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QUERY DIFFICULTY QUERY DIFFICULTY
@ Evaluation compaigns showed ® What is a difficult query ?
System variety
Some queries are easy, some are difficult e
. ® (IR) Defined regarding system effectiveness
207 - - - Difficult topic = Poor effectiveness

Topics

® (Psy) Defined regarding human difficulty
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QUERY DIFFICULTY

@ Back to the Reliable Information Access (RIA)
Workshop (2004) [Harman, 2009, IR journal]

Topic statement / query

Relationship of the
query to the

documents
0000 ‘ Effectiveness

S‘stem features ‘
o0

MAIN RESEARCH DIRECTIONS

@ Query difficulty prediction
Predict whether a query is difficult or not
Performance prediction: Predict the value of the
effectiveness measure

® Adaptive systems
Different systems (parameters) for different
queries

® User studies

Measure users’ abilities with regard to query
difficulty

QUERY DIFFICULTY PREDICTORS
® Why? <

To handle differently queries & Examples?

Selective query expansion: the system decides whether
the query should be expanded or not [Amati et al., 2004]

Adaptive system: the system adjusts its parameters
according to the query features [Deveaud et al., 2016]

QUERY DIFFICULTY PREDICTORS

® Types

22
~

=)

Pre-retrieval vs Post-retrieval o L
- Definition

. %; ?
Pre-retrieval: and examples?

does not need to process the query over the document collection

Post: does need

Based on Statistics vs Linguistics & Examples?

@




QUERY DIFFICULTY PREDICTORS

@ Examples
IDF : min, max, mean, ... of the IDF of the query terms
SynSet: ... number of synonyms of the query terms [Mothe &
Tanguy, 2005]
Query scope: ratio of the documents that contain at least one
query term [Kanoulas et al., 2017]
Query Feedback (QF) : overlap between these two
retrieved document lists [Zhou & Croft, 2007]
Weighted Information Gain (WIG) : divergence between the
mean of the top-retrieved document scores and the mean
of the entire set of document scores [Zhou & Croft, 2007]
Normalized Query Commitment (NQC) : standard deviation
of the retrieved document scores [Shtok et al., 2009]
Clarity score: KL-divergence between the LM of the
retrieved documents and the LM of the document collection
[Cronen-Townsend & Croft, 2002]

EVALUATION OF QUERY DIFFICULTY
PREDICTORS

® How to evaluate whether a feature
is a good predictor?

(=]
Correlation on values (Bravais-Pearson) or on
ranks (Kendall or Spearman)

(w

Interpretation ?
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From Wikipedia

LINEAR CORRELATION BRAVAIS-

PEARSON
[__Anscombe data sets |

| DatasetA | | DatasetB | | DatasetC | | DatasetD |
Xi Yi X Yi Xi Yi Xi Yi
10 8.04 10 9.14 10 7.46 8 6.58
8 6.95 8 8.14 8 6.77 8 5.76
13 7.58 13 8.74 13 12.74 8 gl
9 8.81 9 8.77 9 7011 8 8.84
11 8.33 11 9.26 11 7.81 8 8.47
14 9.96 14 8.10 14 8.84 8 7.04
6 7.24 6 6.13 6 6.08 8 5.25
4 4.26 4 3.10 4 5.39 19 12.50
12 10.84 12 9.13 12 8.15 8 5.56
7 4.82 7 7.26 7 6.42 8 7.91
5 5.68 5 4.74 5 5.73 8 6.89

n=11,%=9,5=75, 2=10, S‘\2.=3.75,1§S'.‘._‘.=5.r=0.816




LINEAR CORRELATION BRAVAIS=
PEARSON

‘EK

Ensemble C Ensemble D

QUERY DIFFICULTY PREDICTORS

® IDF
TF.IDF based retrieval system, MAP = 0.11, r = 0.81

TREC Vol. 4+5 (topics 301-350)
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Hauff et al., 2009, ECIR ararageRiacsion
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QUERY DIFFICULTY PREDICTORS

