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Abstract

Metamaterials are rationally designed composites made of building blocks which

are composed of one or more constituent materials. Metamaterial properties can

go beyond those of the ingredient materials, both qualitatively and quantita-

tively. In addition, their properties can be mapped on some generalized contin-

uum model. We present the general procedure of designing elastic metamaterials

based on masses and springs. We show that using this simple approach we can

design any set of effective properties including linear elastic metamaterials, –

defined by bulk modulus, shear modulus, mass density – and non linear meta-

materials, – with instabilities or programmable parts. We present designs and

corresponding numerical calculations to illustrate their constitutive behavior.

Finally, we discuss the addition of a thermal stimulus to mechanical metamate-
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rials.
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1. Introduction

For the last 50 years, a huge deal of effort has been made to design novel

materials by chemical synthesis (graphene [1, 2, 3], carbon nanotubes [4, 5]), by

structuration (composites, fibrous materials, multilayers)[6, 7, 8], or by topol-

ogy optimization in quasi-static conditions [9] or for dynamical Bloch waves5

(phononic crystals)[10]. The ultimate goal has been to reach an improvement

in stiffness or toughness, increase or decrease in the mass density, or to ab-

sorb/reflect or transmit energy [9, 11, 12]. Indeed, in aeronautics and the auto-

motive industry for instance, it was necessary to decrease the weight of all parts

leading to a fundamental change from metals to only aluminum, alloys and com-10

posites. It is, for example, almost impossible to find a car bumper made of metal

today thanks to composites (mainly fibrous). The quest for a dynamical design

response (sound and vibration absorption), firstly questioned by Brillouin, was

deeply expanded after pioneering works by Yablonovitch [13, 14], Monkhorst[15],

and Bloch[16]. Later, the introduction of functionalities designed by transfor-15

mational elastodynamics and the wish of mapping more complex media onto

generalized continua motivated the expansion from Cauchy elasticity to mi-

cropolar, micromorphic or Cosserat models (an effort started in the sixties by

Eringen, Maugin and other precursors [17, 18]) led to the higher order gradient
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theories of elasticity [19] and to the modification of the Newton’s second law by20

Willis and Milton [20].

In this paper, we revisit these innovations from the perspective of metama-

terial designs taken from the literature. First, we summarize for newcomers the

different models used in elasticity. Second, we focus on linear elasticity and

show that using masses and spring all mechanical properties can be indepen-25

dently designed. Third, we present an extension of linear metamaterials toward

their use for non-linear wave absorption.

2. Elasticity equations

In this section we review the complexity of the description of mechanical

materials and of their constitutive laws [21].30

2.1. Hooke’s spring law

In the seventeenth century, Robert Hooke formulated the first constitutive

law in mechanics that states that the force, F , needed to extend or compress a

spring by a distance d is given by F “ k d , where k is a constant (the stiffness).

This law can obviously be generalized to a vectorial force F connecting a general35

vector elongation in 3D space d “ pd1, d2, d3q by a matrix of spring constants

k as F “ k d. It is well known that in the general case, the spring constant

is a constant scalar (or a constant matrix), but that its magnitude can change

depending on the load in a non linear way (either monotonically or not; see

the section on non linear mechanics). In Figure 1 we illustrate the principles of40

linear and non-linear springs and continua, a concept that we will more clearly
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describe later on. The scalar Hooke’s law primarily relates linearly the tension

of an homogeneous spring to its elongation (Fig. 1(a)). If the spring is made

inhomogeneous along its length, such as in Fig. 1(b), then the relationship

becomes non linear. Similarly, the homogeneous cube of Fig. 1(c) can often be45

modelled with the linear Hooke’s law, but a structural spring such as depicted in

Fig. 1(d) must be described using a non linear stiffness under large deformations.

In the figure, the color scale represents the local vertical displacement with

respect to the static equilibrium position under zero tension. The elongation d is

the difference of the top displacement and the bottom displacement. Whereas in50

the first three cases the displacement field is basically a simple vertical gradient,

in the structural spring case the displacement field varies in a more complex

fashion.

