
Eur. Phys. Special Topics manuscript No.
(will be inserted by the editor)

Wave-particle duality of electrons with spin-momentum
locking
Double-slit interference and single-slit diffraction effects of electrons on the surface
of three-dimensional topological insulators

Dario Berciouxa,1,2, Tineke L. van den Bergb,1, Dario Ferraro3,4,5, Jérôme
Rech3, Thibaut Jonckheere3, Thierry Martin3

1Donostia International Physics Center (DIPC), Manuel de Lardizbal 4, E-20018 San Sebastián, Spain
2IKERBASQUE, Basque Foundation of Science, 48011 Bilbao, Basque Country, Spain
3Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
4Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146, Genova, Italy
5SPIN-CNR, Via Dodecaneso 33, 16146 Genova, Italy
October 15, 2020

Abstract We investigate the effects of spin-momentum
locking on the interference and diffraction patterns due
to a double- or single-slit in an electronic Gedankenex-
periment. We show that the inclusion of the spin-degree-
of-freedom, when coupled to the motion direction of the
carrier — a typical situation that occurs in systems with
spin-orbit interaction — leads to a modification of the
interference and diffraction patterns that depend on the
geometrical parameters of the system.

1 Introduction

The wave-particle duality is one of the fundamental
paradigms introduced by quantum mechanics, which
tells us that every particle or quantum entity may be
described as either a particle or a wave [1]. In one of
his “Lectures on physics” books, Feynman et al. [2] pro-
posed to verify the wave nature of electrons by per-
forming a thought experiment analogous to the one con-
ducted by Thomas Young, performed in the first decade
of the 1800s to show the wave nature of light. The first
experiment implementing the Young experiment with
electrons was realized by Jönsson [3,4] contemporane-
ously with the preparation of Feynman’s lecture notes;
these results were confirmed a few years later by a team
of researchers at the University of Bologna [5]. In this
experiment, the two slits of the setup by Jönsson were
substituted by a biprism. Further refinement came af-
ter more than a decade with an experiment performed
at the Hitachi lab by Tonomura et al. [6]. The read-
ers of the magazine “Physics World” of the Institute
ae-mail: dario.bercioux@dipc.org
be-mail: tineke.vandenberg@dipc.org

of Physics selected these experiments to be the most
beautiful ones in physics of the past century [7].

Although this type of research has now been in large
part delegated to the educational framework [8,9], sev-
eral groups in recent years tried to push the limits of the
understanding of the validity of the wave-particle dual-
ity towards large quantum objects and molecules. One
of the most complex attempts was realized by consid-
ering interference and diffraction of large C60 molecu-
les [10,11,12]. This experiment was a breakthrough in
the understanding of the limits of quantum theory be-
cause the C60 molecule is close to being a classical ob-
ject when considering its many excited internal degrees-
of-freedom and also the large possibility of coupling
to the environment that can lead to decoherence ef-
fects [10,13,14]. More recent experiments verified in-
terference effects in more complex molecular aggrega-
tes [15]. The problem of addressing the “wave-particle
duality” rationally in the framework of complex quan-
tum systems has been recently investigated by Carnio
et al. [16].

In the standard setup for the double-slit experi-
ment, the spin degree-of-freedom of the electrons does
not play any role. Some recent experiments focusing on
electron beams carrying orbital angular momentum [17]
showed the appearance of dislocations in the interfer-
ence pattern. Here we note a strong analogy with pho-
tons carrying an orbital angular momentum; in fact
these can be generated by a diffraction grating contain-
ing a dislocation [18]. Recently, the role of Rashba spin-
orbit interaction (RSOI) [19] was investigated in the
interference pattern in two-dimensional electron gases
(2DEGs) [20] in a time-dependent fashion. The authors
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conclude that the RSOI does not affect the interference
pattern.However, from other investigations it is known
spin-orbit interaction is of importance in various quan-
tum optics phenomena, such as in spin-dependent dou-
ble refraction and pumping [21,22].

In this work, we focus on an extreme case of the
results presented in Ref. [20] by considering the sur-
face states of three-dimensional topological insulators
(3DTI). These surface states are described by an ef-
fective Hamiltonian similar to the one of a 2DEG with
RSOI but with an infinite effective electron mass so that
the parabolic kinetic term is zero [23]. In 2DEG with
RSOI, the surface electron states are characterized by
the so-called spin-momentum locking (SML), i.e., the
spin orientation is strongly connected to the motion di-
rection [24]. We study two fundamental mechanisms of
interference: one arising from a wave passing through a
double-slit opening and one by a single slit opening. In
the former case, we assume that the width of each slit
is of the same order as the electron Fermi wavelength;
in the latter case, we relax this restriction. Convention-
ally, interference refers to the case of interaction of a few
waves, whereas diffraction considers the case of a large
number of interacting waves. Nevertheless, they repre-
sent the same physical wave mechanisms. Contrary to
the results of Ref. [20], we work only with stationary
states, because the time-dependent part of the wave-
function would lead only to an overall intensity pref-
actor [25]. Throughout this work, we compare the case
of spinless electrons (SEs), i.e., electrons that are spin-
degenerate, with electrons with SML. We find that SML
leads to a small but finite correction to the interference
and diffraction pattern in comparison to a SE system.
These corrections can be of the order of a few per cents
and tend to disappear in the so-called far-field limit
whereas they are more significant in the opposite near-
field limit. Our results fall in the framework of the so-
called electron quantum optics [26] for ballistic chiral
conductors. Extensions to the case of the edge states
of two-dimensional topological insulators have already
been proposed [27,28,29,30,31]. The present work rep-
resents an extension of electron quantum optics to the
realm of topological surface states.

The mechanism of modification of the interference
patterns we study in this work plays an important role
when studying quasi-particle interference via scanning
tunneling microscopy/spectroscopy (STM/STS) [32] of
the surface of 3DTI as Bi2Te3, Bi2Se3 or similar topo-
logical layered material system when perturbed with
normal or magnetic impurities [33,34].

The article is organized in the following way: in
Sec. 2, we develop the general formalism for studying
interference from a double-slit and then diffraction from

a single slit for the case of spinless electrons. In Sec. 3,
we perform the same analysis by considering the surface
state electrons of 3DTI. We first present the low-energy
physics of general 3DTIs, before moving on to the high-
energy physics of a more specific case valid for certain
3DTIs. In Sec. 4, we present a comparison between the
different cases and show the presence of a finite correc-
tion due to SML. We end the work with conclusions
and outlook in Sec. 5.