@ IDF

Language Modeling based retrieval system, MAP = 0.18, r = 0.22

WT10g (topics 501-550)

AVIDF prediction score
=]
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D 02 0.4 0.6 0.8 1
average precision

Hauff et al., 2009, ECIR

QUERY DIFFICULTY PREDICTORS

@ IDF TREC Vol. 445 W TU; COV2

p 100 Julbo0 Juloo0 fulon Juls00 Jun000 Ju 100 Ll 00 [ 5000

AvQLIGII0. 13 0. 14 0.16 -0 01T 014 -0.12 J-0.05 002 0.03
>~ AvIDF(3]| 0.52* Jo.53* Jo.so* |o.21* Jo.18 [o.18 i 0.32* [0.39*
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= Jjo.49= Jo.49* Jo.ss* Jo.1s Jo.1a |o.13  Jo.31+ Jo.26* Jo.34*
< 0.42* Jo.42* Jo.47* Jo.09 Jo.o5 |o.05 Jo.26* Jo.18* .
& 0.26* lo.27+ [o.31* |o.32+ |o.30* o.30*
nls -0.01 0.00 0.00 0.20* JO.18 0.15
N 0.32* ]0.35* |0.38* | 0.36" |O.41* ]0.45*
STIo- T LR 1] R 120 T L0 o 1
E 5]]0.33* 10.34* |0.37* |0.00 -0.03 |-0.03
< -0.20* |.0.23* |-0.26%|-0.09 |-0.10 J-0.10
< 0.1 J0.12 |o.124 |o.17 o8 017 0
BT 0aeT [0 e [0 [0 287 [0.20° [k i
Kl MaxPMi1jo.30* |o.30* Jo.33* |o.31* Jo.27* 0.32*
©]  AvLesk([2]]0.24* |o.25= Jo.27= |0o.00 ]o.01 0.11
Zl  AvPacn(s||o.12 0.16 Jo.o1 |o.0a 0.07
AvVP|[7]]o.25* 0.27* |-0.06 |-0.08 0.13
R AVVARITTI[0.50" o.oeT [0.20° |0.25T o.12°
Z|sumVAR|[11]]0.28* 0.31* Jo.31* Jo.29~ 0.30*
Z]MaxVAR|11]]0.48 0.54* | 0.36° | 0.42° 0.46*

Table 1: Results of the predictor evaluations given
by the linear correlation coefficient.

Hauff et al., 2008, CIKM 16




LINGUISTIC QUERY DIFFICULTY
PREDICTORS

@ Pre-retrieval
@ Linguistic-based

J. Mothe and L. Tanguy. Linguistic features to predict
query difficulty. In Predicting query difficulty -
methods and applications Workshop, Int. Conf. on

Research and Development in Information Retrieval,
SIGIR, pages 7-10, 2005.

LINGUISTIC QUERY DIFFICULTY
PREDICTORS

Method and data
® Queries
200 TREC queries (TREC 3, 5, 6 and 7)

Title query (closest to real users’queries)
Feature extraction

@ Participants’ runs - adhoc task

TREC 3 |TRECS5 |TREC6 |TREC7

# runs 40 61 80 103

# queries

50

50

50

50

Syntactic depth vs span (2)

NP

PP
i1 NP
/\
Ap NP NP

Syn|
De

Polysemy value:

WordNet

TREE TAGGER (Schmidt)
part-of-speech tagger

For example, topic 158
Term limitations for members of the U.S. Congress

Term/NN
limitations/NNS
for/IN
members/NNS
of/IN
the/DT
U.S./NP

# of synset s a term belongs to
Default value : 1

Syntactic depth

syntactic complexity
in terms of hierarchy

W

TREE TAGGER (Schmidt)
terms that are not in
its reference wordlist

Example:
“postmenopausal’, “multilingualism”

LINGUISTIC QUERY DIFFICULTY
PREDICTORS

Analysis

® Correlations

Correlation between recall and features
Correlation between precision and features
Pearson coefficient [-1,1]