Clearly, Hooke’s approach can be justified only for simple spring-like geome-

tries and for long bars. When all dimensions (pushing and lateral) of a material55

are comparable then this approach does not reflect properly the deformation of

the body. Thus, a more general theory is required. It is called Cauchy elastic-

ity from the contribution of Louis Cauchy to the definition of the stress tensor

replacing the simple applied force by a quantity homogeneous to a force per

surface area (thus with the units of pressure). Figure 2 illustrates the differ-60

ent components of the Cauchy stress tensor exerted on an infinitesimal cubic

volume.

The stress tensor defined graphically in Fig. 2 obeys the fundamental law of

conservation of linear momentum. Combined with the conservation of angular
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Figure 1: Under uniaxial tension, the deformations of (a) a linear spring, (b) a non linear

spring, (c) an homogeneous cube, and (d) a geometrically non linear spring are depicted,

respectively. The color scale measures the vertical displacement, from blue (no displacement)

to red (maximum displacement). For the finite element computations, the bottom surface is

clamped and a force F directed upward is applied at the top surface. The thin lines are for

the structures at rest. Under each panel, a schematic force-elongation curve is displayed.

momentum, the stress tensor takes a symmetric form with only six independent

parameters, rather than nine, and may thus be written:

»

—

—

—

—

—

—

–

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

σ1 σ6 σ5

σ6 σ2 σ4

σ5 σ4 σ3

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(1)

where the diagonal entries σ1, σ2 and σ3 are the normal stresses, and the off-

diagonal entries σ12 “ σ6, σ13 “ σ5 and σ23 “ σ4 are the orthogonal shear

stresses.65
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Figure 2: Illustration of the elements of the Cauchy tensor and of the orientation conven-

tion. In a Cartesian coordinate system, the stress vectors applying on each elemental plane,

T pe1q, T pe2q, and T pe3q can be can be decomposed into a normal component and two shear

components measured along the three principal axes.

Next, the infinitesimal strain tensor for a displacement field u is defined by:

ε “
1

2
r∇u` p∇uqT s.

By construction this tensor is also symmetric. In component form, it writes as

εij “
1

2
pui,j ` uj,iq , i, j “ 1, 2, 3,

and the notation ui,j “
Bui

Bxj
. Therefore, the displacement gradient can alterna-

tively be expressed as

∇u “ ε` γ

with a skew symmetric tensor γ also called the rotation tensor:

γ “
1

2
r∇u´ p∇uqT s.

Finally the constitutive equation between stress and stain tensors is given by
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the generalized Hooke’s law as

σ “ C : ε,

with σ Cauchy’s stress tensor, ε the infinitesimal strain tensor, and C a fourth-

order elasticity tensor. The latter must obey certain properties of tensors such

as symmetries and positive definiteness.

Sometimes it is difficult to model lattice metamaterials with continuum me-

chanics, especially if bars get very thin and numerous. For this prupose, it is70

important to note that simplified theories exist, e.g. Timoshenko’s and Euler-

Bernouilli beam theories. However, in the quest of an efficient implementation

they are not practical compared to finite element models. Anyway, an extensive

and specific literature exists and has been used for the design of metamaterials

[22, 23, 24, 25, 26].75

2.2. Navier’s equation

Once a rigid or deformable body is in motion, Newton’s second law can be

written as follows (omitting possible external forces):

∇ ¨ σ “ ρ
B2u

Bt2
(2)

with ρ the mass density and t the time variable. If the elastic body is isotropic,

then

Cijkl “ λδijδkl ` 2µδij , (3)
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where Lamé’s parameters λ and µ can be expressed in terms of Poisson’s ratio

ν and Young’s modulus E as

λ “
Eν

p1` νq p1´ 2νq
, µ “

E p1´ νq

p1` νq p1´ 2νq
. (4)

In the time-harmonic regime Navier’s equation at angular frequency ω is

∇ ¨ σ “ ´ρ ω2 u. (5)

