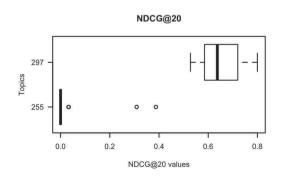


QUERY DIFFICULTY


- Geants have an answer whatever the query is BUT
- Evaluation compaigns showed
 - System variety

2

QUERY DIFFICULTY

- Evaluation compaigns showed
 - System variety
 - Some queries are easy, some are difficult

QUERY DIFFICULTY

• What is a difficult query?

- (IR) Defined regarding system effectivenessDifficult topic = Poor effectiveness
- (Psy) Defined regarding human difficultyDifficult task = hard for users (cognitive)

• Back to the Reliable Information Access (RIA) Workshop (2004) [Harman, 2009, IR journal] Relationship of the query to the documents Effectiveness System features

MAIN RESEARCH DIRECTIONS

Query difficulty prediction

- Predict whether a query is difficult or not
- Performance prediction: Predict the value of the effectiveness measure

Adaptive systems

Different systems (parameters) for different queries

User studies

Measure users' abilities with regard to query difficulty

6

QUERY DIFFICULTY PREDICTORS

• Why?

To handle differently gueries

Examples?

Selective query expansion: the system decides whether the query should be expanded or not [Amati et al., 2004]

Adaptive system: the system adjusts its parameters according to the query features [Deveaud et al., 2016]

QUERY DIFFICULTY PREDICTORS

Types

Pre-retrieval vs Post-retrieval

Pre-retrieval:
does not need to process the query over the document collection

Post: does need

Based on Statistics vs Linguistics

Examples?

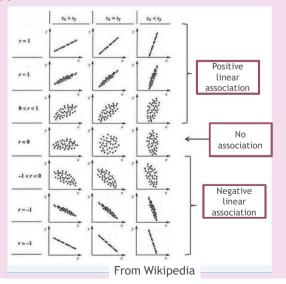
QUERY DIFFICULTY PREDICTORS

Examples

- IDF: min, max, mean, ... of the IDF of the guery terms
- SynSet: ... number of synonyms of the query terms [Mothe & Tanguy, 2005]
- Query scope: ratio of the documents that contain at least one query term [Kanoulas et al., 2017]
- Query Feedback (QF): overlap between these two retrieved document lists [Zhou & Croft, 2007]
- Weighted Information Gain (WIG): divergence between the mean of the top-retrieved document scores and the mean of the entire set of document scores [Zhou & Croft, 2007]
- Normalized Query Commitment (NQC): standard deviation of the retrieved document scores [Shtok et al., 2009]
- Clarity score: KL-divergence between the LM of the retrieved documents and the LM of the document collection [Cronen-Townsend & Croft, 2002]

EVALUATION OF QUERY DIFFICULTY PREDICTORS

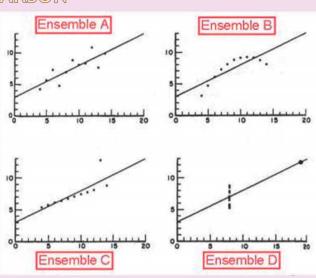
• How to evaluate whether a feature is a good predictor?


 Correlation on values (Bravais-Pearson) or on ranks (Kendall or Spearman)

Interpretation?

10

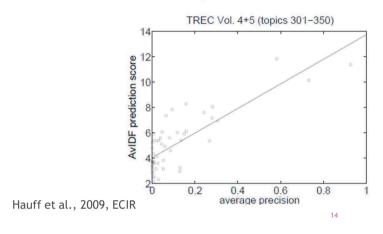
LINEAR CORRELATION BRAVAIS-PEARSON



LINEAR CORRELATION BRAVAIS-PEARSON

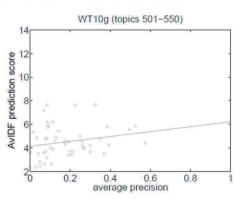
			Anscomb	oe dat	a sets			
Data set A		_ D	ata set B	Da	Data set C			ita set D
X_i	y_i	x_i	y_i	x_i	y_i		x_i	y_i
10	8.04	10	9.14	10	7.46		8	6.58
8	6.95	8	8.14	8	6.77		8	5.76
13	7.58	13	8.74	13	12.74		8	7.71
9	8.81	9	8.77	9	7.11		8	8.84
11	8.33	11	9.26	11	7.81		8	8.47
14	9.96	14	8.10	14	8.84		8	7.04
6	7.24	6	6.13	6	6.08		8	5.25
4	4.26	4	3.10	4	5.39	1	9	12.50
12	10.84	12	9.13	12	8.15		8	5.56
7	4.82	7	7.26	7	6.42		8	7.91
5	5.68	5	4.74	5	5.73		8	6.89