The higher => the stronger correlation
Positive or negative correlation

Significance p-value

Estimate prob. of correlation being due to random
The smaller => the higher confidence

20




LINGUISTIC QUERY DIFFICULTY MAIN RESEARCH DIRECTIONS
PREDICTORS

® Query difficulty prediction

An a lyS] S Significant Significant A
® Results TREC Campaign variables for variables for ® Adaptlve SyStem
Recall Precision d .
TREC 3 - PREP - SUFFIX © User studies
- SYNTDEPTH - NBWORDS
- SYNSETS -CC
TREC 5 - SYNTDIST
- SYNTDEPTH
TREC 6 - SYNSETS
+ PN
Significant correlations TRECT - SYNSETS PN
lue <= - LENGTH
(p-value <= 0.05) - SYNTDIST
between
linguistic features and
recall / precision , .
1

WHAT ARE THE MOST INFLUENTIAL WHAT ARE THE MOST INFLUENTIAL
SYSTEM PARAMETERS SYSTEM PARAMETERS

@ Descriptive analysis of results @|Parameters | Meaning —
Top Topic number 381; -; 400
Mining Information Retrieval Results: Significant IR parameters Field Topie:field Ty BRI
J. Compaoré, S. Déjean, A.-M. Gueye, J. Mothe, J. Randriamparany Bloc Size of the indexing bloc 1, 5, 10
The First International Conference on Advances in Information |df Inverse Document Frequency FALSE, TRUE
Mining and Management - IMMM 2011 Ref Query reformulation None, Bolbfree,
Bo2bfree, Klbfree
Model Retrieval model BB2cl, BM25b0.5,
DFRBM25cl.0,
IFB2cl.0;
InexpB2cl.O,
InexpC2cl.O,
InL2cl.0,
PL2cl.0, TFIDF
DocNb Number of documents (reformulation) 9, 3, 5, 10, 50,
100, 200
qe md Minimum number of documents in which the 0, 2
- term should appear to used in the query
expension
2 qe_t Number of terms used in the query expension [0, 1




WHAT ARE THE MOST INELUENTIAL WHAT ARE THE MOST INFLUENTIAL

SYST‘EM PAET‘ERS SYSTEM PAETERS I:l Significant effect (1-factor ANOVA)
Field ™ Bloc"" Field ™" Bloc""
D o a 8 T 8 T T T 0
® Data o T T T < T T T 7T P . i PO T
. . e oo I T o - A A |
98650 rows: 1 row = one topic processed by a chain of modules o ; § HoT1 E i R R 1+ + 4+
8 columns: 7 parameters + 1 performance measure (map) T T T T T T ;| == E= E} NI I
1df = Ref"" Ref
# Top Field Bloc Idf Ref Weight DocNb map e — S [ —— 8 ; 83— F
1 351 T 1 false Bolbfree BB2cl.0 3 0.6134 31 : : 4 [P I R (| : 2 T B
2 352 T 1 false Bolbfree BB2cl.0 3 0.3412 i = E -l EH;“;‘E : AL i i i 4+ 4
3 353 P 1 false Bolbfree BB2cl.0 3 0.3479 P i o 4 ] : s 84 i — g1 i : i |
4 354 T 1 false Bolbfree BB2cl.0 3 0.0662 2 , oo I N N B
L L = = ek e e S S erha - e i it e | T L - ik B2hine ik W
6 356 i 1 false Bolbfree BB2cl.O0 3 0.0460
Model **** DocNb “*=* Model " DocNb ™
drrrrrriTi| drviaooroe s g I
98645 445 T 0 true NONE TFIDF 1 0.1514 QB%QQQ%’Q% EQQQEE Ploiderti| Hi i
98646 446 T 0 true NONE TFIDF 1 0.2234 S B R N S ol 4 4§ 414 N N O O R LT o o
98647 447 T 0 true NONE TFIDF 1 0.1121 sl 4 et I Ml  BosEEEEEs| [SESsa|
98648 448 i 0 true NONE TFIDF 1 0.0114 jiifgaage por o e jEiigagge corom o
98649 449 T 0 true NONE TFIDF 1 0.0714 SRR : “BE =
98650 450 T 0 true NONE TFIDF 1 0

