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Abstract

Numerical solution of Richards’ equation remains challenging to get robust, accurate and
cost-effective results, particularly for moving sharp wetting fronts. An adaptive strategy for
both space and time is proposed to deal with 2D sharp wetting fronts associated with vary-
ing and possibly vanishing diffusivity caused by nonlinearity, heterogeneity and anisotropy.
Adaptive time stepping makes nonlinear convergence reliable and backward difference for-
mula provides high-order time scheme. Adaptive mesh refinement tracks wetting fronts with
an a posteriori error indicator. The novelty of this paper consists in using this technique
in combination with a weighted discontinuous Galerkin framework to better approximate
steep wetting fronts by a discontinuity. The potential of the overall approach is shown
through various examples including analytical and laboratory benchmarks and simulation
of full-scale multi-materials dam wetting experiment.

Keywords: Unsaturated porous media, Weighted Discontinuous Galerkin method, Adap-
tive Mesh Refinement, A posteriori error estimation, Adaptive time stepping, BDF.

1 Introduction

Predicting variably-saturated flows in porous media is a major issue for many fields in science
and engineering. For example, such flows arise in soil physics, hydrogeology, environment, agri-
culture or oil industry for problems like subsurface contaminant transport, petroleum reservoir,
water resources, surface ponding, etc.5

In the present work, flows in variably-saturated porous media are described by Richards’
equation. What makes Richards’ equation very attractive is that it models the porous medium
as a whole part including both saturated and unsaturated zones. Richards’ equation is a nonlin-
ear parabolic equation which can degenerate into an elliptic equation under complete saturation
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condition. Richards’ equation has been extensively used for numerical simulations by the hy-10

drogeology community, see e.g. [68, 67]. Despite this research effort, many numerical challenges
remain for solving Richards’ equation with some simulations being still unreliable and/or expen-
sive [26, 79]. This numerical complexity prevented a more general use of Richards-based model
for a number of applications. Indeed, the solution of Richards’ equation involves sharp wetting
fronts which evolve both in space and time and are difficult to resolve. Besides, the simulation15

must treat simultaneously unsaturated/saturated regions of parabolic/elliptic natures, several
porous media of different hydraulic properties and possibly fast-changing boundary conditions.
These aspects can also lead to steep gradients acting like discontinuities. Considering the set
of nonlinear functions for hydraulic properties, it is seldom possible to foresee the behaviour
of Richards’ equation and getting numerical solutions can be hard to achieve. Especially, nu-20

merical schemes often fail to converge or need fine discretization, making computation costly.
Many numerical methods are dealing with Richards’ equation to treat wetting fronts and het-
erogeneous soils in various contexts. Each of them shows advantages and drawbacks and that
is the reason why research is still undergoing to push back the limits for the use of Richards’
equation. For instance, to handle layered soils, some recent publications include a Kirchhoff25

integral transform-based method [66], a transversal method of lines [5], a domain decomposition
technique with L-scheme linearization [61] and even upscaled models of Richards’ equation for
fractured porous media [36].

In this paper, a discontinuous Galerkin (DG) method is chosen to solve Richards’ equation.
DG methods are based on a variational formulation in an element-wise fashion, sharing ad-30

vantages both with finite elements and finite volumes methods. In particular, they are locally
conservative which is crucial in fluid dynamics [57]. Moreover, the nature of DG formula-
tion enables to work on non-conforming mesh and to change locally the degree of polynomial
approximation. This is an important benefit since adaptive mesh refinement (AMR), the so-
called h-adaptation, and high-order accuracy, the so-called p-adaptation, become possible [19],35

promoting a growing use of DG methods for transport phenomena in porous media such as
two-phase flow problems [35, 3]. However, DG methods remain sparsely applied to Richards’
equation. In 2007, Li et al. solved Richards’ equation in 1D with a local discontinuous Galerkin
method [39, 38]. Sochala discretized Richards’ equation through a SIPG mixed DG formulation
in 2008 [64, 63]. Recently, in 2019, Doleǰśı et al. [20] proposed a space-time DG method for40

solving Richards’ equation.
To reach robustness and accuracy, an adaptive strategy is developed in this paper. Richards’

equation is known to be a stiff differential equation with difficult convergence [49, 37, 40] so
the time discretization and the nonlinear solver have to be addressed carefully. Adaptive mesh
refinement will be used to capture moving wetting fronts thanks to a posteriori estimation. h-45

Adaptation is employed for two-phase flow in porous media [35] but also for Richards’ equation
[45, 38]. Making the most of DG methods flexibility, adaptive mesh refinement is combined with
a weighted discontinuous Galerkin (WDG) framework which allows discontinuity in the solution
according to the nonlinear diffusivity. Following earlier works, this approach was formulated
by Ern, Di Pietro and other collaborators [23, 17] and by Proft and Rivière under the name50

improved and adapted discontinuous Galerkin methods [54, 55]. Application of such strategy
for Richards’ equation, combining adaptive mesh refinement, a posteriori estimation and WDG
framework, is the main novelty of the present study.

The Richards’ equation framework is first recalled in Section 2. In Section 3, Richards’
equation discretization is presented through a DG framework and then solved by a nonlinear55

iterative process aiming to robustness. Section 4 is dedicated to the adaptive strategy pro-
posed to improve solving of Richards’ equation. Several numerical experiments are discussed
in Section 5. In particular, the modeling strategy is tested on a challenging benchmark case of
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full-scale wetting of a multi-materials dam. Finally, Section 6 is devoted to some concluding
remarks.60

2 Model problem

2.1 Richards’ equation

Richards’ equation is a classical nonlinear parabolic equation used to describe flow in unsatu-
rated/saturated zones of an aquifer. Derivation of Richards’ equation is described for instance
in [67]. Variables in play are θ the water content [-], ψ the pressure head [L] and K the hydraulic
conductivity tensor [L ·T−1]. The mixed formulation is selected in the present study owing to
its versatility [26]:

∂tθ(ψ)−∇ · (K(ψ)∇(ψ + z)) = 0. (1)

Alternative pressure-based or saturation-based formulations have been discarded because they
are either non-conservative or undefined for complete saturation and heterogeneous soils [11].
The mixed formulation can be rewritten in the hydraulic head form which is more common in
hydrology:

∂tθ(h− z)−∇ · (K(h− z)∇h) = 0, (2)

where h = ψ + z is the hydraulic head [L]. One can also add a source/sink term Q [T−1] to
Richards’ equation to model various processes, like bacteria colony or plant roots uptake, or to
couple Richards’ equation with free surface flow.65

Solving Eq. (1) requires two constitutive laws: one for hydraulic conductivity and one for
water content. Several models have been proposed, depending on the hydraulic properties of
the porous medium.

The hydraulic conductivity K is generally supposed to react to saturation identically for
each space direction. This leads to write:

K(ψ) = KsKr(ψ), (3)

where Ks the intrinsic or saturated hydraulic conductivity tensor [L ·T−1] and Kr the relative
hydraulic conductivity [-].70

For practical purposes, the water content is often described in terms of effective saturation
Se [-]:

Se(ψ) =
θ(ψ)− θr

θs − θr
, (4)

where θs denotes the saturated water content [-] and θr the residual water content [-], corre-
sponding to the maximal and minimal saturations, respectively.

The hydraulic properties present two different behaviours depending on whether the porous
media is saturated (ψ ≥ 0) or not (ψ < 0):

Se(ψ) =

{
1 if ψ ≥ 0,

Se otherwise,
and Kr(ψ) =

{
1 if ψ ≥ 0,

Kr otherwise.
(5)

Se and Kr are monotonic increasing functions of pressure head ψ in the unsaturated zone.
The water table corresponds to ψ = 0 by definition and is considered belonging to the saturated
zone. The capillary fringe is the layer above water table where water is raised due to capillary75

actions. It belongs to the unsaturated zone and there is no standard definition for its upper limit.
Throughout this paper, several constitutive laws will be used to model hydraulic properties in
the unsaturated zone. They are compiled in Tab. 1.
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Name Expression Parameters

Gardner-Irmay relations
(1958) [33, 29]

Se = e
αψ
m

Kr = eαψ
α: pore-size distribution [-]
m: tortuosity [-]

Vachaud’s relations
(1971) [72]

Se =
C

C + |ψ|D

Kr =
A

A+ |ψ|B

A, C: empirical shape parameters [LB;D]
B, D: empirical shape parameters [-]

Van Genuchten-Mualem relations
(1980) [48, 73]

Se = (1 + (α|ψ|)n)−m

Kr = Sle

(
1−

(
1− S

1
m
e

)m)2

l =

{
0.5 for Mualem [48]

1 for Burdine [8]
: pore connectivity [-]

α: parameter linked to air entry pressure inverse [L−1]
n > 1: pore-size distribution [-]

m = 1− 1

n
: pore-size distribution [-]

Table 1: Hydraulic relations used in this paper.