3. Linear Mechanical metamaterials

3.1. Isotropic metamaterials

In the isotropic case, the effective elasticity tensor that describes the elastic80

properties of a solid metamaterial is very simple and in fact can be decomposed

a form with only two eigenvalues (see Milton [27] and Banerjee [28]). Here, we

describe how to design the most simple isotropic mechanical metamaterial (as

a remark, isotropy in mechanics is not as simple as in crystallography, since

space groups must be considered instead of point groups in order to describe85

symmetry). We start from the ideal pentamode metamaterials introduced by

Milton and Cherkaev [27], as shown in Fig. 3. Pentamodes are expected to avoid

the coupling of compression and shear waves due to their extremely large bulk

modulus, B, in comparison with the shear modulus, G [27, 29]. However, it

is almost impossible to fabricate such ideal pentamodes due to infinitely small90

connections between cones. In 2012, Kadic et al. realized pentamodes exper-

imentally by modifying the diameter of thin and thick ends of double cones

[29]. They investigated the effect of the overlap volume on the ratio B{G. They
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found that increasing the overlap volume stabilizes the structures, yet at the

same time decreasing the ratio.95

Figure 3: a) An ideal periodic unit cell of a pentamode metamaterial with constant length

a and a modified pentamode with a smaller diameter, d, at connecting parts of the double-

cone strut, and a bigger diameter, D, of the middle part. 3D view (b) and magnified front

view (c) electron micrograph of a pentamode truss micro-lattice metamaterial fabricated by

dip-in three-dimensional direct-laser-writing (DLW) optical lithography. Front view electron

micrograph (d) of an unit cell of the metamaterial part which is highlighted with a red square

in (c). The samples chosen reproduce those discussed originally in Ref. [29].

Figs. 3 (b) and (c) show 3D view and magnified front view electron micro-

graphs of an optimal pentamode truss micro-lattice metamaterial fabricated by

dip-in three-dimensional direct-laser-writing (DLW) optical lithography. These

structures are experimentally validated to possess an extremely large B{G ratio

which can be also observed in Fig. 5 a). Fig. 4 and Fig. 5 b) illustrate how100

to independently control the bulk modulus B by connecting the middle part

of double cones with soft loose springs. One can also fulfill the goal to control
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Figure 4: Illustration of optimal pentamodes with (a) a larger diameter D and additional loose

springs, (b) additional loose springs, (c) a larger diameter d and additional dense springs and

d) a larger diameter d and additional loose springs.

density by using parallel springs while enlarging the diameter d. By replacing

loose springs with dense springs, it is easy to keep the bulk modulus B and to

enhance the capacity to resist shear loading.105

Actually, we can make pentamode metamaterials isotropic by adapting the

optimal method presented by Buckmann et al. [31]. We can relate the elas-

tic modulus, the shear modulus and Poisson’s ratio to three phase velocities

v of the pentamode material, which are chosen either purely longitudinally or

transversely polarized, in the FM direction or [110] direction. We thus get a suf-110
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Figure 5: Milton’s maps of (a) pentamode metamaterials and (b), (c) optimal pentamode

metamaterials with different geometrical parameters. Ashby’s map (d) of optimal pentamode

metamaterials. This figure is inspired by Ref. [30].

ficient condition for isotropy as vL110 “ vT,xy
110 . This condition can be undertood

as follows: the phase velocity of the longitudinal wave along the crystallographic

direction [110] equals the phase velocity of the transverse wave along the same

direction. The condition can be achieved by adjusting geometrical parameters

or by adding additional springs. All in all, we obtain a possible way to control115

the 3 independent mechanical parameters and to make pentamodes isotropic by

adjusting different parts of the periodic unit cell.
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4. Nonlinear mechanical metamaterials

