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Abstract—Image segmentation is a classic subject in the field
of digital image processing, and it can be used to solve a large
variety of problems or serve as preprocessing for other methods
of image analysis. Hierarchical image segmentation methods
provide a multiscale representation, therefore they produce a
nested set of image segmentations in which a result at a given
level can be produced by merging regions of the segmentation
at its previous level. However, a hierarchical representation
may produce small components at its coarser levels, leading
to oversegmentations on such scales. To solve this problem, we
explore strategies to simplify hierarchies in order to remove non-
significant regions, in terms of area, while trying to preserve the
hierarchical structure. We evaluate the proposed simplification
strategies with different hierarchical segmentation methods on
the Pascal Context dataset by using precision-recall measures
and fragmentation curves, along with a qualitative assessment
showing that the simplification of hierarchies can lead to visually
better image segmentations.

I. INTRODUCTION

Image segmentation is one of the most elemental topics
on image processing and analysis. The task itself consists in
partitioning (or grouping) the pixels of an image into percep-
tually coherent parts. It can be used as preprocessing for other
high-level tasks of image analysis [1], [2], or used as main
method in various areas such as sedimentary petrography [3]
and medical image analysis [4]–[7]. An image segmentation
can be simplistically given as a single set of grouped pixels
of an image, but many consider that this task is in fact a
multi-scale problem, where the resulting segmentation can
have different levels of refinement. Aiming at working with
different scales of a segmentation, hierarchical methods are
proposed.

A hierarchical image segmentation is a series of image seg-
mentations at different detail levels, such that the segmentation
at a given level can be produced by merging regions of the
segmentation at its previous level. Usually, the pipeline for
segmenting an image in a hierarchical way can be outlined
as: (i) transformation of the image into a graph (e.g., 4-
adjacent graph); (ii) computation of a hierarchy from the
graph (e.g., quasi-flat zone hierarchy (QFZ) [8]); and (iii)
computation of the segmentation from the hierarchy according
to a given criterion (e.g., number of regions). As stated in [9],

[10], the saliency map of a hierarchy is represented in the
2D Khalimsky grid, in which the brightness of a contour
is inversely proportional to the number of partitions of the
hierarchy this contour belongs to, i.e., dark contours are the
strongest ones. Unfortunately, as it can be seen in Figure 1,
the QFZ hierarchy computed from a graph that represents
the original image has the majority of its strong contours
representing very small regions, and using this hierarchy as
it is can lead to an oversegmentation.

There are several hierarchical segmentation methods in the
literature that use some kind of simplification, such as the
HGB [11], HSRG [12] and HPRT [13], but differently from
this work, they have used just one order of edges for travers-
ing the tree representation. In a certain sense, the hierarchy
simplification tries to remove small connected components as
in the area opening [14] and the hierarchical simplification
proposed by [15]. The idea of area opening, and its dual
operation, called area closing, is to remove from a binary
image its connected components with area smaller than a
given threshold. This strategy is easily extended to grayscale

Fig. 1. An example of hierarchy simplification with two different traversal
strategies by removing regions smaller than 1000 pixels. In first row, the QFZ
hierarchy (right) of the image (left) is presented. In the second row, edges are
browsed in a non-increasing (left) and non-decreasing (right) order of their
weight.
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Fig. 2. An example of hierarchy simplification in terms of region size, in which, the minimum region size is 2 elements: (a) the original graph; (b) the initial
hierarchy; (c)-(d) the simplified hierarchy taking into account the non-decreasing (non-increasing) order of edges for their weights. In (a)-(d), the black-solid
edges represent the MST.

image in which the images can be seen as a stack of binary
images. For the hierarchy simplification for non-significant
region removal, the idea is to filter out small components,
on a graph representation, by merging them to their adjacent
components. The simplification proposed by [15] is based on
the minimization of an energy functional. The basic idea of this
method is to simplify the image taking into account stacked
level lines considering their ”importance” while preserving the
protruding structures intact.