It is worth noting that:

� under complete saturation, hydraulic properties become constant and Richards’ equation80

degenerates into an elliptic equation characterised by fast diffusion;

� under almost complete unsaturation, hydraulic properties get very near-zero values which
stop diffusion and may be inconvenient numerically;

� for particular set of parameters, when ψ → 0−, constitutive laws may exhibit very steep
gradients.85

These constitutive laws are mainly responsible for the numerical challenges of Richards’
equation, such as nonlinearities, degenaracies and instabilities, which are often observed in the
presence of material heterogeneities or dynamic boundary conditions like seepage boundary
condition. Special treatment may be done to regularize the constitutive relations [34, 53, 56].
For instance, Doleǰśı et al. [20] modify slightly the functions to avoid some types of degeneracy90

mentioned above and improve the convergence properties. It can cause difficulties for numerical
analysis but, in practice, we find that the convergence of our solving algorithm described in
Section 3 can be ensured choosing carefully the parameters of the computations. As a result,
no modification on the constitutive relations is done in this study.

2.2 Seepage boundary condition95

The seepage boundary condition is specific to subsurface model [60]. This condition is used to
model the interface between a porous medium and the atmosphere. If the porous medium is
saturated and an outflow occurs, then water pours out at atmospheric pressure: ψ = 0 ⇐⇒
h = z. Otherwise, the interface acts as an impervious boundary and there is no flux. This
condition mimics an outflow condition. Figure 1 depicts the situation. The treatment of the100

seepage boundary condition is difficult because the length of seepage face is unknown a priori :
it depends on the sought solution.
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Figure 1: Seepage modelling by the boundary condition.

There are many ways to express and realize the seepage boundary condition. A simple and
common approach is to refer to its base definition by considering a switch between a Dirichlet
ψD and a Neumann qN boundary condition [14, 4, 78, 60]:{

h = z if h ≥ z and −K(h− z)∇h · n > 0,

−K(h− z)∇h · n = 0 otherwise.
(6)

The realization of such condition should be done inside the nonlinear iterative process according
to the previous solution guess at a local level. However, it is not always the case because of
the involved numerical methods and discretization schemes. Then, the exit point is searched105

iteratively until a convergence criterion is reached according to different techniques.
Alternatively, the seepage boundary condition may be interpreted as a nonlinear Robin

boundary condition:

1S(h)(h− z)− (1− 1S(h))K(h− z)∇h · n = 0, (7)

where the seepage indicator function is:

1S : ΓS → {0, 1} (8)

h 7→

{
1 if h ≥ z and −K(h− z)∇h · n > 0,

0 otherwise.
(9)

This compact formulation will be used here for the discretization to incorporate directly the
seepage boundary condition into the weak formulation, keeping in mind that it encompasses a
mix of a Dirichlet and a Neumann boundary conditions whose actual realization is done such
as in Eq. (6).110

3 Numerical methods

3.1 Discontinuous Galerkin discretization

More careful developments about discontinuous Galerkin (DG) methods can be found in Rivière
[57] or Doleǰśı and Feistauer [19]. Let d ∈ {1, 2, 3} be the dimension. The porous medium is
represented by the computational domain Ω ⊂ Rd of boundary ∂Ω and the final time is T ∈ R∗+.115

The boundary ∂Ω is subdivided into three mutually disjoint boundaries, ∂Ω = ΓD ∪ ΓN ∪ ΓS,
corresponding to the Dirichlet, Neumann and seepage boundary conditions respectively. The
following problem is considered:
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find h(x, t) : Ω× (0, T ) −→ R such that

∂tθ(h− z)−∇ · (K(h− z)∇h) = 0, in Ω× (0, T ),

h = h0, in Ω× {0},
h = hD, on ΓD × (0, T ),

−K(h− z)∇h · n = qN, on ΓN × (0, T ),

1S(h)(h− z)− (1− 1S(h))K(h− z)∇h · n = 0, on ΓS × (0, T ).

(10)

The time duration (0, T ) is subdivided into N time intervals such that 0 = t0 < t1 <
· · · < tN = T . Let n ∈ N, 0 < n ≤ N : if the time interval Tn = [tn−1, tn] is considered, the120

corresponding time step is τn = tn − tn−1.
Ω is subdivided into NE mutually disjoint polygonal elements E forming a mesh. The

mesh at the time partition Tn is denoted by Enh = {En}E⊂Ω. So, Ω =
⋃
E∈Enh

E. Moreover, the

boundary of one element E ∈ Enh is ∂E while its diameter hE is defined by:

hE := sup
x,y∈E

|x− y|. (11)

For every mesh Enh , the space step is set as:

hn := max
E∈Enh

(hE). (12)

The set of all open faces of all elements E ∈ Enh is denoted by Fnh . Furthermore, these
definitions stand:

Fnh,D :=
⋃

F∈ΓD

F, Fnh,N :=
⋃

F∈ΓN

F, Fnh,S :=
⋃
F∈ΓS

F (13)

Fnh,B := Fnh,D ∪ Fnh,N ∪ Fnh,S, Fnh,I := Fnh \ Fnh,B. (14)

For each face F ∈ Fnh , there is a unit normal vector nF . For F ∈ Fnh,I, its orientation is arbitrary
but kept fixed and, for F ∈ Fnh,B, it is oriented outward.

Let two neighbouring elements El and Er sharing one face F ∈ Fnh,I. There are two traces
of a function u along F denoted by ul and ur:

x ∈ F, ul(x) := lim
ε→0+

u(x+ εnF ), x ∈ F, ur(x) := lim
ε→0−

u(x+ εnF ). (15)

Formally, the jump and the mean of the function u across a face F ∈ Fnh,I are defined respectively
by:

JuK := ul − ur, ⦃u⦄ :=
1

2
(ul + ur). (16)

In the case that F ∈ Fnh,B, JuK = ⦃u⦄ = ul where ul is the trace of the function u from the
element which holds F . Throughout this paper, the quantity hF denotes the length of F ∈ Fnh
and pF the mean of polynomial degree of neighbouring elements:

hF := |F |, pF :=
√
⦃p2

⦄. (17)

In the following derivation of the DG variational formulation, several interior penalty meth-
ods are considered. Their numerical properties are slightly different. Further information are
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available in [57, 19] for example. They use discontinuous approximations over the mesh Enh
defining a so-called broken Sobolev space Hs

(
Enh
)

with s > 3/2. The solution is sought in a
subspace of this broken Sobolev space, taken to be:

Sp
(
Enh
)

:=
{
v ∈ L2(Ω) : v

∣∣
E
∈ Pp(E),∀E ∈ Enh

}
, (18)

where Pp(E) denotes the space of polynomial functions on E of degree less than p ∈ N.
Equation (10) is multiplied by a test function v ∈ Sp

(
Enh
)

and then integrated on each125

element E ∈ Enh . Green’s theorem is used element-wise before summing over all elements in
Enh . The Neumann boundary condition has appeared naturally within the formulation and has
been substituted. So it stands for the homogeneous Neumann part of the seepage boundary
condition.

On one hand, knowing ∀u, v ∈ Sp
(
Enh
)
, JuvK = ⦃u⦄JvK+⦃v⦄JuK and assuming JK(h− z)∇h · nF K =130

0 because this quantity is smooth enough, product jump is decomposed and simplified where it
is possible.

On the other hand, two penalty terms are considered. One mimics the solution continuity
by constraining the interior solution jump to be zero, and one enforces the Dirichlet boundary
condition, including the remaining part of the seepage boundary condition. If the solution is
a continuous function satisfying the Dirichlet boundary conditions, the two penalty terms are
vanishing so they can be added to the formulation:

JI(h, v) =
∑
F∈F I

h

∫
F
%I
F JhKJvK dF, JD(h, v) =

∑
F∈FD

h

∫
F
%D
F (h− hD)v dF. (19)

The interior and Dirichlet penalty weights are set as:

%I
F =

σI
FγF
µF

and %D
F =

σD
F γF
µF

. (20)

where the face measure is defined as µF =
hF
pF 2

and where σI
F , σD

F and γF are suitably chosen

positive constants. σI
F and σD

F are user-defined parameters which must be above a threshold
value to provide coercivity and guarantee stability for some of the DG methods [22]. γ is a135

diffusion penalty coefficient set to one generally whereas some studies consider other values, see
e.g. [58].

