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2Universidad del Páıs Vasco, Departamento de Matemat́icas, Bilbao, Spain.

3School of Biosciences, University of Kent, CT2 7NJ, Canterbury, UK.
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Abstract

The dynamics by which polymeric protein filaments divide in the presence of negligible growth, for ex-
ample due to the depletion of free monomeric precursors, can be described by the universal mathematical
equations of ‘pure fragmentation’. The rates of fragmentation reactions reflect the stability of the protein
filaments towards breakage, which is of importance in biology and biomedicine for instance in governing
the creation of amyloid seeds and the propagation of prions. Here, we devised from mathematical theory
inversion formulae to recover the division rates and division kernel information from time dependent ex-
perimental measurements of filament size distribution. The numerical approach to systematically analyze
the behaviour of pure fragmentation trajectories was also developed. We illustrate how these formulae can
be used, provide some insights on their robustness, and show how they inform the design of experiments
to measure fibril fragmentation dynamics. These advances are made possible by our central theoretical
result on how the length distribution profile of the solution to the pure fragmentation equation aligns
with a steady distribution profile for large times.

Introduction

How can we extract information on the stability and dynamics of proteins nano-filaments from population
distribution data? This general question is of topical interest due to the ever-increasing evidence to
suggest that the fragmentation of amyloid and prion protein fibrils [1] are associated with their biological
response ranging from being inert, functional to toxic, infectious and pathological [2]. The experimental
methods to characterize the dynamics of amyloid fibril fragmentation has been evolving from indirect
bulk kinetics measurements [3] to direct observations in population level time-dependent nano-imaging
experiments ([4, 5]). To analyze the division of protein filaments when the experimental information we
have is at the level of the population distribution, for instance when the type of data we currently can
acquire are time-point samples of fibril length distributions and individual dividing particles cannot yet
be isolated and tracked, the pure fragmentation equation reveals to be a powerful mathematical tool. The
pure fragmentation equation describes the time evolution of a population of fibril particles structured by
their size x that divide into smaller particles. The underlying assumption is that the dimensions of each
particle govern its division dynamics: each particle of length x is assumed to divide with a rate B(x),
and when a particle of size y divides, it gives rise to a particle of size x with a probability encoded in the
fragmentation kernel κ(x, y). Though the fragmentation equation describes the dynamics at the level of
the whole population, the properties B and κ have a natural interpretation in terms of the microscopic
stability of the polymers. In this report, we address the question of determining the parameters B and
κ from the size distribution of the protein filament suspension at different times.

The application of the pure fragmentation equation can be traced back to almost 100 years. In the
seminal paper by Kolmogorov [6], a fragmentation model for grinding particles was proposed. The model
is discrete with respect to time but continuous in the structuring variable corresponding to the size of
the particle. This allowed Kolmogorov to work with explicit formulae. The unknown property in the
Kolmogorov model is the cumulative distribution function of the particle sizes, and he assumed a constant
fragmentation rate and a generic kernel preventing the creation of too many small particles. Under these
assumptions, he obtains that the cumulative distribution follows, asymptotically in time, a log-normal
distribution. At the very end of the paper, Kolmogorov suggests that his study should be extended to
generic fragmentation rates, and especially the ones with a power law dependence on particle size, i.e.

B(x) = αxγ . (1)

In parallel, Montroll and Simha [7] developed a discrete model for pure fragmentation of long-chain
molecules such as starch with the restrictions that the kernel follows a uniform distribution (each bond has
the same probability of scission), and only scission into two parts is allowed (compared to Kolmogorov’s
model that allows the scission into n particles). In the late 70’s [8], the problem was again considered
for the purpose of studying the degradation of long chains under high shear mechanical action. This was
encouraged by new techniques to obtain measurements of the so-called ”molecular weight distribution”
in a closed system with constant total mass. This was the first time a dependence of the fragmentation
rate on the size of particles is studied. The authors suggested that for the molecular system they studied,
if the power γ = 1, then mechanistically, the fragmentation kernel should be uniform. For γ < 1, which is
the value they obtained (γ = 2/3), they suggested that the bonds on the edges of the molecules are more
reactive than those in the centre. In this case, the fragmentation equations were solved numerically, and
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the fragmentation rate was determined from the average length of molecules, based on an approximation
valid for a monodisperse suspension (we detail this approximation in Supplementary Information). The
other parameters (α and κ) were obtained by fitting their model to the evolution of the total number
of molecules. To estimate the fragmentation kernel, they considered three different types of kernels and
suggested that the best-fit kernel was one described by a parabolic function, although the selection criteria
were not detailed. In a theoretical paper by Ballauff and Wolf [9], the same discrete model was studied
and three fragmentation kernels were considered: a uniform kernel, a Gaussian kernel, and a Dirac kernel
where particles can only split exactly at their centre. An example of the time-dependent solution is
plotted in each case, however, again, the overall criterion of kernel selection is through simulations, with
no precise objective protocol suggested. A series of theoretical works by McGrady and Ziff followed in
the 1980’s, focusing exclusively on analytical formulae of the continuous model. In [10], they provided
fundamental solutions that involve hypergeometric functions for a uniform kernel, and for a monomial
fragmentation rate with γ = 2/m with m ∈ Z. In [11], they provided explicit formulae of the fundamental
solution of the pure fragmentation equation with an uniform kernel and monomial fragmentation rate
for any γ, an uniform kernel in the case where particles break into 3 pieces instead of 2, as well as for
γ = 3 combined with a parabolic kernel centered at the particle centre, justified by the parabolicity of
the Poiseuille flow. Typically, their solution is made of a sum of two terms, one term where the initial
condition vanishes exponentially, and the other term where the profile of a stationary state arises. Using
these explicit solutions, they noticed, just like Kolmogorov did, that a stationary distribution shape
profile arises asymptotically after rescaling. From the 1970’s onward, size structured population models
were extensively developed by mathematicians for biological applications, (see [12]). The particles under
consideration were bacterial and non-bacterial cells, microtubules, etc. For these systems, the ‘particles’
undergo division as well as growth, which led to the development and application of growth-fragmentation
equations. From the 1990’s, a large set of mathematical studies were focused on the division equations and
related models [13], in particular on the long-time behaviours [14, 15, 16]. To deal with the major issue
of model calibration, mathematicians also developed theories to recover some parameters, for instance
[17, 18] where the authors determined a robust estimate of the division rate of bacterial cells from noisy
measurements of the size distribution profiles of the cells at the end of the experiments, and the time
evolution of the total number of cells, see also [19] and the references therein. More recently, a theory was
developed [20] to estimate both the division rate and the division kernel from the measurement of the
particle distribution profile at the end of the experiment, under assumptions on the division rate being
given by the simple power law αxγ . Another approach emerging to estimate the division kernel is the
use of stochastic individual based models by studying the underlying stochastic branching processes [21].