$$n = 11$$
, $\bar{x} = 9$, $\bar{y} = 7.5$, $s_x^2 = 10$, $s_y^2 = 3.75$, $s_{xy} = 5$. $r = 0.816$


LINEAR CORRELATION BRAVAIS-PEARSON

QUERY DIFFICULTY PREDICTORS

IDF


TF.IDF based retrieval system, MAP = 0.11, r = 0.81

QUERY DIFFICULTY PREDICTORS

IDF

Language Modeling based retrieval system, MAP = 0.18, r = 0.22

Hauff et al., 2009, ECIR

QUERY DIFFICULTY PREDICTORS

IDF

		TRE	C Vol.	4+5		WT10g		- m	GOV2	101
		$\mu 100$	$\mu 1500$	$\mu 5000$	μ_{100}	$\mu 1500$	$\mu 5000$	$\mu 100$	$\mu 1500$	μ5000
	AvQL[6]	0.13	0.14	0.16	-0.11	-0.14	-0.12	-0.05	0.02	0.03
7	AvIDF[3]	0.52*	0.53*	0.59*	0.21*	0.18	0.18	0.37*	0.32*	0.39*
Ε	MaxIDF[9]	0.52*	0.54*							0.43*
O	DevIDF[4]					0.25*	0.27*			0.27*
IFIC	AvICTF[4]		0.50*	0.56*	0.20	0.16	0.16			0.37*
Ε	SCS[4]	0.49*	0.49*	0.55*	0.15	0.13	0.13	0.31*	0.26*	0.34*
EC	QS[4]	0.42*	0.42*	0.47*	0.09	0.05	0.05	0.26*	0.18*	0.22*
ď.	AvSCQ[11]	0.25*	0.27*	0.31*	0.32*	0.30*			0.36*	0.39*
S	SumSCQ[11]					0.18			0.23*	0.19*
	MaxSCQ[11]	0.32*	0.35*	0.38*	0.36*	0.41*	0.45*	0.39*	0.42*	0.46*
3.1	AvQC[5]		0.47*	0.51	0.18		0.17	0.28*	0.31*	0.38
AMB	AvQCG[5]					-0.03		0.04	0.05	0.08
5	AvNP[6]	-0.20*	-0.23*	-0.26*	-0.09	-0.10	-0.10	-0.06	-0.04	-0.05
8	AvP	-0.11	-0.12	-0.14	-0.17	-0.18	-0.17	0.02	0.01	0.00
	AvPMI				0.33*	0.28*	0.26*	0.26*	0.29*	0.33*
EL	MaxPMI						0.24*	0.28*		0.32*
RE	AvLesk[2]									0.11
-	AvPath[8]						0.05			0.07
	AvVP[7]	0.25*	0.25	0.27	-0.06	-0.06	-0.05	-0.01	0.09	0.13
X	AvVAR[11]	0.50*	0.52*	0.56*	0.29*	0.29*	0.30*	0.43*	0.40*	0.42*
Z	SumVAR[11]	0.28*						0.33*	0.34*	0.30*
H	MaxVAR[11]	0.48*	0.52*	0.54*	0.36*	0.42*	0.47*	0.40*	0.43	0.46*

Table 1: Results of the predictor evaluations given by the linear correlation coefficient.

LINGUISTIC QUERY DIFFICULTY PREDICTORS

- Pre-retrieval
- Linguistic-based

J. Mothe and L. Tanguy. Linguistic features to predict query difficulty. In *Predicting query difficulty - methods and applications Workshop, Int. Conf. on Research and Development in Information Retrieval, SIGIR*, pages 7–10, 2005.