A first weak formulation rises but it is not is not symmetric between the unknown h and
the test function v. Making the formulation symmetrical can be useful to preserve the natural
symmetry in the discrete diffusion operator, to use appropriate solvers or to enhance numerical140

properties of the formulation. This can be done by adding the corresponding symmetric term
which vanishes because JhK = 0 if h is a sufficiently smooth function.

Finally, the space semidiscretization reads:

find h ∈ Sp
(
Enh
)

such that ∀v ∈ Sp
(
Enh
)
, mh,n(∂tθ(h− z), v) + ah,n(h, v) = lh,n(v), (21)
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where the DG bilinear forms, m and a, and linear form l are:

mh,n(∂tθ(h− z), v) =
∑
E∈Eh

∫
E
∂tθ(h− z)v dE, (22)

ah,n(h, v) =
∑
E∈Eh

∫
E
K(h− z)∇h · ∇v dE −

∑
F∈F I

h

∫
F
⦃K(h− z)∇h · nF⦄JvK dF

−
∑
F∈FD

h

∫
F
K(h− z)∇h · nF v dF +

∑
F∈FD

h

∫
F
%D
Fhv dF −

∑
F∈FSh

∫
F
1S(h)K(h− z)∇h · nF v dF

+
∑
F∈F I

h

∫
F
%I
F JhKJvK dF +

∑
F∈FSh

∫
F
%D
F1S(h)hv dF −Θ

∑
F∈F I

h

∫
F
⦃K(h− z)∇v · nF⦄JhK dF

−Θ
∑
F∈FD

h

∫
F
K(h− z)∇v · nFhdF −Θ

∑
F∈FSh

∫
F
1S(h)K(h− z)∇v · nFhdF, (23)

lh,n(v) =
∑
F∈FD

h

∫
F
%D
FhDv dF +

∑
F∈FSh

∫
F
%D
F1S(h)zv dF −

∑
F∈FN

h

∫
F
qNv dF

−Θ
∑
F∈FD

h

∫
F
K(h− z)∇v · nFhD dF −Θ

∑
F∈FSh

∫
F
1S(h)K(h− z)∇v · nF z dF. (24)

Θ = {−1, 0, 1} is a constant leading to different symmetric versions of the DG formulation listed
in Tab. 2.

Symmetrization
Θ = −1 Θ = 0 Θ = 1

Penalization
∀F ∈ Fh, σ

I
F = σD

F = 0 OBB method - global element method

∀F ∈ Fh, σ
I
F 6= 0, σD

F 6= 0 NIPG IIPG SIPG

NIPG: non-symmetric interior penalty Galerkin SIPG: symmetric interior penalty Galerkin

IIPG: incomplete interior penalty Galerkin OBB method: Oden-Baumann-Babuška method

Table 2: Different types of DG methods.

The seepage boundary condition is treated numerically thanks to the indicator function 1S145

which alternates dynamically between the Dirichlet part when 1S = 1 and the Neumann part
for 1S = 0, directly in the usual weak framework of the DG methods. This treatment can model
many physical situations, like multiple seepage faces simultaneously, because it does not require
any assumption about the mesh or seepage face [60].

This treatment was also done by Doleǰśı et al. in [20] where they pointed out this is a150

great benefit compared to conforming FE methods which need to modify the FE space or use
numerical tricks, resulting in difficult implementation. However, the indicator function 1S is
not differentiable which causes difficulties for the numerical analysis. A regularization of this
function can be done [59, 52]. For example, Doleǰśı et al. [20] smoothed the indicator function 1F
to avoid a brutal switch between the values 0 and 1. In this work, no regularization is performed155

because numerical experiments do not show major convergence solver problems. Besides, DG
methods handle already discontinuities and weak penalty naturally. This makes the numerical
scheme even more simple.
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3.2 Time discretization

To get the fully discrete DG formulation, the time derivative has now to be discretized. Such a160

procedure which takes care of space discretization before time discretization is called the method
of lines. It is used commonly by others studies for Richards’ equation, see e.g. [45, 39, 26].

Backward differentiation formula (BDF) are implicit numerical integration methods espe-
cially used for stiff differential equations thanks to their wide region of stability. These linear
multistep methods use q already computed solutions to produce a method of order q ≤ 6. Anal-
ysis can be found in [62, 21]. The 1-step BDF is the backward Euler scheme. For this study,
BDF are interesting because they provide high-order accuracy in time which is suitable if one
wants to reach high-order in space without loss of gain. The following notation will be used for
any function u ∈ L2(0, T ; Ω):

∀n ∈ N+, u
n := u(x, tn). (25)

The DG formulation in Eq. (21) is integrated over Tn and the time integral is approximated
by the BDF methods of 0 < q < 7 steps:

find a sequence of (hn)n∈N+
∈ Sp

(
Enh
)

such that
h0 = h0,

∀v ∈ Sp
(
Enh
)
, mh,n

(
q∑

k=0

αq,k
τn

θ
(
hn+1−k − z

)
, v

)
+ ah,n

(
hn+1, v

)
= lh,n

(
v, tn+1

)
,

(26)

where BDF coefficients are given in Tab. 3.

q

1 1 −1
2 3/2 −2 1/2
3 11/6 −3 3/2 −1/3
4 25/12 −4 3 −4/3 1/4
5 137/60 −5 5 −10/3 5/4 −1/5
6 49/20 −6 15/2 −20/3 15/4 −6/5 1/6

αs,k
0 1 2 3 4 5 6

k

Table 3: BDF coefficients αq,k for all methods.

However, stability of BDF methods has some restrictions. Only BDF methods of order 1 and
2 are A-stable according to the second Dahlquist barrier for implicit linear multistep methods as165

defined and proved in [16]. BDF methods of order 3 to 6 are conditionally stable or A(α)-stable
where α decreases with the order, see e.g. [30, 2]. Then, time stepsizes have to be small enough
to make the method stable. BDF methods of order q > 6 are unconditionally unstable so they
cannot be used.

BDF methods presented here are based on fixed time steps so initialization and a change of170

time stepsize has to be treated carefully. For a scheme with q-step BDF, the first time step is
subdivided into as many times as necessary to compute the sub-time steps with an increasing
sequence of lower-order BDF methods. The remaining next macro-time steps are still subdivided
while the number of computed solution, stored gradually, is not sufficient to go on with the q-
step BDF method. Working with BDF methods of variable time stepsize is possible using175

divided differences-based formula but with some restrictions on time step variations to keep
stability. This is done for Richards’ equation in [13] following the method of Hay et al. [31]. For
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this study, the backward Euler scheme will be mainly used because it provides good stability
properties and remains simple to work with adaptive time stepping. For Tracy’s benchmark,
the time step is kept unchanged to deal with high-order BDF methods which are necessary to180

decrease time error regarding space error.
This study uses the mixed form of Richards’ equation (physically mass conservative) and

DG methods (numerically local mass conservative). Then, mass conservation should be very
good which is checked, globally at machine precision and locally with small discrepancies, in
[13].185

3.3 Linearization

Richards’ equation is a nonlinear equation usually solved by an iterative procedure such as
fixed-point iteration (also called Picard’s) or Newton-Raphson method whose choice is deter-
mining for computation time performances and convergence. Lots of derived methods exist:
modified Newton-Raphson, mixed Picard–Newton, quasi-Newton, L-scheme, etc. Studies have
been carried out to compare these methods, and others, for solving Richards’ equation for vari-
ous problems [49, 37, 40]. They emphasize that fixed-point iteration and even Newton-Raphson
scheme are very sensitive and do not converge systematically according to Richards’ equation’s
formulations, initial and boundary conditions and because of the nonlinearities of constitutive
laws. In particular, the nonlinear iterative solver can oscillate between two solutions. There are
still recent and significant works on this topic like Anderson acceleration [42], nested Newton’s
type algorithm [10] or modified L-schemes [47]. For this study, a damped Newton-Raphson
method and a fixed-point method were implemented. Let m be the number of the nonlinear
iteration. The residual of Eq. (26) is expressed as:

rh,n
(
hn+1, v

)
:= mh,n

(
q∑

k=0

αs,k
τn

θ
(
hn+1−k − z

)
, v

)
+ ah,n

(
hn+1, v

)
− lh,n

(
v; tn+1

)
. (27)

The difference between two successive iterations is written δn+1,m
h := hn+1,m+1 − hn+1,m so the

iterative procedure reads:
drh,n

(
hn+1,m, v

)
dhn+1,m

δn+1,m
h = −rh,n

(
hn+1,m, v

)
,

hn+1,m+1 = hn+1,m + δn+1,m
h .