In the regime of large deformations, the stress-strain response of mechanical

metamaterials [32, 33, 34] always goes through a sequence of increases [35, 36] or120

decreases [37, 38], and steady [39, 40, 41] or damping [42, 43] variations. Glob-

ally, the part of the graph extending beyond the initial elastic region describes

the mechanical nonlinearity. Scientists usually pay much attention to the elastic

region for load-bearing mechanical metamaterials [38, 43], whereas nonlinearity

is important for energy absorption mechanical metamaterials [39, 43] and pro-125

grammable metamaterials [44, 11]. Nonlinearity arises from two aspects, either

geometrical (structural) nonlinearity or the nonlinearity of the parent materi-

als used for building the metamaterial [45]. Geometrical nonlinearity, which

is mainly determined by the topological structure and geometrical parameters,

exists in systems that sustain large deformations. Geometrical structures, such130

as truss lattices [35, 40], shell lattices [42, 43] and plate lattices [46, 47] have

to abide by two different deformation criteria: stretching dominated or bend-

ing dominated [48]. Different geometrical parameters will yield different failure

modes, including stiffening or softening plastic yield [38], plastic collapse [35],

linear and nonlinear buckling [39, 43], and so on. In a similar way, the me-135

chanical properties, especially in the nonlinear region, of the parent materials

also affect the failure modes of mechanical metamaterials. Material nonlinear-

ity works only after the deformation of the parent materials has gone beyond

the elastic region. Plastic yield will dominate the failure of most metals and

polymers. However, brittle failure will be most common for ceramics, composite140
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materials, and other ceramic-like materials. Material properties and the topo-

logical structure together with geometrical parameters decide the failure models,

that is the nonlinear response, of mechanical metamaterials.

Figure 6: a) Maxwell, b) Voigt and c) the standard linear solid simplified elastic-viscous

models are depicted in analogy with equivalent electrical circuits. Young’s modulus E is

analogous to a real-valued admittance, whereas viscosity contributes a iωη admittance similar

to a capacitance. The resulting relationship between dynamic modulus and angular frequency

is depicted below each equivalent circuit model (see text for their expressions).

Viscous materials, for which the relationship between stress and strain de-

pends on time, provide another possibility to design energy absorption, energy

dissipation, and vibration suppression metamaterials. Their energy dissipation

capacity highly depends on the angular frequency. Several mathematical models

have been proposed to describe such dispersive relationships. The Maxwell loss

model [49, 50] is probably the oldest viscoelastic model and can be represented

by a purely viscous damper and a purely elastic spring connected in series, as
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shown in Fig. 6 (a). The dynamic modulus E˚pωq “ E1 ` iE2 is obtained fol-

lowing the rules for admittance in equivalent circuits. In the case of the Maxwell

model,

1

E˚
“

1

E
`

1

iωη
(6)

which yields

E1 “
τ2ω2

τ2ω2 ` 1
E, E2 “

τω

τ2ω2 ` 1
E, (7)

with τ “ η{E. If we connect elastic and viscous elements in parallel, as in Fig.

6 (b), we get the generalized Kelvin-Voigt model [49, 50]

E˚ “ E ` iωη. (8)

Then obviously E1 “ E and E2 “ ωη. Combining a serial Maxwell branch in

parallel with a purely elastic branch, the more realistic model of the standard

linear solid is obtained, as depicted in Fig. 6 (c). The model contains two

independent elastic elements, E1 and E2, and a viscous element η, and is also

known as the Zener model[49, 50, 51]. The complex dynamic modulus is

E˚pωq “

ˆ

1

E1
`

1

iωη

˙´1

` E2, (9)

leading to

E1pωq “
τ2ω2

τ2ω2 ` 1
E1 ` E2, (10)

E2pωq “
τω

τ2ω2 ` 1
E1. (11)

Fig. 6 depicts the three previous elastic-viscous models and the correspond-

ing relationships between dynamics modulus and vibration frequency. The equa-145

tions are simple enough but often prove insufficient. For instance, the Maxwell

14



model successfully captures the evolution of the imaginary dynamic modulus as

a function of vibration frequency, but fails to describe the dependence of the

real part on frequency. It should be noted that any solid material must have a

non zero elastic modulus in the absence of vibrations, i.e. at the zero frequency.150

Hence, the Maxwell loss model is not physical in the limit of low frequencies.