LINGUISTIC QUERY DIFFICULTY PREDICTORS

Method and data

- Queries
 - 200 TREC gueries (TREC 3, 5, 6 and 7)
 - Title query (closest to real users'queries)
 - Feature extraction
- Participants' runs adhoc task

	TREC 3	TREC 5	TREC 6	TREC 7
# runs	40	61	80	103
# queries	50	50	50	50

17

TREE TAGGER (Schmidt) part-of-speech tagger Syntactic depth vs span (2) For example, topic 158 Term limitations for members of the U.S. Congress Term/NN limitations/NNS for/IN Polysemy value: members/NNS of/IN WordNet the/DT U.S./NP # of synset s a term belongs to Default value: 1 TREE TAGGER (Schmidt) Syntactic depth terms that are not in its reference wordlist syntactic complexity in terms of hierarchy Example: "postmenopausal", "multilingualism"

LINGUISTIC QUERY DIFFICULTY PREDICTORS

Analysis

- Correlations
 - Correlation between recall and features
 - Correlation between precision and features
 - Pearson coefficient [-1,1]
 - The higher => the stronger correlation
 - o Positive or negative correlation
 - Significance p-value
 - Estimate prob. of correlation being due to random
 - The smaller => the higher confidence

LINGUISTIC QUERY DIFFICULTY PREDICTORS

Analysis
• Results

TREC Campaign	Significant variables for Recall	Significant variables for Precision
TREC 3	- PREP - SYNTDEPTH - SYNSETS	- SUFFIX - NBWORDS - CC
TREC 5		- SYNTDIST - SYNTDEPTH
TREC 6	- SYNSETS + PN	
TREC 7	- SYNSETS	+ PN - LENGTH - SYNTDIST

Significant correlations (p-value <= 0.05) between linguistic features and recall / precision

21

MAIN RESEARCH DIRECTIONS

- Query difficulty prediction
- Adaptive system
- User studies

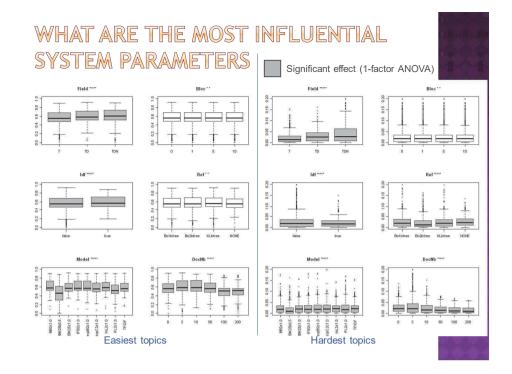
22

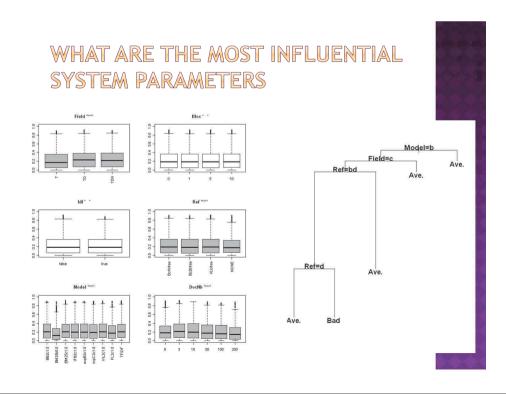
WHAT ARE THE MOST INFLUENTIAL SYSTEM PARAMETERS

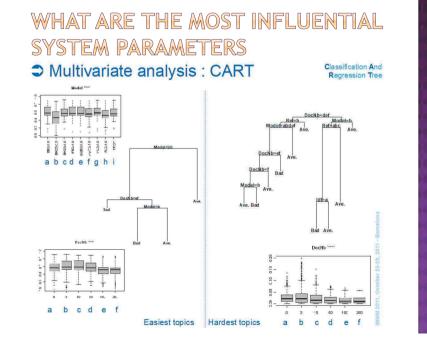
Descriptive analysis of results

Mining Information Retrieval Results: Significant IR parameters J. Compaoré, S. Déjean, A.-M. Gueye, J. Mothe, J. Randriamparany The First International Conference on Advances in Information Mining and Management - IMMM 2011