(28)

Underlying ideas are already described in [37] and have just been adapted here to the DG
system. Roughly speaking, a fixed-point method is obtained from the Newton-Raphson method

by avoiding the first derivative terms inside
drh,n

(
hn+1,m, v

)
dhn+1,m

. The damped Newton-Raphson

method relaxes the increment δn+1,m
h while the new residual is greater than the previous one.

Such a procedure is described in [20]. One important choice for nonlinear iterative process is
the stopping criterion which is set for this study as:∥∥rh,n(hn+1,m, v

)∥∥
L2(Ω)

‖ah,n(hn+1, v)‖L2(Ω)

< ε1 and

∥∥∥δn+1,m
h

∥∥∥
L2(Ω)

‖hn+1,m‖L2(Ω)

< ε2, (29)

where ε1, ε2 are a user-defined tolerances. These two criteria are relative in order to be inde-
pendent from the characteristic quantities of the problem. The first criterion is residual and the
second one is incremental. The numerical tests of Section 5 were carried out with the fixed-point
method because it was more robust concerning initialization.190

For each nonlinear iteration, the linear system has to be constructed and solved. We use an
in-house direct solver based on LU decomposition and working with skyline matrix storage.
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3.4 Adaptive time stepping

Time adaptation is motivated by the convergence of the nonlinear solver. On one hand, transient
simulations have difficulties to converge if the time step is too large but, on the other hand,195

shorter time steps mean more time steps and so, a longer computational time. That is the reason
why time adaptation is very attractive and common for Richards’ equation. Different strategies
can be used to adjust the time step [26], either heuristic and mainly based on convergence
performance of the nonlinear solver or rational and based on error control. The latter ones
are generally more efficient but heuristic methods remains a relevant approach due to their200

simplicity.
For this study, the time step is adjusted heuristically according to the previous number

of iterations Nit from the nonlinear solver such as [6, 68]. Indeed, the time stepsize has a
direct effect on the convergence of the solver. The simulations begin with a time step τ0.
Then, the future time steps are calculated accordingly to the following rule: each time step is
kept if convergence at the previous time iteration is achieved between mit and Wit nonlinear
iterations, it is increased by an amplification factor λamp if the convergence requires fewer than
mit nonlinear iterations and it is decreased by a reduction factor λred if the convergence requires
more than Mit nonlinear iterations. In the case where the convergence is not fulfilled because
of a solver failure (poor initial guess, bad condition number) or because the nonlinear iterations
go over a prescribed maximum bound Wit, the time step is started again (back-stepping) using
a stepsize reduced by λred. The time stepping scheme to choose the next time step τn+1 is
calculated from the previous one τn can be summarised with:

τn+1 =


λampτ

n if Nit ≤ mit,

τn if mit < Nit ≤Mit,

λredτ
n if Mit < Nit ≤Wit,

τn = λredτ
n if Wit < Nit or if the solver has failed (time step is started again).

(30)

The factors 0 < λred < 1 and 1 < λamp as well as the threshold values 0 < mit ≤Mit < Wit are
prescribed by the user and found empirically. Default values are λamp = 2, λred = 0.5, mit = 3,
Mit = 7 and Wit = 10. A minimum time step can be defined to avoid excessive small time steps.

With this approach, the nonlinear solver is more robust because the time step is adjusted205

until success of convergence independently on τ0. Thanks to the amplification/reduction coeffi-
cients, the time step is adjusted smoothly. Nevertheless, the method depends on fixed empirical
parameters and does not provide an optimal time step. The resulting loss/gain in computational
time is difficult to assess in regards to balance between nonlinear iterations number and time
steps length.210

4 Adaptive strategy

4.1 Adaptive Mesh Refinement

The Adaptive Mesh Refinement techniques (AMR) are now widely used and have since proven
their efficiency, whether on 2D or 3D mesh, structured or unstructured mesh, conforming or
not conforming mesh, with domain decomposition or not, see e.g. [46, 41, 28, 15].215

In this work, applications with complex geometries are aimed, or even later couplings of
models on hybrid mesh. This is why, as in a previous work [1], a non conforming unstructured
mesh is used. Therefore, although computing time may be lost compared to fully structured
Cartesian codes, Block-Based Adaptive Mesh Refinement strategy is adopted. In accordance
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with the simulations presented in this paper, only the bidimensional case is presented. The220

strategy adopted is then as follows and illustrated in the Fig. 2.

Figure 2: AMR Strategy: (a) Block mesh; (b) Level of mesh refinement; (c) mesh generation;
(d) Morton numbering.

The unstructured mesh is composed of quadrilateral and/or triangular elements, where each
element, as in [1], defines a root element or block, see Fig. 2(a). Then, a mesh refinement level
is defined for each block, initially by the user and thereafter in accordance with the chosen
mesh refinement criterion, see Fig. 2(b). Coarsening and refinement are decided according to225

threshold values 0 < βc < βr. If η denotes the block-level error estimate, three situations are
encountered:

� For βc < η < βr, the block remains unchanged and so for the related elements;

� For βr < η, the block is refined so its elements are split into four isotropic subelements;

� For η < βc, the block is coarsened so four neighbouring subelements are merged into one230

element.

Limitations of such selection are described in [51] as well as a procedure to overcome them.
The mesh refinement level is adapted according to the rule that the ratio of mesh refinement
should not exceed 2 between two neighbouring blocks. As illustrated in [25], this constraint
allows smooth transitions between refined and unrefined regions. The mesh is then built using235

a quadtree graph (available for quadrangle and triangle) in order to define easily and precisely
the neighbouring elements of each face. This procedure is pursued until the desired level of
mesh refinement is reached as shown in Fig. 2(c). In the case of evolutionary problems, this
implies frequent remeshing to follow the phenomenon studied. This is why we prefer to widen
the stencil with a coarse root mesh, namely blocks, and therefore to use the whole quadtree240

graph, in order to remesh less often. It is illustrated for quadrangles and triangles in Fig. 3.
Finally, a space filing curve using Morton numbering (Z-order) is built in order to number easily
the degrees of freedom line in Fig. 2(d).

During a simulation, if a mesh refinement or coarsening process takes place, a new evalua-
tion of the unknown field must be carried out. The prolongation (refinement) and restriction
(coarsening) process are facilitated by the fact that the quadtree graph connect explicitly the
”mother” element to its four ”daughter” elements. To do that, one may use local interpola-
tion/extrapolation. This is not straightforward in practice because it requires to identify the
number of points and their position on the element to construct a right-determined system
giving a fairly close solution. In the present study, the projection is made by solving a local DG
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problem. This technique gives good degrees of freedom by performing calculations at quadrature
points. The element-wise weak formulation corresponding to hEnew = hEold

reads:∫
Enew

hEnewv dEnew =

∫
Enew

hEold
v dEold. (31)

Then, mass matrix can be used to project the solution on the new mesh. This method is also
used to enforce the initial condition h = h0.245

Figure 3: Mesh refinement for quadrangle and triangle using quadtree.

4.2 A posteriori error estimation

An a posteriori error indicator is employed to show how a simple quantity linked to problem
physics is able to provide information about refinement. This error indicator is inspired from
Miller et al. [45] where they use changes in effective saturation. Here, the error indicator is
based directly on changes in the solution that is to say the gradient of hydraulic head h. This
allows to work both for the saturated and unsaturated regions. So, it reads:

CE =
1

max
E∈Eh

(
1
|E|‖∇h‖L2(E)

) 1

|E|
‖∇h‖L2(E). (32)

The error indicator is normalized so that 0 ≤ CE ≤ 1.
Another a posteriori error indicator is introduced but it is based on error estimation. Indeed,

Verfürth developed a posteriori estimation-based error indicators based on residual and derived
thanks to suitable norms in the context of finite elements methods for many equations [77], in250

particular for nonlinear parabolic problems such as Richards’ equation. For this kind of problem,
Verfürth used some variants to prove reliability as well as global and local efficiency for implicit
Runge-Kutta schemes with some restrictions [76] and more standard time discretization in
[74, 75]. Later on, this type of residual-based derivation was adapted by Melenk and Wohlmuth
to hp-adaptive finite elements methods for elliptic problems [44]. Afterwards, Houston et al. [32]255

as well as Schötzau and Zhu [58, 80] developed residual-based a posteriori error estimation for
hp-adaptive interior penalty DG methods applied to elliptic problems and convection-diffusion
equations respectively.