While the universality of the fragmentation equation is demonstrated in its applicability ranging from
physical processes such as the grinding of rocks, to chemical processes such as the degradation of long
chain starch molecules and biological processes such as cell division, the application we exemplify here
is the mechanistic laws governing the division and propagation of filamentous amyloid structures. These
proteinaceous fibrils can be associated with human diseases such as Alzheimer’s disease, Parkinson’s
disease [22], type 2 diabetes, prion diseases and systemic amyloidosis. The fragmentation of amyloid
fibrils has been shown to enhance their cytotoxic potential by generating large numbers of small active
particles [23]. Likewise, the fragmentation of prion particles that are transmissible amyloid results in an
increase in their infective potential [24]. Recently, as a proof of concept, we reported a new experimental
approach [5] where the stability towards breakage under mechanical perturbation for different types of
amyloid fibrils were analyzed and quantitatively compared. We determined the division rates and the type
of fragmentation kernels associated to each type of amyloid fibrils. These data suggested that the proteins
that are involved in diseases may be overall less stable toward breakage and generate larger numbers of
small active particles than their non-disease associated counterparts. In the context of the experimental
data presented in [5], and as pointed out in [9], the experimental context may have a considerable impact
on the loci at which the fibril is more likely to break up. Therefore, it is important to develop a general
method based on a common mathematical platform, which can be applied to the analysis and comparison
of experimental data from a wide range of amyloid systems and conditions.

In this report we provide a detailed explanation of the mathematical method based on the analysis
of the pure fragmentation equation used in [5], together with a thorough sensitivity analysis of each
parameter in the model, and the numerical algorithm used to estimate the fragmentation rate and kernel
from experimental measurements. We focus on the case of ‘pure fragmentation’ of amyloid protein fibrils,
i.e. on experiments where other growth reactions such as nucleation, polymerization and/or coagulation
could be neglected. We also do not consider nonlinear fragmentation reactions, which may be induced by
collisions or interactions between fibril particles, since in our context the fibril particles can be considered
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dilute so that this effect may be neglected. We provide inversion formulae to recover the three parameters
γ, α and κ from experimental measurements of the particle length distribution at different times where
samples of fibril lengths are taken but no information on the total number of particles or the total mass
of the suspension is directly available. In particular, our method does not rely on finding the best-fit
of model distributions to the data or on the goodness-of-fit comparison between models. Instead we
demonstrate robust analytical inversion formulae that express the parameters as functions that can be
directly computed from the solution of the equation. The method and the analysis presented here are
general and can be useful in other contexts. But importantly, the mathematical results will inform the
design of experiments tailored to evaluate and compare the dynamical stabilities of protein filaments.

Theory

In this section, we summarize the mathematical results that are the theoretical foundation of our method.

The pure fragmentation model.
We consider a population of amyloid protein fibrils, which are filamentous and pseudo linear particles,

undergoing a process of ‘pure fragmentation’, where the only phenomenon taken into account is the
division of any parent particle into two daughter particles. In this case, the rates of growth processes
such as nucleation, polymerization, coagulation etc. are considered to be negligible in the experiments,
for example due to the lack of monomeric precursors. The modelling assumptions we make on the
fragmentation process are as follows.

Assumption 1: the fragmentation rate depends only upon the size of the parent particle undergoing
division, and follows a power law, namely, the first order rate constant of particles of size x breaking
into two pieces is B(x) = αxγ for some α > 0. We also impose γ > 0, which means that larger
particles are more likely to break up than small particles. This assumption is necessary for the asymptotic
behaviour (4) to happen. For γ = 0, no self-similar behaviour occurs [25], whereas for γ < 0, shattering
(sometimes referred to as ‘dust formation’) occurs in finite time [26].

Assumption 2: the fragmentation reaction is self-similar, meaning that the sites of fragmentation on
particles are invariant with size rescaling, that is the site of fragmentation on a particle can be described
as a ratio between the position and the total length of the particle.

The fragmentation kernel κ is a property that describes the probability distribution of the length of
the daughter particles formed in each fragmentation event, assuming that such a fragmentation event
takes place. Assumption 1 is justified since the fragmentation reaction considered in the experiments is
promoted due to a single type of perturbation, in the case of [5] mechanical in nature. The particles in
the sample suspension are also homogeneous in terms of being formed by the same monomer precursors
and only differ by their size. In particular, the fragmentation rate is considered to be independent of the
history of each particle, and on the fate of other particles. Assumption 2 is justified by the fact that the
fragmentation behaviour for rods follow the scaling pattern as discussed in [27].

As amyloid protein fibrils are supramolecular polymer structures, the fibril particles considered here
are made of monomeric units. There are two main approaches to describe the evolution of the fibril
population. The population of particles can be described by the number of particles u`(t) composed with
` monomers at time t,

u′`(t) = −α(`r)γu`(t) + α

+∞∑
j=k+1

1

jr
κ

(
`

j

)
(jr)γu`(t), t > 0, ` = 0 . . . N,

u`(0) = u0` , ` = 0 . . . N,

(2)

where r is the average length of one monomer. We refer to Equation (2) as the discrete model. Alterna-
tively, when the number of monomers composing each particle is assumed to be sufficiently large, we can
write a continuous version of the model. The unknown is the density u(t, x) of particles of length x at
time t and the model is written as follows:

∂u

∂t
(t, x) = −αxγu(t, x) + α

∫ ∞
x

1

y
κ

(
x

y

)
yγu(t, y)dy, t > 0, x ≥ 0,

u(0, x) = u0(x), x > 0.

