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Abstract. Dung’s abstract argumentation provides us with a general framework

to deal with argumentation. For extension-based semantics, the central issue is

how to determine the extensions wrt. various semantics. Motivated by the accept-

ability and reinstatement criterion, we propose the notions of J-acceptability and

J-reinstatement. Correspondingly, we introduce the J-complete semantics which

fills the gap between complete semantics and preferred semantics. It is shown

that acceptability together with J-acceptability forms the foundation of extension-

based semantics. For example, any admissible set can be built starting from a

conflict-free collection of initial sets by iteratively applying some functions based

on acceptability and J-acceptability. In fact, this novel idea has a powerful ability

in picturing the structure of various extensions and can be expected to play an

important role in the study of various extension-based semantics.

1 Introduction

In recent years, the area of argumentation begins to become increasingly central as a

core study within Artificial Intelligence. Starting from the work of Dung [10], a num-

ber of papers investigated and compared the properties of different semantics which

have been proposed for abstract argumentation frameworks [4, 5, 8, 11]. Recently, more

excellent work has been done in extension-based semantics and dynamic argumenta-

tion [1–3, 6, 9, 12]. For further notations and techniques of argumentation, we refer the

reader to [7, 13].

As is known, the concept of acceptability plays a fundamental role in the extension-

based semantics. Each traditional semantics satisfies the acceptability principle, that is,

each extension under the traditional semantics is an admissible set. The reinstatement

principle and the characteristic function are developed from the acceptability. But, ac-

ceptability is not enough when we extend a known admissible set to a new admissible

set which has more arguments. There exists the case when an admissible set is com-

bined with some additional arguments to form a new admissible set, whereas each of

the additional arguments is not accepted wrt. the given admissible set. This case moti-

vated us to propose the notion of joint acceptability, J-acceptability for short. Based on

this novel concept, we can define the J-characteristic function and the J-reinstatement

criterion which play a similar role as the characteristic function and reinstatement cri-

terion do in the theory of extension-based semantics. Furthermore, we define a new
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semantics called J-complete semantics which exactly reveals the gap between complete

semantics and preferred semantics.

The notion of initial set was first introduced by [15]. It is a generalization of the

notion of initial argument and can be seen as the most basic germ of the building of var-

ious extensions. Based on this idea, our aim is to introduce a new fundamental criterion

called J-acceptability and to combine it with the acceptability and initial sets to set up

a procedure, by which any admissible set, complete extension and preferred extension

can be built and described. Comparing with the known methods of finding extensions,

we make it clear that initial sets should be seen as the starting points and discover that

the J-acceptability is an essential supplement of acceptability. And so, our work pro-

vides a more workable method than the known approachs to construct all admissible

sets.

The paper is organized as follows. Section 2 recalls the basic notions of argumen-

tation frameworks. Section 3 introduces the J-acceptability criterion, J-complete se-

mantics and studies their properties. Section 4 discusses our method for building and

describing admissible sets, complete extensions and preferred extensions by the accept-

ability, J-acceptability and initial sets. Section 5 is devoted to concluding remarks and

perspectives. The proofs can be found in [16].

2 The basic notions of argumentation frameworks

For each argumentation framework, the arguments are produced by agents and the at-

tack relation between them is set up according to some specific rules. We do not con-

sider the origin and structure of arguments and the practical interaction of them.

Definition 1 An argumentation framework is a pair AF = (A,R), where A is a finite

set of arguments and R ⊆ A×A represents the attack relation.

Let AF = (A,R) be an argumentation framework, a, b ∈ A and S ⊆ A. a is attacked

by b if (b, a) ∈ R, denoted by b → a; a is called initial if a is not attacked; a is attacked

by S if there is some b ∈ S such that (b, a) ∈ R, denoted by S → a; R+(S) denotes the

set of arguments attacked by S; a attacks S if there is some b ∈ S such that (a, b) ∈ R,

denoted by a → S.

Usually, an argumentation framework AF = (A,R) can be represented by a di-

rected graph. Nodes are used to stand for the arguments and edges represent the attack

relation between arguments.

An extension is a set of arguments which can stand together. The basic requirement

for any extension is conflict-freeness. That is, if an argument a attacks another argument

b, then they can not stand together. Another requirement is known as admissibility and

lies at the heart at all traditional extension-based semantics. It is based on the notions

of acceptable argument and admissible set.

Definition 2 Let AF = (A,R) be an argumentation framework, S, T ⊆ A, a ∈ A.

- S is conflict-free if there are no a, b ∈ S such that (a, b) ∈ R. Furthermore, S is

conflict-free with T if S ∪ T is a conflict-free set.