In this work, we explore several strategies to simplify
hierarchies in order to remove, in terms of area, non-significant
regions. These strategies consist on applying a simplification
criteria over a tree representation of a hierarchy, performing a
single traversal per simplification. This leads to a simple, but
still effective hierarchy simplification method. It is showed
that oversegmentation can be avoided by using the proposed
simplification strategies, producing image segmentations that
are visually better. Additionally, depending on the used strat-
egy, it is possible to obtain segmentations with coarser or
finer regions. This observation can be seen on a toy example
illustrated in Figure 2, in which there are no regions with area
smaller than 2 after the hierarchy simplification. Moreover, we
study the behavior of the simplification on the HGB [11] and
QFZ hierarchy [8] hierarchical segmentation methods, follow-
ing the supervised assessment framework proposed in [16],
[17]. In summary, the main goal of this work is to simplify a
hierarchy without computing the segmentation beforehand. In
other words, instead of computing the segmentations and then
applying any kind of simplification, we simplify the hierarchy
in order to remove the non-relevant regions, and the segmenta-
tion without these regions can be easily inferred. Moreover, we
propose a general method for non-significant region removal
that can be used to any hierarchical segmentation which is
represented by a binary partition tree [18].

This paper is organized as follows. In Section II, notions of
hierarchies are given. In Section III, we present the method
for hierarchy simplification in order to remove non-significant
regions. In Section IV, we evaluate the proposed method in
terms of quantitative and qualitative assessments. And, finally,
some conclusions and future works are drawn in Section V.

II. HIERARCHICAL GRAPH-BASED IMAGE SEGMENTATION

This section aims at briefly explaining the method of hierar-
chical graph-based image segmentation (HGB) [11]. However,
we first give a series of necessary notions such as quasi-flat
zones hierarchies [8], and then describe the HGB method.

A. Hierarchies

Given a finite set V , a partition of V is a set P of non-
empty disjoint subsets of V whose union is V . Any element
of P is called a region of P. Given two partitions P and P′ of
V , P′ is said to be a refinement of P, denoted by P′ � P, if
any region of P′ is included in a region of P. A hierarchy on
V is a sequence H = (P0, . . . ,P`) of partitions of V , such
that Pi−1 � Pi, for any i ∈ {1, . . . , `}.

B. Graph and connected-component partition

A graph is a pair G = (V,E) where V is a finite set and
E is a subset of {{x, y} ⊆ V |x 6= y}. Each element of V is
called a vertex of G, and each element of E is called an edge
of G. A subgraph of G is a graph (V ′, E′) such that V ′ ⊆ V
and E′ ⊆ E. If X is a graph, its vertex and edge sets are
denoted by V (X) and E(X), respectively.

If two vertices of a graph G are joined by an edge, we say
that they are adjacent. From the reflexive–transitive closure of
this adjacency relation on a finite set V (G), we derive the
connectivity relation on V (X). It is an equivalence relation,
whose equivalence classes are called connected components of
G. We denote by C(G) the set of all connected components
of G. Note that C(G) is a partition of V (G), called the
connected-component partition induced by G.

C. Quasi-flat zone hierarchies

Given a graph G = (V,E), let w be a map from E into
the set R of real numbers. For any edge u of G, the value
w(u) is called the weight of u (for w), and the pair (G,w) is
called an edge-weighted graph. We now make from an edge-
weighted graph a series of connected-component partitions,
which constitutes a hierarchy. Such a hierarchy is called a
quasi-flat zone hierarchy (QFZ) of (G,w), and the quasi-flat
zone hierarchy transform is a bijection between the hierarchies
and a subset of the edge-weighted graphs called the saliency



maps [8]. Hence, any edge-weighted graph induces a quasi-
flat zone hierarchy and any hierarchy H can be represented
by an edge-weighted graph whose quasi-flat zone hierarchy is
precisely H [8]. This bijection allows us to handle quasi-flat
zone hierarchies through edge-weighted graphs.

Given an edge-weighted graph (G,w), let X be a subgraph
of G and let λ be a value of R. The λ-level edge set of X for
w is defined by wλ(X) = {u ∈ E(X) | w(u) < λ}, and the
λ-level graph of X for w is defined as the subgraph wVλ (X) of
X such that wVλ (X) = (V (X), wλ(X)). Then, the connected-
component partition C(wVλ (X)) induced by wVλ (X) is called
the λ-level partition of X for w.