2 Case of spinless electrons

We start evaluating the interference and diffraction pat-
terns for SEs in a 2DEG. They are described by the
quadratic Hamiltonian:

HSE =
p2

2m∗
+ V (r), (1)

where m∗ is the effective electron mass of the 2DEG
under investigation. In this Hamiltonian, V (r) is a two-
dimensional potential describing a wall with one or more
slits, given by the shape of the red lines in Fig. 1. Even
though we do not explicitly need this potential in our
theory, as we work with point-like sources at the po-
sitions of the slits, some important physical considera-
tions must be kept in mind. The wall must have a width
w that is larger than the decay length ξ of the wave-
function inside the wall w > ξ, so that no tunneling
will take place. Further, the edges have to be smooth,
at least on the order of the long wavelength approxima-
tion [21].

2.1 Interference from double-slit set-up

We consider first a double-slit setup: these are separated
by a distance d and there is a distance L between the
slits and an observation plane. Here, we consider the
case in which the opening of each single slit h ∼ λF,
where λF = 2π/kF is the Fermi wavelength associated
with the electron Fermi energy EF = ~2k2F/2m∗. We
will relax this condition when we consider the diffrac-
tion pattern in the next section. The two slits opening
S1/2 are the source of two circular plane waves that
propagate to the observation point P on the screen at a
distance L — see Fig. 1(a). The part of the wave func-
tion at the slits that will have an action on the point
P on the screen for a given Fermi momentum can be
written as:

Ψ1/2 = eikFr1/2(y) , (2)

where ri is the distance between the corresponding slit
Si and the observation point P. From the geometric
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Fig. 1 (a) Sketch of the double-slit set-up for performing the
interference experiments for the spinless electrons and for the one
with spin-momentum locking. (b) Sketch of the single slit set-up
for a diffraction experiment. Here, the opening h is larger than
the Fermi wavelength λF, the points in red in the slit act as
secondary wave source and give rise to a diffraction pattern on
the screen.

sketch in Fig. 1(a), we have:

r1/2(y) = S1/2P =

√
L2 +

(
y ∓ d

2

)2

. (3)

In the following, we omit writing the explicit y depen-
dence in the r functions.

The intensity at the observation point P is given by
the modulus square of the sum of the two wave func-
tions in y:

ISE(y) = |Ψ int
tot |2 = |Ψ1 + Ψ2|2

= 2 {1 + cos {kF[r1 − r2]}} (4a)

= 4 cos2
{
kF

2
[r1 − r2]

}
. (4b)

The quantity ∆r = r1 − r2 represents the difference
in the geometrical paths between the electron travel-
ling from S1 to P and from S2 to P. For the difference
between the two geometric paths we find:

∆r = r1 − r2 = − 2yd

r1 + r2
(5a)

' −yd
L

(5b)

The approximation in Eq. (5b) is valid in the limit
L > d and in classical optics it corresponds to the far-
field approximation [25]. Throughout the manuscript,
we will always present results using the definition in
Eq. (5a).

2.2 Diffraction from a single slit

In this section we relax the condition h ∼ λF and
assume that the opening of the slit h is larger than
the Fermi wavelength λF. Under this assumption, there

are N = int[h/λF] points at a distance a = λF, —
see Fig. 1(b). Each of these points behaves as a sec-
ondary emitter of an electron wave, analogously to the
Huygens–Fresnel principle in optics [25]. Under this as-
sumption, the global wave function at the single slit
Ψdif

tot that will have an action on a point P on the screen
can be written as:

Ψdif
tot =

N∑
m=1

eikFrm , (6)

where rm is the path between the secondary emitter and
the observation point P — it is expressed by a general-
ization of Eq. (3). The intensity DSE at the observation
point y is given by

DSE(y) = |Ψdif
tot|2

= N +

N∑
m,n=1
n 6=m

cos [kF(rn − rm)] . (7)

We note in passing that if the observation plane is
placed at very large distance L� h and for y � λF, we
can assume that the phase difference is kF(rn − rm)→
(n−m)ϕ , the expression for the diffraction pattern can
be simplified to the following well known expression for
the optical case [25]:

DSE =

[
sin
(
N ϕ

2

)
sin
(
ϕ
2

) ]2 (8)

where in leading order in L, we have

ϕ =
2π

λF

ay

L
. (9)

3 Case of spin-momentum locked electrons

In this section we consider the surface states of a 3DTI
described by the following Hamiltonian

HSML = H3DTI + V (r)σz , (10)

where H3DTI is the term describing the surface states of
the 3DTI and V (r) is again an opportune two-dimensional
potential describing the single or double-slit setup —
see Fig. 1. The potential V (r) is proportional to the
Pauli matrix σz so as to open a gap in the linear disper-
sion of the surface states locally in space. In the follow-
ing we will first concentrate on the low-energy physics,
with a Hamiltonian describing any generic 3DTI. We
will then move on to the physics at higher energies and
include the hexagonal warping of the Fermi surface, as
happens at the surface of 3DTIs with a rhombohedral
crystalline structure.
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3.1 Low-energy case for the 3DTI

In this section, we will consider the low-energy approx-
imation Hamiltonian describing the surface states of a
generic 3DTI, this reads:

H3DTI = vF (σ × p)z . (11)

This Hamiltonian is characterized by a linear spectrum
E±(k) = ±~vFκ with κ =

√
k2x + k2y, and eigenstates

v± =
1√
2

(
1

∓ieiθ
)
, (12)

where θ = arctan(ky/kx). It is worth noticing that these
eigenstates are identical to the ones that can be ob-
tained for a 2DEG with RSOI [24].