- By extension, a set B of subsets of A is said to be conflict-free if the union of the
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elements of B, denoted by ∪B, is a conflict-free subset of A.

- a is acceptable wrt. S (or a is defended by S) if each attacker b of a is attacked by S.

- S is an admissible set if S is conflict-free and each a ∈ S is defended by S. For

convenience, we denote the collection of all admissible sets of AF by AS(AF ).

In the literature, the reinstatement principle [3] is regarded as the converse of ad-

missibility principle. Both principles lead to the following semantics.

Definition 3 Let AF = (A,R) be an argumentation framework and S ⊆ A.

- S is a complete extension if S ∈ AS(AF ) and for each a ∈ A defended by S, a ∈ S.

The collection of all complete extensions is denoted by CO(AF ).
- S is the grounded extension if it is the least element (wrt. set inclusion) of CO(AF ).
The grounded extension of AF is unique and denoted by GE(AF ).
- S is a preferred extension of AF if it is a maximal element (wrt. set inclusion) of

CO(AF ). The collection of all preferred extensions is denoted by PR(AF ).

The complete and grounded extensions can also be defined using the characteristic func-

tion. Let AF = (A,R), the function F : 2A → 2A which, given a set S ⊆ A, returns

the set of the acceptable arguments wrt. S, is called the characteristic function1 of AF .

Complete extensions are exactly conflict-free fixed points of F and the grounded ex-

tension of AF is the least fixed point of F .

In the following, we sometimes need to restrict to a subset of an argumentation

framework.

Definition 4 Let AF = (A,R) be an argumentation framework, and S ⊆ A. The

restriction of AF to S, denoted by AF |S , is the sub-argumentation framework (S,R∩
(S × S)).

We also recall the I-maximality and directionality principles first introduced in [3].

The directionality principle is based on the sets of arguments which do not receive any

attack from outside.

Definition 5 Let σ be a semantics and AF be an argumentation framework. Eσ(AF )
denotes the set of extensions of AF under the semantics σ.

- A set E of extensions is I-maximal if and only if ∀E1, E2 ∈ E , if E1 ⊆ E2 then

E1 = E2. A semantics σ satisfies the I-maximality principle if and only if ∀AF such

that Eσ(AF ) is non-empty, Eσ(AF ) is I-maximal.

- A non-empty set S ⊆ A is unattacked in AF if and only if there exists no a ∈ (A \ S)
such that a → S.

- A semantics σ satisfies the directionality principle if and only if ∀AF such that

Eσ(AF ) is non-empty, ∀S unattacked in AF , Eσ(AF |S) = {(E ∩ S) : E ∈ Eσ(AF )}.

Now, let us turn to the notion of initial set first introduced in [15].

1 Strictly speaking, this function should be denoted by FAF . The subscript will be omitted in

the following.
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Definition 6 Let AF = (A,R) be an argumentation framework. A non-empty admis-

sible set I is initial if it has no non-empty proper subset to be admissible. The collection

of all initial sets of AF is denoted by IS(AF ).

For any initial argument i of AF , {i} is obviously an initial set. Two initial sets of

AF may be conflicting. So, we usually consider conflict-free subsets of IS(AF ).

Example 1 Let AF = (A,R) with A = {1, 2, 3, 4, 5, 6, 7, 8} and R = {(1, 2), (2, 3), (3, 4),
(4, 1), (2, 5), (2, 6), (6, 7), (6, 8), (7, 6)}. The directed graph is as follows.
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There are three initial sets: I1 = {1, 3}, I2 = {2, 4} and I3 = {7}. Obviously, I1
and I2 are conflicting, whereas {I1, I3} is a conflict-free subset of IS(AF ).

Due to Def.6 any non-empty admissible set contains at least one initial set. Cer-

tainly, any two initial sets contained in an admissible set are conflict-free. So, we have:

Proposition 1 Let AF = (A,R) and E be an admissible set of AF . If B is a collection

of initial sets contained in E, then ∪B is an admissible set. If B is the collection of all

initial sets contained in E, then E \ (∪B) contains no initial set.

As is known, the grounded extension can be built starting from the set of all initial

arguments by iteratively adding acceptable arguments. Namely, the initial arguments

can be seen as starting points for building the grounded extension by acceptability. For

an admissible extension E, the initial sets contained in E play the same role. That is, the

initial sets can be regarded as the starting points for constructing an admissible set (cer-

tainly including complete and preferred extensions) by adding acceptable arguments

and the so-called joint acceptable sets which we will introduce and discuss below.

3 The J-acceptability and related topics

Given an argumentation framework AF = (A,R) and an admissible set E, there are

usually two ways to construct a new admissible set having more arguments. If S is

an admissible set which is conflict-free with E, then E ∪ S is an admissible set. If

S ⊆ F(E), then E ∪ S is an admissible set. In fact, there is another way to construct

new admissible sets. There may be some set S of arguments, which is not admissible

and has no argument contained in F(E), such that E ∪ S is admissible.

