 and γ(X) = 0 = γ(V ) are also contact forms.
Their Reeb vector fields are Rβ = V and Rγ = H. Note that γ = dα0(V, ·) and
β = −dα0(H, ·). Additionally, the orientation given by β ∧ dβ is the opposite
of the orientation given by α0 ∧ dα0; therefore α0 and β define different contact
structures. By contrast, α0 and γ define isotopic contact structures. Indeed, let ψt

be the flow of V . Then,

(ψt)∗X = cos t/2X + sin t/2H and

(ψt)∗H = cos t/2H − sin t/2X,

thus

(ψt)∗α0 = cos t/2α0 + sin t/2γ

as the two contact forms coincide on (ψt)∗X, (ψt)∗H and (ψt)∗V = V . So it suffices
to study the geodesic flow as the leading representative of this S1-family of contact
Anosov flows. Geometrically, this family of flows can be described as: rotate a
vector by an angle, carry it along the geodesic it now defines, and rotate back by
the same angle. In other words, it is parallel transport for a fixed angle.

Dynamically Rα0 and Rβ are polar opposites: the geodesic flow is hyperbolic and
the fiber flow is periodic. The surgery increases the complexity of both, whether
or not the twist goes in the correct direction to produce hyperbolicity from the
geodesic flow. For the geodesic flow this is theorem 2.22, and for the fiber flow it
is:

Theorem 2.23. Let (MS , ker(βS)) be a contact manifold obtained from the contact
form for the fiber flow after a non-trivial contact surgery along a simple geodesic.
Then the growth rate of contact homology for (MS , ker(βS)) is quadratic. In par-
ticular, any nondegenerate Reeb flow of (MS , ker(βS)) has at least quadratic orbit
growth5.

2.4.4. Relation to other works on contact surgery and Reeb dynamics. Weinstein
surgery/handle attachment is an elementary building block and fundamental oper-
ation in contact/symplectic topology and has been largely studied from the topolog-
ical point of view (for instance it can be used to construct specific or tight or fillable
contact manifolds). We only mention here works focusing on the Reeb dynamics.

A description of contact surgery with control of the Reeb vector field can be
found in [24], where Etnyre and Ghrist construct tight contact structures and prove
tightness using dynamical properties of the Reeb vector field (their desciption is

5This means that for any nondegenerate contact form β such that ker(β) = ker(βS) the number
NT (β) of Rβ-periodic orbits with period smaller than T satisfies NT (β) ≥ aT 2 for some positive

real number a.
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different from ours as they consider a surgery on a transverse knot and focus on
the description of this surgery via tori).

In [14], Bourgeois, Ekholm and Eliashberg describe the effect of a Weinstein
surgery on Reeb dynamics and contact homology. More precisely, they prove the
existence of an exact triangle in any dimension connecting contact homologies of
the initial manifold and the surgered manifold and a third term associated to the
attaching sphere and called Legendrian contact homology. However, explicit com-
putations are delicate even for our explicit examples, for instance as the Lengendrian
contact homology is the homology of a huge complex. In contrast, our results give
precise estimates in Reeb dynamics but for specific examples.

Our work is largely inspired by Alves’ work on Reeb dynamics as explained
above, note that he himself applied his methods to contact sugery. The study of
Reeb flows with positive entropy comes from Macarini and Schlenk [41] of the unit
cotangent bundle equipped with the standard contact structure. This has been
developed by Macarini and Paternain [40], Alves [1, 2, 3] and others. In [4], Alves,
Colin and Honda relate topological entropy of Reeb flows to the monodromy of an
associated open book decomposition.

3. Surgery and production of closed orbits

The surgery in [29] on which this work is based came with some infelicitous
conventions and an immaterial sign error, so we recapitulate some of the steps
here with more explicit details. This is necessary also as a base for the proof of
theorem 2.10, and for a supplementary result (theorem 3.4) that is needed later. Our
surgery can be performed in a neighborhood of any Legendrian knot in a contact
3-manifold. We start with a description of the surgery in adapted coordinates near
a Legendrian and then explain how to obtain such coordinates in the unit tangent
bundle of a hyperbolic surface and how they are linked to the stable and unstable
bundles.

3.1. The surgery from the contact viewpoint. Let (M, ξ = ker(α)) be a con-
tact 3-manifold and let γ be a Legendrian knot in M . Then there exist coordinates

(t, s, w) ∈ Ω := (−η, η)× S1 × (−ε,+ε),
with 0 < ε < η/2π on a neighborhood of γ in which α = dt + w ds and γ =
{0} × S1 × {0}. The surgery annulus is {0} × S1 × (−ε,+ε). Note that in these
coordinates α ∧ dα = t. ∧ dw ∧ ds and Rα = ∂

∂t , so Ω is a flow-box chart. The
surgeries split this chart into 2 one-sided flow-box neighborhoods of the surgery
annulus, and while the initial transition map between these on {0}×S1× (−ε,+ε)
is the identity, the surgered manifold MS is defined by imposing the desired twist
(or shear) as the transition map on this annulus:

(6) F : S1 × (−ε, ε)→ S1 × (−ε, ε), (s, w) 7→ (s+ f(w), w)

with f : [−ε, ε] → S1, w 7→ exp(iqg(w/ε)), q ∈ Z, g : R → [0, 2π] nondecreasing
smooth, 0 ≤ g′ ≤ 4 even, and g((−∞,−1]) = {0}, g([1,∞)) = {2π}. We specify
that the transition map from {t < 0} to {t > 0} is used to identify points (0−, x)
with (0+, F (x)). With this choice one see that F ∗α = α + wf ′(w) dw and hence
that

F ∗ dα = dα and F ∗(α ∧ dα) = α ∧ dα,

so α ∧ dα is a well-defined volume on MS . The vector field Rα on M induces the
Handel–Thurston vector field XHT on MS . Its flow preserves the Liouville volume
defined by α ∧ dα [29, Corollary 3.3], and the total volume of the manifold is not
changed by the surgery.
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However, we have not yet produced a contact flow: F ∗α = α+wf ′(w) dw, so α
does not induce a contact form on MS . A deformation yields a well-defined contact
form α∓h = α∓ dh for ±t ≥ 0, where

h(t, w) :=
1

2
λ(t)

λ : R→[0,1] is a smooth bump function

∫ w

−ε
xf ′(x) dx on (−η, η)× (−ε, ε) and h = 0 outside.

satisfies dh = 1
2wf

′(w) dw on the surgery annulus and h ≡ 0 for t close to ±η.

Hence F ∗(α+
h ) = α−h and α±h induces a contact form αA on MS . Its Reeb field is a

time-change

(7) RαA :=
XHT

1± dh(XHT )

of XHT [29, Theorem 4.2], which is well-defined because|dh(XHT )| < 1 if 0 < ε <
η/2π [29, Theorem 4.1]. If one considers smaller ε, it is possible to impose the
condition |dh(XHT )| < 1/2 and we will do so in section 7.

The time-change that defines RαA is a slow-down near the surgery annulus,
which confounds comparisons of dynamical complexity because of the extra factor
in Abramov’s formula (2), so we study the vector field

(8) Xh := cRαA = RαA/c,

where c ∈ R is such that

∫
c

1± dh(XHT )
α ∧ dα = 1 to compare entropies.