WHAT ARE THE MOST INFLUENTIAL SYSTEM PARAMETERS


Parameters	Meaning	Values
Тор	Topic number	351,, 400
Field	Topic field	T, T+D, T+D+N
Bloc	Size of the indexing bloc	1, 5, 10
ldf	Inverse Document Frequency	FALSE, TRUE
Ref	Query reformulation	None, Bolbfree, Bo2bfree, KLbfree
Model	Retrieval model	BB2c1, BM25b0.5, DFRBM25c1.0, IFB2c1.0, InexpB2c1.0, InexpC2c1.0, Int2c1.0, PL2c1.0, TFIDF
DocNb	Number of documents (reformulation)	0, 3, 5, 10, 50, 100, 200
qe_md	Minimum number of documents in which the term should appear to used in the query expension	0, 2
ge t	Number of terms used in the query expension	0, 1


WHAT ARE THE MOST INFLUENTIAL SYSTEM PARAMETERS


Data

98650 rows: 1 row = one topic processed by a chain of modules 8 columns: 7 parameters + 1 performance measure (map)

#	Top	Field	Bloc	Idf	Ref	Weight	DocNb	map
1	351	T	1	false	Bolbfree	BB2c1.0	3	0.6134
2	352	T	1	false	Bolbfree	BB2c1.0	3	0.3412
3	353	T	1	false	Bolbfree	BB2c1.0	3	0.3479
4 5	354	T	1	false	Bolbfree	BB2c1.0	3	0.0662
5	355	T	1	false	Bolbfree	BB2c1.0	3	0.2794
6	356	T	1	false	Bolbfree	BB2c1.0	3	0.0460
98645	445	T	0	true	NONE	TFIDF	1	0.1514
98646	446	T	0	true	NONE	TFIDF	1	0.2234
98647	447	T	0	true	NONE	TFIDF	1	0.1121
98648	448	T	0	true	NONE	TFIDF	1	0.0114
98649	449	T	0	true	NONE	TFIDF	1	0.0714
98650	450	T	0	true	NONE	TFIDF	1	0.3226

WHICH SYSTEM TO USE?

- Parameter values make different system configurations
- Effectiveness differs according to configurations
- Can we learn the configuration to use?
- Learning to rank guery-documents -> L2R guery-configurations

Learning to Rank System Configurations

Romain Deveaud, Josiane Mothe, Jian-Yun Nie. Conference on Information and Knowledge Management (CIKM), 2016.

Predicting the Best System Parameter Configuration: the (Per Parameter Learning) PPL method

Josiane Mothe, Mahdi Washha International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES), Elsevier, 2017.

29

WHICH SYSTEM TO USE?

System parameters

Table 1: Description of the system parameters that we use to build our dataset

Parameter	Description & values ²
Retrieval model	21 different retrieval models: Dirich letLM. JsKLs, BB2. PL2, DFRee DFI0, XSqrAM, DLH13, HiemstraLM InL2, DLH. DPH, IFB2, TFIDF. InB2
	InexpB2, DFR, BFB, 1FB2, 1FBF, InB2 InexpB2, DFRBM25, BM25, LGD LcmurTFIDF, InexpC2.
Expansion model	7 query expansion models: nil, Rocchio, KL, Bol, Bo2, KLCorrect, Information. KLComplete.
Expansion documents	Number of documents used for query expansion: 2, 5, 10, 20, 50, 100.
Expansion terms	Number of expansion terms: 2, 5, 10, 15, 20.
Expansion min-docs	Minimal number of documents an expansion term should appear in: 2, 5 10, 20, 50.

WHICH SYSTEM TO USE?

Examples

- Query-configurations with effectiveness as label
- Query: set of features (query difficulty predictors)
 - Linguistics based
 - Statistics based

Machine learning methods

Train to know what is the best system configuration according to query features

WHICH SYSTEM TO USE?

■ Learning to rank system configurations Table 2: Results with different L2R models and feature ablations. \(\Delta\) indicates statistically significant im-

Provements over the Grid Search baseline, according to a paired t-test (p < 0.05). Y indicates statistically significant decreases induced by a feature ablation with respect to the corresponding (All) models.