(3)
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The advantage of the discrete framework is its validity even when the number of monomers in the
particles is small, which could be the case at very long time scales for fragmentation experiments. As for
the continuous framework, the main advantage it that it is mathematically convenient since some explicit
formulae exist for some specific parameters, and it enables partial differential analysis results to be used
to understand the qualitative behaviour of the system. The behaviour of these two models should not
differ in the time of the experiments we analyse. Therefore for our analysis, we focus on the continuous
framework. For the solutions to (3), mass conservation (i.e.

∫
xu(t, x)dx does not depend on time) is

guaranteed by the condition
∫
zκ(z)dz = 1. We also assume that the fibrils can only divide into two, i.e.

we impose
∫
κ(z)dz = 2 (no ternary break-up).

An inversion formula for γ: dynamics of the moments. The long time behaviour of the
solutions to (3) is now well-known by mathematicians [14]: the solution converges after rescaling to some
steady profile g in the sense that

t−2/γu(t, t−1/γx) →
t→∞

g(x), (4)

and where g is the solution of

yg′(y) + (2 + αγyγ)g(y) = αγ

∫ ∞
y

1

v
κ
(y
v

)
vγg(v) dv,

∫ ∞
0

yg(y)dy = ρ, (5)

where ρ only depends on the initial condition u0 through ρ =
∫
xu0(x)dx. In imaging experiments, we

sample lengths of particles present in the population at each time point. Therefore, we introduce the
measured quantity:

f(t, x) =
u(t, x)∫∞

0
u(t, x)dx

. (6)

We define the moment of order q of the distribution f as

Mq(t) =

∫ ∞
0

xqf(t, x)dx. (7)

We deduce directly from (4) that

t−1/γf(t, t−1/γx) →
t→∞

g(x)∫∞
0
g(y)dy

. (8)

A space integration of the above formula gives us

logMq(t) = − q
γ

log(t) + C(q), t large, (9)

for the constant C(q) = log
( ∫ ∞

0
g(y)yqdy∫ ∞

0
g(y)dy

)
. In particular, the first moment (z=1), being the mean length,

can be evaluated directly from the length measurements. This provides us with a method to extract γ
from the data because the log-log dynamics of the mass tends to a straight line whose slope is equal to
−1/γ, provided that the regime with steady distribution shape profile has been reached. Notice that

C(0) = 1 and C(1) =
ρ∫∞

0
g(y)dy

. Importantly, the asymptotic straight line depends on the parameters

of the model (e.g. its slope depends on γ, and its position depends on γ, α, κ through g) but not on the
initial length distribution.

Equation (9) shows elegantly that, when applied with q = 1, the number average molecular weight
(proportional to the average length of fibrils) M1(t) decays linearly for large times independently of the
initial length distribution when plotted on a log log scale. We refer to this characteristic line as the
asymptotic line. At shorter time scales, M1 is also decaying.

We note that our method to recover γ works even if the particles can break up into more than two
particles, indeed Equation (9) does not use the information of the number of particles produced by
each breakage. The authors of [8] also use the dynamics of the moments to estimate γ, in the case of
breakage of dextran molecules through acid hydrolysis. However, the approach in [8] is a special case
with an assumption of monodispersity, and a model selection approach comparing different solutions with
different γ values was used (see a full comparison detailed in SI).

The Mellin transform.
The inversion formula for α and κ strongly relies on the Mellin transform, which appears to be an intrinsic
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Figure 1: Illustration of two possible scenarii for t > 1 depending on the initial moment of the system: the
first moment M1(t) (the distribution mean) can stay below (green) or above the asymptotic line (blue).
Both behaviours have been observed numerically. In all cases, the moment M1(t) is decreasing with time
and aligns to the asymptotic line (straight line in red) for large time.

feature of the pure fragmentation equation. For any function (or generalized function) over R+, we recall
that the Mellin transform M[µ] of µ is defined through the integral

M[µ](s) =

∫ +∞

0

xs−1 dµ(x), (10)

for those values of s in the complex plane for which the integral exists. We define for <e(s) > 1
G(s) :=M[g](s) and K(s) :=M[κ](s). The Mellin transform turns the differential equation (5) into the
following non-local functional equation:

(2− s)G(s) = αγ(K(s)− 1)G(s+ γ) ∀s ∈ C, <e(s)> 1. (11)

An inversion formulae for α and κ.
Since the scission is only binary, K(1) = 2. Thus, using the Mellin transform, we obtain (see [20] for

the mathematical justification)

α =
G(1)

γG(1 + γ)
=

ρ

G(1 + γ)
. (12)

We emphasize that, contrarily to γ, the estimate on α mainly relies on the binary scission assumption.
Estimating the division kernel κ reveals a much harder and more ill-posed problem compared to that of
γ and α. Once α and γ are known, we may formally divide Equation (11) by G(s+ γ) and obtain

K(s) = 1 +
(2− s)G(s)

αγG(s+ γ)
, (13)

The properties of the kernel κ are such that the inverse Mellin transform of K is well defined and equal
to κ (see for instance [28, Theorem 11.10.1]. Therefore the fragmentation kernel κ is given by the inverse

Mellin transform of 1 + (2−s)G(s)
αγG(s+γ) , provided that the (complex valued) denominator does not vanish. In

fact, it is mathematically proved in [20] that there exists s0 > 2 such that the denominator G(s+γ) does
not vanish. Then, for this specific s0 we have

κ(z) =
1

2iπ

∫
<e(s)=s0

z−s
(

1 +
(2− s)G(s)

αγG(s+ γ)

)
ds. (14)
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The detailed mathematical justifications and proofs of the formulae given here can be found in [20]. The
main idea underlying the method is the central following theoretical result: the length distribution profile
of the solution to the pure fragmentation equation aligns with a steady shape for large times, and all the
moments of the profile decay predicatively on an asymptotic line in log-log space.

Summary of the theory

• Inversion formula for γ : γ is obtained using Equation (9) as γ = − 1
S , where S is the slope of the

straight line representing the moment (e.g. distribution mean) as a function of time, in log-log
scale. The curve under question is a straight line for large time points.

• Inversion formula for α : α is obtained using Equation (12), where G is the Mellin transform of
the steady shape of the length distribution for large times.

• Inversion formula for κ : κ is obtained using formula (14) together with γ and α. Again, G is the
Mellin transform of the steady shape of the length distribution for large times.

Results and discussion

Exploration of trajectories In this section, we give an overview of the influence of the parameters on
the stationary profile of the self-similar length distribution and on its transient behaviour.