3.2. Surgery on unit tangent bundle and Anosov flows. We now explain how
to perform a contact surgery on the unit tangent bundle of a hyperbolic surface Σ.
Select a closed geodesic c : S1 → Σ, s 7→ c(s) and consider the Legendrian knot γ
obtained by rotating the unit vector field along c by the angle θ = π/2. This knot is
Legendrain as H is tangent to γ (see fig. 1). Standard coordinates for αA near γ are1240PatrickFoulonandBorisHasselblatt

Figure5:Asimpleclosedgeodesicandnormalvectors

parametrizedbytheparametersofthegeodesiccandtheangle✓withthetangent
vectorofthegeodesic.TheLegendrianknotistheunitvectorfieldperpendiculartoc

givenby✓D�⇡=2.

Figure6:TheannulusS1⇥
�

�⇡
2

�✏;�⇡
2

C✏
�

⇢S1⇥S1beforesurgery

Althoughwelocalizethesurgeryinanannulusaround✓D�⇡=2insidethetorus,
topologicallythisisclearlythesameasin[28].

Toparametrizeaneighborhoodƒoftheperpendicularunitvectorfield�ofc,linearize
theangle✓withthetangentvectorfieldtocbytakingwWD`

2⇡cos✓for✓near�⇡=2,
where`isthelengthofc.Thisgivesparameters

(4).t;s;w/2�WD.�⌘;⌘/⇥S1⇥.�✏;C✏/;

Geometry&Topology,Volume17(2013)

Figure 1. Surgery annulus in the base

obtained by flowing along the vertical field V and then along the geodesic vector
field X [29, Lemma 5.1]: the surgery annulus is contained in the torus T above c
(see fig. 2); it consists of vectors that are almost orthogonal to a chosen geodesic in
a surface. Along γ, E+ is spanned by a vector V +H in the first quadrant.

To prove that the surgered flow is Anosov, [29] uses Lyapunov–Lorentz metrics
[29, Claim 4.5 and Appendix A].
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Annulus Σ= S1 × (−π/2−ϵ,−π/2+ϵ) ⊂ S1 ×S1 after surgeryFigure 2. Surgery annulus before and after surgery (q = 1)

Definition 3.1. The continuous Lorentz metrics Q+ and Q− on M are a pair of
Lyapunov–Lorentz metrics for the flow ϕt generated by X if there exists constants
a, b, c, T > 0 such that

(1) C+ ∩ C− = ∅ where C± is the Q±-positive cone;
(2) Q±(X) = −c;
(3) for any x ∈M , v ∈ C±(x) and t > T , Q±(Dxϕ

±t(v)) ≥ aebtQ±(v)

(4) for any x ∈M Dxϕ
±T
(
C±(x)

)
r {0} ⊂ C±

(
ϕ±T (x)

)
Proposition 3.2. [29, Claim 4.5 and Appendix A] A smooth flow ϕt is Anosov if
and only if it admits a pair of Lyapunov–Lorentz metrics Q− and Q+. The unstable
foliation of the flow is then contained in the positive cone Q+ and the stable foliation
in the positive cone of Q−

For the geodesic flow, one can choose Q± = ±dw ds − cdt2 in the coordinates
(t, s, w). Understanding how the surgery affects the positive cones of Q± is crucial
to understand why the condition q positive is essential to obtain an Anosov flow
after surgery. We restrict attention to the trace of these cones in the sw-plane
and consider the geometry of the action of F by differentiating (6) to see the twist
(shear) in (s, w)-coordinates:

DF =

(
1 f ′(w)
0 1

)
.

Therefore, if q > 0, the image of the first and third quadrant (ie the trace of C+)

e+

C+

DF (C+)

e+

C+

DF (C+)

Figure 3. Action of a positive and negative twist (shear) on the
first quadrant

is a subcone of the first and third quadrant that shares the horizontal axis (see
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fig. 3). Roughly speaking, this implies that the cone field C+ is preserved by the
surgery and one can define a new cone field one the surgered manifold by

Q±0 = ±dw ds− cdt2, if t < 0,

Q±1 = ±
(
dw ds− b(t)f ′(w) dw2

)
− cdt2, if t > 0,

where b : R → R+ smooth with b((−∞, 0]) = {1}, b([η,∞)) = {0} and b′ < 0 on
(−η, η). Then for t = 0, F ∗Q1 = Q0 and Q±0 and Q±1 induces a pair of Lyapunov–
Lorentz metrics on MS . If q < 0, the cones are not preserved and the flow is not
Anosov:

Proposition 3.3. The (1, q)-Dehn surgery defined by F in (6) does not produce
an Anosov flow if −q/ε is large enough, i.e., if either q < 0 is fixed and ε is small
enough or if ε > 0 is fixed and q < 0 with |q| big enough.

Proof. There is a lower bound on the return time to the surgery region, so there
is a K > 0 such that the half-cone a ≤ −Kb ≤ 0 is mapped into the half-cone
0 ≥ a ≥ Kb by the differential of the return map (see fig. 4). Here, we use
coordinates (a, b) in the (s, w)-plane. Now suppose that q/ε < −2K and that the
function g in the definition of f (after (6)) is chosen with monotone derivative on
(0,∞). Then f ′(0) < q/ε, so f ′(w) < q/ε for small w. This has the effect that
for such w, the half-cone around e+ given by 0 ≤ a ≤ Kb is mapped by DF into
the half-cone a ≤ −Kb ≤ 0, which is on the other side of e−. The return map
then sends it into the half-cone 0 ≥ a ≥ Kb, which is the other half of the cone in
which we started. This is incompatible with the existence of a continuous invariant
cone field that extends to points that miss the surgery region, and hence with the
Anosov property. �

shear−−−→

e+

e−

a = Kb

0 ≤ a ≤ Kb

return
map−−−−→

e+

e−

a≤−Kb≤0
a = −Kb

e+

e−

a = Kb

0 ≥ a ≥ Kb

Figure 4. The cones in the proof of theorem 3.3

Note that one can perform a positive surgery on an Anosov flow (and therefore
obtain another Anosov flow) then undo it by performing a negative surgery and
obtain again an Anosov flow. This is compatible with the satement of theorem 3.3,
as q and ε are fixed in the negative surgery (and thus theorem 3.3 does not apply).

Returning to the case of positive q, we note from the preceding:

Proposition 3.4. The stable and unstable foliations of (MS , αA) as described in
theorem 2.2 are orientable.

Proof. The strong stable foliation is contained in the positive cone of Q− and
the strong unstable foliation in the positive cone of Q+, so the stable foliation is
orientable if and only if the positive cone of Q− is orientable (an orientation of
the positive cone is a choice of a connected component of this cone). The stable
and unstable foliations of the unit tangent bundle over a hyperbolic surface are
orientable. Additionally, Q−

(
∂
∂s ,

∂
∂s

)
= 0 and F ∗ ∂∂s = ∂

∂s , so the surgery preserves
the orientation of Q−, and Q− is orientable. It implies that Q+ is orientable. �
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3.3. Impact on entropy. The nature of the surgery map then implies:

Proposition 3.5. If q ≥ 0, then hLiouville(XHT ) ≥ hLiouville(X).