Example 1 (cont’d) For the admissible set I1 = {1, 3}, we have that I3 = {7} is

admissible and conflict-free with I1 and thus I1 ∪ I3 = {1, 3, 7} is admissible. Since

S1 = {5} ⊆ F(I1), I1 ∪ S1 = {1, 3, 5} is also admissible. Let S2 = {6}. Although

S2 is not admissible and S2 ∩ F(I1) = ∅, we also have that I1 ∪ S2 = {1, 3, 6} is an

admissible set.
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In the above example, S2 is not admissible and its arguments are not acceptable

with respect to I1. But, the argument 6 can be acceptable with respect to I1 ∪ S2. In

words, all the arguments of S2 are acceptable with respect to the union of I1 and S2.

This situation leads us to propose the joint acceptability so as to distinguish from the

acceptability.

Definition 7 Given AF = (A,R), a non-empty admissible set E ⊂ A and a non-empty

subset S ⊂ A. If S is not admissible, F(E) ∩ S = ∅ and E ∪ S is admissible, then we

say that S is joint acceptable wrt. E (J-acceptable wrt. E for short). The collection of

all J-acceptable sets wrt. E is denoted by JA(E).

Although a J-acceptable set S wrt. an admissible set E is not admissible, it can

be shown that S is an admissible set in the modified argumentation AF ′ obtained by

deleting the arguments of E and the arguments attacked by E.

Proposition 2 Let AF = (A,R), E be an admissible set. If S is J-acceptable wrt. E,

then S is an admissible set in the framework AF ′ = AF |A\B where B = E ∪R+(E).
Conversely, each admissible set S of AF ′, which is conflict-free with E in AF but not

admissible, is J-acceptable wrt. E in AF .

The notion of J-acceptability induces a new principle, namely the J-reinstatement

principle.

Definition 8 A semantics σ satisfies the J-reinstatement principle if ∀AF = (A,R)
such that Eσ(AF ) is non-empty, for each σ-extension E of AF , the J-acceptable set

wrt. E is contained in E. In words, there is no subset of A \E to be J-accepted wrt. E.

Similar as the description of complete extensions by the reinstatement criterion, we

can define a new class of extensions based on the J-reinstatement criterion. This class

includes the preferred extensions.

Definition 9 Given AF = (A,R) and an admissible set E. E is called a J-complete

extension if there is no S ⊆ A \ E to be J-acceptable with respect to E. The set of all

J-complete extensions of AF will be denoted by EJCO(AF ).

Example 1 (cont’d) E1 = {1, 3, 5} is complete but not J-complete. On the other hand,

there is an admissible set E2 = {1, 3, 6} which is J-complete but not complete. Note

also that the admissible set E3 = {1, 3, 6, 5} is both J-complete and complete. It is also

a preferred extension.

The following proposition identifies the important role of J-reinstatement criterion

in the theory of extension-based semantics. In words, J-complete semantics fills the gap

between complete semantics and preferred semantics.

Proposition 3 A complete extension E of AF = (A,R) is preferred if and only it is

J-complete and A \ E has no non-empty admissible subset to be conflict-free with E.
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Similar as complete semantics, the J-complete semantics does not satisfy the I-

maximality criterion. On the other hand, it can be proved that the J-complete semantics

satisfies the directionality criterion.

Proposition 4 The J-complete semantics satisfies the directionality criterion.

The notion of J-acceptability also enables to define the J-characteristic function for

an argumentation framework AF .

Definition 10 Let AF = (A,R). The function FJ : 2A → 22
A

which, given an ad-

missible set E ⊆ A, returns the collection of the J-acceptable sets wrt. E, is called the

J-characteristic function of AF . In words, FJ(E) = JA(E).

Note that FJ(E) is usually not conflict-free, so E ∪ (∪FJ(E)) may not be an

admissible set, which in contrast, is always true for the characteristic function F . If we

select a conflict-free collection B of J-acceptable sets wrt. E, then it is easy to check

that E∪(∪(B)) is admissible. Based on these two facts, we define a selection J-function

RJ on each argumentation framework as follows.

Definition 11 Let AF = (A,R), E be a non-empty admissible set. A selection function

RJ assigns to E a set RJ(E), which is the union of some random selected conflict-free

J-acceptable sets wrt. E. That is, RJ(E) = ∪C where C is the random selected conflict-

free subcollection C of FJ(E).

Proposition 5 Let AF = (A,R), E be a non-empty admissible set. Then, E ∪RJ(E)
is admissible.