Influence of γ. It is proven in the theoretical paper [29] that the parameter γ impacts the stationary
profile for large x, and more specifically that g(x) behaves like C exp−x

γ/γ as x→∞ for some C > 0.
This property cannot be used to extract the parameter from the stationary profile g, since it would
require to have precise experimental information for large sizes. This property is illustrated in S1 Fig 9,
upper left, where the stationary profile corresponding to different values of γ and for a gaussian kernel is
plotted. For larger values of γ, since decay at larger particle sizes is faster, the stationary profile is more
concentrated around x = 0 (the integral of xg(x) is equal to 1) compared to smaller γ values. The role
of γ on the overall shape of g is highly non-linear, and for all other parameters fixed, the overall shape
can vary with γ. This is illustrated in Fig 2, left, for α = 1 and the specific kernel κ displayed in the
inset, the stationary profile has different qualitative behaviours for γ = 0.8, 1, 1.5 and 2. The influence
of γ on the time evolution of the length distribution f is described by Formula (9). The moments of
order z of the profile f (for example its moment of order 1: the average size of fibrils) decrease linearly
with time at log-log scale. Depending on the initial moments, the evolution of the moments can have two
different shapes as illustrated in Fig 1. For example, the average length M1(t) can stay completely below
the asymptotic line as illustrated by the green line, or mostly above the asymptotic line as illustrated
by the blue line. See Fig 2 right, for an illustration of the trajectories with simulated data starting from
different initial average lengths.

Influence of α. If for the initial data u0(x), the solution to the fragmentation equation for α = 1 is
u(t, x), then the solution to the fragmentation equation for the same initial data, the same values for γ

and κ, and α > 0 is uα(t, x) =
1

α
u(αt, x). Further if the stationary state for α = 1 is g, then, for α > 0,

it is gα(y) = α2/γ−1g(α1/γy). Indeed then,

t−2/γu(t, t−1/γx)→ g(x), (15)

then, setting τ = αt

t−2/γuα(t, t−1/γx) =
t−2/γ

α
u(αt, t−1/γx) = α2/γ−1τ−2/γu(τ, τ−1/γα1/γx)→ gα(x). (16)

This is illustrated in Fig 3, left. We conclude that the parameter α acts as a time scaling term. This
property cannot be used to recover α, since from experiment we only know g up to a multiplicative factor.

Influence of the kernel κ. We first explored the influence of κ on the stationary profile g. In first
approximation, smooth kernels can be classified into two classes: Within class A, the kernels are such
that κ(0) = κ(1) = 0, and within class B, kernels are such that κ(0) > 0 and κ(1) > 0. On Fig 3, right the
stationary profiles for a selection of six different kernels are displayed. As seen, in Fig 3, right, whether
the kernel belongs to class A or B can be read directly on the shape of the stationary profile. For kernels
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Figure 2: Influence of γ on the stationary length distribution profile, and transient dynamic of the average
length. Left: Stationary profile for different values of γ and α = 1, tf = 200. Right: Time evolution of
the mass M1(t) in a log-log scale. The initial conditions are spread gaussian with different masses 1, 10,
50 or 100 and γ = 1.

Figure 3: Influence of the parameter α and κ on the stationary length distribution profile of the frag-
mentation equation. Left: Stationary profiles for different values of α, γ = 1 and tf = 50. The kernel κ
used is plotted on the inset. Right: Stationary profiles for different kernels κ (the kernels are displayed
on the inset Figure on the top right). Parameters: γ = α = 1, tf = 50.
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of class A, the stationary profile is zero at x = 0 and is unimodal (one peak), and for kernels of class B,
the stationary profile is non-zero at x = 0 and decreasing. This is consistent with the theoretical results
of [29] which state that if k(z) ∼ Cκz

ε for Cκ > 0 and ε > −1 around z = 0, then g(x) ∼ Cgx
ε for some

constant Cg > 0. However, within a given class, it is difficult to extract the shape of the kernel from
the mere information of the stationary profile. In particular, within class A, using only the stationary
information, it is not possible to distinguish one peak kernels from two peaked kernels, nor distinguish
between Gaussian with small or large spread (see Fig 3, right, and S1 Fig 9, bottom left). Fig 9 shows
the stationary profiles for kernels that have features resembling both classes. For kernels of class A,
we only observe stationary profiles with one peak. On Fig 9, upper right, we show stationary profiles
corresponding to a kernel composed of the sum of two Gaussian functions. The closer to the boundary the
two Gaussian functions are (and the more the kernel resembles one of class B), the closer to the boundary
the peak of g is as well (curve in yellow). On the bottom left figure, it is seen that for kernels within class
B, provided that κ(0) is large enough, having some mass around z = 1/2 does not change the qualitative
overall decreasing shape of the profile. However, if κ(0) = κ(1) is too small, the stationary profile can
be different, see the figure on the bottom right, where a transition occurs around κ(0) = 1.6 where the
shape of g switches from a decreasing profile to a one-peaked profile. Nevertheless, class A kernel can be
distinguished from class B kernel by the fact that the stationary distribution profile satisfies g(0) > 0 for
class A kernels.

Next, we explored the influence of the kernel on the time evolution of the length distribution. The
moments of the size distribution decay with a slope of γ on a log-log plot independently of the kernel κ,
and the location of the asymptotic line is hardly dependent on kappa (equation (9)) (see S1 Fig 12,upper
left). To investigate the differences in the evolution of the length distribution from class A vs class B
kernels, we applied a statistical test approach. We set the null hypothesis H0: ”The distributions fa(t, .)
and fb(t, .) respectively obtained with γ = α = 1 and the two distinct kernels κa and κb are identical”
as detailed in the Methods section. On Fig S1 10, we plot the time evolution of the p−value for the
null hypothesis, using two randomly generated samples of size N = 200 distributed along fa and fb,
evaluated using the Kolmogorov-Smirnov test. A high p−value indicates that the null hypothesis H0

cannot be rejected, which in turn means that whether the size distribution evolves by kernel κa or κb
cannot be distinguished using the knowledge of the size distribution at time t. In particular, at time
t = 0, since the size distributions are perfectly identical and equal to the initial condition, the p−value
is equal to 1. For the pairs of kernels tested (Fig 4 and S1 Fig 10), the conclusion is that there may
exist a time-window where two kernels result in a maximal difference in length distributions right after
initial time. For example, in Fig 4, we show that when the two kernels belong to the two different classes
(Fig 4 left), the p−value is approaching zero after some long time, demonstrating that whether κ belongs
to class A or class B can be estimated by the asymptotic behaviour described by g. On the contrary,
when the two kernels belong to the same class (Fig 4 and S1 Fig 10), the p−value is large for large times
and depends on the initial condition for early time. Thus, in the case of comparing and estimating the
precise fragmentation kernel within a class, the asymptotic steady profile g cannot be used. Instead,
early pre-asymptotic length distributions may contain more detailed information on κ in comparison.