Proof. By the Pesin entropy formula it suffices to show that the positive Lyapunov
exponent of XHT is no less than that of X. Volume-preserving Anosov 3-flows
are ergodic [37, Theorem 20.4.1], so the positive Lyapunov exponent, being a flow-
invariant bounded measurable function, is a.e. a constant. The earlier observation
that for the geodesic flow on a hyperbolic surface the expanding vector is of the form
ete+ means that the Lyapunov exponent of (the normalized) Liouville measure is
1. Therefore, we will show that the positive Lyapunov exponent of XHT is at least
1. To that end we verify that the differential of its time-1 map expands unstable
vectors by at least a factor of e with respect to a suitable norm.

For the geodesic flow the Sasaki metric induces a natural norm, and this norm is
what is called an adapted or Lyapunov norm: for unstable vectors, this norm grows
by exactly et under the flow, and on each tangent space it is a product norm. Our
argument involves only vectors in unstable cones, so we pass to a norm ‖ · ‖+ that
is (uniformly) equivalent when restricted to such vectors: the norm of the unstable
component. Geometrically, this means that at each point we project tangent vectors
to E+ along E− ⊕RX and take the length of this unstable projection as the norm
of the vector. Thus, ‖Dgt(v)‖+ = et‖v‖+ for t ≥ 0.

The proof of hyperbolicity of XHT shows that the cone field defined by the
Lyapunov–Lorentz functions is well-defined on the surgered manifold and invariant
under XHT . Thus, this adapted norm for the geodesic flow defines a (bounded,
though discontinuous) norm ‖·‖+ on unstable vectors for the flow ϕt defined byXHT .
We now show that ‖Dϕ1(v)‖+ ≥ e‖v‖+ for any v in an unstable cone. This is
clear (with equality) when the underlying orbit segment does not meet the surgery
annulus because the action is that of the geodesic flow. If there is an encounter with
the surgery annulus at time t ∈ (0, 1], then v′ := Dϕt(v) satisfies ‖v′‖+ = et‖v‖+,
and we will check that v′′ := DF (v′) satisfies ‖v′′‖+ ≥ ‖v′‖, which implies that
‖Dϕ1(v)‖+ = ‖Dϕ1−t(v′′)‖+ = e1−t‖v′′‖+ ≥ e1−t‖v′‖+ = e1−tet‖v‖+ = e‖v‖+, as
required.

That ‖DF (v′)‖+ ≥ ‖v′‖ follows from the same argument as hyperbolicity of
XHT as suggested by fig. 5, which superimposes the tangent spaces at some x and
F (x) in the surgery annulus (using the identification from the canonical isometries
between these tangent spaces). DF is a positive shear, and in the H-V -frame in
the figure the addition of a multiple of the projection of ∂

∂s (which is close to H)
by a positive shear results in an increase in the projection to E+, which is spanned
by e+ = V +H.

e −
=
V
−
H

e
+

=
V

+
H

V

H

v′

e
+

-i
n
cr
em

en
t

v
′′ = DF

(v
′ )

Figure 5. DF increases the unstable component
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�

Remark 3.6. Alternatively, let z be a point on the annulus of surgery such that
its orbit under the flow Xs will cross the surgery region infinitely often. As usual
consider z as the identification of p = (t, s, w) with F (p) = (t, s + f(w), w) if
ξ0(F (p)) = ae+(F (p)) + be−(F (p)) is in the preserved cone given by a > 0, 0 ≤ b ≤
a. Consider the first return, at time t, Then if q = ϕt(F (p)) = (0, st, wt), the image
of ξ0(F (p)) by the linear tangent map is

ξt(F (q)) = a′e+(F (q)) + b′e−(F (q)) + c′X(F (q))

with

a′ = a exp(t) +
df

dw
(wt)a0(a exp(t)− b exp(−t)),

where
∂

∂s
(F (q)) = a0e

+(F (q)) + b0e
−(F (q)) + c0X(F (q))

so a′ ≥ a(exp(t)+2 df
dw (wt)a0sht). This gives the desired inequality for the projected

norm.

Remark 3.7. We emphasize that the entropy-increase is manifested for XHT and
thus results from the surgery and not from the time-change that makes the flow
contact.

We are now ready to pursue the growth of periodic orbits.

Proof of theorem 2.10. Abramov’s formula (2) with g :=
c

1± dh(XHT )
and µg the

normalized volume defined by αA gives

hLiouville(Xh) = hLiouville(XHT )

∫
c

1± dh(XHT )
α ∧ dα = hLiouville(XHT ).

Combined with our previous result, this gives

(9) hLiouville(ϕ
t) = hLiouville(Xh) = hLiouville(XHT ) ≥ hLiouville(X)︸ ︷︷ ︸

theorem 3.5

= hLiouville(g
t).

This in turn yields a comparison of topological entropies:

︸ ︷︷ ︸
constant curvature

htop(gt) =

(9)︷ ︸︸ ︷
hLiouville(g

t) ≤ hLiouville(ϕ
t) < htop(ϕt)︸ ︷︷ ︸

theorem 2.2.3

. �

Proof of theorem 2.12. By (4), increased cohomological pressure suffices:

(3)︷ ︸︸ ︷
hLiouville(g

t) ≤ P (gt) ≤ htop(gt) =

(9)︷ ︸︸ ︷
hLiouville(g

t)︸ ︷︷ ︸
constant curvature

≤ hLiouville(ϕ
t) < P (ϕt)︸ ︷︷ ︸

theorem 2.15

.

Of course, applying (3) on the right-hand side reproves theorem 2.10. �

4. Contact homology and its growth rate

Contact homology is an invariant of the contact structure computed through
a Reeb vector field and introduced in the vein of Morse and Floer homology by
Eliashberg, Givental and Hofer in 2000 [23]. The definition of contact homology is
subtle and complicated. In this paper, we will consider it as a black box and only
use the properties of contact homology described in theorem 4.1.6

6Plus, for theorem 7.3 we also use (and detail in the proof) an elementary and standard
application of the computation of contact homology in the Morse–Bott setting.
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Roughly speaking, contact homology is the homology of a complex generated by
Reeb periodic orbits of a (nice) contact form. Yet the homology does not depend on
the choice of a contact form (but it depends on the underlying contact structure).
Therefore a Reeb vector field provides us with information on contact homology and
vice-versa. The differential of this complex “counts” rigid holomorphic cylinders in
the symplectization M × R of our contact manifold (this is the technical part of
the definition). These cylinders are asymptotic to Reeb periodic orbits when the
R-coordinate of the cylinder tends to ±∞. Roughly speaking, if a rigid cylinder
is asymptotic to γ± at ±∞, then it contributes ±1 to the coefficient of γ− in the
differential of γ+. This can be seen as a generalization of the differential of Morse
Homology where we “count” rigid gradient trajectories asymptotic to critical points
of a Morse function. In particular, this implies that the differential of a periodic
orbit only involves periodic orbits in the same free homotopy class and with smaller
period. Moreover, the complex is graded and the differential decreases the degree
by 1 (here we will only use the parity of this grading). Computing this differential
is usually out of reach without a strong control of homotopic periodic Reeb orbits.