Greatly inspired by these works and supported by an heuristic analysis, the following a
posteriori estimation-based error indicator is used:

(ηnE)2 =
(
ηnE,R

)2
+
(
ηnE,F

)2
+
(
ηnE,J

)2
, (33)

where ηnE,R, ηnE,F and ηnE,J are respectively the element residual, the face residual and the solution

jump sub-estimates. %I
F and %D

F were defined in Eq. (20). The quantities λm(K) and λM(K)
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stand respectively for the lowest and largest eigenvalue of K on E. For a face F of normal n,
the minimum of normal component from neighbouring K is chosen: κm := min(κl, κr) where

κ = n
ᵀ ·K

(
un+1
h

)
· n. So sub-estimates write:

(
ηnE,R

)2
=

h2
E

p2
Eλm(K)

∥∥∥∥∥∥
θ
(
un+1
h

)
− θ
(
unh

)
τn

−∇ ·
(
K
(
un+1
h

)
∇un+1

h

)∥∥∥∥∥∥
2

L2(E)

, (34)

(
ηnE,F

)2
=

∑
F∈∂E∩F I

h

hF
2pFκm

∥∥∥rK(un+1
h

)
∇un+1

h · n
z∥∥∥2

L2(F )

+
∑

F∈∂E∩FN
h

hF
pFκl

∥∥∥qN −K
(
un+1
h

)
∇un+1

h · n
∥∥∥2

L2(F )
, (35)

(
ηnE,J

)2
=

∑
F∈∂E∩F I

h

1

2

(
%I
F +

hF
pFκm

)∥∥∥run+1
h

z∥∥∥2

L2(F )

+
∑

F∈∂E∩FD
h

(
%D
F +

hF
pFκl

)∥∥∥uD − un+1
h

∥∥∥2

L2(F )
. (36)

Here, the time discretization is based on the implicit Euler scheme but the a posteriori estimation-
based error indicator can be determined for other time schemes such as in [76]. Global estimates
are obtained with:

(ηn)2 =
∑
E∈Enh

(ηnE)2. (37)

Unlike the aforementioned papers, there is no rigorous mathematical proof for this residual-
based energy norm a posteriori error estimation. Extension to the case of nonlinear and time-260

dependant parabolic equation solved by hp-adaptive DG methods remains an open problem.
However, some remarks can be drawn. Firstly, the numerical treatment of the time dependence
and of the nonlinearity resorts to consider a sequence of linear and steady problems. Secondly,
as noted by Verfürth [77], the element residual term is related to the residual of the numerical
solution with respect to the strong form of the equation which may be viewed as the error265

from the nonlinear process. The face residual term is related to the boundary operator which
is associated with the strong and weak forms of the differential equation. It reflects, on one
hand, that the numerical solution gradient – the flux – is discontinuous and on the other hand,
that Neumann boundary conditions may not be satisfied. The solution jump term is related
to the penalization which are associated with the weak form of the equation. It reflects that270

the numerical solution is discontinuous at interior faces in the DG framework and Dirichlet
boundary conditions may be slightly violated according to the penalty coefficients. Moreover,
the second term and third parts of the estimation-based error indicators measure how valid the
hypothesis on the seek solution are to derive the DG formulation.

4.3 Weighted discontinuous Galerkin framework275

In the context of convection-diffusion equations or coupling of parabolic/hyperbolic domains,
the solution may hold spurious oscillations at internal layers for vanishing or varying diffusion
[24]. This situation is typical of porous media problems where there are material heterogeneity
and degenerate hydraulic properties. One interpretation is the flow stays continuous but the
solution mimics a discontinuity. Then, the numerical scheme is unable to recognize the sharp280

internal layer leading to numerical instabilities.
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Even though this phenomenon may be resolved by mesh refinement, the corresponding
computational cost is substantial to maintain a physically acceptable solution. Slope limiters
are another possibility to control these undershoots/overshoots but further computational de-
velopments are needed to cope with the geometry of elements in high-dimension [64, 57]. A285

satisfactory approach would be to design a DG method that can handle internal layers in an
automated fashion. That is the reason why the weighted discontinuous Galerkin (WDG) frame-
work was introduced [23, 57]. These methods work thanks to two key ingredients which can
be seen as a way to incorporate into the definition of the scheme some partial knowledge of
the solution. The first one is the use of weighted averages instead of the standard arithmetic290

average inside the discontinuous formulation. Then, the amount of diffusivity flux for each
side of a face is controlled. The second ingredient is to relax the face penalization used for
continuity constraint by a coefficient depending on the harmonic mean of the diffusivity of the
neighbouring elements. Such a penalty strategy turns out to tune automatically the amount of
local penalty to regulate the degree of smoothness of the approximate solution. Analysis and295

details can be found in [23, 57] and related.
Internal layers depend on the spectral structure of the diffusivity. The choice is to take its

normal component for face evaluation [23, 9]. Weights across a face are positive numbers such
that ωl + ωr := 1. The weighted average and the conjugate weighted average are respectively
defined as:

⦃u⦄ω := ωlul + ωrur, ⦃u⦄ω := ωrul + ωlur. (38)

Then, the relation ∀u, v ∈ Sp
(
Enh
)
, JuvK = ⦃u⦄ωJvK + JuK⦃v⦄ω is replacing Section 3.1 in the

weak formulation derivation. The weighted diffusion penalty coefficient is taken to be the
harmonic mean of the neighbouring normal hydraulic conductivities across the face [23]:

(39)

γF =
2κlκr

κl + κr
. (40)

Standard DG methods assume ωl = ωr =
1

2
, which reduces the weighted average to the arith-

metic average, and γF = 1. The WDG method chooses other definitions. Following definitions
in [23], let the weights be:ωl =

κr

κl + κr
, ωr =

κl

κl + κr
if κl + κr 6= 0,

ωl = ωr =
1

2
otherwise.

(41)

With this definition choice for weights, γF results to be equivalent to the weighted average of
diffusivities:

γF =
2κlκr

κl + κr
= ⦃κ⦄ω. (42)

WDG methods assume that diffusivity discontinuities fit the mesh [23]. This is generally
the case for heterogeneous media but it is not true for nonlinear diffusivity such as in Richards’
equation. Then, sharp internal layers may occur inside an element so the weighted framework
is not expected to work in this situation. Nevertheless, a suitable adaptive mesh refinement can300

be used as a capturing technique. This idea is one of the main novelties proposed in this paper.
The weighted framework and mesh adaptation are working dynamically in synergy: the former
changes the smoothness nature of the numerical solution while the latter tracks the internal
layer linked to nonlinearity thanks to refinement driven by the a posteriori estimation-based
error indicator Eq. (33).305
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5 Numerical results

Simulations are performed to highlight some numerical behaviour of Richards’ equation and
the ability of the numerical methods to treat them. The IIPG method is employed in every
simulation thereafter.

5.1 Polmann’s test-case310

This test-case considers a soil from New Mexico whose hydraulic properties are provided by
Polmann et al. [50]. A 1D vertical sample of this soil subject to downward infiltration was
simulated by Celia et al. [11], Manzini and Ferraris [43] as well as Sochala [64]. This test-case
can be challenging because, on one hand, the prescribed pressure head on both sides of the 100
cm soil column has a difference of 925 cm resulting in steep solicitation, and, on the other hand,315

hydraulic conductivity shows strong variations under the set of values taken by pressure head.
The Polmann’s test-case employs Van Genuchten-Mualem relations with Ks = 9.22 × 10−3

cm·s−1, θs = 0.368, θr = 0.102, α = 3, 35 × 10−2 cm−1, n = 2, m = 0.5 and l = 0.5. The
computational domain Ω is a rectangle (0, 20)× (0, 100) cm. The test-case is solved for pressure
head ψ during T = 172800 s (48 h) with a constant time step τ = 120 s and the initial condition320

is ψ0 = −1000 cm. Throughout the examples, implicit Euler scheme, p = 1, σI = σB = 100 are
used. Computation is done for two meshes: M100 is a coarse mesh of 100 elements and M1000
is a refined mesh of 1000 elements.

Figure 4: Pressure head along the vertical for Polmann’s test-case with the mesh M100.

For the mesh M100, nonlinear iterations have difficulties to reach the requirements of stop-
ping criteria and the solution holds spurious oscillations, in particular an undershoot ahead of325

the sharp wetting front as showed in Fig. 4. This behaviour was already noticed by Celia et al.
[11] and Sochala [64]. The latter decides to eliminate this undershoot by adding a slope limiter
which causes a small late compared to the non-limited solution. Better results are obtained
with the mesh M1000, the oscillations in the solution vanish, see Fig. 5. The M1000-results
agree with those from Celia et al. [11] as well as from Manzini and Ferraris [43]. This shows330

that a good discretization is necessary for Richards’ equation to get quality solution. Such
requirement can be fulfilled at optimal cost by a suitable adaptive local refinement. The error
indicator from Eq. (32) is employed with refinement threshold values βc = βr = 50. Adaptation
is performed every 5 time steps, starting with the M100 mesh. In Fig. 5, results show that
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refinement is able to capture the wetting front dynamically and eliminate the undershoot. The335

average number of elements is 211. More frequent adaptations allow to follow perfectly the
front while less frequent adaptations are less costly.