3.1.1 Interference from double-slit set-up

In order to study the interference pattern, we consider
two plane waves with a spinorial structure as introduced
in Eq. (12):

Ψ̃1/2(y) =
eikFr1/2(y)√

2

(
1

−ieiθ1/2(y)
)
, (13)

where kF is the Fermi momentum of the wave associated
to the Fermi energy EF = ~vFkF, and ri are the path the
waves are propagating before interfering, see Eq. (3). As
for the SE case, the expression for the interference as a
function of the position y along the detection plane is
given by

ISML(y) = |Ψ̃1 + Ψ̃2|2

= 2 + cos [kF (r1 − r2)]

+ cos [kF (r1 − r2) + θ1 − θ2] . (14)

By introducing ∆θ = θ1 − θ2, we can simplify the pre-
vious expression in a more insightful form:

ISML(y) = 2 + cos(kF∆r)[1 + cos(∆θ)]

− sin(kF∆r) sin∆θ. (15)

Here we observe that for ∆θ = 0 the correction due
to SML goes to zero, and the interference pattern re-
duces to the SE case in Eq. (4), whereas it is maxi-
mum for ∆θ = ±π/2 and it is equal to ISML(P ) =

2 + cos(kF∆r)− sin(kF∆r).
The expression of the spin angle θi(x) can be ob-

tained by a trigonometric arguments and reads:

θ1/2(y) = arctan

(
y ∓ d

2

L

)
. (16)

�� ��� ��� ����
-����

-����

-����

-����

����

� [λ�]

Δ
θ

Fig. 2 The shift ∆θ introduced by SML as a function of the
position of the measurement plane L for various detection points
y with respect to the center of the system. The various values of
y from bottom to the top are: 0, 10, 20, 30, 40, 50 λF. We have
fixed d = 10 λF. The plot shows the crossover from near-field to
far-field where the corrections ∆θ becomes negligible.

The difference between the two angles can be expressed
as

∆θ = θ1 − θ2

= arctan

(
y − d

2

L

)
− arctan

(
y + d

2

L

)
(17a)

= arctan

[
4dL

d2 − 4(L2 − y2)

]
, (17b)

that is an even function of the detector position y. The
behavior of this function for fixed d, and as a function
of L for various position of the detector y, is shown in
Fig. 2. This angle difference is zero for the two asymp-
totic values y → ±∞ and is largest and negative for
y → 0 with ∆θ(0) = −2 arctan [d/2L]. As mentioned
above, the first limit can be easily understood because
for measurement points far away from the center of the
system, the two electrons arrive with almost the same
propagation direction, thus with parallel spins; on the
contrary, the second limit corresponds to maximizing
the orientation difference of the two spins. We learn
from Eq. (17) that the correction to the double slit
pattern due to SML depends only on the geometrical
parameters of the system y, d and L, whereas it does
not depend on Fermi wavelength λF.

Interestingly, the main effect on the interference pat-
tern compared to the SE case is to produce a shift of
the position y0 of the first maximum, see Fig. 3. The
shift depends on the various geometrical parameters,
namely the slit distance d and the distance of the ob-
servation plane L. In Fig. 3(a) we show how y0 depends
on these parameters: we clearly observe that the shift
is very small in terms of the Fermi wavelength λF.



5

y0[�F]
<latexit sha1_base64="CHh5PPI7BLJ2oDd64b+19G+W/r0=">AAACbHicbVHbahRBEO2deInrJZsovgShcVF8CMuMGvRJgor6GMFNAjvDUNNTs2nSl6G7x2Rp+2d81R/yJ/wGey+C2Xig4XBOFVV1umoFty5Nf/WSjWvXb9zcvNW/fefuva3B9s6R1Z1hOGZaaHNSgUXBFY4ddwJPWoMgK4HH1dm7uX/8FY3lWn1xsxYLCVPFG87ARakcPJyVKZ3kInbUUOYOL5z/EIpyMExH6QL0KslWZEhWOCy3e2/yWrNOonJMgLWTLG1d4cE4zgSGft5ZbIGdwRQnkSqQaAu/OCDQJ1GpaaNNfMrRhfpvhwdp7UxWsVKCO7Xr3lz8r1fJtcmueV14rtrOoWLLwU0nqNN0ng6tuUHmxCwSYIbH3Sk7BQPMxQz7ucJzpqUEVfscMfhlXhjCZYvzvxafWzU28XcWR/n3YLj+aBBV8GZaBZ/tpaP9vTTExLP1fK+So+ej7MVo//PL4cHbVfabZJc8Js9IRl6RA/KJHJIxYeQb+U5+kJ+938mDZDd5tCxNeque++QSkqd/AO93vkk=</latexit>

(a) (b)

y0[�F]
<latexit sha1_base64="CHh5PPI7BLJ2oDd64b+19G+W/r0=">AAACbHicbVHbahRBEO2deInrJZsovgShcVF8CMuMGvRJgor6GMFNAjvDUNNTs2nSl6G7x2Rp+2d81R/yJ/wGey+C2Xig4XBOFVV1umoFty5Nf/WSjWvXb9zcvNW/fefuva3B9s6R1Z1hOGZaaHNSgUXBFY4ddwJPWoMgK4HH1dm7uX/8FY3lWn1xsxYLCVPFG87ARakcPJyVKZ3kInbUUOYOL5z/EIpyMExH6QL0KslWZEhWOCy3e2/yWrNOonJMgLWTLG1d4cE4zgSGft5ZbIGdwRQnkSqQaAu/OCDQJ1GpaaNNfMrRhfpvhwdp7UxWsVKCO7Xr3lz8r1fJtcmueV14rtrOoWLLwU0nqNN0ng6tuUHmxCwSYIbH3Sk7BQPMxQz7ucJzpqUEVfscMfhlXhjCZYvzvxafWzU28XcWR/n3YLj+aBBV8GZaBZ/tpaP9vTTExLP1fK+So+ej7MVo//PL4cHbVfabZJc8Js9IRl6RA/KJHJIxYeQb+U5+kJ+938mDZDd5tCxNeque++QSkqd/AO93vkk=</latexit>

ni

Fig. 3 (a) Shift of the first maximum on the interference for the
case with SML as a function of the distance between the slits d
and the distance of the measurement plane L; (b) Shift of the first
maximum on the diffraction for the case with SML as a function
of the number of secondary sources in the slit ni and the distance
of the measurement plane L. In both panels, the shift is expressed
in units of the Fermi wavelength λF.