		MAP			RPrec	
BM25		0.1942	0.2330 0.2835			
Grid Search		0.2480			0.3439 [△] 0.3658 [△]	(+6.35%)
GBRT (All)		0.3338	3 6		0.3507 A 0.3462 A	(+1.96%) (+0.65%)
- QUERYSTATS		0.3373	5 △	(+1.11%)	0.2384	(-30.69%)
- QueryLing		0.2982		(-10.68%)	0.3204	
- RetModel		0.3299	0	(-1.17%)	0.3304 4	(+3.12%) (+9.19%)
- Expansion		0.2348	5▼	(-29.75%)	0.3400 △	(+6.10%)
					0.1914	(-40.28%)
GBRT (All)	0.3338 ^	(0.2803		0.3400 ^	(o mx00)
- QueryStats - OueryLing	0.3375 ⁴ 0.2982 ⁴	(+1.11%) (-10.68%)	0.2699	(-3.71%) (+3.75%)	0.3275 ⁴ 0.3288 ⁴	(-3.71%) (-3.31%)
- RETMODEL	0.3299	(-1.17%)	0.2702	(-3.62%)	0.3581	(+5.32%)
- EXPANSION	0.2345	(-29.75%)	0.1775		0.2505♥	(-26.32%)
LambdaMART (All)	0.3271 ^		0.2772	Δ	0.2873	
- QUERYSTATS	0.3272 ^	(+0.03%)	0.2705	a (-2.42%)	0.2692	(-6.28%)
- QUERYLING	0.3324 4	(+1.62%)	0.2695		0.3486 △	(+21.34%)
- RetModel	0.3144 4	(-3.87%)	0.2713		0.3528 △	(+22.78%)
- EXPANSION	0.2188	(-33.11%)	0.1456	(-47.49%)	0.2078	(-27.67%)
Upper bound (oracle performance)	0.4136		0.3434		0.4490	

MAIN RESEARCH DIRECTIONS

- Query difficulty prediction
- Adaptive systems
- User studies

HUMAN-BASED QUERY DIFFICULTY PREDICTION: IS THERE ANY HOPE?

- Can we learn something from human?
- From the crowd? From labs?

mbq.irit.fr

34

HUMAN STUDIES

- TREC 7 & 8 (old data)
 - Crowd: No correlation
 - Lab (students in libraries): No correlation
 - While little correlation with IDF (0.5) and STD (0.6)

Ħ	Participants	Scale	Collection	# of topics	Metrics	Amount of info	Explanations	Topics
El	Crowd (IN + US) 120 (60 + 60)	3	TREC 6-8	30	AP	Q, Q+D	Free text	310 311 312 313 314 315 316 351 352 353 354 355 356 357 358 360 403 404 406 414 420 421 422 424 426 427 428 430 433 434
E2	Lah 38 (29 + 9)	3	TREC 6-8	91 (*)	AP	Q, Q+D	Free text (**)	321-350 in TREC 6, 351-381 in TREC 7, 421-450 in TREC 8 (*)
E3	Crowd (IN, US) 100 (50 + 50)	5	TREC 2014	25	ERR@20 NDCG@20	Q, Q+D	Free text	251 255 259 261 267 269 270 273 274 276 277 278 282 284 285 286 287 289 291 292 293 296 297 298 300
B4	Lab 22	5	TREC 2014	25	ERR@20 NDCG@20	Q,Q+D	Categories (**) + Free text	Same as E3

HUMAN STUDIES

- TREC 2012 (web data)
 - Crowd: Little correlation (0.4)
 - Lab (IRIT + others): no correlation
 - While no correlation with IDF and little with STD (0.4)

#	Participants	Scale	Collection	# of topics	Metrics	Amount of info	Explanations	Topics
El	Crowd (IN + US) 120 (60 + 60)	3	TREC 6-8	30	AP	Q, Q+D	Free text	310 311 312 313 314 315 316 351 352 353 354 355 356 357 358 360 403 404 406 414 420 421 422 424 426 427 428 430 433 434
E2	Lah 38 (29 + 9)	3	TREC 6-8	91 (*)	AP	Q, Q+D	Free text (**)	321-350 in TREC 6, 351-381 in TREC 7, 421-450 in TREC 8 (*)
E3	Crowd (IN, US) 100 (50 + 50)	5	TREC 2014	25	ERR@20 NDCG@20	Q, Q+D	Free text	251 255 259 261 267 269 270 273 274 276 277 278 282 284 285 286 287 289 291 292 293 296 297 298 300
E4	Lab 22	5	TREC 2014	25	ERR@20 NDCG@20	Q,Q+D	Categories (**) + Free text	Same as E3

WHY DO YOU THINK A QUERY IS EASY/DIFFICULT?