Figure 5: Comparison of pressure head at t = 24 h for Polmann’s test-case: IIPG on mesh with
100 elements (M100), IIPG on mesh with 1000 elements (M1000), IIPG with adaptive mesh
refinement (AMR), WDG with 100 elements (WDG).

In addition, the WDG method from Section 4.3 is tried without any adaptation. The mesh
M100 is used. Results in Fig. 5 show that the undershoot is still present but reduced to one
single element. It is relevant to point out that the solution holds jumps where the wetting front340

is steep. They prevent oscillations to propagate and make solution catch the front steepness.
The remaining undershoot depends on the wetting front localization in relation with the mesh
geometry. This is due to the nonlinear nature of diffusivity and that is why it is important to
associate mesh adaptation.

5.2 Tracy’s benchmark345

This test-case has an analytical solution given by Tracy [69] for 2D and 3D problems which
can be used as a benchmark for Richards’ equation [70, 71]. Tracy’s benchmark is particularly
relevant because it is transient, has a simple parameter to vary nonlinearities for Richards’
equation and holds differentiated steep regions. It can serve to check the nonlinear solver
robustness, convergence properties and adaptive mesh refinement. Then, it is very convenient350

to assess the solution quality and compare codes: Šoĺın and Kuraz [65] and Doleǰśı et al. [20]
used it to evaluate the performance of their respective method.

Tracy’s benchmark employs Gardner-Irmay relations with Ks = 1.1 m·d−1, θs = 0.5, θr = 0,
α = 0.1 m−1 and m = 1. It is solved for pressure head ψ. The residual pressure head ψr is a
parameter. The computational domain Ω is a square (0, a) × (0, b) m. Here, a = b = 1 m and
ψr = −10 m. A specific Dirichlet boundary condition is prescribed on the top edge with the
function:

ψtop =
1

α
log
(
eαψr +

(
1− eαψr

)
sin
(πx
a

))
. (43)

While for other edges, a constant Dirichlet boundary condition is imposed: ψ = ψr. The initial
condition is ψ0 = ψr. Tracy gives the 2D exact solution ψex in [69]. Figure 6 shows the solution
obtained for a fixed grid with τ = 10−4 day and T = 10−2 day.355
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Figure 6: Hydraulic head for Tracy’s benchmark with p = 1 and 6-step BDF.

The treatment of initial condition is not straightforward. First, because the initial condition
does not respect the top boundary condition: they are inconsistent. This issue can be trouble-
some for discretizations like finite elements methods [65] but it is natural for DG methods where
boundary conditions are usually enforced by weak penalization [20]. Second, because the top
boundary condition condition is particularly stiff compared to the initial state. Therefore, the360

very first moments are the most interesting to simulate in order to address the time-boundary in-
consistency and the early stiffness. Nonlinearities are controlled by the parameter α in Eq. (43).
More α is large, more the relative hydraulic conductivity drops quickly to near zero, and so,
nonlinearities are increased for Richards’ equation [70]. Moreover, errors are linked to the top
corners since the top boundary condition induces a steep slope at these corners [70, 71]. As365

Tracy stated, these features make this problem a good option to investigate adaptive mesh
refinement.

The classic L2-norm and, following Rivière [57], Schötzau and Zhu [58, 80] or Doleǰśı et al.
[18], the energy norm, also called the DG intrinsic norm, are introduced for a scalar function
u : Rd −→ R:

‖u‖2L2(E) :=

∫
E
u2 dE |||u|||2E(E) := ‖u‖2R(E) +

∑
F∈∂E

‖u‖2J(F ), (44)

where the residual seminorm and the jump seminorm are respectively:

‖u‖2R(E) :=

∫
E
K(u)∇u · ∇u dF, (45)

‖u‖2J(F ) :=

∫
F
%F JuK2 dF. (46)

Errors between numerical and exact solution are computed for a time step such that:

‖e‖X = ‖ψex − ψ‖X with X =
{
L2, E , R, J

}
. (47)

To measure how effective the estimation-based error indicator is, the effectivity indices for
the estimation-based error indicator (33), the element and face residuals (34, 35), and the
solution jump (36) will be used:

Ieff
E :=

ηnE
|||e|||E(E)

, Ieff
R :=

((
ηnE,R

)2
+
(
ηnE,F

)2
) 1

2

‖e‖R(E)

, Ieff
J :=

ηnE,J
‖e‖J(F )

. (48)

Due to the lack of rigorous derivation, the effectivity index is not expected to represent properly
the true error. The estimator efficiency is rather appreciated to set up a mesh refinement
strategy.370
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First of all, several simulations are performed to show convergence properties. Because
of symmetry, one half vertical plan of the domain is considered to speed up the simulation.
Duration is set to T = 10−4 day to focus on small times. The computations are carried out
with the 6-step BDF and time steps are set to τ = 10−6 s. This is needed to reduce time
discretization errors expecting that they will be negligible compared to space discretization
errors in order to observe space convergence. Indeed, according to theoretical error estimates
[19], error in L2-norm and H1-seminorm behave such that:

‖e‖L2 ≈ chhp + cττ
q, (49)

‖e‖E ≈ c
′
hh
p+1 + c′ττ

q, (50)

where ch, c
′
h, cτ and c′τ are constants independent of h and τ . Numerical experiments involve

four meshes of 50, 200, 400 and 3200 quadrilateral elements. Order approximation varies from
one to four. Figure 7 shows the convergence of the error eh for the L2- and energy norms with
respect to the number of degrees of freedom. It is interesting to note that space error are so
small for the most dense mesh with p = 4 that time error saturates the convergence.375

(a) Errors in the L2-norm (b) Errors in the energy norm

Figure 7: Numerical convergence for Tracy’s benchmark. P1, P2, P3 and P4 stands respectively
for linear, quadratic, cubic and quartic approximations.

In Fig. 8, effectivity indices are plotted. The error measured with the jump seminorm is
independent from the exact solution and so is equivalent to the jump indicator (36). Then, the
scaling factor of the jump indicator was chosen to be the penalty weight in order to be equal to
jump seminorm of the error. As a consequence, Ieff

J controls only the numerical representation
of exact solution (interpolation error) and must be equal to one as observed in Fig. 8e. On380

the contrary, Ieff
E and Ieff

R are not representative of the true error in term of magnitude like
observed on Fig. 8a and 8c. They are blowing up, at least for P1 and P2. It is probably due to
a wrong choice for the scaling factors. The factors come from from Schötzau and Zhu [58, 80]
who considered another problem. They were kept because they scale properly the sub-indicators
to drive mesh adaptation as a capturing technique like showed later on. Moreover, the scaling385

factors always overestimate the true error which is good for mesh refinement monitoring. True a
posteriori error analysis for the nonlinear problem of Richards’ equation is known to be difficult
and remains completely open.

The behaviour of the three contributions with respect to the number degrees of freedom
is shown in Fig. 8 by varying the order of approximation and the mesh size. Since they do390

not represent properly the true error, observations are difficult to relate with the true error.
However, some remarks can be drawn. Firstly, these diagrams show the convergence up to a
certain extent. Secondly, one can see that the volume contribution – the residual indicator from
Eq. (34) – behaves quite differently compared to the surface contributions – the flux and jump
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indicators from Eq. (34) and (35). The convergence is globally maximised with p-refinement395

for the surface contributions while h-refinement seems to improve convergence better for the
volume contribution. This observation should be assessed in more details but could drive the
hp-decision making.

(a) Ieff
E (energy norm) (b) Convergence for ηnE,R

(c) Ieff
R (residual seminorm) (d) Convergence for ηnE,F

(e) Ieff
J (jump seminorm) (f) Convergence for ηnE,J

Figure 8: Effectivity indices for different indicators (left) and convergence diagrams for the three
parts of the indicator ηnE (right). P1, P2, P3 and P4 stands respectively for linear, quadratic,
cubic and quartic approximations.