3.1.2 Diffraction from a single slit

As we already did for the case of spinless electrons, we
now relax the condition h ∼ λF, to study the modifica-
tions of the diffraction pattern due to the SML. Under
this assumption, the global wavefunction at the slit Ψ̃dif

tot
can be written as:

Ψ̃dif
tot =

1√
2

N∑
m=1

eikFrm
(

1

−ieiθm
)
, (18)

where rm is the path between the emitter and the obser-
vation point P, and θm is the associated angle of prop-
agation that determines the spin direction imposed by
SML. The total intensity DSE at the observation point
P is given by

DSML(y) = |Ψ̃dif
tot|2

= N +

N∑
m,n=1
n 6=m

{cos [kF(rn − rm)]

+ cos [kF(rn − rm) + (θn − θm)]} , (19)

In this expression for the diffraction in the presence of
SML, the angles due to the spinorial structures of the
wave function are obtained by a generalization of the
Eq. (16), with the substitution of the width of the open-
ing d with the distance a between the electron emitters
— see Fig. 1(b). It is clear that in absence of SML,
the expression for the diffraction pattern in Eq. (19)
reduces to the one in the case of SE in Eq. (7).

Here again, we see the main effect of the SML is
a shift of the position y0 of the first maximum of the
diffraction pattern, which is depicted in Fig. 3(b) as a

function of the number of secondary emitters ni within
the slit, and the distance of the screen L.

As we did for the SEs in Eq. (8), we can for com-
pleteness recast the expression into a more compact
form in the far-field limit, where kF(rn − rm) → (n −
m)ϕ and θm − θn → (n − m)χ; in this case Eq. (19)
reduces to:

DSML =
1

2

[
sin
(
N ϕ

2

)
sin
(
ϕ
2

) ]2 +
1

2

[
sin
(
N ϕ+χ

2

)
sin
(
ϕ+χ
2

) ]2 (20)

where we defined ϕ in Eq. (9), and the shift due to the
SML is of geometric origin only, and given by

χ =
a

L
. (21)

3.2 High-energy case for the 3DTI

In this section, we consider a Hamiltonian description
of the surface states beyond the low-energy approxi-
mation introduced in Eq. (11). It was observed exper-
imentally that the shape of the Fermi surface describ-
ing the surface states of 3DTIs in layered materials,
such as Bi2Te3, is circular only close to the crossing
point of the Dirac dispersion. At higher energies it de-
parts from this shape, becoming at first hexagonal and
then assuming a snowflake shape [35]. These changes in
the structure of the Fermi surface can be accounted for
within k · p theory by adding an additional spin-orbit
term to the Hamiltonian (11) describing the hexago-
nal warping [36]. This term can be constructed for sur-
face states of rhombohedral crystalline structures solely
from symmetry considerations. It can reproduce the re-
sults obtained by ab-initio calculations, however its sim-
ple structure allows for a simplified analysis revealing
basic properties of topological edge states. Within this
framework, the effective k·p Hamiltonian describing the
surface states of a 3DTI reads:

H3DTI+w = H3DTI +
β

2

(
p3+ + p3−

)
σz, (22)

where β is the strength of the hexagonal warping and
p± = px ± ipy. A more in-depth analysis of the k · p
Hamiltonian can be found in Ref. [36].
This Hamiltonian is characterized by the following spec-
trum:

E(κ, θ) = ±~
√
v2Fκ

2 + β2κ6 cos2(3θ) (23)

where κ is the modulus of the momentum, and the mo-
tion direction is characterized by the azimuthal angle
already defined earlier as θ = arctan(ky/kx). We learn
from this expression of the spectrum at high energy that
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(a) (b)

kx

ky

kx

ky

Fig. 4 Fermi surfaces for the low-energy case (a) and the high-
energy one (b). The energy is fixed to EF.

the states at the Fermi energy EF can have different val-
ues of the modulus of the momentum κF for different
propagation directions θ. This is different from the cir-
cular symmetry configuration we have in the low-energy
limit, for which the modulus of the momentum is the
same for all the propagation directions — see the two
panels of Fig. 4. The eigenstates maintain a spinorial
structure that reads:

v±(κ, θ) =
1√
2N

(
b∓β (κ, θ)

ieiθ

)
, (24)

where the normalization factor for the spinor is defined
as

2N = [b−β (κ, θ)]2 + 1, (25)

and the functions b±β (κ, θ) are defined as

b±β (κ, θ) = κ2β cos(3θ)±
√

1 + v−2F κ4β2 cos2(3θ). (26)

When the warping is absent (β → 0) the states in
Eq. (24) coincide with the spinors in the low-energy
approximation in Eq. (12).

3.2.1 Interference from double-slit set-up

As we already did in the low-energy approximation, we
can define a wave-function at positive energy EF and
fixed propagation direction θ as:

Ψ̄1/2(y) =
eiκ1/2r1/2(y)√

2N1/2

(
b−β (κ1/2, θ1/2)

ieiθ1/2(y)

)
, (27)

where κ1/2 are the modulus of the momenta associated
with the propagation directions θ1/2, respectively (see
Fig. 4); proceeding as we did in the previous section, we
find the following expression for the interference pat-
tern:

ĪSML = 2 +
1√N1N2

[
cos(ζ1/2)b−β (κ1, θ1)b−β (κ2, θ2)

+ cos(ζ1/2 +∆θ)
]
, (28)

where ζ1/2 = κ1r1 − κ2r2. Importantly, we note from
this last term that the phase difference for the electron
arriving from the two slits in addition to depending on
the different geometric paths r1 and r2 also depends on
the different momenta κ1 and κ2. This is due to the
distortion of the Fermi surface caused by the warping
in Hamiltonian (22) and can be considered as an addi-
tional signature of the SML. In Fig. 5, we present the
shift of the position of the first maximum of interfer-
ence obtained by Eq. (28) as a function of the distance
between the slits d and the position of the measurement
plane L. We analyse the shift for two different values of
the warping of the Fermi surface. The value of the shift
and the behaviour with the parameters is different for
the two values of β.