‘3M6 * Easiest topics " Hardest topics -

WHAT ARE THE MOST INFLUENTIAL WHAT ARE THE MOST INFLUENTIAL
SYSTEM PARAMETERS SYSTEM PARAMETERS

2 Multivariate analysis : CART g o
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WHICH SYSTEM TO USE?

@ Parameter values make different system configurations
@ Effectiveness differs according to configurations

@ Can we learn the configuration to use?

@ Learning to rank query-documents -> L2R query-configurations

Learning to Rank System Configurations
Romain Deveaud, Josiane Mothe, Jian-Yun Nie.

Conference on Information and Knowledge Management (CIKM), 2016.

Predicting the Best System Parameter Configuration: the (Per
Parameter Learning) PPL method

Josiane Mothe, Mahdi Washha

International Conference on Knowledge-Based and Intelligent
Information & Engineering Systems (KES), Elsevier, 2017.
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WHICH SYSTEM TO USE?

® System parameters

Table 1: Description of the system parameters that
we use to build our dataset
Parameter Description & values?

Retrieval model 21 different retrieval models: Dirich-
IctLM. JsKLs, BB2. PL2, DFRce,
DFI0, XSqrAM, DLH13. HicmstraLM,
InL2, DLH. DPH, IFB2, TFFIDI'. InB2,
TnexpB2 , DFRBM25 , BM25. LGD,
LemurTFIDFE, InexpC2.

Expansion model 7 query expansion models: nil, Roc-
chio, KL, Bol. Bo2, KL.Correct, Infor-
mation. KT.Complete.

Expansion documents  Number of documents used for query
cxpansion: 2, 3, 10, 20, 50, 100.

Fxpansion terms Number of expansion terms: 2, 5. 10,
15, 20.
Expansion min-docs Minimal number of documents an cx-
pansion term should appear in: 2, 5,
10, 20. 50.
30

WHICH SYSTEM TO USE?

® Examples
Query-configurations with effectiveness as label
Query: set of features (query difficulty
predictors)
Linguistics based
Statistics based
® Machine learning methods

Train to know what is the best system
configuration according to query features

31

WHICH SYSTEM TO USE?

@ Learning to rank system configurations

Table 2: Results with different L2R models and feature ablations. & indicates statistically significant im-
provements over the Grid Search baseline, according to a paired t-test (p < 0.05). ¥ indicates statistically
decr induced by a feature ablation with respect to the corresponding (All) models.

MAP
BM25 0.1942
Grid Search 0.2480
(+6.35%)
“ Quag & (+1.96%)
GBRT (All) 0.3338 ‘ o e
- QUERYSTATS 0.3375 ¢ (+1.11%)  02384"  (-30.69%)
- QUERYLING 0.2982 “ (-10.68%) 03204
~ - 2900 & 5 ) 0.3304 *  (+3.12%)
RETMODEL 0..;...0,‘)' ( ”ZA.) 03498 5 (10.19%)
- EXPANSION 0.2345 (=29.75%) 03100 *  (+6.10%)
0.1914% (-40.28%)
GBRT (All) 0.3338 ¢ 0.2803 ° 0.3400 *
QUERYSTATS 5 4 (+1 ll’/) 0.2699 &
- QUERYLING & 0.2908
- RETMODEL 8 0.2702
- EXPANSION 017757 1)2 505"
LambdaMART (All) 0.3271 * 0.2772 4 0.2873
- QUERYSTATS 0.3272 *  (40.03%) 0.2705 * 0.2692
- QUERYLING 0.3324 & (+1.62%) 0.2695 0.3486 *
- RETMODEL 03144 ¢ (-3.87%) 02713 * 0.3528 4
- EXPANSION 0.2188" (-33.11%) 0.1456 0.2078"
Upper bound (oracle performance)  0.4136 0.3434 0.4490




MAIN RESEARCH DIRECTIONS HUMAN-BASED QUERY DIFFICULTY
PREDICTION: IS THERE ANY HOPE?