Inverse problem.
In this part, we detail how we use the inversion formulae detailed in the Theory section to recover

the parameters α, γ and κ from measurements. First, the parameter γ is extracted from the data using
Formula (9). On Fig 5 upper left, we plot the time evolution of the average length of the system in a
log-log scale, for a Gaussian kernel, and for several different values of γ. As described by formula (9),
as time goes by, each curve tends to become a straight line of slope 1/γ on the log-log plot (also see S1
Fig 12 upper left). In particular, it is shown that the slopes of the time evolution of moments does not
depend on the fragmentation kernel, even for early time points. Interestingly, this shows that we cannot
reduce the model and that the size distributions are needed if α and the kernel κ are to be extracted, i.e.
measurements of moments are not enough for full description of the dynamical trajectories. The overall
shape of the curves (see Fig 5) justifies that we can use the following protocol to determine γ. We assume
that the measurements are given at time ti, and we define for i ∈ [1, n] the theoretical shape of the mass
Me

Me(ti; γ,C, te) =

{
Ct
−s/γ
e , ti ≤ te,

Ct
−s/γ
i , ti ≥ te,

(17)

where te is time at which steady profile is considered reached, and C is a constant. We introduce
the quadratic distance between the moments (M1(ti)i∈[1,n]) of order 1 we get from the experiments (the
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Figure 4: How different are the evolutions of the two length distributions starting from the same
initial condition and for γ = α = 1, but resulting from two different fragmentation kernels κ? The
p−value associated with the null comparison hypothesis H0 stating that the two length distributions are
statistically identical for all time (see Methods- Statistical tests for a detailed description of the p−value)
is used to quantify the statistical discrepancy between the two length distributions. We plot here the
time evolution of the p−value, for 3 different initial conditions. Initial conditions: a peaked Gaussian
(black), a spread Gaussian (blue), a decreasing exponential (red). A high p−value indicates that whether
the size distribution evolves by kernel κa or κb cannot be distinguished using the knowledge of the size
distribution at time t. On the contrary, a small p−value indicates that the size distribution corresponding
to the two kernels κa or κb are clearly different. Left: the kernels belong to two different classes. Right:
the kernels are in the same class.

average lengths) and the theoretical momentsMe(ti) as E(γ,C, te) =
∑
i∈[1,n] (Me(ti; γ,C, te)−M1(ti))

2
,

and we define γ as the point at which the minimum of E is reached. The main advantage of this method
is that it does not require any information on whether the asymptotic line is reached or not at the time
points where we get measurements. S1 Fig 12 shows a plot of the estimate of the equilibrium time given
by the minimization problem. Since the protocol to recover γ relies on the large time behaviour of the
system, it is expected that the more data points for large time, the more reliable the γ estimate is. We
quantified this on Fig 5 bottom left: we define the following relative error on the estimated values γe and

αe for γ and α as E(γ) = |γ−γe|
γ and E(α) = |α−γe|

γ , and we plot the error E(γ) as a function of the
last time point of the data set. We emphasize that the concavity of the moment of order 1 with respect
to time in log-log scale implies that we always overestimate the value of γ. The error decreases as more
time points are taken into account (see S1 Fig 12 bottom right). For real data with noise, however, since
particles become smaller and smaller for long times, the precision in the data is expected to increase
with time until a certain limit from which the error starts to grow again. Indeed, experimentally, small
particles are harder to detect, and become invisible below a threshold.

In real experiments, the measurement produces noisy data. Different kinds of noise can be distin-
guished. One type of noise comes from the uncertainty that is intrinsically due to the measurement
devices and data processing methods. For length measurements, this type of noise is usually negligible
compared to the sampling noise due to the fact that limited sample size is obtained to form the estimate
of length distributions. We explore the effect of the size of the sample on the determination of γ in Fig
5, upper right. Our observation is that our method is robust with respect to sampling noise in the sense
that for the parameters considered, with a sample of size 200 particles, the estimate for γ (between 1 and
1.2) is correct up to 10% compared to the estimated value for γ (which is 1.1) from the complete size
distribution (no sampling). This is because the estimate of γ is based on the evolution of the moment
(e.g. average length) of the system which is a quantity that smoothen the noise being an integral. Hence,
the overestimation of γ linked to the concavity of the curve is in the same order of magnitude as the
error linked to the sampling. Equipped with an estimate for γ, we estimate g(x) from u(t, x), using the

very last data point tf , namely g(x) = t
−1/γ
f f(tf , xt

−1/γ
f ), and then we can estimate α by Formula (12).

As expected, the further in time we have data, the better the accuracy on the estimation of α (see Fig
5, bottom left). For small γ (e.g. γ = 0.5), the error made on α is very large (see Fig 5, bottom left).
This is due to the fact that the stationary profile is reached faster for large values of γ under the initial
condition used. The dependence of α on γ is highly non linear, as well as co-dependent and we explored
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Figure 5: Estimation of γ. Upper left: Time evolution of M1[f(t, .)] in a log-log scale for different
values of γ. The initial condition is a spread gaussian (see Methods). Upper right: Estimation of γ
(ordinate) from a sample of N particles (abscissa), where N goes from 10 to 1000. Each experiment is
repeated 50 times. The red line is the real value of γ, the green line is the estimate of γ from the complete
distribution (no sample), the blue crosses are the 50 different estimated values for γ from 50 samples of
size N , and for each N , the black line is the averaged estimated value for γ over the 50 experiments. The
time points considered are [5, 10, 15, 20]. Bottom left: Relative error on α as a function of the last time
of experiment. Bottom right: Relative error on α as a function of the relative error on γ. Here, the last
time of experiment is t = 5.

the effect of the error made on γ estimate on the error made on α estimate. The results are plotted on
Fig 5, bottom right. For fixed γ, the relative error on α evolves more than linearly.