Error estimation is evaluated in terms of ability to drive the mesh adaptation. The error in
L2-norm is above the error measured with energy norm as stated in Fig. 9. It is worth to notice400

that the estimation-based error indicator
Error estimation is evaluated in terms of ability to drive the mesh adaptation. The distribu-

tion of ‖e‖L2(E) with no mesh adaptation is given in Fig. 9 for reference to localize the zones of
interest. It is above the error measured with energy norm. In Fig. 10, it is worth to notice that
the estimation-based error indicator ηnE is able to give the shape (but not the magnitude) of the405

true error measured with the energy norm, particularly for steady state, even though it was not
expected because there is no theoretical proof. Besides, during transient state, the estimation-
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based error indicator spots the error in the top corner where Tracy stated there were problems
for this test-case, see Fig. 9 at t = 10−4 d. The gradient-based error indicator CE was used suc-
cessfully in a previous paper [12] to capture the moving wetting front on a simple 1D infiltration410

case. Yet, as shown in Fig. 11 and 12, it performs badly for the Tracy’s benchmark where steep
gradients arise on a large part of the domain. The refinement thresholds are difficult to tune
which leads to over-refinement for large regions at the top. They were set up to βc = βr = 0.5
in order to give ‖e‖L2(Ω) ≈ 0.167 at t = 10−2 d. Then, the computation is very costly since it
takes around 227 min. For the estimation-based error indicator, the ability to drive the mesh415

adaptation is more convincing. βc = βr = 0.85 in order to target ‖e‖L2(Ω) = 0.137 at t = 10−2

d. The mesh is adapted dynamically without inducing over-refinement. Elements are refined
where it is needed because adaptation occurs locally while the error is controlled. Then, the
cost is reasonable with a computation around 35 min.

Figure 9: True error distribution in the L2-norm on Tracy’s benchmark.
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(a) Distribution at t = 10−4 days

(b) Distribution at t = 10−2 days

Figure 10: Comparison between distributions of true error in energy norm with the indicator
ηnE on Tracy’s benchmark.

(a) Mesh and error distribution in L2-norm for CE-driven
AMR

(b) Mesh and error distribution in L2-norm for ηnE-driven
AMR

Figure 11: Comparison with L2-norm between CE-based adaptation (left) and ηnE-based adap-
tation on Tracy’s benchmark.
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(a) Mesh and error distribution in energy norm for CE-
driven AMR

(b) Mesh and error distribution in energy norm for ηnE-
driven AMR

Figure 12: Comparison with energy norm between CE-based adaptation (left) and ηnE-based
adaptation on Tracy’s benchmark.

5.3 Wetting of the La Verne dam420

5.3.1 Setting

The model is here used to simulate the full-scale wetting of a multi-materials dam: the La
Verne dam. La Verne dam was constructed in 1991 to supply Gulf of Saint-Tropez (south
of France) with drinkable water. La Verne dam is 42 m high and peaks at 90 m above sea
level. Its width ranges from −102.3 m to 110.5 m. The reservoir is on the left in Fig. 13.425

The genuine La Verne dam inner section shows a complicated heterogeneous material patterns,
partially described in [27, 7]. The dam is an earth-filled embankment dam. A clay core allows
for impermeability while outer zones are semi-permeable alluvial shells. The dam is protected
by rip-rap upstream. Filters and drains of very permeable gravel-like materials secure the dam
inner saturation. The dam foundation lies on an impervious rock stratum thanks to concrete430

injections. A fine loam layer covers the downstream dam part. The filling of La Verne dam
was controlled with instruments [27] during 40 days, which provides a unique and challenging
dataset to test the model. In particular, the reservoir height evolution is available as well as
three groundwater hydraulic head measurements from the core, see Fig. 13 and 15. The three
sensors are at z = 55 m and their x-coordinates are −10.5 m, −3 m and 5 m.435

For the simulation, the reservoir height is used as a forced boundary condition in the form
of a Dirichlet boundary condition monitored by a function based on experimental data (see
Fig. 14). Since comparison focusses on the core of the dam, it is assumed that outer high
permeable and/or fine layers materials do not have a significant impact on inner groundwater
flows and saturation. The downstream thin loam layer, the filter-isolated toe drain and the440

lower submerged rip-rap are therefore not represented by the simulation and assimilated to
the adjacent materials (see Tab. 4 for description of numerical dam structure). A Dirichlet
boundary condition for hydraulic head is prescribed at the downstream boundary. The upper
rip-rap and the cofferdam are simulated as such to assess the method robustness owing to their
direct contact with the upstream dynamic boundary condition (forcing) and their hydraulic445

properties are steep. Rock/concrete foundations are supposed to be perfectly impervious which
means a zero-valued Neumann boundary condition can be prescribed. Finally, seepage boundary
condition are prescribed everywhere else because outflow can drain from the exposed upstream
and downstream shell slopes. The actual simulated configuration of La Verne dam is sketched
in Fig. 13. Five different materials are simulated (Tab. 4), with hydraulic properties provided450

by Bonelli et al. [7]. The dam wetting simulation involves each tool presented in this paper for
the adaptive strategy: the WDG method in combination with the AMR technique driven by the
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estimation-based error indicator. Mesh adaptation is done every five time steps. Fixed-point
iteration is used together with adaptive time stepping. Order of approximation is quadratic for
space and one for time (implicit Euler) in order to have a robust and cost-effective computation.455

Penalty parameters are σI = σB = 100.

Figure 13: Geometry, materials and boundary conditions of La Verne dam for the numerical
case. S1, S2, S3 are numerical sensors corresponding to the experimental sensors while S4 and
S5 are additional purely numerical sensors.

Materials Components Constitutive laws θs θr Ks(1, 1)
(
m · d−1

)
Ks(2, 2)

(
m · d−1

)
Specific parameters

m1
Core

Cofferdam
Van Genuchten-Mualem 0.23 0 2.592× 10−3 8.64× 10−4 α = 0.08m−1, n = 1.2, l = 0.5

m2
Upstream shell

Downstream shell
Van Genuchten-Mualem 0.25 0 5.184 1.728 α = 0.01m−1, n = 2.1, l = 0.5

m3 Outer upstream shell Vachaud 0.22 0 5.184 1.728
A = 2.99× 10−4m5, B = 5

C = 6.34× 10−2m2.9, D = 2.9

m4 Protection rip-rap Vachaud 0.27 0 17.28 8.64
A = 2.99× 10−4m5, B = 5

C = 6.34× 10−2m2.9, D = 2.9

m5
Filters
Drains

Vachaud 0.32 0 17.28 8.64
A = 2.99× 10−4m5, B = 5

C = 6.34× 10−2m2.9, D = 2.9

Table 4: Materials of the numerical La Verne dam.

The simulation of La Verne dam case is a very challenging benchmark for numerical models,
combining heterogeneous materials, steep constitutive laws and dynamic boundary conditions.
However, despite of its interest, the La Verne dam benchmark remains only partly documented
by in-situ instruments, precluding a comprehensive quantitative confrontation between obser-460

vations and model. In particular, the hydraulic properties, which have a drastic effect on flow
dynamics, remain approximative due to the absence of direct in-situ characterization. In ad-
dition, note that no initial in-situ values for water table elevation and saturation are available
inside the dam, which can also strongly affect the subsequent evolution. For the present simula-
tion, the initial water table is imposed at 67 m to fit the initial values of experimental hydraulic465

head. Finally, Bonelli et al. pointed out that hydromechanical coupling should be considered
to be fully consistent with the real case, see [27].
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Figure 14: Time evolution of hydraulic head h, mesh and water table (white line) during La
Verne dam wetting.

5.3.2 Results

Figure 14 depicts hydraulic head (color contours), water table (white line) and adaptive mesh for
both simulations every 10 days. Time evolution of simulated hydraulic head and water content470

are displayed in Fig. 15 at the position of the three experimental sensors (S1 to S3) and for two
additional relevant points called numerical sensors (S4 and S5). It is recalled that initial reservoir
free surface and water table elevation are at 57 and 67 m, respectively. Note that the water
table is not displayed in Fig. 14 at some points due to insufficient resolution and oscillations
w.r.t the front sharpness, which are detailed in the Discussion section. The numerical model475

is observed to provide a good overall description of the dam wetting process. Figure 14 shows
that the propagation of the wetting wave inside the dam is strongly dependent on the inner
materials properties. The first eleven days are characterized by an adjustement phase during
which the reservoir surface remains below the initial water table elevation. Hydraulic head and
water content at numerical sensors S4 and S5 show a very constrasting behavior (Fig. 15b and480

c). This reveals that, even if both m2- and m3-materials show the same hydraulic conductivity
at saturation, the difference in constitutive laws induces a radically different dynamics of the
capillary fringe. At S4, the head remains nearly constant during the adjustement phase while
the water content is very low. The m3-material is here nearly desaturated, well above a thin
capillary fringe. By contrast, S5 is within the large capillary fringe associated to the m2-485

material, providing a much higher water content. The hydraulic head shows first a small decay,
probably due to the drain proximity, before starting to rise in response to the reservoir filling.
Around day 14, both S4 and S5 sensors show a simultaneous regular rising, slightly lagged from
the reservoir level. A strong jump is observed at S4 (Fig. 15c), indicating the crossing of a sharp
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capillary fringe. While rising, the water table remains nearly horizontal in the upstream m2-490