Variants of contact homology can be defined by considering periodic orbits in
specific free homotopy classes or periodic orbits with period bounded by a given
positive real number T (this operation is called a filtration). In the later situation,
the limit T → ∞ recovers the original homology. This procees is fundamental to
gather information on the growth rate of Reeb periodic orbits.

We recall that, if γ is a nondegenerate T -periodic orbit of the Reeb flow ϕt

of (M, ξ = ker(α)) and p is a point on γ, the orbit γ is said to be even if the
symplectomorphism dϕT (p) : (ξp,dα) → (ξp,dα) has two real positive eigenvalues,
and odd otherwise.

Theorem 4.1 (Fundamental properties of cylindrical contact homology). Let (M, ξ)
be a closed hypertight contact 3-manifold, α0 a nondegenerate contact form on
(M, ξ) and Λ a set of free homotopy classes of M ,

(1) Cylindrical contact homology CHΛ
cyl(α0) is a Q-vector space. It can be of

finite or infinite dimension. It is the homology of a complex generated by
Rα0

-periodic orbits in Λ.
(2) The differential of an odd (resp. even) orbit contains only even (resp. odd)

orbits.
(3) If α is another nondegenerate contact form on (M, ξ), then CHΛ

cyl(α0) and

CHΛ
cyl(α) are isomorphic.

(4) There exists a filtered version CHΛ
≤T (α0) (for T ≥ 0) of contact homology:

the associated complex is generated only by periodic orbits in Λ with period
≤ T . Therefore, CHΛ

≤T (α0) is a Q-vector space of finite dimension and

dim
(
CHΛ
≤T (α0)

)
≤ ] {Rα0

-periodic orbits in Λ with period ≤ T}=:NΛ
T (α0)

(5) (CHΛ
≤T (α))T is a directed system and its direct limit is the cylindrical con-

tact homology. Having a directed system means that for all T ≤ T ′, there
exists a morphism ϕT,T ′ : CHΛ

≤T (α0) −→ CHΛ
≤T ′(α0) and

• ϕT,T = Id
• if T0 ≤ T1 ≤ T2, then ϕT0,T2

= ϕT1,T2
◦ ϕT0,T1

.
As limCHΛ

≤T (α0) = CHΛ(α0), there exist morphisms

ϕT : CHΛ
≤T (α0) −→ CHΛ(α0)

such that the following diagram commutes for T ≤ T ′
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CHΛ
≤T (α0)

CHΛ(α0)

CHΛ
≤T ′(α0)

ϕT,T ′

ϕT ϕT ′

(6) Let α = fα0 be another nondegenerate contact form. Assume f > 0, and let
B be such that 1/B ≤ f(m) ≤ B for all m ∈M . There exist C = C(B) and
morphisms ψT : CHΛ

≤T (α0) −→ CHΛ
≤CT (α) such that the following diagram

commutes

CHΛ
≤T (α0) CHΛ

≤CT ′(α)

CHΛ
≤T ′(α0) CHΛ

≤CT (α)

ϕT,T ′(α0)

ψT

ψT ′

ϕCT,CT ′(α)

This defines a morphism of directed system.

Contact homology was introduced by Eliashberg, Givental and Hofer [23]. The
filtration properties come from [18]. The description in terms of directed systems
takes its inspiration from [43] and is presented in [54, Section 4]. Though commonly
accepted, existence and invariance of contact homology remain unproven in general.
This has been studied by many people using different techniques. This paper uses
only proved results and follows Dragnev and Pardon approaches. If α is hypertight
and Λ contains only primitive free homotopy classes, the properties of contact
homology described in theorem 4.1 derive from [20] (see [54, Section 2.3]). In the
general case, theorem 4.1 can be derived from [46]. Cylindrical contact homology
for hypertight contact forms (and possibly nonprimitive homotopy classes) and the
action filtration are described in [46, Section 1.8]. The case of a not hypertight
contact form when there exists an hypertight contact form derives from the contact
homology of contractible orbits [46, Section 1.8] and our invariant corresponds to
CHΛ

• . Note that when computed through a hypertight contact form, CHcontr
• is

trivial and CHΛ
• is the cylindrical contact homology. In the not hypertight case, our

invariants can be interpreted geometrically using augmentations. This viewpoint is
described in [54, Section 2.4 and Section 4].

Combining the two commutative diagrams from theorem 2.18 and the invariance
of contact homology we obtain the following inequality.

Proposition 4.2. Let α0 and α = fα0 be two nondegenerate contact forms on
(M, ξ), where M is a closed, 3-dimensional manifold and ξ is hypertight. Assume
f > 0, and let B such that 1/B ≤ f(m) ≤ B for all m ∈M . Then

NΛ
L (α) ≥ rank(ϕL(α)) ≥ rank(ϕL/C(B)(α0))

for all L > 0.

If CHΛ(α0) is well-understood, one can get an easier estimate.

Corollary 4.3. Let α0 and α = fα0 be two nondegenerate contact forms on (M, ξ)
where M is a closed, 3-dimensional manifold and ξ is hypertight. Assume f > 0,
and let B such that 1/B ≤ f(m) ≤ B for all m ∈M . If

CHΛ(α0) =
⊕

Rα0
-Reeb periodic orbit γ in Λ

Qγ

then, NΛ
L (α) ≥ NΛ

L/C(B)(α0) for all L > 0.
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In fact, one can derive another invariant of contact structures from these proper-
ties of contact homology. Two nondecreasing functions f : R+ → R+ and g : R+ →
R+ have the same growth rate type if there exists C > 0 such that

f
( x
C

)
≤ g(x) ≤ f(Cx)

for all x ∈ R+ (for instance, a function grows exponentially is it is in the equivalence
class of the exponential). The growth rate type of contact homology is the growth
rate of T 7→ rank(ϕT ). Two nondegenerate contact forms associated to the same
contact structure have the same growth rate type (by theorem 4.2) and therefore,
the growth rate type of contact homology is an invariant of the contact structure.
The growth rate of contact homology was introduced in [13]. It “describes” the
asymptotic behavior with respect to T of the number of Reeb periodic orbits with
period smaller than T that contribute to contact homology. For a more detailed
presentation one can refer to [54].

Colin and Honda’s conjecture [18, Conjecture 2.10] (see section 1) for the contact
structures from theorem 2.2, and theorem 2.18 for nondegenerate contact forms
follow from

Proposition 4.4. Let (M, ξ) be a compact contact 3-manifold and assume there
exists a contact form α0 on (M, ξ) whose Reeb flow is Anosov with orientable stable
and unstable foliations. Then any Rα0

-periodic orbit is even and hyperbolic.

Indeed, by theorem 3.4, one can apply theorem 4.4 to (MS , αA). Note that αA
is hypertight as the Reeb flow is Anosov. Therefore, the differential in contact
homology is trivial (theorem 4.1.2.) and for any set Λ of free homotopy classes,

CHΛ
cyl(αA) =

⊕
RαA -Reeb periodic orbit γ in Λ

Qγ.