3.2.2 Diffraction from a single slit

In order to define the diffraction pattern in the high-
energy limit, we introduce the following wave function
accounting for N secondary emitters in the slit of open-
ing h:

Ψ̄dif
tot =

N∑
m=1

eiκmrm

√
2Nm

(
b−β (κm, θm)

ieiθm

)
, (29)

The total intensity D̄SML at the observation point P is
given by

D̄SML(y) = |Ψ̃dif
tot|2

= N +

N∑
n,m=1
n 6=m

1√NnNm
{
b−β (κm, θm)b−β (κn, θn) cos ζn/m

+ cos
[
ζn/m + (θn − θm)

] }
, (30)

where ζn/m = κnrn−κmrm and the normalization con-
stants are Nm = [b−β (κm, θm)]2 + 1. This expression, in
the limit of zero warping (β → 0), is identical to the
diffraction expression in Eq. (19). Also in this case we
observe a shift of the first maximum of diffraction that
behaves similarly to the interference case we have shown
in Fig. 5, as can be seen from Eq. (30) (not plotted).

4 Comparisons

First, we will compare the case of SE with that of SML
at low-energy. In this case, we can define in a unique
way a Fermi wavelength, the interference pattern will
be characterized by a single oscillation pattern, due to
the absence of distortion of the Fermi surface. For a
fixed λF, the interference patterns in the two cases are
almost identical: the oscillation frequency is lead by the
Fermi wavelength, but we will observe a shift y0 of the
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Fig. 5 Shift of the position first maximum of interference y0 for
finite hexagonal warping: (a) β = 0.1 vF and (b) β = 0.2 vF.

(a)

(b)

(c)

(d)

Fig. 6 Interference pattern from a double-slit system as a func-
tion of the detection point y: (a) case of spinless electrons; (b)
case of electrons with spin-momentum locking in the low-energy
approximation. For panel (a) and (b), we have d = 15 λF and
L = 75 λF. Panels (c) and (d) give the percentage difference of
the two previous cases for 100∆I(y) in Eq. (31). In panel (c), the
distance between the slits is kept constant at d = 15 λF and the
distance of the L is varied between 50 λF (orange), 75 λF (blue),
100 λF (green). In panel (d), the distance between of the mea-
surement plane is kept constant at L = 75 λF and the distance
of the d is varied between 10 λF (green), 15 λF (blue), 20 λF
(orange).

first maximum for the SML case. For this reason, it is
more informative to look at the normalized difference

between the interference patterns in the SE and SML
cases. For this purpose, we define the following function

∆I(y) =
ISML(y)− ISE(y)

ISE(0)
. (31)

In Fig. 6(a) and 6(b), we present the interference pat-
tern for the SE and SML cases for a fixed set of param-
eters d and L. In Fig. 6(c) and 6(d) of Fig. 6, we present
∆I(y) for fixed d and different L, and for fixed L and
various d, respectively. We see from Fig. 6(c) that this
difference can be of the order of almost 7.5%. It is im-
portant to note that in the two interference figures in
Fig. 6(a) and 6(b), a distortion of the oscillation pattern
can be observed for large values of the position y. This
distortion is present both in the SE and SML cases, this
is a consequence of not considering the far-field limit in
the position function given in Eq. (5).

We now perform the same kind of comparison for
the case of the single-slit diffraction pattern; as for the
interference case, we introduce an intensity ratio func-
tion:

∆D(y) =
DSML(y)−DSE(y)

DSE(y0)
(32)

for a fixed set of geometrical parameters h and L. The
comparison of the diffraction pattern for various sizes
of the single slit h is shown in Fig. 7 moving from the
near-field to the far-field case. For an observation plane
placed at larger distance, we observe a larger central
maximum whereas the side maxima are not always vis-
ible. Similarly to the double-slit case, we observe that
the corrections [Fig. 7(c) and (d)] are larger when the
observation plane is placed at a distance L not too large
compared to the overall opening of the slit h. The cor-
rections can be up to the order of 2.5% in the case of a
larger slit in Fig. 7(d).

We will now present results of the interference pat-
tern from a double-slit and the diffraction pattern from
a single-slit, for the case with warping corrections as in
Hamiltonian (22). We will compare these results to the
SML in the low-energy case with β = 0, other compar-
isons are problematic due to the impossibility of defin-
ing a unique Fermi wavelength in the high-energy case,
as discussed in Sec. 3.2. We present two different cases
with a finite warping β for the interference pattern in
Fig. 8(b) and 8(c). We immediately observe a second
period of oscillation due to the different momenta char-
acterizing the Fermi surface in the presence of warping
— see inset of Fig. 8(d). The main effect in the diffrac-
tion pattern from a single-slit, in addition to introduc-
ing a change in the oscillations, is to enlarge the size of
the central maximum.
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(a)

(b)

(c)

(d)

Fig. 7 Diffraction pattern from a single-slit system as a func-
tion of the detection point y: (a) case of spinless electrons; (b)
case of electrons with spin-momentum locking in the low-energy
approximation. For panel (a) and (b), we have L = 50 λF (blue),
L = 100 λF (yellow) L = 500 λF (green), the number of sec-
ondary emitter is set to 8. Panel (c) and (d) percentage difference
of the two previous case 100∆D(y) in Eq. (32). In panel (c) we
consider the case of 8 secondary emitters and the three distance
L as in panel (a) and (b), in panel (d) the number of secondary
emitters is 15 and the three distance L as in panel (a) and (b).

5 Conclusions and outlook

In this article we have evaluated the effect of the lock-
ing of the spin-degree-of-freedom to the motion direc-
tion, typical for systems with spin-orbit interaction. We
have shown that the spin-momentum locking leads to
a small but finite correction to the interference and
diffraction patterns for electrons going through a single
or a double-slit system. In particular, we have investi-
gated a two-dimensional electron system given by the
electrons confined on the surface of three-dimensional
topological insulators. This electron system has the pe-
culiarity of having a kinetic Hamiltonian that is origi-
nating from spin-orbit interaction only. We considered
both the low-energy limit and the high-energy general-

Ī S
M

L
(y

)/
Ī S

M
L
(y

0
)

<latexit sha1_base64="lsM1835I+3cXNxqUlLcLcMyU4ZE="></latexit>

D̄
S
M

L
(y

)/
D̄

S
M
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(y

0
)
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(a)

(b)

(c)

(d)

Fig. 8 The warping effects from Eq. (22), the interference pat-
tern from a double-slit is shown in panel (a) to (c) for L = 75 λF
and d = 15 λF and EF = 2π, in panel (a) there is no warping, in
panel (b) β = 0.05 and in panel (c) β = 0.1. The diffraction pat-
tern from a single slit is shown in panel (d) for the same energy as
in (a) with 8 secondary emitters and L = 75 λF, the three curves
correspond to the same value of β as in panel (a) to (c). In the
inset of panel (d), we show the Fermi surface corresponding to
the two values of β and EF = 2π.

ization, in which case a cubic in momentum spin-orbit
term takes into account the warping of the Fermi en-
ergy. In the high-energy limit we found, in addition to
a small correction, the appearance of different oscilla-
tory contributions arising from the warping of the Fermi
surface.