As we consider only finite graphs and hierarchies, the set
of considered level values is reduced to a finite subset of R
that is denoted by E in the remaining parts of this article. In
order to browse the values of this set and to round real values
to values of E, we define, for any λ ∈ R: pE (λ) = max{µ ∈
E∪{−∞} | µ < λ} and nE (λ) = min{µ ∈ E∪{∞} | µ > λ}.

Let (G,w) be an edge-weighted graph and let X be a
subgraph of G. The sequence of all λ-level partitions of X
for w, ordered by increasing value of λ, is a hierarchy, defined
by QFZ(X,w) = (C(wVλ (X)) | λ ∈ E ∪ {∞}), and called
the quasi-flat zone hierarchy of X for w. Let H be the quasi-
flat zone hierarchy of G for w. Given a vertex x of G and a
value λ in E, the region that contains x in the λ-level partition
of the graph G is denoted by Hλx .

Let us consider a minimum spanning tree T of (G,w). It
has been shown in [8] that QFZ(T,w) of T for w is the same
as QFZ(G,w) of G for w. This indicates that the quasi-flat
zone hierarchy for G can be handled by its minimum spanning
tree.

D. HGB method

The method HGB [11] does not explicitly produce a hier-
archy of partitions, but instead it produces a weight map w′

(scales of observations) from which the desired hierarchy H
(for w′) can be inferred on a given T of (G,w). It starts from
a minimum spanning tree T of an edge-weighted graph built
from the image. In order to compute the scale L(u = {x, y})
associated with each edge of T , the HGB method iteratively
considers the edges of T in a non-decreasing order of their
original weights w.

The hierarchical scale w′(u) is simply set to:

w′(u) = max{SY (X), SX(Y )}, (1)

in which,

SY (X) = [Dif(X,Y )− Int(X)]× |X| (2)

with Dif(X,Y ) and Int(X) defined analogously to [19].
Thus, the internal difference Int(X) of a region X is the
highest edge weight among all the edges linking two vertices
of X in the minimum spanning tree of (G,w); and the
difference Dif(X,Y ) between two neighboring regions X and
Y is the smallest edge weight among all the edges that link X
to Y . Additional details were omitted and the reader should
refer to [11] for more information.

III. HIERARCHY SIMPLIFICATION

The seminal work of the hierarchy simplification was pro-
posed in [11]. Differently from that proposed method, here
we explored two strategies to organize the edges according to
their weights: (i) non-increasing order; and (ii) non-decreasing
order. The main idea for this simplification is to transform an
initial hierarchy into a new one in which: (i) the new hierarchy
does not contain any region with area below a given threshold;
and (ii) the regions of the new hierarchy are either regions of
the initial hierarchies or regions obtained by merging adjacent
regions of the initial hierarchy. In other words, if a region
R of the initial hierarchy is not adjacent to other regions
with area smaller than the threshold, this region will be in
the simplified hierarchy, but if an adjacent region S does not
reach the threshold, the region S will be merged to R or to
another adjacent region to S.

In order to cope with such transformation, the hierarchies,
which are represented by weight maps (see [8] for more
details), are manipulated as binary partition trees since the
computation of the area for a region in this representation
can efficiently be done. The main idea of the Algorithm 1 is
to identify the edges that merge two connected components
in which at least one of them has area smaller than a given
threshold (line 4). If so, the new edge weight will be set to
zero (line 5) since both connected components must be merged
together instead of being separated.

As one can see, our method does not explicitly produce a
hierarchy of partitions, but instead it produces a new weight
map from which the desired hierarchy is simply the QFZ
hierarchy on T with the new edge weights. Generally, it starts
from a minimum spanning tree T of an edge-weighted graph
built from the image. In order to compute the weight associated
with each edge of T , our method iteratively considers the
edges of T in a given order of their original weights w. For
every edge u, the new weight is either the original weight or
zero.