Example 2 Let AF = (A,R) with A = {1, 2, 3, 4, 5, 6, 7, 8} and R = {(1, 2),
(2, 3), (2, 4), (3, 7), (4, 5), (5, 6), (6, 7), (7, 3), (7, 6), (7, 8)}. The directed graph is as

follows.
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Obviously, E1 = {1, 4} is admissible and FJ(E1) = {J1, J2} with J1 = {3}
and J2 = {6}. If RJ(E1) = ∪{J1}, then E1 ∪ RJ(E1) = {1, 4, 3} is admissible.

If RJ(E1) = ∪{J2}, then E1 ∪ RJ(E1) = {1, 4, 6} is admissible. If RJ(E1) =
∪{J1, J2}, then E1 ∪ RJ(E1) = {1, 4, 3, 6} is admissible. In particular, if we let

RJ(E1) = ∅, then E1 ∪RJ(E1) = {1, 4} = E1 is obviously admissible.

4 The structure of traditional semantics

The study of extension-based semantics is a central topic in argumentation. Dung first

introduced the admissible, complete, preferred and stable semantics in his outstanding
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work. After that, new semantics have been introduced in order to meet some special

requirements or make up the drawback of known traditional semantics for specific ap-

plications.

Here, we mainly focus on the structural analysis of various traditional semantics

based on the initial sets, acceptability and J-acceptability.

4.1 The structure of admissible semantics

Admissibility is a common feature for the traditional argumentation semantics. We first

classify the admissible extensions into three types based on initial sets, acceptability

and J-acceptability.

I-type admissible sets

For any admissible set E, F(E) is obviously admissible and can be expressed as

E ∪ (F(E) \E). Note that, each argument of F(E) \E satisfies: being accepted by E
and not belonging to E. This leads us to define a subclass of admissible sets.

Definition 12 Given AF = (A,R) and S ⊆ A. An argument i is regularly accepted by

S if i /∈ S and i is defended by S.

If there exists an argument regularly accepted by the admissible set S, then S is a

proper subset of F(S). And, any initial argument is regularly accepted by the empty

set.

Definition 13 Let E be an admissible set of AF = (A,R) and B the collection of all

initial sets contained in E. If each i ∈ E \∪B is regularly accepted by some admissible

set B ⊆ E, then we say that E is a I-type admissible set.

It is easy to check that the union of conflict-free initial sets is a I-type admissible

set.

Example 1 (cont’d) For the admissible set I1 = {1, 3}, as 5 ∈ F(I1)\I1 the argument

5 is regularly accepted by I1. Let us consider the admissible set E1 = {1, 3, 5} and

the collection B = {I1} of initial sets contained in E1. Obviously, the only argument

5 of E1 \ ∪B is regularly accepted by the admissible set I1 ⊆ E1. So, E1 is a I-type

admissible set.

The grounded extension is also a I-type admissible set. More generally, we have:

Proposition 6 Any admissible set Fk(∅) is a I-type admissible set.

Next, we will analyze the structure of I-type admissible sets from two different

points of view. One is to construct a I-type admissible set starting from initial sets, an-

other one is to describe a given I-type admissible set starting from initial sets contained

in it.

From any admissible set the characteristic function F can be iteratively applied to

obtain a complete extension. We try to replace F by some specific operator related to

the acceptability so as to obtain a larger admissible set. This goal can be reached by

defining a selection function as follows.
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Definition 14 Given an admissible set E of AF = (A,R). A selection function RA

assigns to E a random selected subset RA(E) of F(E) \ E.

It is easy to check that E ∪ RA(E) is certainly a I-type admissible set whenever E
is a I-type admissible set.

Example 2 (cont’d) It is easy to check that E2 = {1, 3} is a I-type admissible set and

F(E2) \ E2 = {4, 8}. If RA(E2) = {4}, then E2 ∪ RA(E2) = {1, 3, 4} is a I-type

admissible set. If RA(E2) = {8}, then E2 ∪RA(E2) = {1, 3, 8} is a I-type admissible

set. If RA(E2) = {4, 8}, then E2 ∪RA(E2) = {1, 3, 4, 8} is a I-type admissible set.

Now, let us start from initial sets to construct I-type admissible sets by using the

selection function RA.

Constructing the I-type admissible sets: Let B be a conflict-free collection of initial

sets, define E0 = ∪B and Ek+1 = Ek ∪ RA(Ek) for each natural number k. Then,

E0 is the union of some conflict-free initial sets, E1 is the set obtained by adding to E0

some arguments regularly accepted by E0, and so on.

The following theorem indicates that starting from a conflict-free collection of ini-

tial sets we can construct many different I-type admissible sets by iteratively applying

the selection function RA.