® Query difficulty prediction ® Can we learn something from human?
@ Adaptive systems ® From the crowd ? From labs?

® User studies
mbq.irit.fr

SearcH QueRry: /nternational Organized Crime

THIS QueRy Is:

I don't know /
i Notapplicable

Very easy Average Difficult Very difficult
o o o o i o

33

HUMAN STUDIES HUMAN STUDIES
@ TREC 7 & 8 (old data) @ TREC 2012 (web data)

Crowd: No correlation Crowd: Little correlation (0.4)
Lab (students in libraries): No correlation Lab (IRIT + others): no correlation

While little correlation with IDF (0.5) and STD While no correlation with IDF and little with STD
(0.6) (0.4)

A

e

Scale Collection ¥ of Metrics Amourt  Faplanations Topics B Participants Scale Collection $of Metrics Amount  Faplamations Topics

Participants

topics of info topucs of info

Crowd (IN+US) 3 TREC6S 30 AP QQ+D  Frewat 310 311 312 313 314 315 316 351 352 353 354 El Crowd(IN+US) 3 TREC6S 30 AP QQ+D  Frerxt 310 311 312 313 314 315 316 351 352 353 34

120 (60 + &) 355 356 357 358 360 403 404 406 414 420 421 120(60 + &) 355 356 357 358 360 403 404 406 414 420 421
4224244264277 425430433 4 422424426427 425430433 4

2 lah 3 TRECSS  91(") AP QQD  Frewxt(**) 321350 in TREC 6, 351.381 in TREC 7, 421. E2 lah 3 TRECSS  91(") AP QQD  Frewxt(*®) 321.350 in TREC 6, 351.381 in TREC 7, 421.

38(29+9) 450 in TREC8(*) 38(29+9) 450 in TREC8(*)

Crowd (IN.US) S TREC 2014 25 FRR®20 QQ+D Frerxt 251 255 259 261 267 269 270 3 174 276 777 E3 Crowd(IN.US) S TREC 2014 25 FRR®20 Q. QD Frerat 251 255 259 261 267 269 270 T3 274 276 7

100 (S0 + 50) NDOG@E20 278 282 284 285 236 287 289 291 292 293 296 100 (50 + 50) NDOG @20 278 282 284 285 236 287 289 291 292 293 296
297 298 300 297 298 300

Lab S TREC2014 25 FRR@0 QQ+D Caegories(**) Sameasld B4 L s TREC2014 25 FRR@D QQ+D Caegories(**) Sameasld

2 NDOG@20 + Froe text 2 NDOG @20 + Froe toxt




WHY DO YOU THINK A QUERY IS
EASY/DIFFICULT?

@ Can human predict difficulty?

No [Hauff et al., 2010] [Mizzaro & Mothe, 2016]
@ Difficulty Reasons:

Why is a query difficult?

Can human identify the reasons?

Do reasons correlate to automatic predictors?
® Amount of information:

Do description change the difficulty prediction?
(compared to the query only)

@ Links with actual system difficulty

37

WHY DO YOU THINK A QUERY IS
EASY/DIFFICULT?

Why do you Think this Query is Difficult? A User Study on
Human Query Prediction

Stefano Mizzaro, Josiane Mothe.

ACM SIGIR, 2016.

Human-Based Query Difficulty Prediction
Adrian-Gabriel Chifu, Sébastien Déjean, Stefano Mizzaro,
Josiane Mothe

European Colloquium on Information Retrieval (ECIR), 2017.
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WHY DO YOU THINK A QUERY 1S
EASY/DIFFICULT?

® Aim: what are the reasons?