Algorithm 1: Hierarchy simplification for non-significant
region removal.
Data: A minimum spanning tree T = (V,E′) of w
Data: An array AMST with the edges of the MST T in

a given order of weights with respect to w
Data: A minimum area size M
Result: A map w′ from E′ to R+

1 w′ ← w;
2 for i ← 1 to |E′| do

/* Assuming u = {x, y} as an edge */
3 u = AMST [i];
4 if |[C(w′

V
f(u)(T ))]x| ≥M and

|[C(w′
V
f(u)(T ))]y| ≥M then w′(u) ← w(u);

5 else w′(u) ← 0;



(a) Original image (b) HGB hierarchy (c) Non-increasing order (d) Non-decreasing order
Fig. 3. Comparison between HGB method (non-simplified) (b) with simplification by using non-increasing order of the edge according to their weights (c)
with simplification by using non-decreasing order of the edge according to their weights (d). On lines, from top to bottom, the simplifications have threshold
of 400, 800, 400, and 500 pixels and the number of components on the segmentations with simplification is 13, 24, 22, and 20 respectively. On segmentations
non-simplified, the number of components is 16, 29, 28, and 22.

An example of a hierarchy simplification is given in Fig-
ure 2. This example is a bit tricky as there are several valid or-
derings. The initial hierarchy (Figure 2(b)), which is computed
from the original graph, is simplified in order to remove all
regions with area smaller than 2. The 4-level partition of T for
w contains 2 (resp, 3) regions when the edges are considered
in a non-decreasing (resp, non-increasing) order, illustrated in
Figure 2(c) (resp, (d)).

By using this hierarchy simplification method, we can argue
that when the edges are taken according to a non-decreasing
order of their weights, the simplified hierarchy has coarser
regions when compared to the simplification according to non-
increasing order that has finer regions. This observation can
be easily seen in Figure 3 and Figure 4.

IV. EXPERIMENTAL RESULTS

This section presents the qualitative and quantitative assess-
ments of the results obtained with the non-increasing and non-

decreasing order simplifications.

A. Qualitative assessment
In this section we present a qualitative evaluation of the hi-

erarchical simplifications. The images used on this assessment
are from the BSDS 500 test subset [10]. As a first experiment,
shown in Figure 3, we computed the HGB segmentation
without simplification and with a simplification taking into
account the non-increasing order, hereafter NI for short, and
with a simplification taking into account the non-decreasing
order, hereafter ND for short, using the same simplification
threshold and number of components on the segmentation
for each image. As a second experiment, shown in Figure
4, there are two QFZ segmentations of the same image with
the NI and ND simplifications, using three different levels of
area threshold and showing the lowest λ-level segmentation
(the one corresponding to the set with the largest number
of components). For the third batch of experiments, shown



(a) Original image (b) QFZ hierarchy (c) Threshold 500 (d) Threshold 1000 (e) Threshold 1500
Fig. 4. Comparison of simplifications by using non-decreasing and non-increasing orders from QFZ hierarchy. Non-increasing order is used on the first line
and non-decreasing order on the second. All the slices presented are of the lowest λ-level segmentation. In the columns, from left to right, we have the
original image, the QFZ hierarchy and the simplifications with a threshold of 500, 1000, and 1500 pixels, respectively.

on Figure 5, we paired the two hierarchical segmentations
computed from HGB and QFZ hierarchies, showing the non-
simplified saliency map, the NI and ND simplified saliency
maps, and the NI and ND segmentations with same number
of components for each image.

On Figure 3, we can observe the effect of the hierarchy sim-
plification by analyzing the saliency maps and segmentations.
Without using one of the simplification methods, the produced
hierarchies contain numerous small components which belong
to the same object on the image. This is not desirable, since
finding a level on such hierarchies that would not produce
an oversegmented image can be quite hard. After applying
the simplification, hopefully the small components that belong
to a same object are merged, and creating segmentations in
the new hierarchies is eased. It can be observed in these
images that, when using the same number of components, a
segmentation done after the simplification represents better the
original images.

On Figure 4, it can be seen that for both simplifications,
using higher thresholds lead to smaller number of regions with
larger sizes, since regions with a size (in number of pixels)
smaller than the threshold are merged to the one closest in
the hierarchy (i.e., more similar). Taking into account that
the union between regions is done directly in the hierarchy,
the change of the threshold preserves the hierarchical char-
acteristics of the segmentation. One can also see in Figure 4

that, for all the thresholds used, the NI simplification produces
more refined regions than those from the ND simplification,
in addition to containing a greater amount of regions. This
behaviour is highly related to the nature of the NI and ND
order of evaluation. The NI simplification starts evaluating
the larger components of a hierarchy, and it continues in
non-increasing order until all elements of the hierarchy are
evaluated. With that in mind and considering that merged
elements are not checked twice, given the same hierarchy, the
NI simplification performs less merges of bigger components
when compared to the ND simplification, leading to fewer
component fusions, and consequently smaller components on
the lowest λ-level segmentation.