Theorem 1 Let B be a conflict-free collection of initial sets and Ek as above, then Ek

is a I-type admissible set for each natural number k.

Example 3 Let AF = (A,R) with A = {1, 2, 3, 4, 5, 6, 7} and R = {(1, 2), (1, 3),
(2, 5), (2, 6), (2, 7), (3, 4), (4, 5), (5, 4)}. The directed graph is as follows.
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Obviously, E = {1} is the unique initial set of AF and F(E) = {1, 6, 7}. If

RA(E) = {6}, then E ∪ RA(E) = {1, 6} is a I-type admissible set. If RA(E) =
{7}, then E ∪ RA(E) = {1, 7} is a I-type admissible set. If RA(E) = {6, 7}, then

E ∪RA(E) = {1, 6, 7} is a I-type admissible set.

In order to describe a given I-type admissible set E, we need to define another

operation also based on acceptability but restricted to E.

Definition 15 Let S and E be two admissible sets of AF such that S ⊆ E. An opera-

tion P on S wrt. E assigns to S a subset of E: P (S,E) = E ∩ (F(S) \ S).
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Example 2 (cont’d) For the admissible set E2 = {1, 3}, we have that F(E2) \ E2 =
{4, 8}. With the admissible set E3 = {1, 3, 8}, P (E2, E3) = {8}. With the admissible

set E4 = {1, 3, 4}, P (E2, E4) = {4}. With the admissible set E5 = {1, 3, 4, 8},

P (E2, E5) = {4, 8}.

In the above definition, if S is a I-type admissible set, then S ∪P (S,E) is certainly

a I-type admissible set. And thus, we can describe a given admissible set from the initial

sets contained in it by using the operation P (·, ·).

Describing a given I-type admissible set: Let E be a I-type admissible set and B the

collection of all initial sets contained in E, define E0 = ∪B and Ek+1 = Ek∪P (Ek, E)
for each natural number k. Then, E0 is the union of all initial sets contained in E, E1 is

the set obtained by adding to E0 all the arguments which are regularly accepted by E0

and contained in E, and so on.

The following theorem indicates that any I-type admissible set E can be described

as starting from the collection B of all initial sets contained in E and iteratively applying

the function P (·, E).

Theorem 2 Let E be a I-type admissible set and B the collection of all initial sets

contained in E, then Ek defined above is a I-type admissible set contained in E for

each natural number k. Furthermore, there is some natural number m such that E =
Em+1 = Em+2 and Em+1 = E0 ∪ P (E0, E) ∪ P (E1, E)... ∪ P (Em, E).

As a consequence of the above results, we can provide a way for building strongly

admissible sets, first introduced in [3]. An argument i ∈ A is strongly defended by a set

S ⊆ A iff each attacker j of i is attacked by some k ∈ S \ {i} such that k is strongly

defended by S \ {i}. Then, S is said strongly admissible iff it strongly defends each

of its arguments. An equivalent definition has been proposed by [8]. S ⊆ A is strongly

admissible iff S consists of some initial arguments, or every i ∈ S is defended by some

subset T ⊆ (S \ {i}) which in its turn is again strongly admissible.

Following definitions, it is easy to see that every strongly admissible set is a I-type

admissible set and thus can be constructed starting from some initial arguments by

applying the function P iteratively.

II-type admissible sets

Except for the I-type admissible sets, there is another kind of admissible sets called

II-type admissible sets. They are the admissible sets which have no argument to be

regularly accepted by admissible sets contained in them.

Definition 16 Let E be an admissible set of AF = (A,R) and B the collection of all

initial sets contained in E. If each i ∈ E \ (∪B) belongs to a J-acceptable set S ⊆ E
w.r.t some admissible set D ⊆ E, then we say that E is a II-type admissible set.

Note that, the union of a conflict-free collection of initial sets is not only a I-type

admissible set but also a II-type admissible set.



10 On structural analysis of extension-based argumentation semantics

Example 1 (cont’d) Let us consider the admissible set E2 = {1, 3, 6} and the collec-

tion B = {I1} of initial sets contained in E2, where I1 = {1, 3}.

It is easy to check that {6} is a J-acceptable set wrt. I1, and thus E2 is a II-type

admissible set.

In fact, 6 /∈ F(I1) \ I1 and is not regularly accepted by the admissible sets I1 and

E2 which are the non-empty admissible sets contained in E2.

Generally speaking, the membership of each argument of a II-type admissible set

E does not only depend on other arguments of E but also on itself. This feature is ex-

actly that the notion of J-acceptability states. Certainly, a II-type admissible set E may

contain some regularly accepted arguments, whose membership depend completely on

other arguments of E. The following proposition gives a description for a II-type ad-

missible set having no regularly accepted arguments except initial arguments.