@ Participants: 39 MS (library and teaching
studies)

® Choose among 150 topics (TREC adhoc)

@ Evaluate difficulty (3 levels scale)
+ free text explanation

easy because:
difficult because:

@ First using T, then using T+D

39

ANNOTATION ANALYSIS

® Recoding free text

Comment Recoding

A single word in the query One-Word

The term exploration is polysemous Polysemous-Word
Far too vague topic Too-Vague-Topic
Is it in US? Elsewhere? Missing-Where
Few searches on this topic Unusual-Topic

Risk of getting too many results ~ Too-Many-Documents
There are many documents on this Many-Documents

Table 2. Most frequent: (a) words in free ext comments; (b) comments after recoding.

(@ (b)

Easy because  Difficult because Easy because Difficult because
Precise 113 Missing 64 Precise-Topic 66 Risk-Of-Noise 50
Clear 48 Broad 62 Many-Documents 45 Broad-Topic 43
Many 45 Risk 36 No-Polysemous-Word 31 Missing-Context 34
Polysemous 36 Context 34 Precise-Words 25 Polysemous-Words 22
Usual 16 Polysemous 33 Clear-Query 19 Several-Aspects 20
Specialist 15 Vague 26 Usual-Topic 16 Missing-Where 16

Simple 11 Many 21

40




WHY DO YOU THINK A QUERY IS
EASY/DIFFICULT?

® Master students in libriary studies

i ?
Is this GEry Gk R4: The query contains generic word(s)

Why ? R10: The topic is Unusual/uncommon/unknown
R11: The topic is too broad/general/large/vague

R12: The topic is specialized
easy: clear query » R26: The number of query words is too high

without ambiguity

R16 The topic is too precise/specific/focused/delimited/clear
. . R23: Many of the relevant documents will be retrieved
since there is no R27 The query is concrete/explicit

alternative synonyms

Figure 3: Examples of reasons resulting from the recoding of
free text annotation on query difficulty comments.

41

CLOSED-QUESTIONS AS REASONS

® Reasons as 32 closed-questions (ClueWeb12)
® 25 topics (10 hard, 10 easy, 5 avg), 22 part.

@ 8 annotations per topics (5-levels scale for
difficulty + Questions)

Question

QI: The query contains vague word(s)

Q3: The query contains word(s) relevant to the topic/query
Q10: The topic is unusual/uncommon/unknown

Q13: The topic has several/many aspects

Q17: The topic is usual/common/known

Q18: The number of documents on the topic in the web is high
Q19: None or very few relevant documents will be retrieved
Q20: Only relevant documents will be retrieved

Q23: Many of the relevant documents will be retrieved
Q24: Many relevant documents will be retrieved

Q26: The number of query words is too high

Q28: The query contains various aspects

Q30: The query is clear R 2017

o NRPPERIRAILRIBES

CECCCCCC@CETEECh@CMCMCE )
Best_ERR [ [l :: HEN 08
A_ERR OB ¥
Best_NDCG [ [W CICIE o2
A_NDCG 02
STD .
IDF -018

& R R

oc

Best_ERR

Q
M| R3
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R12: The topic is specialized

R26: The number of query words is too high

R16 The topic is too precise/specific/focused/delimited/clear
R27 The query is concrete/explicit

Table 4: Pearson’s correlations between actual system effec-
tiveness, automatic predictors and reasons. Bold indicates a
p-value < 0.05, * <0.005.

Best TREC  Best TREC STD IDF
ERR AERR NDCG ANDCG

STD 0335 0.171 0.438 0.450 I* 0.08
IDF 0209  0.133  0.296 0.178 0.087 I
R12 0.622*%  0.436  0.359 0.180 0.302 -0.066
R16 0349 0.140  0.345 0.137 0.393  0.390
R26 0.445  0.447  0.295 0.101 -0.321  0.261
R27 0.460  0.409  0.434 0.323 -0.005 0.171
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CLOSE QUESTIONS ANALYSIS

@ Correlation with human « prediction »

Reason Correlation
Q Q+D
R2: The query contains polysemous/ambiguous word(s) 0.342 0.145
None R8: The words in the query are inter-related or complementary -0.028 0.187
R12: The topic is specialized -0.103 -0.136
R10: The lbpié is Unusual/uncommon/unknown 0.526 0.49
Some R13: The topic has several/many aspects 0.614 0.708
R19: None or verv few relevant document will be retrieved 0.880 0.800
R30: The query is clear -0.532 -0.631