On Figure 5, we can compare the results produced by both
hierarchical segmentation methods, and how they are impacted
by the simplifications. For both segmentation methods, the
non-simplified hierarchies contain many small objects, and
although the HGB produces slightly better segmentations
without hierarchy simplification (it partially separates the boat
and the person from the background on Figures 5(b) and
5(c), while the QFZ does not), after the simplification the two
methods produce similar segmentations. As already stated, the
NI simplification can result on more refined segmentations
compared to ND simplification. The choice for which vari-
ation to use is situational, as we can observe on the QFZ
segmentations of Figures 5(a) and 5(b). On Figure 5(a),



(a) (b) (c)

Fig. 5. Saliency maps and segmentations for each segmentation and simplification method. For each original image (on top), there are two columns regarding
the HGB and QFZ segmentation methods on the left and right respectively. On each column, the first image (from top to bottom) is the saliency map without
simplification, followed by the NI and ND simplified saliency maps. Following, there are HGB and QFZ segmentation without simplification and segmentations
for the NI and ND simplifications with the same number of regions for each original image used (in NI and ND). The threshold used in simplifications are
400, 200, and 500 pixels and the number of components on the segmentations is 10, 22 and 20 for images (a), (b), and (c) respectively. On the non-simplified
segmentations, the number of components is 11, 24, and 25 (HGB); and 10, 21, and 19 (QFZ), respectively.

the bear is segmented in two regions when using the QFZ
with NI simplification, which does not happen with the ND
counterpart. On Figure 5(b), the NI simplification results on a
segmentation where the fine details of the boat are preserved,
while the ND merges these details and split the mountain into
multiple regions.

At the saliency maps with NI and ND simplifications,
Figures 5(b) (QFZ and HGB) and 5(c) (QFZ only), we can
see several small regions that are not at a low levels in the
hierarchy. However, only the segmentations with NI and ND
simplifications on 5(b) preserved these regions. This occurred
due to the different λ-levels chosen for each method to enforce
them to produce the same number of regions for the analysis.
While in Figure 5(b) the connected-component partitions were
induced by λ-levels of 14 (HGB) and 27 (QFZ), in Figure 5(c)
the partitions were taken at the level 92 (QFZ). The difference

in the levels of λ taken to induce a partition can also influence
the results, since small λ-levels produce partitions in which
separated components can have high similarities.

B. Quantitative assessment

In this section, a quantitative assessment of the proposed
method and its variations is presented. The hierarchy simplifi-
cation methods are evaluated on a dataset of natural image
analysis, following the metrics of an image segmentation
evaluation framework. The database, metrics and framework
are detailed, and then the results for the QFZ [17] and
HGB [11], [20] hierarchies are shown and compared to their
simplified counterparts. For computing both methods, we have
used Structured Edge [21] as gradient estimator. In both cases,
we used the two different strategies for organizing the edges
according to their weights: (i) non-decreasing order; and (ii)
non-increasing order. In terms of area size, we remove the
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FB BCE
ODS OIS FOC FHC

Simplified HGB 0.08% (NI) 0.408 0.408 0.536 0.476
Simplified HGB 0.08% (ND) 0.330 0.330 0.512 0.472
Simplified HGB 0.40% (NI) 0.480 0.479 0.573 0.468

Simplified HGB 0.40% (ND) 0.425 0.426 0.565 0.477
Simplified HGB 1.60% (NI) 0.512 0.508 0.588 0.466

Simplified HGB 1.60% (ND) 0.485 0.483 0.592 0.456
HGB Hierarchy 0.207 0.208 0.358 0.358

(a) QFZ (b) HGB

Fig. 6. Comparison between the QFZ hierarchy and simplified QFZ hierarchy at a given threshold. Fragmentation–Optimal Cut score curves (FOC) for
BCE on Pascal Context (second column): each plain curve represent the upper-bound score achievable for a given fragmentation value. The corresponding
dashed curves represent the score obtained by horizontal cuts. The principal performance measures are summarized in the table: F-Measure of FB at ODS
and OIS, area under the curve for BCE for optimal and horizontal cuts (fragmentation curves).

regions that area smaller than 0.08%, 0.40%, and 1.60% of
the original size of the image. Thus, we have compared the
initial hierarchy to these simplified versions.