Let α = fαA be nondegenerate with f > 0 and let B be such that 1/B ≤ f(m) ≤ B
for all m ∈ M . Applying theorem 4.3 for Λ = {ρ}, we get NΛ

L (α) ≥ NΛ
L/C(B)(αA)

for any L > 0. Using the Barthelmé–Fenley estimates from [10, Theorem F] we
obtain the desired logarithmic growth. This finishes the proof of theorem 2.18 in
the nondegenerate case. Additionally, the number of periodic orbits of an Anosov
flow in primitive homotopy classes grows exponentially with the period. Applying
theorem 4.3 for Λ the set of all primitive free homotopy classes in MS proves the
Colin–Honda conjecture for contact structures from theorem 2.2 and nondegenerate
contact forms.

Proof of theorem 4.4. By definition of stable and unstable foliations, DϕT|ξ(p) has

real eigenvalues µ and 1
µ and the associated eigenspaces are E+ and E−. As the

strong stable foliation is orientable, the eigenvalues are positive. Thus γ is even
and hyperbolic �

5. Orbit growth in a free homotopy class for degenerate contact
forms

In this Section, we prove theorem 2.18 for degenerate contact form (the non-
degenerate case is explained in the previous section). The proof derives from the
proof of [3, Theorem 1]. Yet Alves’ goal was to obtain one orbit with bounded
period in some free homotopy class and not control the number of orbit in this
class, and the following result is not explicit in [3].
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Corollary 5.1. Let (M, ξ) be a closed manifold and α0 an Anosov contact form
on (M, ξ). Let ρ be a primitive free homotopy class of M such that

CHρcyl(α0) =
⊕

Rα0
-periodic orbit γ in ρ

Qγ 6= {0}.

Then, for any contact form α = fαα0 on (M, ξ) and for any Rα0
-periodic orbit of

period T , there exists an Rα-periodic orbit in ρ of period T ′ with eT ≤ T ′ ≤ ET
where e = min |fα| and E = max |fα|.

Proof of theorem 5.1. Fix 0 < ε < e. Without loss of generality, we may assume
fα > 0. We follow Alves’ proof of Theorem 1 in [3] and consider α = fαα0 on (M, ξ)
nondegenerate. For any R > 0, Alves constructs (Step 1) a symplectic cobordism
R×MS between (E+ ε)α0 and (e− ε)α0 which corresponds to the symplectization
of α on [−R,R]×MS , and a map

ΨR : CHρcyl((E + ε)α0) −→ CHρcyl((e− ε)α0)

by counting holomorphic cylinders in the symplectic cobordism. As CHρcyl(Cα0) is

canonically isomorphic to CHρcyl(α0) for any C > 0, ΨR induces an endomorphism

of CHρcyl(α0) and Alves proves this endomorphism is, in fact, the identity.
Let γ be a Rα0

-periodic orbit of period T . For any C > 0, it induces a RCα0

periodic orbit γC of period CT . As

CHρcyl(α0) =
⊕

Rα0
-Reeb periodic orbit γ in ρ

Qγ,

ΨR(γE+ε) = γe−ε and therefore, there exists a holomorphic cylinder between γE+ε

and γe−ε. Now as R tends to infinity (Step 2), SFT compactness (see [3]) shows
that our family of cylinders breaks and a Rα-periodic orbit γε of period Tε appears
in a intermediate level. By construction (e − ε)T ≤ Tε ≤ (E + ε)T . Now, let ε
tend to 0 and use the Arzelà-Ascoli Theorem to obtain a Rα periodic orbit γ′ with
period T ′ such that eT ≤ T ′ ≤ ET .

If α is degenerate (Step 4), there exists a sequence (αn)n∈N of nondegenerate
contact forms converging to α and the Arzelà-Ascoli Theorem can again be applied
to obtain the desired periodic orbit. �

Proof of theorem 2.18 for degenerate contact forms. AsMS is hyperbolic, there are
a1, b1, a2, b2 > 0 such that

1

a2
ln(T )− c2 ≤ Nρ

T (αA) ≤ a1 ln(T ) + c1

for all T > 0 [10, Theorem F]. Let (γn)n∈N be a sequence of RαA -periodic orbits in
ρ of periods (Tn)n∈N such that

• γ0 is a RαA -periodic orbit in ρ with minimal period;
• for all n ≥ 0, γn+1 is a RαA -periodic orbit in ρ with period Tn+1 >

E
e Tn

and such that there exists no periodic orbit of smaller period satisfying the
same conditions.

By theorem 5.1, for any n ≥ 0, there exists a Rα-periodic orbit γ′n of period T ′n
such that eTn ≤ T ′n ≤ ETn. Therefore, T ′n ≤ ETn < eTn+1 ≤ T ′n+1 for all n ≥ 0
and all the orbits γ′n are distinct. Thus, Nρ

T ′
n
(α) ≥ n+ 1 for all n ≥ 0.

To control Nρ
T (α), we now estimate the growth of (Tn)n∈N. By definition, for all

n ≥ 0,

Tn+1 = min
{
T | Nρ

T (α0) ≥ Nρ
E/eTn

(α0) + 1
}
.
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Therefore, if T is such that

1

a2
ln(T )− c2 = a1 ln(E/eTn) + c1 + 1

then Tn+1 ≤ T and

Tn+1 ≤
(
E

e
Tn

)a1a2
e(1+c1+c2)a2 .

Therefore, there exist a3, c3 > 1 such that Tn+1 ≤ (c3Tn)a3 for all n ≥ 0. Thus,
there exists c4 > 0 such that

ln(Tn+1) ≤ c4an+1
3

for all n ≥ 0 and there exists c5 ∈ R such that

ln(ln(Tn+1)) ≤ ln(a3)(n+ 1) + c5

for all n ≥ 0. Now, if eTn−1 ≤ T ′n−1 ≤ T ≤ T ′n ≤ ETn, then

Nρ
T (α) ≥ n ≥ 1

ln(a3)
ln(ln(Tn))− c5 ≥

1

ln(a3)
ln(ln(T ))− c6

for some c6 ∈ R. This proves theorem 2.18. �

Remark 5.2. If a1a2 = 1, one can get better estimates and obtain the same growth
as in the nondegenerate case.

6. Exponential growth of periodic orbits after surgery on a simple
geodesic

We now prove theorem 2.22 using the following result by Alves. To state it, we
first define the exponential homotopical growth of cylindrical contact homology. Let
(M, ξ) be a closed contact manifold and α0 a hypertight contact form on (M, ξ).

For T > 0, let N cyl
T (α0) be the number of free homotopy classes ρ of M such that

• all the Rα0 -periodic orbits in ρ are simply-covered, nondegenerate and have
period smaller than T ;
• CHρcyl(α0) 6= 0.

Definition 6.1 (Alves [1]). The cylindrical contact homology of (M,α0) has ex-
ponential homotopical growth if there exist T0 ≥ 0, a > 0 and b ∈ R such that, for
all T ≥ T0,

N cyl
T (α0) ≥ eaT+b.

Theorem 6.2 (Alves [1], Theorem 2). Let α0 be a hypertight contact form on a
closed contact manifold (M, ξ) and assume that the cylindrical contact homology
has exponential homotopical growth. Then every Reeb flow on (M, ξ) has positive
topological entropy.

If ρ is a free homotopy class containing only one Rα0 -periodic orbit and if this
orbit is simply-covered and nondegenerate, it is a direct consequence of the defini-
tion of contact homology that CHρcyl(α0) = Q. Therefore, to prove theorem 2.22,
it suffices to prove the following propositions.