Some reasons clearly correlate with the perception of difficulty.
S/he predicts the query difficult when:

- The topic has several aspects

- S/he has a idea on the number of retrieved documents

- The query is not clear

CLOSE QUESTIOINS ANALYSIS

® Link system query features and human reasons

18 3 1123 6 2 3 7 5 10-14 -7 6 23-1532 1 7 11 7 58911 3 1 -8 26 17 11 9 4 -16 2 avg_idf

20 14 13 -1 17 12-15-31 2 9 29 0 -19 3 -38 15 -11 18 11 -13 21 16 16 14 20 -21 5 9 -14 23 -22 meronyms

20 14 13 -1 17 12 -15-31 2 9 29 0 -19 3 I-Gﬂ 15 -11 18 11 -13 21 16 16 14 20 21 5 9 -14 23 -22 hypernyms
=23 22 27 ‘ﬂﬁ 8 11 42 1239-16 -9 30 6 -33 -15 28 -40-10 -6 -13-40 27 -6 -8 3532 -1 2 9 9 2 0 STD
3233 5 6 -21-21-31 29 20 14 11 18 20 28 13 23 15 21 0 7 36 8 -5 -6 55 15 -20 -4 9 -24 17 25 hyponyms

45 43 -7 8 .-15 18 13 9 20 291222 8 10 -5 18 -24 6 8 -13-31-32 28 9 -22-42 22 -34 18 12 sisterterms

39 41 -14 -3 2 18 -3 -29 24 21 27 -15 12 6 -22 7 -34 17 14 -30 -36 36 16 -5 -32 34 -37 35 17 synonyms
19 36 9 -27 4247 -1 -8 -27 -6 41 25 41 17 8 -10-16 —4.1 -23 -5 -40 62 -41 44 -9 holonyms
YRR ERER e 2T R LeE 2S5y 88588805 %

[:4 mmmzmmmmmmmmm&gmrxmmmm

Some reasons clearly correlate with query features

- The number of holonyms seems related to the predicted number
of retrieved documents [many document when many parts]

- The variety of aspects (R28) and synonyms [topic ambiguity]

- Specialization (R6) and synonyms [few senses when specialized]

45 46
© Links between reasons and percieved ® Human can not @ Reasons of difficulty
difficulty/actual difficulty predict query make sense to them
—=3 . difficulty
Question Correl.
QI: The query contains vague word(s) 52 -30 No need to ask them Use this when :
Q3: The query contains word(s) relevant to the topic/query ~ -.41 .43 ioni
Q10: The topic is unusual/uncommon/unknown 52 .26 Designing system
Q13: The topic has several/many aspects 61%-.07 Gumm Training users
Q17: The topic is usual/common/known 62%-25
Q18: The number of documents on the topic in the web is high -.69% -.34

Q19: None or very few relevant documents will be retrieved ~ .88% .32
Q20: Only relevant documents will be retrieved -47 .09
Q23: Many of the relevant documents will be retrieved -.86%-.20
Q24: Many relevant documents will be retrieved
Q26: The number of query words is too high
Q28: The query contains various aspects

Q30: The query is clear

While some reasons clearly correlate with human perception of difficulty,

they are poor indicator of actual difficulty. .,

® Enlarge the panel
® Various level of system/domain knowledge
® Compute features on human reasons

Future work
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GENERAL CONCLUSION

Query difficulty prediction
Still not solved

Too many factors, including users

Evaluation is better with performance prediction
than correlation with effectiveness

Adaptive systems
Face real application constraints
® User studies
Many hope to find cross effects
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GENERAL CONCLUSION

@ Descriptive analysis
Help understanding
Help discovering unknown trends

Calculations and visualisations are
complementary

Methods should be used when appropriate
® Machine Learning

Extract models to predict

Evaluation is crutial
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