Experimental design
How to choose the initial condition and the times of measurement to acquire experimental data that

can be used to optimally decipher the dynamics of particle division?
To determine γ one needs several data points for large time. Whether the experiment has progressed

long enough so that the asymptotic behaviour can be considered to be reached can be seen on the
shape of the time evolution of the average length in log-log scale. As already mentioned in the previous
sections, it should be a straight line in a log-log plot. To determine α, one needs minimum the length
distribution for one time point at a large time where the asymptotic line is reached. We recall here that
the determination of α directly follows from the fact that proteins can only break into two pieces at a
time. As for the kernel κ, our conclusion is that it has negligible influence on the determination of γ
and α. To determine the class of κ, one can use the same experimental length distribution as for α.
However, to estimate the precise shape of kappa, one needs, in addition, length distribution time points
close to the beginning of the experiment. To the contrary to γ and α estimations that are not influenced
by the initial length distribution, the best type of initial distribution to determine κ is a highly peaked
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Figure 6: Illustration of the protocol - Example 1. Upper left: Illustration of an example of size
distribution profiles for γ = 1.3, α = 1, and κ is a two-peaked Gaussian kernel and the initial condition
is a decreasing exponential. Upper right: To visualize the profiles more precisely, we rescale the profiles
using the real value for γ (i.e γ = 1.3) and formula (3). What is plotted is for each time t the function
t−1/γf(t, t−1γx), where f(t, .) is the distribution profile at time t. Bottom left: Time evolution of the
mass M1 (the data points are red crosses, the solid line blue curve being a linear interpolation), compared
to the estimated value γe of γ (solid line in green of slope −1/γe.). γe = 1.33, αe = 1.07 and Te = 5.2.

Gaussian, which corresponds to a ‘monodisperse’ suspension. However, it may be challenging to obtain
such samples due to the physical nature of the assembly [30].

Data analysis We detail here how to use the theory and the Matlab code provided in the SI to estimate
the parameters from a real experiment. First, the user should provide a set of n measurements of the
size distribution in the suspension at different times tn. See Fig 6, upper panel for an example of such
data for tn = 5, 10, 20, 30, 40. We also refer to S1, Fig 13 upper panel for an example of such data for
tn = 0, 1, 2, 5, 8, 13, 18 and obtained numerically with the same parameters except for the initial condition.
In this last example, the experimental size distribution is a probability distribution that usually consists
in a sum a dirac masses (the size of the sample at initial time is here N = 200), that we turn into its best
fit density distribution, using here ksdensity (MatLab command). In both case, we can observe that the
proportion of small particles increases in the suspension. To have a better visualization of the profile, we
plot on the right upper panel of Fig 6 and Fig 13 the size distribution using the rescaling (4). For Fig 13
we observe that starting from t = 5, the distribution has converged to an equilibrium profile. For Fig 6,
the code provides us with γest = 1.33 as an estimate for γ and with αest = 1.07 as an estimate for α, and
the estimated equilibrium time is here Te = 5.2. We display the plot of the mass evolution in a log-log
scale (see Fig 6, bottom left) of the suspension and in S1, Fig 13 bottom panel. The estimate of γe is
obtained as the estimated slope of the last part (large times) of the solid line in blue.
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Methods

Numerical simulations

To develop, explore and test a new protocol to extract the division law properties γ, α and κ from
experimental data based on our inversion formulae shown in the Theory section, we proceeded as follows.
From an initial distribution profile, and given a set of parameters γ, α and κ, we created simulated data of
size distributions u using a numerical scheme, which is described in the next paragraph and implemented
in Matlab. The three initial conditions we considered are a gaussian centered at x = 1 with standard
deviation σ = 10−2 that we refer to as the peaked gaussian, a gaussian centered at x = 1 with standard
deviation σ = 1 that we refer to as the spread gaussian, and a decreasing exponential f0(x) = exp(−x).

We observed numerically that the scheme is converging, and we validated it on test cases of known
analytical formulae (Table 1). Subsequently, we first used the numerical scheme to explore the role of
the γ, α and κ parameters on the behaviour of the system. This provided insights on how and when
(whether at early or late times) each parameter affects the trajectory of the system. Then, we use the
distribution f of the simulated data obtained with the scheme to test our method to estimate the γ, α
and κ parameters by comparing the estimated parameters with their known values used to generate the
simulated datasets. We also added noise to the simulated data to see how it affects our estimates. We
underline that the method of estimating γ, α and κ based on our analytical inversion formulae is only valid
in the cases where the experiments under consideration is well described by the model (3). Therefore,
in addition, we also provided some a posteriori tests to confirm or infirm the validity of the model. As
already mentioned, discrete models (2) are extensively used in the literature [4]. Up to a certain point,
the same conclusions should also hold true for the discrete model. We employed the discrete model for
comparison (code available in the SI), see SI for a comparison between the solution of the discrete code
with theoretical solutions, in particular S1, Fig 7. The good matching between the results given by the
codes that discretize both the continuous and discrete models validate each of them.

Throughout this report, the time scale we consider is unitless, as t represents the time in seconds
divided by tref = 1 s.

Numerical scheme

We detail here the numerical scheme we use to solve (3) to generate simulated distributions and trajec-
tories. Our method is based on [31]. We set w = log(x) and instead of directly writing a scheme on f ,
we simulate the evolution of the quantity n(t, w) := e2wf(t, ew) which satisfies for t > 0 and w ∈ R

∂n

∂t
(t, w) = αeγw

(
−n(t, w) +

∫ ∞
0

κ(e−y)eγye−2yn(t, y + w)dy

)
, n(0, w) = e2wf(0, ew). (18)

The advantage of using a scheme on the variable n(t, w) instead of f(t, x) is that the quantity n satisfies
the conservation property

d

dt

∫
R+

n(t, w)dz = 0. (19)

We discretize the time axis with a uniform time step ∆t. For the w variable, we consider a uniform
grid [w1, . . . , wp, . . . , wI ] of step ∆w (which corresponds to an exponential grid for x), with wp = 0. We
denote by nki the approximated values of the variable n at time k∆t and at wi = (i − p)∆w. Let us
observe that wi + wj = (i+ j − 2p)∆w = wi+j−p. We set the initial data

n0i = e2wif(0, zwi) for i ∈ [1, I], (20)

and the iteration process

nk+1
i = nki − α∆teγwink+1

i + α∆teγwi
min{I−i,I−p+1}∑

j=0

e−2wp+jκ(e−wp+j )eγwp+jnki+j , i ∈ [1, I], k ≥ 0,

(21)
which is

nk+1
i =

1

1 + α∆teγwi

nki + α∆teγwi
min{I−i,I−p+1}∑

j=0

e−2wp+jκ(e−wp+j )eγwp+jnki+j

 , i ∈ [1, I], k ≥ 0.