Proposition 6.3. The contact form αA is hypertight in MS.

Proposition 6.4. Let (MS , αA) be a contact manifold obtained after a contact
surgery along a simple geodesic. Let N ′T (αA) be the number of free homotopy classes
ρ such that ρ contains only one RαA-periodic orbit and this orbit is simply-covered,
nondegenerate and of period smaller than T . Then, there exist T0 ≥ 0, a > 0 and
b ∈ R such that, for all T ≥ T0, N ′T (αA) ≥ eaT+b.
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Indeed, the exponential growth of N ′T (αA) with respect to T induces the expo-
nential homotopical growth of (MS , αA) and we can apply theorem 6.2.

We now turn to the proofs of theorem 6.3 and theorem 6.4. In SΣ, T = π−1(c)
is a torus, and our surgery preserves this torus. Let TS denote the associated torus
in MS . Van Kampen’s Theorem tells us that TS is π1-injective.

To prove theorem 6.4, we want to find free homotopy classes with only one
periodic Reeb orbit. We will consider free homotopy classes containing a periodic
orbit disjoint from TS and prove there are enough of such classes. First, we describe
Reeb periodic orbits and study the properties of free homotopies between them.

Claim 6.5. There are three types of RαA-periodic orbits:

(1) periodic orbits contained in TS, the only periodic orbits of this kind are c,
−c (c with the reverse orientation) and their covers,

(2) periodic orbits disjoint from TS, these orbits correspond to closed geodesics
in Σ disjoint from π(c) (this includes multiply-covered geodesics),

(3) periodic orbits intersecting TS transversely.

Therefore, a free homotopy between two RαA-periodic orbits can always be per-
turbed to be transverse to TS .

Proposition 6.6. Let δ0, δ1 be two smooth loops in MS and H : [0, 1]× S1 →MS

be a free homotopy between δ0 and δ1 transverse to TS. N :=H−1(TS) is a smooth
manifold of dimension 1 properly embedded in [0, 1]× S1. Therefore,

(1) one can modify H so that N does not contain contractible circles,
(2) if δ0 is a RαA-periodic orbit transverse to TS, N does not contain a segment

with end-points on {0} × S1.

Proof. Consider an innermost contractible circle c0 in N ⊂ [0, 1]× S1, c0 bounds a
disk D0 in [0, 1] × S1. The image of c0 is contractible in TS as TS is π1-injective.
Therefore, there exists a continuous G : D0 → TS such that H|c0 = G|c0 and one can
replace H|D0

by G to obtain a new homotopy (still denoted by H ) between δ0 and
δ1. Now, consider a neighborhood [−ν, ν]×TS of TS in MS (with TS ' {0} ×TS)
and a disk D1 containing D0 such that H(D1) ⊂ [0, ν] × TS and H(D1 r D0) ⊂
(0, ν]×TS . One can perturb H in int(D1) so that H(D1) ⊂ (0, ν]×TS . Performing
this inductively on the contractible circles proves 1.

We now assume δ0 is an RαA -periodic orbit transverse to TS . By contradiction,
consider an innermost segment c0 in N with end-points on {0}×S1. The end-points
of c0 correspond to consecutive intersection points of δ0 with TS . Let c1 be the
segment in {0}×S1 joining these two end-points points and homotopic (relative to
end-points) to c0. By construction, there exists a homotopy (ηt)t∈[0,1] : [0, 1]→MS

(relative to end-points) between η0 = H(c0) et η1 = H(c1) such that ηt(s) ∈ TS
if and only if t = 1 or s = 0, 1. Let M ′ be the manifold with boundary obtained
by cutting MS along TS . Note that M ′ can also be obtained by cutting SΣ along
T. The projection M ′ → MS is injective in the interior of M ′, therefore ηt(s) is
well-defined in M ′ if t 6= 0 and s 6= 0, 1. Thus, there exists a homotopy η′t in M ′

lifting ηt. This homotopy induces a homotopy in SΣ and, as a result, a homotopy
in Σ between a geodesic arc contained in π(c) and a geodesic arc with end-points
on π(c). As Σ is hyperbolic, this can only happen if our second geodesic arc is also
contained in π(c), a contradiction. �

Proof of theorem 6.3. By contradiction, assume there exists a free homotopy H
between δ, a RαA periodic orbit, and a point p /∈ TS . As TS is π1-injective, δ
cannot be contained in TS . Without loss of generality we may assume that H is
transverse to TS and apply theorem 6.6.
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If δ is disjoint from TS , then N ⊂ [0, 1]× S1 (see theorem 6.6) can only contain
circles parallel to the boundary. We will now prove that we can modify H so that
N is empty. Let c0 be the circle in N closest to {0}×S1 and let C be the closure of
the connected component of ([0, 1]×S1)rc0 containing {1}×S1. Then H(c0) is an
immersed circle contractible in TS and there exists a continuous map G : C → TS
such that G|c0 = H and G{1}×S1 is constant. We replace H|C with G to obtain a
new homotopy H. Now, consider a neighborhood [−ν, ν]× TS of TS in MS and a
neighborhood C1 of C such that H(C1) is contained in [0, ν]×TS . We can perturb
H so that H(C1) is contained in (0, ν] × TS . Therefore we may assume that N
is empty and H is an homotopy in MS r TS . It induces an homotopy in SΣ, a
contradiction as the periodic orbits are not contractible in SΣ.

Finally, we consider the case δ transverse to TS . In this case, N has boundary
points on {0} × TS but not on {1} × TS . This contradicts theorem 6.6. �

Proposition 6.7. If δ is a RαA-periodic orbit disjoint from TS, then the free
homotopy class of δ contains exactly one RαA-periodic orbit.

Proof. By contradiction, consider a free homotopy H from δ to δ1, a distinct RαA-
periodic orbit. Without loss of generality, we may assume that H is transverse to
TS apply theorem 6.6

If δ1 is disjoint from TS , then N can only contain circles parallel to the boundary.
If N is empty, H induces a homotopy in SΣ and therefore in Σ. Yet, two closed
geodesics on a hyperbolic surface are not homotopic. This proves N is not empty.
Let c0 be the circle in N closest to {0}×S1 and M ′ be the manifold with boundary
obtained by cutting MS along TS . The homotopy H induces a homotopy G between
δ and H(c0) ⊂ TS . The homotopy G lifts to M ′ and therefore induces a free
homotopy in SΣ and, as a result, a free homotopy in Σ between a closed geodesics
and a loop contained in the geodesic π(c). This can happen only if our first geodesic
is a cover of π(c). Yet this implies δ ⊂ TS , a contradiction.

If δ1 is transverse to TS , the manifold N is not empty and has end-points on
{1} × S1 but cannot have end-points on {0} × S1. This contradicts theorem 6.6.

