Diagnosis on Energy and Sustainability of Reconfigurable Manufacturing System (RMS) Design: A Bi-level Decomposition Approach
Amirhossein Khezri, Hichem Haddou Benderbal, Lyes Benyoucef, Alexandre Dolgui

To cite this version:
Amirhossein Khezri, Hichem Haddou Benderbal, Lyes Benyoucef, Alexandre Dolgui. Diagnosis on Energy and Sustainability of Reconfigurable Manufacturing System (RMS) Design: A Bi-level Decomposition Approach. 2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Dec 2020, Singapour, Singapore. 10.1109/IEEM45057.2020.9309742 . hal-03131857

HAL Id: hal-03131857
https://hal.science/hal-03131857
Submitted on 4 Feb 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Diagnosis on Energy and Sustainability of Reconfigurable Manufacturing System (RMS) Design: A Bi-level Decomposition Approach

Amirhossein Khezri¹, Hichem Haddou Benderbal², Lyes Benyoucef³, Alexandre Dolgui²
¹Laboratoire de Conception, Fabrication, Commande (LCFC), Arts et Métiers ParisTech, Metz, France
amir_hossein.khezri@ensam.eu
²IMT Atlantique, LS2N-CNRS, Nantes, France
{hichem.haddou-berdal,alexandre.dolgui}@imt-atlantique.fr
³Aix-Marseille University, University of Toulon, CNRS, LIS, Marseille, France
lyes.benyoucef@lis-lab.fr

Abstract - Sustainability and energy consumption awareness led industrial sector to reduce energy consumption. This reduction is regarded as a solution to reduce greenhouse gas emissions. Moreover, international regulations about maintenance activities involve hazardous energy-any electrical, mechanical, nuclear or other energies that can harm personnel- as a rising threat. Thus, energy audits and diagnosis of existing manufacturing systems are crucial to achieve energy efficiency. Future manufacturing paradigms as reconfigurable manufacturing system (RMS) have shown high responsiveness to cope with new challenges such as sustainability. This paper proposes a sustainable RMS design through process plan generation. The approach is developed to generate a process plan while diagnosing energy flow and assigning preventive maintenance activities related to reliability reduction in system components. More specifically, a mixed-integer non-linear program is proposed, then solved using a bi-level decomposition approach. The lower-level considers process plan generation following parts requirements and guided by energy loss as an objective. Afterwards, the upper-level diagnoses the reliability of the lower-level selected machines and tools. Moreover, it checks if preventive maintenance is required due to the level of hazardous energy and maintenance plan. The approach applicability is validated through an illustrative example.

Keywords: Reconfigurable manufacturing system, Diagnosability, Sustainability, Process planning, Bi-level decomposition optimisation

I. INTRODUCTION

Nowadays, manufacturing environments are becoming more and more intelligent. This trend can be associated with the fast evolution of data acquisition technologies and the continuous and rapid progress of virtual technologies. Moreover, the current economic environment, marked by an increasingly personalized and volatile demand, led many companies to look for new forms of changeability (including flexibility and reconfigurability). In this kind of modern environment, it is crucial to have manufacturing systems with great adaptability. Besides, these systems must be characterized by responsiveness and customization.

Additionally, designing modern manufacturing systems integrates other major objectives. Amongst these objectives, ‘improving productivity’, ‘reducing inaccuracies’ and ‘reducing waste’ [1] as well as ‘sustainability’ can be found [2,3]. Environmental requirements are becoming increasingly strong, thus ensuring the sustainability of these industries is also a priority—as stressed by The Global Warming Policy Foundation (GWPF) [4]. Thus, manufacturing systems must be more flexible, robust, reconfigurable and sustainable. Researchers like [5] stressed that “manufacturing systems must optimise the entire system and its processes to achieve sustainability”. Therefore, new challenges emerged that are changeability and sustainability.

Developed during the mid-nineties by Koren, reconfigurable manufacturing system (RMS) combines the flexible manufacturing system (FMS) high flexibility with the dedicated manufacturing system (DMS) high productivity [6]. It is believed to be one of the most appropriate paradigms with the requirements of sustainability. This is possible due to its six key characteristics namely modularity, integrability, customization, convertibility, scalability, and diagnosability. Diagnosability represents the ability of the RMS to automatically read the system current state and diagnose it in order to detect the root causes of system failure and error, and subsequently correct them quickly. It can be exploited to achieve the sustainability of RMS from an energy point of view. In this context, this paper proposes an attempt to integrate diagnosability and sustainability to design a sustainable RMS (SRMS). The SRMS design is based on bi-level decomposition approach that uses process plan generation. The approach is developed to generate process plans while diagnosing energy flow and assigning preventive maintenance activities related to reliability reduction in system components.