(22)
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Remark 1. We use an implicit scheme instead of the explicit scheme

nk+1
i = nki − α∆teγwinki + α∆teγwi

min{I−i,I−p+1}∑
j=0

e−2wp+jκ(e−wp+j )eγwp+jnki+j , i ∈ [1, I], k ≥ 0, (23)

since for the explicit formulation, the CFL stability condition ([32]) that guarantees positivity of the
solution imposes the following upper bound on ∆t

∆t ≤ 1

α exp(γwI)
. (24)

In some cases, for instance for real data, the CFL stability condition leads to impose ∆t ≤ 0.01 whereas
the final time is 1 million. On the contrary, the implicit version (22) of the scheme is stable with no
stability condition on ∆t and allows us to take larger values for ∆t.

An alternative numerical scheme that uses the discrete modeling approach (2) based on [4] is also used
for comparison and for validating the above numerical scheme. Explicit solutions for (3) are summarized
in Table 1. We use these explicit solution to validate our numerical scheme.

γ α κ(z) Initial data Solution Ref

1 1 uniform f0(x) e−tx
(
f0(x) +

∫ ∞
x

f0(y)(2t+ t2(y − x))dy

)
[10]

2 1 uniform f0(x) e−tx
2

(
f0(x) +

∫ ∞
x

2f0(y)tydy

)
[10]

γ > 0 1 uniform f0(x) f0(x)e−tx
γ

+ 2t

∫ ∞
0

yγ−1e−ty
γ

f0(y) M

[
γ + 2

γ
, 2t, (yγ − xγ)

]
dy [11]

γ > 0 1 uniform e−sx
γ

, s > 0 e−(t+s)x
γ

(
1 +

t

s

)2/γ

[10]

2 1 uniform e−x e−tx
2−x (1 + 2t(1 + x)) [10]

3 1
6 zr(1− z) f0(x) f0(x)e−tx

3/6 + 2t

∫ ∞
y=x

e−ty
3/6

∫ ∞
`=y

`f0(`)d`
dy

y2
[11]

0 1 dirac in z = 1/2 f0(x) f(t, x) = e−t
∑∞
k=0

(4t)k

k!
f0(2kx). [33]

Table 1: Some analytical solutions of the pure fragmentation equation. The symbol M is the Kummer’s
confluent hypergeometric function.

Statistical tests

We detail here the statistical test described and used in the Results and Discussion section.
At each time point t of the experiment, we test the null hypothesis H0

”H0 : Starting with a fixed initial distribution, the samples fa and fb respectively obtained with γ = α = 1
and the two different kernel κa and κb, have the same distribution”.

Given two samples fa and fb of respective size Na and Nb, we define the distance

dab = sup
x
|Fa(x)− Fb(x)|, (25)

where Fa and Fb are the empirical cumulative distribution functions associated with the samples ua and
ub. The Kolmogorov-Smirnov test works as follows: the H0 null hypothesis is said to be rejected at the
significance level ` if

d2ab > −
1

2
ln(`)

Na +Nb
NaNb

. (26)

Note that in the literature, the level of significance is denoted by α instead of `. The symbol α being
already used for the fragmentation rate, we decided to denote the significance level by `. If the above
condition is satisfied, the Kolmogorov-Smirnov test recommends not to reject the H0 hypothesis. We
recall that no conclusion can be drawn if the reverse inequality is satisfied (in particular, we can never
say that H0 can be statistically rejected, see [34] for a complete theory on statistical tests).
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The p-value associated with a statistical test is the level `lim from which we consider that we cannot
statistically reject the null hypothesis. The p−value is then a non-linear function of this distance dab
expressed as

pvalue = exp

(
−2

Na +Nb
NaNb

d2ab

)
. (27)

What is done in general is building an estimate of the cumulative function Fa and Fb using an
interpolation of two samples of size Na and Nb. (e.g. S1 Fig 11). In our case, we use the exact Na and
Nb to compute dab. Let us also mention that in our context, in the case where the hypotheses H0 cannot
be rejected, it means one kernel cannot be distinguished from the other using only a measurement of size
N at the time t.

Conclusions

In this study, we presented the mathematical analysis of the pure fragmentation equation. Based on
the theoretical analysis, inversion formulae to directly recover information regarding division rates α and
γ parameters, and division kernel κ from time dependent experimental measurements of filament size
distribution are derived. These inversion formulae allow analysis of the dynamical trajectories of fibril
fragmentation without goodness of fit analysis of models. This is the basis of an analytical method that
enables the systematic comparison of the stability towards division for amyloid filament of different types.
We believe extracting and comparing the rates and the kernel describing fragmentation reactions reflect
the stability of the protein filaments towards breakage, which is of importance in amyloid seed production
and the propagation of the amyloid state in functional and disease-associated amyloid.

Our conclusions are that the stationary length distribution profile depends non-linearly on γ and κ.
The parameter γ can be estimated using the measurement of two or more late-time length distribution
profiles. The parameter α is a scaling parameter that can be estimated from one late-time length distri-
bution profile combined with the estimated value for γ. Our inversion formulae for the parameters γ and
α are proved to be robust with respect to sampling noise.

As for smooth fragmentation kernels, we show that they can be separated into two groups: the kernels
such as κ(0) = κ(1) = 0, (e.g. a Gaussian function), that lead to a unimodal stationary length distribution
profile, and the kernels such that κ(0) and κ(1) are large enough, that lead to a decreasing stationary
length distribution profile around 0. However, non trivial combinations between these two rough types of
kernels may lead to highly non-trivial stationary distribution profiles. Despite these two rough classes of
kernels, our work demonstrates that the knowledge of late-time length distribution profiles is not enough
to identify the fragmentation kernel. In particular, if the kernel is a Gaussian function, its spread can
not be deduced from late-time measurements. Instead, early length distributions contain more detailed
information on κ.