- Can human predict difficulty?
 - No [Hauff et al., 2010] [Mizzaro & Mothe, 2016]
- Difficulty Reasons:
 - Why is a guery difficult?
 - Can human identify the reasons?
 - Do reasons correlate to automatic predictors?
- Amount of information:
 - Do description change the difficulty prediction? (compared to the query only)
- Links with actual system difficulty

WHY DO YOU THINK A QUERY IS EASY/DIFFICULT?

Why do you Think this Query is Difficult? A User Study on Human Query Prediction
Stefano Mizzaro, Josiane Mothe.

ACM SIGIR. 2016.

Human-Based Query Difficulty Prediction
Adrian-Gabriel Chifu, Sébastien Déjean, Stefano Mizzaro,
Josiane Mothe
European Colloquium on Information Retrieval (ECIR), 2017.

38

WHY DO YOU THINK A QUERY IS EASY/DIFFICULT?

- Aim: what are the reasons?
- Participants: 39 MS (library and teaching studies)
- Choose among 150 topics (TREC adhoc)
- Evaluate difficulty (3 levels scale)
 - + free text explanation

easy because:
difficult because:

First using T, then using T+D

ANNOTATION ANALYSIS

Recoding free text

Comment	Recoding
A single word in the query	One-Word
The term exploration is polysemous	Polysemous-Word
Far too vague topic	Too-Vague-Topic
Is it in US? Elsewhere?	Missing-Where
Few searches on this topic	Unusual-Topic
Risk of getting too many results	Too-Many-Documents
There are many documents on this	Many-Documents

Table 2. Most frequent: (a) words in free text comments: (b) comments after recoding

		(a)		(b)						
Easy because Difficult because		iuse	Easy because		Difficult because					
Precise	113	Missing	64	Precise-Topic	66	Risk-Of-Noise	50			
Clear	48	Broad	62	Many-Documents		Broad-Topic	43			
Many	45	Risk	56	No-Polyse mous-Word			34			
Polysemous	36	Context	34	Precise-Words		Polysemous-Words				
Usual	16	Polysemous	33	Clear-Query		Several-Aspects	20			
Specialist	15	Vague	26	Usual-Topic		Missing-Where	16			
Simple	11	Many	21	Count Topic	10	missing where	10			

WHY DO YOU THINK A QUERY IS **EASY/DIFFICULT?**

Master students in libriary studies

Is this query easy? Why?

easy: clear query without ambiguity since there is no alternative synonyms

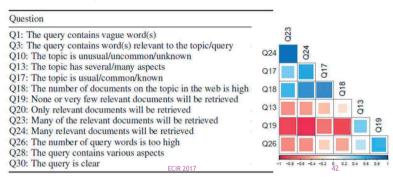
R4: The query contains generic word(s)

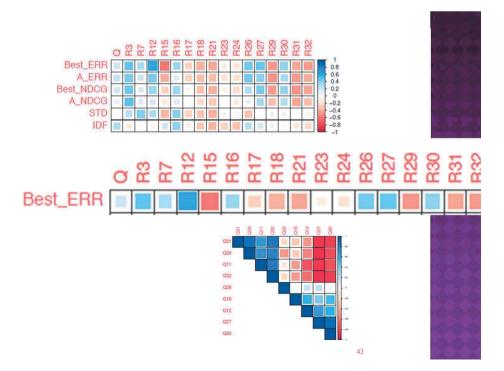
R10: The topic is Unusual/uncommon/unknown R11: The topic is too broad/general/large/vague

R12: The topic is specialized

R26: The number of query words is too high

R16 The topic is too precise/specific/focused/delimited/clear R23: Many of the relevant documents will be retrieved


R27 The query is concrete/explicit


Figure 3: Examples of reasons resulting from the recoding of free text annotation on query difficulty comments.