Finally, the case δ1 contained in TS is similar to the case δ1 disjoint from TS .
In this case, N contains only circles parallel to the boundary and {1} × S1 is in
N . �

Proof of theorem 6.4. If π(c) is nonseparating, by cutting Σ along π(c) we obtain
a surface of genus at least 1 with two boundary components. Let `1 and `2 be two
loops in Σ r c homotopically independent and with the same base-point. Then,
any nontrivial word in `1 and `2 defines a nontrivial free homotopy class for Σ and
there exists a closed geodesic on Σ representing this class. This RαA -periodic orbit
is always nondegenerate. Additionally, we may assume that the orbits associated
to `1 and `2 are simply-covered. If a word is not the repetition a smaller word,
the associated orbit is therefore simply covered. As `1 and `2 are independent
all these geodesics are disjoint and their number grows exponentially with the pe-
riod. Finally, these geodesics do not intersect c as geodesics always minimize the
intersection number.

If π(c) is separating, by cutting Σ along π(c) we obtain two surfaces of genus at
least 1 with one boundary components. The proof is similar. �

7. Coexistence of diverse contact flows—proof of theorem 2.23

7.1. Dynamical properties of the periodic Reeb flow after surgery. We
now apply the general construction of contact surgery along a Legendrian curve
described in section 3.1 to the contact structure with contact form β and periodic
Reeb flow described in section 2.4.3. On the unit tangent bundle of a hyperbolic
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surface Σ, select a closed geodesic c : S1 = R/Z → Σ, s 7→ c(s) and consider
the Legendrian knot γ obtained by rotating the unit vector field along c by the
angle θ = π/2. Note that the Legendrian knot γ is the same as in section 3.2
(and is tangent to H). To obtain standard coordinates in a neighborhood of γ
we first consider an annulus A in SΣ transverse to the fibers with coordinates
(s, w) ∈ S1 × (−2ε, 2ε) such that β|A = w ds and then flow along the Reeb vector

field Rβ to obtain coordinates (t, s, w) ∈ S1 × A = N such that β = dt + w ds7

(to remain coherent with previous conventions our circles have different lengths,
more precisely t ∈ R/2πZ and s ∈ R/Z). Note that N can be interpreted as the
suspension of the annulus A by the identity map.

Our non-trivial surgery is defined by a twist (shear) F along A. We denote by
MS the manifold SΣ after surgery and by NS ⊂MS the manifold (with boundary)
N after surgery. Let βS be the contact form on MS as described in section 3.1.
Note that β and βS coincide outside N and NS respectively. The manifold NS is
the suspension of the annulus A by the shear map F . Moreover, the map pS : NS →
(−2ε, 2ε) given by the w-coordinate is well-defined and is a trivial torus-bundle. For
w ∈ (−2ε, 2ε), the torus p−1

S (w) is foliated by closed Reeb orbits if and only if

f (w) = 2π
pw
qw
∈ 2πQ

where pw and qw are coprime. In this situation the orbits of ∂
∂t on p−1

S (w) are

periodic of period qw. The Reeb vector field is a renormalization of ∂
∂t (see (7)).

Finally, let T = S1 × S1 ×{0} in N and TS be its image in MS . By van Kampen’s
theorem, this torus is incompressible. Therefore the contact form βS is hypertight.
Note that if f(w) ∈ 2πQ and f(w′) ∈ 2πQ but f(w) 6= f(w′), the associated
periodic orbits are not freely homotopic.

7.2. Proof of theorem 2.23. The contact form βS is degenerate and the renor-
malization from the surgery makes the direct study a bit harder. So, to estimate the
growth rate of its contact homology, we will standardize and perturb our contact
form.

For any w ∈ (−2ε, 2ε), the vector fields ∂
∂t + f(w)

2π
∂
∂s and ∂

∂s generate circles in

the torus p−1
S (w). These circles induce a trivialisation of NS . Let (τ, σ, w) be the

coordinates on NS associated to this trivialisation. Without loss of generality, we
may assume that the map f defining the twist (shear) F is constant on (−2ε,−ε)∪
(ε, 2ε), that f ′(w) 6= 0 for any w ∈ (−ε, ε) and that f is invariant under reflection
with respect to the point (0, q/2). Therefore, for w in [−2ε,−ε],

βS = dτ + w dσ

and for w in [ε, 2ε],

βS =
(

1 +
qw

2π

)
dτ + w dσ.

Lemma 7.1. There exist smooth maps h0, k0 : (−2ε, 2ε)→ R such that

β0 = h0(w) dτ + k0(w) dσ

7These coordinates along γ are different from the coordinates defined for the surgery associated
to the contact form α as, for instance, the surgery annulus is different. It is possible to derive
a contact form from β on the surgered manifold using the coordinates and surgery associated to

α: write β in local coordinates, compute F ∗β and interpolate using bump and cut-off functions.
Unfortunately, this construction yields a complicated Reeb vector field. Note that the contact

structure obtained this way is isotopic to ker(βS). This can be proved as follows. First the two
surgeries result in the same manifold. Moreover, a surgery can be described as the gluing of a
solid torus on an excavated manifold. Therefore we just need to prove that the contact structures
on the glued tori are the same. This derives from the classification of contact structures on D3 by

Eliashberg. See [42] for an application to the torus.
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is a contact form such that β0 = βS for w close to ±2ε and Rβ0
and RβS are

positively collinear on NS. Therefore, β0 and βS are isotopic (through contact
forms).

Proof. Let h0 and k0 be the maps defined by k0(w) = w and

h0(w) = 1 +

∫ w

−2ε

f(u)/2π du

for w ∈ (−2ε, 2ε). As
∫ ε
−ε f(u)du = qε, β0 = βS for w ∈ (ε, 2ε). Moreover, the

contact condition is

1 +

∫ w

−2ε

f(u)/2π du− wf(w)/2π > 0

and this condition is always satisfied for ε small enough. Additionally, the Reeb
vector field is positively collinear to (k′0(w),−h′0(w)) = (1,−f(w)/2π). Finally, as
Rβ0

and RβS are positively collinear, (uβS+(1−u)β0)u∈[0,1] is a contact isotopy. �

The contact form β0 is degenerate. To estimate the growth rate of its con-
tact homology, we have to perturb it. Our perturbation draws its inspiration from
Morse–Bott techniques. To describe our perturbation, we need to fix some no-
tations. The manifold SΣ r p−1((−ε, ε)) is a trivial circle bundle. Let S′ be a
surface (with boundary) transverse to the fibers and intersecting each fiber once:
S′ provides us with a trivialisation S′ × S1 of SΣ r p−1((−ε, ε)). The surface S′

has two boundary components. Let ϕ : S′ → R be a Morse function such that
ϕ = 0 on the boundary of S′ and, if q > 0 (resp. q < 0), the connected compo-
nent of ∂S′ corresponding to w = −ε is a maximum (resp. a minimum) and the
connected component corresponding to w = ε a minimum (resp. a maximum). For
any w such that f(w) = 2πp(w)/q(w) ∈ 2πQ, we denote by P (w) the period of
the Rβ0

-periodic orbits foliating p−1
S (w). Note that there exists CP > 0 such that

q(w)/CP ≤ P (w) ≤ CP q(w), this implies that the number of torus with w ∈ (−ε, ε)
foliated by Reeb periodic orbits with period smaller than L grows quadratically in
L.

For a contact form α, let σ(α) denote the action spectrum: the set of periods of
the periodic orbits of Rα.