Proposition 7 Let E be an admissible set of AF and B the collection of all initial sets

contained in E. Then E \ (∪B) has no regularly accepted arguments if and only if for

each admissible set D ⊂ E containing ∪B as a subset, E \D is J-acceptable wrt. D.

By the above proposition, an admissible set with no regularly accepted arguments

except initial arguments must be a II-type admissible set. Next, we will analyze the

structure of II-type admissible sets from two different points of view. One is to con-

struct a II-type admissible set starting from initial sets, another is to describe a given

II-type admissible set starting from the initial sets contained in it.

As for I-type admissible sets, in constructing II-type admissible sets we need to use

a selection function related to the J-acceptability. Interestingly, the selection function

RJ in Definition 11 is exactly the one we need. Furthermore, Prop.5 is also true if we

substitute ”admissible” by ”II-type admissible”. This result gives us the theoretical sup-

port for constructing II-type admissible sets by applying the selection function RJ .

Constructing the II-type admissible sets: Let B be a conflict-free collection of initial

sets, define E0 = ∪B and Ek+1 = Ek ∪ RJ(Ek) for each natural number k. Then,

E0 is the union of some conflict-free initial sets, E1 is the set obtained by adding to E0

some conflict-free J-acceptable sets wrt. E0, and so on.

The following theorem indicates that starting from a conflict-free collection of ini-

tial sets we can construct many different II-type admissible sets by iteratively applying

the selection function RJ .

Theorem 3 Let B a conflict-free collection of initial sets and Ek as above, then Ek is

a II-type admissible set for each natural number k.

Example 3 (cont’d) For the unique initial set E = {1} of AF , we have that FJ(E) =
{J1, J2} with J1 = {4} and J2 = {5}. If RJ(E) = J1, then E ∪RJ(E) = {1, 4} is a

II-type admissible set. If RJ(E) = J2, then E∪RJ(E) = {1, 5} is a II-type admissible

set. Since J1 and J2 are in conflict, RJ(E) 6= J1 ∪ J2.

In describing a given I-type admissible set, the main work is iteratively applying the

function P (·, ·). This idea can be further extended to the case of J-acceptability so as to

describe a given II-type admissible set.
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Definition 17 Let S and E be two admissible sets of AF such that S ⊆ E. An opera-

tion PJ on S wrt. E assigns to S a subset of E: PJ(S,E) = ∪{T : T is J-acceptable

wrt. S and T ⊂ E}.

Example 2 (cont’d) For the admissible set E1 = {1, 4}, we have that FJ(E1) =
{J1, J2} where J1 = {3} and J2 = {6}. With the admissible set E6 = {1, 4, 3},

PJ(E1, E6) = ∪{J1} = {3}. With the admissible set E7 = {1, 4, 6}, PJ(E1, E7) =
∪{J2} = {6}. With the admissible set E8 = {1, 4, 3, 6}, PJ(E1, E8) = ∪{J1, J2} =
{3, 6}.

Note that, S ∪ PJ(S,E) is a II-type admissible set whenever S is a II-type admis-

sible set. And so, we can describe any II-type admissible set E starting from the initial

sets contained in it by iteratively applying the function PJ(·, ·).

Describing a given II-type admissible set: Let E be a II-type admissible set and

B the collection of all initial sets contained in E, define E0 = ∪B and Ek+1 =
Ek ∪ PJ(Ek, E) for each natural number k. Then, E0 is the union of some conflict-

free initial sets, E1 is the set obtained by adding to E0 all the J-acceptable sets wrt. E0

which are contained in E, and so on.

The following theorem indicates that any II-type admissible set E can be described

as starting from the collection B of all initial sets contained in E and iteratively applying

the function PJ(·, E).

Theorem 4 Let E be a II-type admissible set and B the collection of all initial sets

contained in E, then Ek defined above is a II-type admissible set contained in E for

each natural number k. Furthermore, there is some natural number m such that E =
Em+1 = Em+2 and Em+1 = E0 ∪ PJ(E0, E) ∪ PJ(E1, E)... ∪ PJ(Em, E).

The mixed-type admissible sets

Roughly speaking, the I-type and II-type admissible extensions have onefold struc-

ture. So, we usually call them simple admissible extensions. The other admissible ex-

tensions may be given the name of mixed-type admissible sets as follows.

Definition 18 Given AF = (A,R), an admissible set E is mixed-type if it is neither

I-type no II-type.

Example 1 (cont’d) Let us consider the admissible set E3 = {1, 3, 5, 6} and the col-

lection B = {I1} of initial sets contained in E3. Obviously, the argument 5 of E3 \ ∪B
is regularly accepted by the admissible set I1 ⊆ E3. So, E3 is not a II-type admissible

set.