CLOSED-QUESTIONS AS REASONS

- Reasons as 32 closed-questions (ClueWeb12)
- 25 topics (10 hard, 10 easy, 5 avg), 22 part.
- 8 annotations per topics (5-levels scale for difficulty + Questions)

R12: The topic is specialized

R26: The number of query words is too high
R16 The topic is too precise/specific/focused/delimited/clear
R27 The query is concrete/explicit

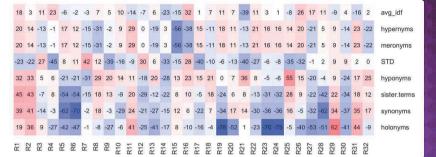
Table 4: Pearson's correlations between actual system effectiveness, automatic predictors and reasons. Bold indicates a p-value < 0.05, * < 0.005.

	Best ERR	TREC AERR	Best NDCG	TREC ANDCG	STD	IDF
STD	0.335	0.171	0.438	0.450	1*	0.087
IDF	0.209	0.133	0.296	0.178	0.087	1*
R12	0.622*	0.436	0.359	0.180	0.302	-0.066
R16	0.349	0.140	0.345	0.137	0.393	0.390
R26	0.445	0.447	0.295	0.101	-0.321	0.261
R27	0.460	0.409	0.434	0.323	-0.005	0.171

CLOSE QUESTIONS ANALYSIS

• Correlation with human « prediction »

R	teason	Correlation	
		Q	Q+D
Mana	R2: The query contains polysemous/ambiguous word(s)	0.342	0.145
None	R8: The words in the query are inter-related or complementary	-0.028	0.187
	R12: The topic is specialized	-0.103	-0.136
	R10: The topic is Unusual/uncommon/unknown	0.526	0.496
Some	R13: The topic has several/many aspects	0.614	0.708
	R19: None or very few relevant document will be retrieved	0.880	0.800
	R30: The query is clear	-0.532	-0.631


Some reasons clearly correlate with the perception of difficulty. S/he predicts the query difficult when:

- The topic has several aspects
- S/he has a idea on the number of retrieved documents
- The query is not clear

45

CLOSE QUESTIONS ANALYSIS

Link system query features and human reasons

Some reasons clearly correlate with query features

- The number of holonyms seems related to the predicted number of retrieved documents [many document when many parts]
- The variety of aspects (R28) and synonyms [topic ambiguity]
- Specialization (R6) and synonyms [few senses when specialized]

46

CLOSE QUESTIONS ANALYSIS

Links between reasons and percieved difficulty/actual difficulty

Question		Correl.	
Q1: The query contains vague word(s)	.52	30	
Q3: The query contains word(s) relevant to the topic/query	41	.43	
Q10: The topic is unusual/uncommon/unknown	.52	.26	
Q13: The topic has several/many aspects	.61	07	
Q17: The topic is usual/common/known	.62	25	
Q18: The number of documents on the topic in the web is hig	h69	34	
Q19: None or very few relevant documents will be retrieved	.88	.32	
Q20: Only relevant documents will be retrieved	47	.09	
Q23: Many of the relevant documents will be retrieved	86	20	
Q24: Many relevant documents will be retrieved	87	21	
Q26: The number of query words is too high	.62	.45	
Q28: The query contains various aspects	.46	12	
Q30: The query is clear	53	.30	

While some reasons clearly correlate with human perception of difficulty, they are poor indicator of actual difficulty.

CONCLUSION

Human can not predict query difficulty

No need to ask them

 Reasons of difficulty make sense to them

Use this when:
Designing system
Training users

- Enlarge the panel
- Various level of system/domain knowledge
- Compute features on human reasons

Future work

GENERAL CONCLUSION

- Query difficulty prediction
 - Still not solved
 - Too many factors, including users
 - Evaluation is better with performance prediction than correlation with effectiveness
- Adaptive systems
 - Face real application constraints
- User studies
 - Many hope to find cross effects

- Descriptive analysis
 - Help understanding
 - Help discovering unknown trends
 - Calculations and visualisations are complementary
 - Methods should be used when appropriate
- Machine Learning
 - Extract models to predict
 - Evaluation is crutial

50

49

MORE AT

www.irit.fr/~Josiane.Mothe

Josiane.mothe@irit.fr

@JosianeMotheFr