Here, we present a proposal for realizing a slit ex-
periment in a solid-state platform based on using the
two-dimensional electron gas of noble metals for the
SE case, and a 3DTI for the case of SML electrons.
Both require the use of an STM for the manipulation of
atoms of a surface. In the SE case, we can consider CO
molecules placed on Cu(111) [37,38,39,40], this tech-
nique allows to place with atomic precision molecules
on specific positions of the metal surface; in general,
the CO molecules act as repulsive barriers for the free
electrons on the surface of the noble metal. The CO
molecules can be arranged to form two parallel walls,
one containing one or more slits and the opposite with-
out opening. Similar to the case of a terrace or step
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edges on the surface Cu(111) the two walls will gen-
erate standing plane waves [41,42,43]. The tip of the
STM can then be used as a local probe for measuring
the local density of states at the detection point P on
the screen — see Fig. 1(a). In a similar fashion, we can
measure the shift introduced by the SML, by substi-
tuting the Cu(111) surface with a 3DTI material such
as Bi2Te3 or Bi2Se3. We then also need to substitute
the CO molecules with magnetic molecules [44], so as
to locally gap the linear dispersion — see Eq. (10). For
the case of a 3DTI, a weak magnetic field can also be
used to enhance some of the physics discussed in this
manuscript. It should lead to an additional shift of the
first maximum of interference for the case of SML, while
it will have no significant effect in the case of SEs.
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Appendix A: On the diffraction formula

In this appending we present the derivation for the
diffraction formula in the leading order in L−1 pre-
sented in Eq. (8) or (20). The main step is to expand all
the cos[(n − m)ϕ] = cos `ϕ into exponential functions
so that

DSE −→ e−i(N−1)ϕ

(
N∑
m=0

eimϕ
)2

, (A.1a)

= e−i(N−1)ϕ
(

1− eiNϕ

1− eiϕ

)2

, (A.1b)

= ei(N−1)ϕ
(
ei

(N−1)ϕ
2

sin(Nϕ/2)

sin(ϕ/2)

)2

, (A.1c)

=

 sin
(
Nϕ
2

)
sin
(
ϕ
2

)
2

, (A.1d)

where in (A.1a) we have used the properties of geo-
metric series:

∑N
n=0 r

n = (1− rN+1)/(1− r). A similar
expression is obtained starting by Eq. (19) with the in-
troduction of the spin parameter χ.

References

1. R.M. Eisberg, R. Resnick, Quantum physics of atoms,
molecules, solids, nuclei, and particles (Wiley, 2009)

2. R. Feynman, R. Leighton, M. Sands, The Feynman Lectures
on Physics, vol.3 (Reading, MA: Addison-Wesley, 1965).
Chapter 1

3. Claus Jönsson, Zeitschrift für Physik 161(4), 454 (1961).
DOI 10.1007/bf01342460. URL https://doi.org/10.1007%
2Fbf01342460

4. Claus Jönsson, American Journal of Physics 42(1), 4 (1974).
DOI 10.1119/1.1987592. URL https://doi.org/10.1119%
2F1.1987592

5. P.G. Merli, G.F. Missiroli, G. Pozzi, American Journal of
Physics 44(3), 306 (1976). DOI 10.1119/1.10184. URL
https://doi.org/10.1119%2F1.10184

6. A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, H. Ezawa,
American Journal of Physics 57(2), 117 (1989). DOI 10.
1119/1.16104. URL https://doi.org/10.1119%2F1.16104

7. J. Steeds, P.G. Merli, G. Pozzi, G.F. Missiroli, A. Tonomura,
Physics World 16(5), 20 (2003). DOI 10.1088/2058-7058/16/
5/24. URL https://doi.org/10.1088%2F2058-7058%2F16%
2F5%2F24

8. M. Malgieri, P. Onorato, A. De Ambrosis, Phys. Rev.
Phys. Educ. Res. 13, 010101 (2017). DOI 10.1103/
PhysRevPhysEducRes.13.019901. URL https://link.aps.
org/doi/10.1103/PhysRevPhysEducRes.13.010101

9. R. Sayer, A. Maries, C. Singh, Phys. Rev. Phys. Educ. Res.
13, 010123 (2017). DOI 10.1103/PhysRevPhysEducRes.
13.010123. URL https://link.aps.org/doi/10.1103/
PhysRevPhysEducRes.13.010123

10. M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der
Zouw, A. Zeilinger, Nature 401(6754), 680 (1999). DOI
10.1038/44348. URL https://doi.org/10.1038%2F44348

11. O. Nairz, M. Arndt, A. Zeilinger, Journal of Modern Optics
47(14-15), 2811 (2000). DOI 10.1080/09500340008232198.
URL https://doi.org/10.1080%2F09500340008232198

12. O. Nairz, M. Arndt, A. Zeilinger, American Journal of
Physics 71(4), 319 (2003). DOI 10.1119/1.1531580. URL
https://doi.org/10.1119%2F1.1531580

13. A.D. Cronin, J. Schmiedmayer, D.E. Pritchard, Reviews
of Modern Physics 81(3), 1051 (2009). DOI 10.1103/
revmodphys.81.1051. URL https://doi.org/10.1103%
2Frevmodphys.81.1051

14. K. Hornberger, S. Gerlich, P. Haslinger, S. Nimmrichter,
M. Arndt, Reviews of Modern Physics 84(1), 157 (2012).
DOI 10.1103/revmodphys.84.157. URL https://doi.org/
10.1103%2Frevmodphys.84.157

15. S. Eibenberger, S. Gerlich, M. Arndt, M. Mayor, J. Tüxen,
Physical Chemistry Chemical Physics 15(35), 14696 (2013).
DOI 10.1039/c3cp51500a. URL https://doi.org/10.1039%
2Fc3cp51500a