The rest of the paper is structured as follows: Section II reviews some research works focusing on RMS design, sustainability and energy diagnosis. Section III presents the mathematical formulation and assumptions considered. Section IV details the proposed bi-level decomposition approach. Section V demonstrates an illustrative numerical example proposed. Finally, Section VI concludes the paper with some future work directions.

II. RELATED WORKS

As an emerging paradigm, RMS is well known for its responsiveness to the recent dynamic environments. RMS
III. PROBLEM DESCRIPTION AND FORMULATION

A. Problem description

This paper addresses the multi-unit process planning generation problem for a single-product type in a reconfigurable manufacturing environment. It is considered to satisfy a variety of demands from customers. The system considers the energy flow and energy loss regarding machine’s age acceleration and their maintenance and its related hazardous energy. Hazardous energy is defined as ‘any electrical, mechanical, hydraulic, pneumatic, chemical, nuclear, thermal, gravitational, or other energy that can harm personnel’ [19]. For instances, chemical energy is the energy released when a substance undergoes a chemical reaction; Thermal energy is energy from an explosion, flame, objects with high or low temperatures or radiation from heat sources, etc.

In this context, the system is designed to generate a process plan while diagnosing energy loss and assigning preventive maintenance activities related to reliability reduction of system components. To take this into consideration — i.e., the correlation of process plan and maintenance activities — a mixed-integer non-linear problem (MINLP) is proposed. Moreover, the following assumptions are considered to decrease the complexity of problem:

1. A single production period is considered.
2. Maintenance activities will be planned at the end of processing time of each machine.
3. A continuous conveyor is assumed as a material handling system.

Fig. 1 presents the architecture of the studded RMS, where two units, respectively P1 and P2, are manufactured following three stages. As we can see, P1 will use machines M13, M21 and M32, where P2 will use machines M12, M22 and M31 respectively.

![Fig. 1. Architecture of a reconfigurable manufacturing system.](image-url)
B. Mathematical formulation

As highlighted previously, a mixed-integer non-linear program (MINLP) is proposed in this section. Once we can fix the complicating decision variables, it will be possible to make decisions in the remaining problem independently. Table 1 presents the used notations.

| Sets |
|---|---|
| P | Set of parts |
| O | Set of operations |
| M_s | Set of machine tools in the s^{th} stage |
| T | Set of tools |

| Indices and Parameters |
|---|---|
| p | Part index |
| i | Operation index |
| m, m' | Machine tool index |
| t, t' | Tool index |
| $CT_{m,t'}$ | Changing time from tool t to t' on m^{th} machine |
| $P_{t,p,i}$ | Processing time of the i^{th} operation of the p^{th} part |
| $CT_{m,m'}$ | Changing time between machines m and m' |
| M, E_t, Ec | Estimated hazardous energy related respectively to machine, tools, and conveyor over time |
| $R.(time)$ | Reliability function of machines, tools, and conveyor over usage time |
| $Mt.(time)$ | Maintenance time of machines, tools, and conveyor over usage time |
| MMd, TMd, CMD | Expected maintenance time regarding usage time of machines, tools, and conveyor |
| $EL.(time)$ | Energy loss function of machines, tools, and conveyor over time |
| θ | Accepted threshold for reliability |

Decision variables

- $T_{m,t, Ti', Tc}$: Usage time of respectively the m^{th} machine, the p^{th} tool, and of conveyor
- $Mt_{m, M, Tc}$: Total maintenance time of machines, tools, and conveyor
- $w_{m,t,t'}$: 1 if the m^{th} change from tool t to t', 0 otherwise
- $x_{m,t}^{p,i}$: 1 if the p^{th} operation of the m^{th} machine uses m^{th} machine with p^{th} tool, 0 otherwise
- $y_{m,m'}$: 1 if there is a change from machine m to machine m', 0 otherwise
- z_{m}: 1 if the m^{th} machine needs maintenance activity, 0 otherwise
- z_{t}: 1 if the t^{th} tool requires maintenance activity, 0 otherwise
- z_{c}: 1 if conveyor requires maintenance activity, 0 otherwise

Decision variables have binary values.