Finally, the Kelvin-Voigt model is too ideal to describe nonlinear variations of

the dynamic modulus.

4.1. Tailoring the stress-strain curve

A central issue of mechanical metamaterial design is indeed to tailor the155

stress-strain curve to follow given shapes chosen in order to meet given re-

quirements [35, 39, 46]. As outlined in the previous section, the geometrical

structure is one of most important factors in metamaterial design. Here, we

will give three examples to illustrate how to tailor the stress-strain curve by

optimizing the structure.160

Let us start from a conventional spring which is the most basic elastic element

in a mechanical metamaterial. When a conventional spring is compressed or

stretched from its rest position (strained), a stress distribution appears along

the length. Fig. 1(a) illustrates the force versus elongation curve. The spring

constant is almost a constant as long as deformation does not go beyond spring165

stoke. Under certain circumstances, however, a spring constant increasing with

applied strain is needed. In this case, replacing the constant spacing spring coils

with graded spacing spring coils, or replacing the constant major radius with

an increasing major radius, a progressive rate spring can be obtained, as Fig.
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1(b) depicts.170

Second, the simple cubic solid structure, that is a base element in 3D me-

chanical metamaterials, can be used to implement any geometrical structure

by periodic repetition of a unit cell. Fig. 1(c) shows the deformation and the

corresponding stress-strain curve of an homogeneous cubic unit cell under ten-

sion. Clearly, Poisson’s ratio is positive and a conventional elastic-plastic tensile175

response is obtained. However, the structure [32] shown in Fig. 1(d), which is

composed of several relatively small simple cubic elements, has a totally differ-

ent deformation behavior: it is auxetic (Poisson’s ratio is negative). Moreover,

the failure mode changes from elastic-plastic to plastic bending. Note that such

mechanical behavior is unusual in natural materials.180

Third, we consider the control of the failure mode of mechanical metama-

terials. The body centered cubic (BCC) shell-lattice metamaterial depicted in

Fig. 7 has high stiffness, high strength, and large specific energy absorption at

low relative density [52]. The compressive failure mode of the metamaterial,

either dominated by plastic yield or buckling, is affected by the geometrical185

parameters defining the structure, including the spherical node radius R, the

cylindrical strut radius r, the smooth connecting shell radius r0, the cylindrical

strut length l0, the total length l, and thickness t1. These geometrical parame-

ters are not independent: we have r0 “ 2R´r and l “ l0`2
?

3pR´rq. Further

fixing the total length of the shell strut and setting the relative density to 0.05,190

only two independent parameters are left, for instance the spherical node ra-

dius R and the smooth connecting shell radius r0. After topology optimization,
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Figure 7: Body centered cubic (BCC) shell-lattice metamaterial. a) A unit cell is depicted

along with its geometrical parameters. b) Two different failure models can be observed for

the shell-lattice material, either plastic yield or buckling. The optimal designs obtained for c)

energy absorption and d) bearing load were fabricated by two-photon lithography.

we obtained two different functional shell metamaterials: a buckling dominated

metamaterial (R{r “ 2.3 and l0{pl´ l0q “ 0.1) and a yield dominated metama-

terial (R{r “ 2.5 and l0{pl ´ l0q “ 0.2). The buckling dominated metamaterial195

can almost recover 92% of its original shape after compressions in excess of 60%

strain, which makes it a good candidate for energy absorption. The yield domi-

nated metamaterial has higher stiffness, higher strength and better load bearing
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capacity. These examples encourage one to make possible the impossible.