We also note that the argument 6 is not regularly accepted by any admissible set

S contained in E3, where S = {1, 3} or {1, 3, 5}. It follows that E3 is not a I-type

admissible set.

To sum up, E3 is a mixed-type admissible set.
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Starting from a conflict-free collection B of initial sets, many mixed-type admissi-

ble sets can be constructed by iteratively applying the functions R and RJ .

Constructing an admissible extension of mixed-type: Let B be a conflict-free collec-

tion of initial sets, define S0 = ∪B, T0 = S0 ∪ RJ(S0). For each natural number k,

let Sk+1 = Tk ∪R(Tk) and Tk+1 = Sk+1 ∪RJ(Sk+1). Note that, both Sk and Tk are

admissible. In order to obtain a mixed-type admissible set Sm or Tm, we require that

Sr+1 6= Tr and Tt+1 6= St+1 for some r, t < m.

Example 3 (cont’d) For the unique initial set E = {1} of AF , we have that S0 = {1}.

Note that, FJ(S0) = {J1, J2} with J1 = {4} and J2 = {5}. If we let RJ(S0) =
J1, then T0 = {1, 4} is a II-type admissible set. Furthermore, F(T0) = {6, 7}. If

we let R(T0) = {6}, then S1 = {1, 4, 6} is a mixed-type admissible set. Again, we

have F(S1) = {J2}. If we let RJ(S1) = J2, then T1 = {1, 4, 6, 5} is a mixed-type

admissible set.

We can describe an admissible set of mixed-type starting from the initial sets con-

tained in it by iteratively applying the functions P (·, ·) and PJ(·, ·).

Describing a given admissible extension of mixed-type: Let E be a II-type admissible

set and B the collection of all initial sets contained in E, define S0 = ∪B and T0 =
S0 ∪ PJ(S0, E). For each natural number k, let Sk+1 = Tk ∪ P (Tk, E) and Tk+1 =
Sk+1 ∪ PJ(Sk+1, E) until E = Sm or Tm for some natural number m. That is, we

have E = S0 ∪ PJ(S0, E) ∪ P (T1, E)... ∪ PJ(Sm−1, E) ∪ P (Tm−1, E) or E =
S0 ∪ PJ(S0, E) ∪ P (T0, E)... ∪ P (Tm−1, E) ∪ PJ(Sm, E).

4.2 The structure of complete and preferred semantics

Since both the complete extensions and the preferred extensions are all admissible sets,

they also can be classified into different types just like we have done for admissible

sets. Meanwhile, we have similar results for constructing them and describing them

from conflict-free initial sets by iteratively applying the related functions R, RJ , P and

PJ . Due to space limitation, we only list the main notions and results.

Definition 19 Given a complete (or preferred) extension E of AF = (A,R). E is

said to be of I-type (resp. II-type, mixed-type) if it is a I-type (resp. II-type, mixed-type)

admissible set.

Constructing a I-type complete (or preferred) extension: Let B be a conflict-free

collection of initial sets, define E0 = ∪B and Ek+1 = F(Ek) for each natural number

k. Then, E0 is the union of conflict-free initial sets and thus a I-type admissible set. E1

is the set obtained by adding to E0 all arguments regularly accepted by E0 and thus a

I-type admissible set, and so on.

The following result holds: There is some natural number m such that Em = Em+1

which is exactly the I-type complete extension we want. Furthermore, if FJ(Em) = ∅
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and there is no initial set in A \ Em conflicting with Em, then Em is a I-type preferred

extension according to Prop.3.

Example 1 (cont’d) Considering the conflict-free collection B = {I1} where I1 =
{1, 3} is an initial set. Let E0 = ∪B = {1, 3} and E1 = F(E0) = {1, 3, 5}, then

E2 = F(E1) = E1 is a I-type complete extension.

Describing a I-type complete (or preferred) extension: Let E be a I-type com-

plete (preferred) extension and B the collection of all initial sets contained in E, define

E0 = ∪B and Ek+1 = F(Ek) for each natural number k. Then, E0 ⊆ F(E) = E is

the union of initial sets contained in E and thus a I-type admissible set. E1 = F(E0) ⊆
F(E) = E is the set obtained by adding to E0 all arguments regularly accepted by E0

and thus a I-type admissible set, and so on.

Remark: Since F(Ek) ⊆ F(E) = E, we have that F(Ek) \ Ek = P (Ek, E) and

thus Ek+1 = F(Ek) = Ek ∪ (F(Ek) \ Ek) = Ek ∪ P (Ek, E). This coincides with

the case in describing a given I-type admissible set.

The following result holds: There is some natural number m such that E = Em =
Em+1.