Proposition 7.2. Let T > 0, T /∈ σ(β0). There exists β′ = lβ0 with l : MS → R+

arbitrarily close to 1 such that

• β′ is hypertight and nondegenerate
• the periodic orbits of Rβ′ with period ≤ T are exactly:

(1) the fibers associated to the critical points of ϕ and their multiple of
multiplicity ≤

⌊
T
2π

⌋
(2) for all w ∈ (−ε, ε) such that P (w) < T , two orbits in p−1

S (w) and their

multiple with multiplicity ≤
⌊

T
P (w)

⌋
• if δ is a Rβ′-periodic orbit of period ≤ T then all the Rβ′-periodic orbit in

the free homotopy class of δ are periodic orbits of period ≤ T .

Proposition 7.3. If δ is a simply-covered Rβ′-periodic orbit of period ≤ T of the
second type in theorem 7.2, then

CH[δ]
cyl(M, ker(β0)) = Q2.

Proof of theorem 7.2. There exists ν > 0 such that for any w ∈ (−ε,−ε+ ν] ∪ [ε−
ν, ε), if f(w) = 2πp(w)/q(w) ∈ 2πQ then q(w) > CPT . Let

N ′S = p−1
S ((−ε,−ε+ ν] ∪ [ε− ν, ε)).
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Let S′′ be a smooth surface in MS with boundary obtained by adding to S′ two
annuli in NS , transverse to Rβ0

and projecting to [−ε,−ε+ ν] ∪ [ε− ν, ε]. We can
therefore endow S′′ r S′ with coordinates (s′, w′) such that w′ lifts w. We now
perturb ϕ and extend it to S′′ so that ϕ(s′, w′) = ϕ(w′) on S′′ r S′, ϕ′(w′) 6= 0
for all w′ ∈ [−ε,−ε + ν) ∪ (ε − ν, ε], ϕ is flat (all its derivative are equal to 0) for
w = ±(ε − ν) and the critical points of ϕ are unaltered. Finally, we extend ϕ to
MS to obtain a smooth function, Rβ0

-invariant and such that ϕ ≡ 0 in NS rN ′S .
Let βλ = (1 + λϕ)β0. This is a standard Morse–Bott perturbation (see [12,

Lemma 2.3]) in MS r p−1
S ((−ε, ε)), therefore, for λ� 1, the periodic orbits in this

area correspond to the critical points of k.
In the coordinates (τ, σ, w), we have

βλ = (1 + λϕ(w))(h0(w) dτ + k0(w) dσ).

Therefore, in these coordinates, the Reeb vector field is positively collinear to

((1 + λϕ(w))k′0(w) + λϕ′(w)k0(w))
∂

∂τ
− ((1 + λϕ(w))h′0(w) + λϕ′(w)h0(w))

∂

∂σ
.

The σ-coordinate is nonzero as ϕ and h have the same monotonicity. For λ � 1,
the σ-coordinate is close to −h′0(w), the τ -coordinate to k′0(w) and Rβλ is close to
Rβ0 . Therefore, for λ � 1, if there is a Rβλ -periodic orbit in N ′S , this orbit has
slope 2πp′(w)/q′(w) ∈ 2πQ with q′(w) > CPT . Thus there are no periodic orbit
with period smaller than T in N ′S and the periodic orbits with period bigger than
T are not in the free homotopy classes of orbits with period smaller than T as
described in theorem 7.2.

In p−1
S ([−ε+ ν, ε− ν]), the periodic orbits with period ≤ T are contained in tori

p−1
S (w) such that P (w) ≤ T . These tori are foliated by periodic orbits. Morse–

Bott techniques apply here and give the second type of periodic Reeb orbits: for
any such w we perturb β in a neighborhood of p−1

S (w) with a function derived

from a Morse function ϕw defined on p−1
S (w)/Reeb flow = S1 and the periodic

orbits after perturbation correspond to the critical points of ϕw. For a given w we
obtain two orbits (one associated to the maximum of ϕw and one associated to the
minimum of ϕw), their covers and some orbits with period bigger than T and in
the free homotopy class of arbitrarily large covers of our two simple orbits. This
perturbation derives from [12, Lemma 2.3] and is described for tori in [54, Section
3.1].

Lastly, standard perturbation techniques prove there exists an arbitrarily small
perturbation of βλ with the following properties:

• it gives rise to a nondegenerate contact form,
• it does not change the periodic orbits with period smaller than T ,
• it does not create periodic orbits of period bigger than T in the free homo-

topy classes of orbits of period smaller than T . �

Proof of theorem 7.3. Let δ ∈ p−1
S (w) be a Rβ′ -periodic orbit of period ≤ T of

the second type in theorem 7.2. Then the Rβ0-periodic orbit in the class [δ] are

exactly the orbits in p−1
S (w) (and all these orbits have the same period). As δ

is simply-covered, Dragnev’s [20] results can be applied. Additionally, standard
perturbations do not create contractible periodic Reeb orbits. Therefore, the dif-
ferential for contact homology can be described using “cascades” from Bourgeois’
work [12]. The case of a unique torus of orbit is explained in [12, Section 9.4]. The
cascades used to describe the differential in this degenerate setting mix holomor-
phic cylinders between orbits and gradient lines for ϕw in p−1

S (w)/Reeb flow = S1

(for some generic metric). As all periodic orbits in this class have the same pe-
riod, there is no homolorphic cylinder in the cascade and the differential coincides
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with the Morse–Witten differential for ϕw (ie the differential associated to Morse
homology). Therefore, cylindrical contact homology in the free homotopy class ρ
is 2-dimensional. The cascades of Morse–Bott homology are explicitly described
in [15] (in a slightly different setting). �

Proof of theorem 2.23. Let β′ = fβ be a nondegenerate hypertight contact form
and B be such that 1/B < f < B. Let (Ti)i∈N be an increasing sequence such that
limi→+∞ Ti = +∞ and Ti /∈ σ(β0). For all i ∈ N, let βi = fiβ be the contact form
given by theorem 7.2 for T = Ti. We may assume,

1

B
<
fi
f
< B

as fi is arbitrarily close to 1. By theorem 7.2,

dim (CHTi(αi)) ≤
⌊
Ti
2π

⌋
C + 2

∑
w,P (w)≤Ti

⌊
Ti

P (w)

⌋
where C is the number of critical points of k and∑

w,P (w)≤T

⌊
T

P (w)

⌋
= O(T 2

i ).

In addition, we have the following commutative diagram (see theorem 4.1),

CH≤Ti/C(B)(β
′) CH≤Ti(βi)

CH(β′) CH(βi)

ϕTi/C(B)(β
′) ϕTi(βi)

thus
rk(ϕTi/C(B)(β

′)) ≤ rk(ϕTi(βi)) ≤ dim (CHTi(βi)) ≤ a1(T 2
i ).

A symmetric commutative diagram implies

rk(ϕTi/C(B)(βi)) ≤ rk(ϕTi(β
′))

Propositions 7.2 and 7.3 prove that ϕTi/C(B) is injective on the class of simply-
covered periodic orbits of the second type (as defined in theorem 7.2). Therefore
rk(ϕTi/C(B)(βi)) ≥ a0T

2
i and the growth rate of contact homology is quadratic. �
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Laboratoire de Mathématiques d’Orsay, Univ. Paris-Sud, CNRS, Université Paris-
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