4.2. Material non linearities and their use for energy absorption200

Nonlinear metamaterials are widely used in our daily life for energy absorp-

tion [53, 54, 55, 56]. Aiming at absorbing as much energy as possible, nonlinear

metamaterials were usually designed to obtain a relatively large peak force with

large deformation [35, 55, 57]. Most metamaterials utilize plastic deformation or

brittle fracture of micro-struts [37], shell [43] or plate [46, 47] to dissipate a large205

amount of energy. Stretching dominated metamaterials [43, 46, 47], which are

maybe the most famous plastic yield metamaterials, have been proven to pos-

sess extraordinary loading bear capacity and energy absorption at high relative

density. In contrast, bending dominated metamaterials [35, 41], which make use

of plastic bending joint, allow for large deformation and provide relatively large210

and nearly constant stress area in the nonlinear region at low relative density.

In addition, reusable energy metamaterials [58, 39, 59] were proposed to extend

their life span. By utilizing elastic buckling of shell, straight strut and curved

beam, reusable energy metamaterials were shown to present unusual features

including mechanical multi-stability [60, 61], close to 100 percent recovery after215

unloading [39, 58, 55], and controllable mechanical response [44].

5. Thermomechanical metamaterials

Systems placed in a thermal environment are sensitive to temperature changes

of their surroundings. An ambient temperature change ∆T will cause a thermal
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strain αij∆T in an elastic solid due to thermal expansion. Generally, thermal

expansion is described by a symmetric tensor of rank two

αij “

»

—

—

—

—

—

—

–

α11 α12 α13

α12 α22 α23

α13 α23 α33

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (12)

For isotropic solids, the thermal expansion tensor is proportional to the identity

matrix, αij “ αI, where I is the rank-two identity matrix and α is the thermal

length expansion defined by

α “
1

L

BL

BT
. (13)

In the elastic stress-strain relation, thermal strain has to be subtracted from

total strain, leading to the relation

σij “ Cijkl pεkl ´ αkl∆T q (14)

or, in the case of isotropic solids,

σij “ 2µεij ` λεijδij ´ p2µ` 3λqα∆Tδij . (15)

Note that the temperature dependence of the elastic constants was neglected in

the above equations.

Temperature variations can result both in thermal expansion and in geom-220

etry changes, which can be problematic in temperature-sensitive applications

that require thermal stability like space frame trusses, satellite antennas and

space crafts [62, 63]. Alternatively, thermal expansion can also be tailored to

achieve some required thermal deformation and behavior. Material systems
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and structures can be deliberately designed to deform in a controllable manner225

in response to a temperature stimulus. Applications based on this principle in-

clude morphing structures [64], large reversible shape changing components [65],

micro-actuators [66], self-assembly systems [67], grippers for soft micro-robotics

[68], biology devices [69], and so on.

Generally, those applications bring in demands on controllable coefficients of230

thermal expansion (CTE), e.g. large, positive, negative or zero thermal expan-

sion materials and structures. Many efforts have been made to create architec-

tured materials with tunable CTE using two constituents with widely different

thermal expansion combined in space. Different concepts were proposed under

this approach and each has its working principle and specific advantages. One235

major concept is utilizing the bending-dominated bi-material strip, based on

which some researchers proposed cellular solid structures with unbounded ther-

mal expansion [70, 71]. Other concepts include stretch-dominated structures

composed of nested double-parallel units with large stiffness [71], flexure blade

structures with high CTE tunability [72], and tetrahedron structure combined240

with sizable CTE tunability and large stiffness [73, 74]. Another major approach

is to generate CTE tunability via topology optimization [75, 76, 77]. Structures

obtained following this method are generally more complicated. Finally, using

3D printing technologies, researchers have managed to directly print metama-

terials with controllable thermal expansion and have achieved rather high but245

negative thermal expansion coefficients [72, 78, 79].
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6. Conclusion

In this paper, we have presented general procedures to design mechanical

metamaterials in both the linear and the non linear regimes using an effective

medium approach based on simple mechanical models. We have emphasized250

the complexity and the opportunities in the nonlinear case if one uses viscos-

ity or plasticity. Finally, we have summarized proposals aiming at using an

external stimulus (variation of temperature) to change the shape of designed

metamaterials.
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