16. E.G. Carnio, H.P. Breuer, A. Buchleitner, The Journal of
Physical Chemistry Letters 10(9), 2121 (2019). DOI 10.
1021/acs.jpclett.9b00676. URL https://doi.org/10.1021%
2Facs.jpclett.9b00676

17. Y. Hasegawa, K. Saitoh, N. Tanaka, S. Tanimura, M. Uchida,
Journal of the Physical Society of Japan 82(3), 033002
(2013). DOI 10.7566/jpsj.82.033002. URL https://doi.org/
10.7566%2Fjpsj.82.033002

18. V. Bazhenov, M. Soskin, M. Vasnetsov, Journal of Modern
Optics 39(5), 985 (1992). DOI 10.1080/09500349214551011.
URL https://doi.org/10.1080%2F09500349214551011

19. Y.A. Bychkov, E.I. Rashba, Journal of Physics C: Solid
State Physics 17(33), 6039 (1984). DOI 10.1088/0022-3719/
17/33/015. URL https://doi.org/10.1088%2F0022-3719%
2F17%2F33%2F015

20. K. Shimizu, M. Mochizuki, Phys. Rev. B 101, 045301 (2020).
DOI 10.1103/PhysRevB.101.045301. URL https://link.
aps.org/doi/10.1103/PhysRevB.101.045301

https://doi.org/10.1007%2Fbf01342460
https://doi.org/10.1007%2Fbf01342460
https://doi.org/10.1119%2F1.1987592
https://doi.org/10.1119%2F1.1987592
https://doi.org/10.1119%2F1.10184
https://doi.org/10.1119%2F1.16104
https://doi.org/10.1088%2F2058-7058%2F16%2F5%2F24
https://doi.org/10.1088%2F2058-7058%2F16%2F5%2F24
https://link.aps.org/doi/10.1103/PhysRevPhysEducRes.13.010101
https://link.aps.org/doi/10.1103/PhysRevPhysEducRes.13.010101
https://link.aps.org/doi/10.1103/PhysRevPhysEducRes.13.010123
https://link.aps.org/doi/10.1103/PhysRevPhysEducRes.13.010123
https://doi.org/10.1038%2F44348
https://doi.org/10.1080%2F09500340008232198
https://doi.org/10.1119%2F1.1531580
https://doi.org/10.1103%2Frevmodphys.81.1051
https://doi.org/10.1103%2Frevmodphys.81.1051
https://doi.org/10.1103%2Frevmodphys.84.157
https://doi.org/10.1103%2Frevmodphys.84.157
https://doi.org/10.1039%2Fc3cp51500a
https://doi.org/10.1039%2Fc3cp51500a
https://doi.org/10.1021%2Facs.jpclett.9b00676
https://doi.org/10.1021%2Facs.jpclett.9b00676
https://doi.org/10.7566%2Fjpsj.82.033002
https://doi.org/10.7566%2Fjpsj.82.033002
https://doi.org/10.1080%2F09500349214551011
https://doi.org/10.1088%2F0022-3719%2F17%2F33%2F015
https://doi.org/10.1088%2F0022-3719%2F17%2F33%2F015
https://link.aps.org/doi/10.1103/PhysRevB.101.045301
https://link.aps.org/doi/10.1103/PhysRevB.101.045301


10

21. D. Bercioux, A. De Martino, Phys. Rev. B 81, 165410
(2010). DOI 10.1103/PhysRevB.81.165410. URL https:
//link.aps.org/doi/10.1103/PhysRevB.81.165410

22. D. Bercioux, D.F. Urban, F. Romeo, R. Citro, Applied
Physics Letters 101(12), 122405 (2012). DOI 10.1063/1.
4753975. URL https://doi.org/10.1063/1.4753975

23. J.H. Bardarson, J.E. Moore, Reports on Progress in
Physics 76(5), 056501 (2013). DOI 10.1088/0034-4885/76/
5/056501. URL https://doi.org/10.1088%2F0034-4885%
2F76%2F5%2F056501

24. D. Bercioux, P. Lucignano, Reports on Progress in Physics
78(10), 106001 (2015). DOI 10.1088/0034-4885/78/10/
106001. URL https://doi.org/10.1088%2F0034-4885%
2F78%2F10%2F106001

25. M. Born, E. Wolf, Principles of optics (Cambridge University
Press, Cambridge, United Kingdom, 2019)

26. E. Bocquillon, V. Freulon, F.D. Parmentier, J.M. Berroir,
B. Plaçais, C. Wahl, J. Rech, T. Jonckheere, T. Martin,
C. Grenier, D. Ferraro, P. Degiovanni, G. Fève, Annalen der
Physik 526(1-2), 1 (2013). DOI 10.1002/andp.201300181.
URL https://doi.org/10.1002%2Fandp.201300181

27. J.M. Edge, J. Li, P. Delplace, M. Büttiker, Physical Re-
view Letters 110(24) (2013). DOI 10.1103/physrevlett.110.
246601. URL https://doi.org/10.1103%2Fphysrevlett.
110.246601

28. A. Inhofer, D. Bercioux, Physical Review B 88(23) (2013).
DOI 10.1103/physrevb.88.235412. URL https://doi.org/
10.1103%2Fphysrevb.88.235412

29. P.P. Hofer, M. Büttiker, Phys. Rev. B 88(24), 241308 (2013).
DOI 10.1103/PhysRevB.88.241308

30. D. Ferraro, C. Wahl, J. Rech, T. Jonckheere, T. Mar-
tin, Phys. Rev. B 89, 075407 (2014). DOI 10.1103/
PhysRevB.89.075407. URL https://link.aps.org/doi/10.
1103/PhysRevB.89.075407

31. D. Ferraro, T. Jonckheere, J. Rech, T. Martin, physica
status solidi (b) 254(3), 1600531 (2016). DOI 10.1002/
pssb.201600531. URL https://doi.org/10.1002%2Fpssb.
201600531

32. N. Avraham, J. Reiner, A. Kumar-Nayak, N. Morali,
R. Batabyal, B. Yan, H. Beidenkopf, Advanced Materials
30(41), 1707628 (2018). DOI 10.1002/adma.201707628. URL
https://doi.org/10.1002%2Fadma.201707628