$$\sum_{m \in M} \sum_{t \in T} x_{m,t}^{p,i} = 1, \forall p \in P, \forall i \in O$$

$$\sum_{m \in M} \sum_{t \in T} x_{m,t}^{p,i+1} \leq \sum_{m \in M} \sum_{t \in T} x_{m,t}^{p,i}, \forall p \in P$$

$$\sum_{i \in O} \sum_{t \in T} x_{m,t}^{p,i} \cdot P_{t,p,i} + \sum_{m \in M} \sum_{t \in T} w_{m,t,t'} \cdot CT_{m,t'} = Ti_{i}, \forall m \in M$$

$$\sum_{m \in M} \sum_{t \in T} x_{m,t}^{p,i} \cdot P_{t,p,i} + \sum_{m \in M} \sum_{t \in T} w_{m,t,t'} \cdot CT_{m,t'} = Ti_{i}, \forall m \in M, \forall t \in T$$

$$\sum_{m \in M} \sum_{m' \in M} CT_{m,m'} \cdot y_{m,m'} = Tc$$

$$1 + zm_{m} \cdot R_{m}(Ti_{m}) \geq \theta, \forall m \in M$$

$$1 + zt_{t} \cdot R_{t}(Ti_{t}) \geq \theta, \forall t \in T$$

$$1 + zc \cdot CMD(Tc) \geq \theta$$

Equation (7) ensures that maintenance is needed for machines, tools, and conveyor if a reliability threshold is exceeded. Equations (8)-(9) indicate that maintenance is needed for machines, tools, and conveyor if a reliability threshold is exceeded. Equations (10)-(12) compute the required maintenance time based on usage time of machines, tools, and conveyor. Correspondingly, maintenance time of machine tools, tools, and conveyor are associated with MMd(Tm_{m}), TMd(Ti_{t}), CMD(Tc). Equation (13) represents problem binary variables.

IV. BI-LEVEL LINEAR DECOMPOSITION APPROACH

The complexity of our problem is tackled using a bi-level decomposition approach. The approach considers two levels: leader’s level (upper-level) and follower’s level (lower-level) [20]. The lower-level sub-problem is to generate a process plan according to the demanded parts by considering energy loss as objective i.e. to generate an energy-friendly process plan. Where, the upper-level
defines the second sub-problem (i.e. if the proposed solution in the previous level is feasible), which is to
diagnose the reliability of selected machine and tools by
the generated process plan in the lower-level. The Upper-
level also checks if a preventive maintenance is required
due to the energy consumption related to the maintenance
plan. Algorithm 1 defines the new parameters and variables between the two levels:

Algorithm 1: Bi-level decomposition approach
Input Data:
Set an empty archive;
Solve Min TEL (Total Energy Loss) ;
Generate a process plan; // (Lower-level)
Add {Process plan; \(x_{m,t}^{p,i}, y_{m,m'}; w_{m,t,t';} T_{m,i}; T_{c} \)} to archive;
Add cuts \(T_{m,i}^{L} \leq T_{m,i} \leq T_{c} \) as constraints;
Solve Min MEC (Maintenance energy consumption) ;// (Upper-
level)

A. Solving lower-level sub-problem (Process planning)

The objective of this lower-level is to generate an
energy-friendly process plan. The resolution of this sub-
problem is guided by the minimization of the energy loss
when using machines, tools and conveyer as shown in
equation (14):

\[
\text{Min Energy loss} = \sum_{m \in M} EL_{m}(T_{m}) + \sum_{t \in T} EL_{t}(T_{t}) + EL_{c}(T_{c})
\] (14)

S.t. equations (2 to 6).

B. Solving upper-level sub-problem (System Diagnosis)

This level checks first if the solution proposed in
previous level is feasible. If it is the case we proceed to
resolve the second sub-problem through a system
diagnosis as shown in equation (15), which minimizes
hazardous energy related to the maintenance plan.

\[
\text{Min } E_{m} \ast M_{m} + E_{t} \ast M_{t} + E_{c} \ast M_{c} + \text{Energy loss}_{\text{optimal}}
\] (15)

S.t. equations (7 to 12) as well as

\[
zm_{m} \leq \sum_{p \in P} \sum_{t \in T} x_{m,t}^{p,i}
\] (16)

\[
z_{t} \leq \sum_{m \in M} \sum_{p \in P} x_{m,t}^{p,i}
\] (17)

\[
z_{c} \leq \sum_{m \in M} \sum_{m' \in M} y_{m,m'}
\] (18)

\[
T_{m,i}^{L} \leq T_{m,i}
\] (19)

\[
T_{t}^{L} \leq T_{t}
\] (20)

\[
T_{c}^{L} \leq T_{c}
\] (21)

Equations (16)-(18) ensure that if machine tools,
tools, and conveyer are used in lower-level, so
maintenance might be required. Equations (19)-(21)
represent usage time cuts obtained from lower-level.