and m3-materials zone but a sharp front is observed to develop across the left inner drain (m5-
material), see Fig. 14. Small numerical oscillations in hydraulic head are observed in Fig. 15 but
do not affect the global dynamics. Further downstream and lower within the dam, the hydraulic
head simulated at S1, S2 and S3 shows the slow wetting wave propagation, with attenuation
and damping (Fig. 15b). At S1, S2, S3, the water content remains constant during the whole495

simulation, in accordance to the sensors position below water table.
When compared to hydraulic head experimental data (see Fig. 15a), the overall time evolu-

tion and order of magnitude are well represented. Some discrepancies are observed, in particular
the late increase of head which is experimentally observed on each sensor around 30 days, which
tends to be underestimated by the model. However, recalling the lack of experimental control500

evoked before, more detailed comparison should be made with caution. For the sake of compari-
son, the previous numerical results presented by Bonelli et al. [7] are recalled in Fig. 15 in green
lines. While the overall time evolution is rather similar between models, a better agreement
with experimental data is obtained with the present simulation.
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Figure 15: Time evolution of inner dam hydraulic parameters. a) Hydraulic head at sensors
S1 (short-dashed lines), S2 (dash-dotted lines) and S3 (long-dashed lines) from the present
simulation (red), the experimental data (light blue) and the previous results of Bonneli et al.
[7]. The reservoir height is depicted in dark solid line. b) Hydraulic head at numerical sensors
S4 (orange) and S5 (yellow). c) Water content at S1 to S5 sensors (note that S1, S2 and S3
show similar values).

5.4 Discussion505

The proposed modeling strategy for Richard’s equation showed very satisfactory performance
in reproducing analytical and laboratory test cases and in simulating complex full-scale exper-
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iment. In this latter case, the model is able to capture automatically wetting fronts which are
moving dynamically thanks to AMR. In particular, the fronts associated with heterogeneity
are well resolved by the WDG technique. This is illustrated by water content distribution in
Fig. 16a. Moreover, the simulation is robust since it is able to compute completely without user
intervention and handle many features: degeneracy for saturated/unsaturated zones, dynamic
forcing boundary condition and seepage. However, the simulation struggles to capture wetting
fronts associated with nonlinear varying diffusivity resulting in severe overshoots/undershoots
for the transition between saturated and unsaturated zones in very permeable materials. Fur-
ther insight on this behaviour can be discussed using the Péclet number framework. Richards’
equation is an elliptic-parabolic equation predominantly diffusive, it shares properties with
convection-diffusion equation and can behave like them. For example, sharp wetting fronts
and internal layers can be reinterpreted within this context. The Péclet number represents the
ratio of the rate of advection to the rate of diffusion. This dimensionless number is useful to
analyse locally the nature of the flow regime and determine whether advection or diffusion is
dominant. For this study, the Péclet number is extracted from the saturation-based formulation
of Richards’ equation which is similar to a convection-diffusion equation with the water con-
tent θ as single unknown. This formulation is undefined in saturated zones because hydraulic
diffusivity D tending to infinity but this zone is not of interest for the Péclet number since
Richards’ equation is purely diffusive. Moreover, it is assumed that θ 6= 0. This assumption is
not restrictive because if water content drops to zero, nothing happens and, in practice, there
is often a residual water content. The total flux can be separated into a diffusive flux defined
by hydraulic diffusivity and driven by capillarity, and an advective flux defined by hydraulic
conductivity/water content and driven by gravity. The saturation-based formulation can be
rewritten as:

∂tθ −∇ ·
(
D(θ)∇θ +

K(θ)∇z
θ

θ

)
= 0, (51)

with the hydraulic diffusivity D(θ) = K(θ)
dψ(θ)

dθ
[L2 ·T−1].

The Péclet number can therefore be defined as:

Pe =
K(θ)L

D(θ)θ
=
C(θ)L

θ
, (52)

with the capillary capacity C =
dθ(ψ)

dψ
[L−1] and L the characteristic linear dimension assim-

ilated to an element size hE . High Péclet numbers are clearly reached in the sharp-gradient
areas in Fig. 16b, with m1-, m2- and m3-materials (i.e. drains, rip-rap and upstream shell)
showing relatively high Péclet numbers, from 1 to more than 5. Consequently, water table is510

not straight anymore and a delay in elevation is observed upstream, see Fig. 14.
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(a) Distribution of water content at t = 40 days

(b) Distribution of Péclet number at t = 40 days

Figure 16: Heterogeneity and nonlinear varying diffusivity highlighted respectively by water
content and Péclet number for La Verne dam simulation with the reference simulation.

In order to overcome these limitations, an additional ad-hoc configuration, named augmented
simulation, has been implemented. This one does not use WDG framework and other differ-
ence lies in the mesh and tolerances for nonlinear convergence criterion. Finer discretization is
allowed in permeable material that is to say the m1-, m2- and m3-materials. The mesh is also515

refined around water table and both for the gradient-based and estimation-based error indica-
tors. Instead of the reference simulation, 4-order BDF is employed and hydraulic properties are
relaxed with a numerical minimal value to avoid complete degeneracy. The augmented com-
putation allowed to eliminate spurious oscillations from the solution thanks to a more refined
mesh, which explains why WDG method is not needed. As the mesh is extremely refined, the520

augmented simulation takes approximately 13.5 times longer to compute (42 h 37 min) than
the reference simulation (3 h 11 min). One core Intel(R) Xeon(R) CPU 5-2630 v3 with 2.40
GHz was used. Additional information and results can be found in [13].

The simulation of La Verne dam filling shows many difficult points which lead to two un-
wanted effects. The first one is the development of non-physical oscillations around steep wetting525

fronts associated with nonlinear varying diffusivity which affect solution accuracy. The other one
is nonlinear convergence possible only with very small time steps so that the calculation dura-
tion is high. These challenges illustrate numerical issues of Richards’ equation for heterogeneous
media with high-varying diffusivity. The improvements offered by the augmented simulation
support the idea that a series of heuristic tools (threshold values, maximum refinement level,530

refinement frequency, adaptive time steps) should be investigated to improve accuracy while
maintaining cost-effectiveness.
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6 Conclusion

In this work, a new strategy has been formulated for the solution of Richards’ equation on the
basis of discontinuous Galerkin method and adaptive mesh refinement. The approximation can535

reach high-order both in space and time. Issues outlined in the introduction have been tackled
and further discussed throughout the paper so the following concluding remarks can be drawn:

� The seepage boundary condition is directly incorporated into the DG weak formulation
which makes its treatment natural and simple.

� The adaptive time stepping allows the nonlinear iterative solver to converge giving ro-540

bustness.

� Mesh adaptation is employed to monitor spatial errors of the Richards’ equation by cap-
turing the moving wetting fronts thanks to an a posteriori error indicator.

� The adaptive mesh refinement is based on a block structure to surround large regions
where wetting fronts move aiming to save computational time by avoiding systematic545

refinement. It also prepares a future parallelization.

� Oscillations in sharp wetting fronts of Richards’ equation have been interpreted within
the context of convection-diffusion equation. Wetting fronts are considered as internal
layers due to the nonlinear varying, and possibly vanishing, diffusivity as well as material
heterogeneity and anisotropy. A local Péclet number is exhibited to highlight troublesome550

regions. A weighted discontinuous Galerkin method is used to allow for jumps in the
solution which better approximate the sharp internal layers. Mesh adaptation and the
weighted framework work in synergy to capture and resolve sharp wetting fronts through
the proposed a posteriori error indicator.

The strategy leads to mass conservative, efficient and robust solution of Richards’ equation.555

However, the method holds heuristic parameters so that questions remain open regarding the
numerical analysis, the hp-decision making, the nonlinear convergence or the error balance. All
these aspects have great potential of improvements and will be investigated in future studies to
optimize the solving of Richards’ equation.

Acknowledgement560

The first author is partially supported by a grant from Provence-Alpes-Côte d’Azur region,
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[32] Paul Houston, Dominik Schötzau, and Thomas P. Wihler. Energy Norm A Posteriori650

Error Estimation of hp-Adaptive Discontinuous Galerkin Methods for Elliptic Problems.
Mathematical Models and Methods in Applied Sciences, 17(01):33–62, jan 2007.

32



[33] S. Irmay. On the hydraulic conductivity of unsaturated soils. Transactions, American
Geophysical Union, 35(3):463, 1954.
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[77] Rüdiger Verfürth. A Posteriori Error Estimation Techniques for Finite Element Methods.765

Oxford University Press, apr 2013.
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