33. P. Roushan, J. Seo, C.V. Parker, Y.S. Hor, D. Hsieh, D. Qian,
A. Richardella, M.Z. Hasan, R.J. Cava, A. Yazdani, Nature
460(7259), 1106 (2009). DOI 10.1038/nature08308. URL
https://doi.org/10.1038%2Fnature08308

34. P. Sessi, F. Reis, T. Bathon, K.A. Kokh, O.E. Tereshchenko,
M. Bode, Nature Communications 5(1) (2014). DOI
10.1038/ncomms6349. URL https://doi.org/10.1038%
2Fncomms6349

35. Y.L. Chen, J.G. Analytis, J.H. Chu, Z.K. Liu, S.K. Mo, X.L.
Qi, H.J. Zhang, D.H. Lu, X. Dai, Z. Fang, S.C. Zhang, I.R.
Fisher, Z. Hussain, Z.X. Shen, Science 325(5937), 178 (2009).
DOI 10.1126/science.1173034. URL https://doi.org/10.
1126%2Fscience.1173034

36. L. Fu, Physical Review Letters 103(26), 266801 (2009). DOI
10.1103/physrevlett.103.266801. URL https://doi.org/10.
1103%2Fphysrevlett.103.266801

37. K.K. Gomes, W. Mar, W. Ko, F. Guinea, H.C. Manoharan,
Nature 483(7389), 306 (2012). DOI 10.1038/nature10941.
URL https://doi.org/10.1038%2Fnature10941

38. M.R. Slot, T.S. Gardenier, P.H. Jacobse, G.C.P. van Miert,
S.N. Kempkes, S.J.M. Zevenhuizen, C.M. Smith, D. Van-
maekelbergh, I. Swart, Nature Physics 13(7), 672 (2017).
DOI 10.1038/nphys4105. URL https://doi.org/10.1038%
2Fnphys4105

39. S.N. Kempkes, M.R. Slot, S.E. Freeney, S.J.M. Zevenhuizen,
D. Vanmaekelbergh, I. Swart, C.M. Smith, Nature Physics
15(2), 127 (2018). DOI 10.1038/s41567-018-0328-0. URL
https://doi.org/10.1038%2Fs41567-018-0328-0

40. S.N. Kempkes, M.R. Slot, J.J. van den Broeke, P. Capiod,
W.A. Benalcazar, D. Vanmaekelbergh, D. Bercioux, I. Swart,
C.M. Smith, Nature Materials 18(12), 1292 (2019). DOI 10.
1038/s41563-019-0483-4. URL https://doi.org/10.1038%
2Fs41563-019-0483-4

41. L.C. Davis, M.P. Everson, R.C. Jaklevic, W. Shen, Phys.
Rev. B 43, 3821 (1991). DOI 10.1103/PhysRevB.43.
3821. URL https://link.aps.org/doi/10.1103/PhysRevB.
43.3821

42. M.F. Crommie, C.P. Lutz, D.M. Eigler, Nature 363(6429),
524 (1993). DOI 10.1038/363524a0. URL https://doi.org/
10.1038%2F363524a0

43. Y. Hasegawa, P. Avouris, Phys. Rev. Lett. 71, 1071 (1993).
DOI 10.1103/PhysRevLett.71.1071. URL https://link.
aps.org/doi/10.1103/PhysRevLett.71.1071

44. P. Sessi, R.R. Biswas, T. Bathon, O. Storz, S. Wilfert,
A. Barla, K.A. Kokh, O.E. Tereshchenko, K. Fauth, M. Bode,
A.V. Balatsky, Nature Communications 7(1) (2016). DOI
10.1038/ncomms12027. URL https://doi.org/10.1038%

2Fncomms12027

https://link.aps.org/doi/10.1103/PhysRevB.81.165410
https://link.aps.org/doi/10.1103/PhysRevB.81.165410
https://doi.org/10.1063/1.4753975
https://doi.org/10.1088%2F0034-4885%2F76%2F5%2F056501
https://doi.org/10.1088%2F0034-4885%2F76%2F5%2F056501
https://doi.org/10.1088%2F0034-4885%2F78%2F10%2F106001
https://doi.org/10.1088%2F0034-4885%2F78%2F10%2F106001
https://doi.org/10.1002%2Fandp.201300181
https://doi.org/10.1103%2Fphysrevlett.110.246601
https://doi.org/10.1103%2Fphysrevlett.110.246601
https://doi.org/10.1103%2Fphysrevb.88.235412
https://doi.org/10.1103%2Fphysrevb.88.235412
https://link.aps.org/doi/10.1103/PhysRevB.89.075407
https://link.aps.org/doi/10.1103/PhysRevB.89.075407
https://doi.org/10.1002%2Fpssb.201600531
https://doi.org/10.1002%2Fpssb.201600531
https://doi.org/10.1002%2Fadma.201707628
https://doi.org/10.1038%2Fnature08308
https://doi.org/10.1038%2Fncomms6349
https://doi.org/10.1038%2Fncomms6349
https://doi.org/10.1126%2Fscience.1173034
https://doi.org/10.1126%2Fscience.1173034
https://doi.org/10.1103%2Fphysrevlett.103.266801
https://doi.org/10.1103%2Fphysrevlett.103.266801
https://doi.org/10.1038%2Fnature10941
https://doi.org/10.1038%2Fnphys4105
https://doi.org/10.1038%2Fnphys4105
https://doi.org/10.1038%2Fs41567-018-0328-0
https://doi.org/10.1038%2Fs41563-019-0483-4
https://doi.org/10.1038%2Fs41563-019-0483-4
https://link.aps.org/doi/10.1103/PhysRevB.43.3821
https://link.aps.org/doi/10.1103/PhysRevB.43.3821
https://doi.org/10.1038%2F363524a0
https://doi.org/10.1038%2F363524a0
https://link.aps.org/doi/10.1103/PhysRevLett.71.1071
https://link.aps.org/doi/10.1103/PhysRevLett.71.1071
https://doi.org/10.1038%2Fncomms12027
https://doi.org/10.1038%2Fncomms12027

	1 Introduction
	2 Case of spinless electrons
	3 Case of spin-momentum locked electrons
	4 Comparisons
	5 Conclusions and outlook
	Appendix A: On the diffraction formula