Some aspects related to the evaluation of image segmen-
tation in the form of hierarchies of partitions have to be
taken in consideration for a proper assessment. Even though
doing a qualitative analysis of a hierarchy can be eased by
the use of contour maps such as the saliency maps obtained
from the hierarchies, the quantitative analysis of hierarchies
are more complicated. Since the image segmentation datasets
do not present ground-truths for hierarchical segmentations, a
common strategy is to perform cuts on different scales, i.e.
all possible horizontal scales of the hierarchy, and evaluate
the created segmentations with common image segmentation
metrics. To perform the assessment, we follow the supervised
assessment framework proposed in [17].

In this paper, we have used only fragmentation curves on the
bidirectional-consistency error (BCE) [17]. The fragmentation
level of a partition is defined as the number of regions in
the partition divided by the number of regions in the ground-
truth. The fragmentation curve on BCE then evaluates the
quality of the regions of partitions of the hierarchy as the
fragmentation level increases, also with respect to a ground-

truth segmentation. We consider two categories of partitions
that can be extracted from a hierarchy: the partitions of the
hierarchy (horizontal cuts), and the optimal partitions that can
be constructed from regions taken from any partition of the
hierarchy (the optimal non-horizontal cuts). Two aggregated
measures are defined: the area under the curve for the optimal
cuts (FOC) and the area under the curve for horizontal cuts
(FHC).

The fragmentation curves are evaluated on the test set of the
Pascal Context dataset [22]. Pascal Context test set consists
of a pixel-wise segmentation of the last 2,498 images of the
Pascal VOC’10 [23] validation set.

Observing the results, one can conclude that the hierarchy
simplifications do improve the results for both segmentation
methods compared to their non-simplified versions, specially
for the HGB method. Also, at lower thresholds, the NI
variation curves usually outperform the ND curves, but as the
threshold grows, the methods tend to have closer and closer
results. This is expected, because as the thresholds get larger,
some regions are merged regardless of the traversal strategy
chosen.



V. CONCLUSION

In this paper we have explored two strategies to simplify
hierarchies in order to remove, in terms of area, non-significant
regions. We have shown that these studied strategies may
obtain different results with different features. Generally, when
the edges are considered in a non-decreasing order of their
weights, the segmentation is coarser than the non-increasing
order. This behaviour is highly related to the nature of the order
of evaluation. The NI simplification starts evaluating the larger
components of a hierarchy, and continues in non-increasing
order until all elements of the hierarchy are evaluated. With
that in mind and considering that merged elements are not
checked twice, given the same hierarchy, the NI simplification
performs less merges of bigger components when compared
to the ND simplification, leading to fewer component fusions,
and consequently smaller components on the lowest λ-level
segmentation.

According to our experiments, the use of hierarchy simpli-
fication outperforms the initial hierarchy for the both studied
methods, QFZ and HGB. Also, it is observed that the NI
simplification outperforms the ND at lower thresholds, but
as the threshold increases, the two simplifications produce
more similar results. It is important to observe that the
fragmentation measures are better when the minimum sized
regions increase. For future works, we aim at studying how to
combine both strategies for new hierarchy simplification, and
how to create new traversal criteria to perform the hierarchical
simplification.
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tion scales based on felzenswalb-huttenlocher dissimilarity measure for
hierarchical segmentation,” in Discrete Geometry for Computer Imagery.
Springer International Publishing, 2019, pp. 167–179.

[21] P. Dollár and Zitnick, “Fast edge detection using structured forests,”
Transactions on Pattern Analysis and Machine Intelligence, vol. 37,
no. 8, pp. 1558–1570, 2015.

[22] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler,
R. Urtasun, and A. Yuille, “The role of context for object detection and
semantic segmentation in the wild,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2014.

[23] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The PASCAL Visual Object Classes
Challenge 2010 (VOC2010) Results,” http://www.pascal-
network.org/challenges/VOC/voc2010/workshop/index.html.