V. NUMERICAL EXAMPLE AND MODEL
VALIDATION

In this section, we propose an illustrative
numerical example to validate the proposed model.
We have two products to be manufactured with 3
operations each. The needed machine tools for these
products are divided in three different stages \(S_{1}, S_{2}, S_{3} \) as shown in Figure 1. Moreover, for this
example, we consider exponential distributions for
EL.(time), R.(time), and Mt.(time). Following data
represent ratios of energy loss (\(\alpha \)), failure (\(\beta \)),
and age acceleration (\(\gamma \)) for machine tools, tools, and
conveyor, also related random inputs.

\[
\alpha = (0.037, 0.005, 0.03) \\
\beta = (0.001, 0.001, 0.001) \\
\gamma = \text{uniform}(0.001, 0.005)
\]

\[
Pt_{m}^{p,i} = \text{uniform}(50, 100) \\
CTm_{m,m'} = \text{uniform}(5, 15) \text{ for } m \neq m', 0 \text{ otherwise} \\
CTr_{m,t}^{p,i} = \text{uniform}(10, 30) \text{ for } t \neq t', 0 \text{ otherwise}
\]

\[
Em = \text{rand}(1000, 1500) \\
Et = \text{rand}(500, 7000) \\
Ec = \text{rand}(1000, 1500)
\]

The problem is solved in two levels (i.e., lower and
upper levels). The lower level considers process planning
while assigning appropriate machines and tools to
products and operations. This level is aimed to minimize
the energy loss resulted from processing various
operations. Table 2 represents the total working time of
the selected machines and tools with their related energy
loss.

<table>
<thead>
<tr>
<th>TABLE 2. Working time and related energy loss (Lower level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total working time (min)</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>Machines</td>
</tr>
<tr>
<td>Tools</td>
</tr>
<tr>
<td>Conveyor</td>
</tr>
<tr>
<td>Total energy loss</td>
</tr>
</tbody>
</table>

The upper-level is proposed to diagnose the system
functionality and if a preventive maintenance is required.
In this level, the objective is to consume a minimum level
of energy to perform the maintenance. The results
obtained are given in Table 3.

<table>
<thead>
<tr>
<th>TABLE 3. Upper-level resulted maintenance time and related energy consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total maintenance time</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>Machines</td>
</tr>
<tr>
<td>Tools</td>
</tr>
<tr>
<td>Conveyor</td>
</tr>
<tr>
<td>Total energy loss</td>
</tr>
</tbody>
</table>
Table 4 illustrates the assigned machines following time, energy loss, reliability over processing time, and the consumed maintenance energy.

<table>
<thead>
<tr>
<th>Machine</th>
<th>Time</th>
<th>Energy loss</th>
<th>Reliability</th>
<th>Maintenance energy consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>M11</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>M12</td>
<td>113</td>
<td>65.43</td>
<td>0.893</td>
<td>339</td>
</tr>
<tr>
<td>M13</td>
<td>123</td>
<td>94.73</td>
<td>0.884</td>
<td>369</td>
</tr>
</tbody>
</table>

VI. CONCLUSION

In this paper, we studied the problem of sustainable RMS design. We presented an attempt to integrate diagnosability and sustainability to design a sustainable RMS. First a mathematical formulation is proposed for this problem using a mixed-integer non-linear problem (MINLP). The model was solved in two steps through developing a bi-level decomposition approach. The lower level of this approach considers sustainable process plan generation by minimizing the energy loss that occurs during the production process (i.e. the use of selected machines, tools and conveyor). This level is followed by an Upper-level that diagnose the reliability of selected machine and tools by the generated process plan in the lower-level. The Upper-level also checks if a preventive maintenance is required due to the energy consumption related to the maintenance plan while minimizing hazardous energy related to it.

For future research perspectives, it will be interesting to explore the RMS sustainability by incorporating more of its core characteristics especially those related to system modularity, reconfiguration and scalability in order to study their impact on our model. Moreover, other aspect of sustainability should be also integrated in order to have a more comprehensive model that covers in depth each of the sustainability pillars.

REFERENCES