We provide a code that take as an input the measured length distribution profiles at different times
and give to the user, as an output, the estimated value for γ and α corresponding to the measured
dynamics.
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Supplementary information S1

Recovering γ from the data: comparison with [8]

We detail here the method used in [8] to extract γ from the data. We recall that M1(t) is the number
average molecular weight, i.e. the average length of fibrils (the authors of [8] use the classical notation
Mn(t)). We have, with the notations from

M1(t) =

∫ ∞
0

xu(t, x)dx∫ ∞
0

u(t, x)dx

. (28)

Since the integral of x→ u(t, x)x is constant and equal to 1, we have

d

dt
M1(t) = −

d

dt

∫ ∞
0

u(t, x)dx∫ ∞
0

u(t, x)dx

M1(t). (29)

The fragmentation model (3) gives

d

dt

∫ ∞
0

u(t, x)dx =

∫ ∞
0

B(x)u(t, x)dx, (30)

and the authors of [8] make the approximation (valid in a monodisperse suspension)∫ ∞
0

B(x)u(t, x)dx ≈ B(M1(t))

∫ ∞
0

u(t, x)dx. (31)

Hence
d

dt
M1(t) ≈ −B(M1(t))M1(t) = −α (M1(t))

γ+1
. (32)

Directly from the formula above the authors get

1

(M1(t))γ
=

1

(M1(0))γ
+ αγt. (33)

The authors then notice that a plot of (M1(t))−γ versus reaction time should give a straight line with
slope αγ and an axis intercept of (M1(0))−γ . The authors plot then the curves t→ (M1(t))−γ for several
values of γ and check for each value if the curve is linear with respect to time. They determine then the
value of γ by a best-fit determination argument.

The main differences with our method are that 1) we do not need a step of best-fit search since we
directly read γ as a slope of a curve in log-log scale, and 2) we use some theoretical information on the
convergence to an asymptotic profile, whereas their argument is that for large time, the suspension is
monodisperse since it concentrates around x = 0.

More numerical simulations

We provide in SI some plots that illustrate the convergence of the scheme and validate it. (see Fig 7).
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Figure 7: Convergence of the numerical scheme. Left: plot of the error at t = 1 with respect to a reference
solution as a function of ∆t. The plot shows that the scheme is convergent. Parameters: γ = 1.3, α = 1,
and κ is a two-peaked gaussian kernel. The slope of the straight blue line suggests that the scheme is
of order approximately 0.5. Right: Comparison between the analytical solution (γ = α = 1, s = 0.1,
4th line of Table 1) and the solution obtained with the numerical scheme. The curves are superimposed
and hard to distinguish at the naked eye. The panel inside shows the relative difference between the
theoretical and numerical solutions. The relative error becomes large for large x since each solution itself
is very small.

Figure 8: Stationary profile for different values of γ and α = 1. Upper left: γ = 0.8, upper right: γ = 1,
bottom left: γ = 1.5, bottom right: γ = 2.
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Figure 9: Influence of the parameters γ and κ on the stationary length distribution profile. Upper
left: Stationary profile for various values of γ. For larger values of γ the decrease at infinity is faster.
Parameters: α = 1, tf = 100. The kernel κ used is plotted in the inset panel. Upper right: Stationary
profile for some selected kernels of class A. Parameters: γ = α = 1, and tf = 120. Bottom left and
bottom right: Stationary profile for some selected kernels of class B. Even if there is some mass around
z = 1/2, the asymptotic profile is decreasing for κ(0) large enough. Parameters: γ = α = 1, and tf = 40.
For all the figures, it has been checked that stationary state is reached.
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Figure 10: Two different fragmentation kernels cannot be distinguished using late time measurements.
Plot of the time evolution of the p−value corresponding to the null comparison hypothesis H0, for 3
different initial conditions. Initial conditions: a peaked gaussian (black), a spread gaussian (blue), a
decreasing exponential (red). We took ∆t = 0.1.
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Figure 11: Plot of the time evolution of the p-value corresponding to the Kolmogorov-Smirnov test for
the H0 hypothesis. Initial condition: a peaked gaussian. Starting from a sample of size N = 200 of the
initial condition, we estimate the initial distribution, and solve the equation (3) from that guess. At each
time t, a sample of size 200 is gathered for each kernel, and we perform a Kolmogorov-Smirnov test to
determine if the underlying distribution are distinguishable. We perform that experiment 500 times and
plot the averaged p−value. The plots must be put in perspective with those of Fig 10.
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Figure 12: Upper left: Time evolution of M1[f(t, .)] in a log-log scale for γ = 1 and for various ker-
nels. The initial condition is a spread gaussian. Upper right: Estimation of the equilibrium time Te
provided by the protocol described in the main text for different values of γ, the time points being
[0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2, 4, 5]. Bottom left: The relative er-
ror on γ as a function of γ, the time points taken into account being [5,10,. . . ,50]. Bottom right: Relative
error on γ as function of Tmax the latest time point taken into account, the time points being [5,10,. . . ,
Tmax].
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Figure 13: Illustration of the protocol - Example 2. Upper left: Illustration of on an example of size
distribution profiles for γ = 1.3, α = 1, and κ is a two-peaked Gaussian kernel, the initial condition
is a spread Gaussian function. Notice that noisy data cannot be represented on a graph, since they
formally consists in a sum of delta functions, instead we represent an estimate of the density using the
matlab function ksdensity. Upper right: To visualize the profiles more precisely, we rescale the profiles
using the real value for γ (i.e γ = 1.3) and formula (3). What is plotted is for each time t the function
t−1/γf(t, t−1γx), where f(t, .) is the distribution profile at time t. This rescaling becomes singular for
t = 0, hence the absence of rescaling for the initial data. Bottom left: Time evolution of the mass M1

(the data points are red crosses, the solid line blue curve being a linear interpolation), compared to the
estimated value γe of γ (solid line in green of slope−1/γe.). The code provides us with γe = 1.55, αe = 1.99
and Te = 0.40. The lack of precision can be interpreted as the lack of information for late time points.
Bottom right: We add late time data points to visualize the profile of M1(t).
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