Note that we can not always obtain a II-type complete (resp. preferred) extension

starting from a conflict-free collection of initial sets. In fact, there are many argumenta-

tion frameworks which have no II-type complete (resp. preferred) extensions.

Example 1 (cont’d) There are six II-type admissible sets: E1 = {1, 3}, E2 = {2, 4},

E3 = {7}, E4 = {1, 3, 6}, E5 = {1, 3, 7}, E6 = {2, 4, 7}. But, they are all not

complete extensions. In fact, F(E1) = {1, 3, 5}, F(E2) = {2, 4, 8}, F(E3) = {7, 8},

F(E4) = {1, 3, 6, 5}, F(E5) = {1, 3, 7, 5, 8}, F(E6) = {2, 4, 7, 8}.

A further observation indicates that F(E4), F(E5) and F(E6) are the preferred

extensions, but they are not II-type preferred.

Next, we only talk about the description of II-type complete (resp. preferred) exten-

sions here.

Describing a II-type complete (or preferred) extension: Let E be a II-type com-

plete (preferred) extension and B the collection of all initial sets contained in E, define

E0 = ∪B and Ek+1 = Ek ∪ PJ(Ek, E) for each natural number k. Then, E0 ⊆ E is

the union of initial sets contained in E and thus a II-type admissible set. E1 ⊆ E is the

set obtained by adding to E0 all the J-acceptable sets wrt. E0 which are contained in E
and thus a II-type admissible set, and so on.

The following result holds: There is be some natural number m such that E = Em =
Em+1.

As for II-type complete (resp. preferred) extensions, the mixed complete (resp. pre-

ferred) extensions may not exist. So, we only talk about the description of mixed-type

complete (resp. preferred) extensions in the sequel.
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Example 4 Let AF = (A,R) with A = {1, 2, 3, 4, 5} and R = {(1, 2), (2, 3), (3, 4),
(4, 1), (4, 2), (2, 5)}. The directed graph is as follows.

5

2

4

1

3

It is easy to check that I = {1, 3} is the only initial set and E = {1, 3, 5} is the

unique preferred extension, but E is not mixed-type preferred.

Describing a complete (or preferred) mixed-type extension: Let E be a mixed-

type complete (preferred) extension and B the collection of all initial sets contained

in E, define S0 = ∪B and T0 = S0 ∪ PJ(S0, E). For each natural number k, let

Sk+1 = F(Tk, E) = Tk ∪P (Tk, E) and Tk+1 = Sk+1∪PJ(Sk+1, E). Then, S0 is the

union of initial sets contained in E, T0 is the union of S0 with all J-acceptable sets wrt.

S0 which are contained in E. S1 is the union of T0 with the set of arguments which are

regularly defended by T0 and contained in E, T1 is the union of S1 with all J-acceptable

sets wrt. S1 which are contained in E, and so on.

The following result holds: There is some natural number m such that E = Sm or Tm.

That is, we have E = S0 ∪PJ(S0, E)∪P (T1, E)...∪PJ(Sm−1, E)∪P (Tm−1, E) or

E = S0 ∪ PJ(S0, E) ∪ P (T0, E)... ∪ P (Tm−1, E) ∪ PJ(Sm, E).

5 Conclusion and future works

In this paper, the special type of acceptability called J-acceptability is studied. Mean-

while, the reinstatement criterion is extended to the J-reinstatement criterion and the

characteristic function is extended to the J-characteristic function.

Based on the J-reinstatement criterion, we introduce the J-complete semantics which

fills the gap between complete semantics and preferred semantics. It is claimed that an

admissible set is preferred if and only if it is complete, J-complete and A \ E has no

non-empty admissible subset to be conflict-free with E.

With acceptability and J-acceptability, we figure out the structure of admissible

sets, complete extensions and preferred extensions. That is, any admissible (resp. com-

plete, preferred) extension can be obtained starting from a conflict-free collection of

initial sets by iteratively applying some operators related to the acceptability and J-

acceptability. This work suggests that for any argumentation framework, the problem

of determining extensions will be completely solved if we can find out all initial sets.

J-acceptability combined with acceptability has been proved useful for giving a

clear description for the extensions of the standard semantics. We plan to study the

role of J-acceptability in other non-standard semantics, and more particularly for the

structure analysis of their extensions.
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Another direction for further research concerns the use of J-acceptability in dy-

namic argumentation frameworks. In literature, several works have proposed efficient

ways for handling dynamics, such as [12] which introduces the division-based method,

and [14] where a matrix approach allows for a decomposition of standard extensions,

using unattacked sets of arguments. We are going to investigate the role of initial sets

and J-acceptability in the construction of the extensions of an updated argumentation

framework.
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